μSR Study of SrCu₂(BO₃)₂

A. Aczel^a, G.M.Luke^a, G.J. MacDougall^a, J. Rodriguez^a, Y.J. Uemura^b, C.R. Wiebe^c, and H. Kageyama^d

^aDepartment of Physics and Astronomy, McMaster University, 1280 Main Street W., Hamilton, ON, Canada, L8S 4M1

^bDepartment of Physics, Columbia University, 538 W. 120th St., New York, NY, 10027 ^cDepartment of Physics, Florida State University, 211 Westcott Bldg., Tallahassee, FL, 32306

^dDepartment of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606 -8502, Japan

 $SrCu_2(BO_3)_2$ is a quasi-two dimensional spin system with a spin-singlet ground state. This system has attracted much interest recently due to its relevance to the two-dimensional Shastry-Sutherland model. We have performed μSR studies on single crystals of $SrCu_2(BO_3)_2$. We observe two different muon sites which we associate with muons located adjacent to the two inequivalent O sites in the system. One site, presumed to be located in the Cu-O-Cu superexchange path, exhibits a large temperature-dependent frequency shift indicating that the muon has locally broken the singlet bond. To illustrate this, we will present ZF, LF, and TF μSR data for this system.