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Supporting Online Text 1

The tunneling formula of STM shown in Eq. (1) of the text is

I(~r, z, V ) = f(~r, z)

∫ eV

0

N (~r, E) dE. (1)

Here f(~r, z) contains the tunneling matrix elements M(~r) and the inverse decay length

of the wave function κ(~r), and is given by

f(~r, z) = C|M(~r)|2 exp {−2κ(~r)z} . (S1)

C is a proportional constant, and κ is related to the tunneling barrier height φ(~r) by

κ(~r) =
√

2mφ(~r)/~ (S1,S2), where m is the electron mass and ~ is the Planck constant.

We get a formula for differential tunneling conductance (dI/dV ) by differentiating Eq. (1),

g(~r, z, V ) ≡ ∂I(~r, z, V )

∂V
= f(~r, z)eN(~r, eV ). (S2)

Eq. (S2) shows that a dI/dV map is not proportional to an LDOS map when f(~r, z) is

heterogeneous. Such a situation occurs when (a) |M(~r)|2 and/or φ(~r) are heterogeneous,

and/or (b) z is not constant but a function of ~r. In actual experiments of I(~r, z, V ) and

g(~r, z, V ), z is usually controlled to prevent a tip from impacting the surface, and thus

becomes a function of ~r.

Let us consider these points in more detail. The adjustment of z is made at each

location so that a tunneling current I0 is obtained at a bias voltage V0. (I0 and V0 can be

arbitrarily chosen.) This z is maintained while a spectrum is taken at that location. Since

this procedure is repeated at each location throughout a map, resultant spectroscopic

maps are taken on a curve z0 ≡ z(~r; I0, V0),

I(~r, z0, V ) = f(~r, z0)

∫ eV

0

N (~r, E) dE, (S3)

g(~r, z0, V ) = f(~r, z0)eN(~r, eV ). (S4)

z0 is a constant-current (I0) topograph taken at V0, and satisfies

I0 = f(~r, z0)

∫ eV0

0

N (~r, E) dE. (S5)

Eq. (S4) means that, if z0 is heterogeneous, the dI/dV map is not proportional to the

LDOS map. Moreover, Eq. (S4) indicates that knowledge of the V0-dependence of the
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dI/dV maps is necessary to extract the LDOS map from the dI/dV maps. This situation

is better described in another expression for g obtained from Eqs. (S4) and (S5),

g(~r, z0, V ) =
eI0N(~r, eV )∫ eV0

0

N (~r, E) dE

. (S6)

Eq. (S6) shows that, if a heterogeneous dI/dV map is observed, it is not proportional

to an LDOS map unless one knows, independently of the dI/dV map, the denominator

is constant. In other words, in a system with heterogeneous LDOS, spatial variation of

LDOS is not given by that of the dI/dV map unless one chooses a special value of V0 (if

such exists). Eq. (S6) also indicates that a spatial variation of the denominator results in

a V -independent contribution to the the dI/dV map. Since the denominator of R(~r, V0)

is the same as that of Eq. (S6), such a V -independent contribution to the dI/dV map

and a spatial pattern of R(~r, V0) could have a common physical origin.
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As described in the text, an important practical advantage of the ratio map (R-map,

Z-map) is that f(~r, z) is cancelled out. This is true even if z0 is heterogeneous. From

Eqs. (S3) and (S4), we get

Z(~r, V ) ≡ g(~r, z0, +V )

g(~r, z0,−V )
=

N(~r, eV )

N(~r, eV )
(S7)

R(~r, V ) ≡ I(~r, z0, +V )

I(~r, z0,−V )
=

∫ eV

0

N (~r, E) dE∫ 0

−eV

N (~r, E) dE

, (S8)

where z0 does not appear at the right side of Eqs. (S7) and (S8)

To confirm experimentally this advantage, we measured the ratio maps with several

different z0’s. The resultant ratio maps should be independent of z0’s if f(~r, z) is really

cancelled out. Fig. S1 shows examples of R-maps taken at 150 mV with several I0 and

V0. Obviously, images taken with different conditions are virtually identical for each

material. This is true in all energies we studied. To summarize this, statistics of R-maps

as a function of V are shown in Fig. S2. For each material, the average and standard

deviation are the same, independent of measurement conditions. This demonstrates that

f(~r, z) is actually cancelled out in the measured R(~r, V ) and Z(~r, V ).
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Fig. S1: 12 nm square R-maps taken at 0.15 V with different I0 and V0. (a) and (b) were
measured in the same field of view except for small offset between the two measurements.
Their locations were also almost identical to that of Fig. 3C. (c) and (d) were measured in
a similar manner. They were equivalent to Fig. 3D but taken in a different location from
that of Fig. 3D. Materials and measurement conditions are (a) Na-CCOC, I0 = 0.2 nA,
V0 = 0.6 V, (b) Na-CCOC, I0 = 0.6 nA, V0 = -0.6 V, (c) Dy-Bi2212, I0 = 0.2 nA, V0 =
0.6 V, and (d) Dy-Bi2212, I0 = 0.15 nA, V0 = 0.15 V.
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Fig. S2: Statistics of R-maps taken in 12 nm square field of views. Each point and error
bar denote average and standard deviation, respectively.
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Fig. S3: A 50 nm square R-map taken at 0.15 V. The sample is Dy-Bi2212. The blue box
shows the area of Fig. 6 of the text.
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