Émilie Dupont, Karyn Le Hur

April 21, 2006

Abstract

We first investigate quantum noise effect on the teleportation of nonlocal Cooper pairs across the realistic Andreev entangler, which consists of an s-wave superconductor coupled to two small quantum dots at resonance which themselves are coupled to normal leads. In the ideal noiseless case, the setup provides a trustable source of mobile and nonlocal spin-entangled electrons and allows the injection of two spin-entangled electrons into different leads at the same energy [2]. We seek to revisit the transport of those nonlocal Cooper pairs when including the quantum noise (decoherence) [1].

To explore another entanglement mechanism, one can also use a mounting between a double-dot charge qubit, formed by two strongly capacitively coupled dots, and a spin qubit. By placing these qubits between two superconducting leads, this prolific setup can be seen as a resonating valence bond (RVB) system [3].

- [1] É. Dupont and Karyn Le Hur, Phys. Rev. B 73, 045325 (2006).
- [2] P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001).
- [3] K. Le Hur, P. Recher, E. Dupont, and D. Loss, Phys. Rev. Lett. 96, 106803 (2006).