Muon Spin Relaxation Study of Superconducting $Bi_2Sr_{2-x}La_xCuO_{6+\delta}$

P. L. Russo^{1,2} *, A. Fukaya², I.M. Gat-Malureanu², A. T. Savici², Y. J. Uemura²,

C. R. Wiebe^{2,3}, G. J. MacDougall³, G. M. Luke³, M. Greven⁴, O. P. Vajk⁵, Y. Ando⁶,

K. M. Kojima⁷, K. Fujita⁷, S. Uchida⁷

¹TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada

²Dept. of Physics, Columbia Univ., 538 W 120th St, New York, NY,10027, USA

³Dept of Physics and Astronomy, McMaster University, Hamilton, ON L8P 4N3, Canada

⁴Dept. of Applied Physics, Stanford Univ., Stanford, CA, USA

⁵NIST Center for Neutron Research, Gaithersburg, MD, USA

⁶CRIEPI, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan

⁷Dept. of Physics, Univ. of Tokyo, 7-3-1 Hongo, Tokyo 113, Japan

We have performed μ SR measurements on superconducting samples of Bi₂Sr_{2-x}La_xCuO_{6+ δ} (Bi2201) in transverse magnetic fields (200 G - 2 kG) for x =0.2,0.4,0.6. Our results indicate that Bi2201, with its low superfluid density, follows the trend of other high-T_c superconductors where T_c is nearly proportional to $\sigma_{T\to0}$. This is in contrast with recent measurements on YBCO thin films (cond-mat/0410135) where T_c follows a power law dependence on the superfluid density. We also report detailed studies on angular averaging of σ for moderately oriented ceramic specimens, substitution of La with Eu, as well as comparison with recent H_c1 measurements in highly underdoped YBCO (Liang *et al.* PRL. **94**, 117001 (2005)).

High TF- μ SR has been performed on a number of the cuprates, revealing strong field-induced quasi-static magnetism in the underdoped and Eu doped $(\text{La},\text{Sr})_2\text{CuO}_4$ and $\text{La}_{1.875}\text{Ba}_{0.125}\text{CuO}_4$, existing well above T_c and T_N . Additional μ SR measurements have been performed on a single crystal specimen of Bi2201 (x = 0.4) in a high transverse magnetic field of 5 T parallel to the c-axis for comparison. The nearly temperature-independent and very small relaxation rate observed in Bi2201 above T_c rules out a hypothesis that the field-induced relaxation is directly proportional to the magnitude of the Nernst coefficient, a measure of the strength of dynamic superconductivity.

Fig. 1. The transition temperature T_c of HTSC and other type-II superconductors plotted against the muon spin relaxation rate $\sigma \propto n_s/m^*$ at $T \to 0$.

^{*}e-mail: plrusso@triumf.ca, FAX +1-604-222-1074