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Theoretical predictions of unconventional charge density waves (CDW) such as pair density waves
have a characteristic symmetry of the energy dependence of the local density of state (LDOS)
modulations. The scanning tunneling microscopy (STM) and spectroscopy (STS) techniques obtain
information related to the LDOS and could extract the symmetry but setpoint effects prevent a
direct identification of the theoretical energy symmetry. We have investigated these effects in the
conventional CDW compound 2H-NbSe2 with very low temperature STM/STS. We observed the
expected setpoint effects on the LDOS modulation. The CDW amplitude of 2H-NbSe2 is mostly
asymmetric as expected. The CDW modulation amplitude peaks around 80 meV and is present up
to 140 meV. It is very weak below 4 meV. This large energy range for the presence of the CDW
modulations needs to be taken into consideration for theoretical models of 2H-NbSe2.

PACS numbers: 68.37.Ef, 71.45.Lr,74.70.Ad

Strongly correlated systems have phase transitions to
many complex orders. One of the possibilities is some
density of state modulation such as a charge density wave
(CDW). For example, many spatial structures have been
observed in the cuprates high temperature supercon-
ductors like checkerboards1, electronic glass2 and quasi-
particle interference3–6. There are many theoretical can-
didates to explains those structures. In particular for
the checkerboard there are suggestions of stripes7 and
pair density waves (PDW)8,9. For the PDW described
in Ref. 8 it is expected that the local density of states
(LDOS) modulations n(E,q) be symmetric as a function
of energy E, i.e. that n(E,q) = n(−E,q) for a modu-
lation with a reciprocal space vector of q. This is the
opposite result from a conventional CDW where the en-
ergy dependence is asymmetric: n(E,q) = −n(−E,q).
Therefore measurements of the symmetry of the energy
dependence of the LDOS modulation could provide iden-
tification of the proper state.

An obvious technique to use to extract the LDOS sym-
metry is scanning tunneling spectroscopy (STS). The
conductance g = dI/dV measured by the technique,
within a certain level of approximation, is proportional
to the LDOS. Therefore it is expected that the Fourier
transform of a conductance map would yield the sym-
metry information. However there is an experimental
complication that prevents this direct identification. The
conductance maps are usually measured while scanning
under the constant current condition10. In this mode
the conductance spectra are normalized at every points
of the map to keep the current constant at I0. This is
achieved automatically by a feedback circuit that adjusts
the height of the tip above the sample. Since the setpoint
current (I0) is the integral of the conductance from V = 0
(Fermi energy) to the setpoint voltage V0, the measured

spatially dependent conductance can be expressed as

g(V, r) = I0

n(eV, r)
∫ V0

0
n(eV, r)dV

(1)

where e is the charge of the electron to convert the
voltages(V ) into energies (E) referenced to the Fermi en-
ergy. The LDOS is given by n(E, r). This formulation
includes the effect of tunneling matrix elements and work
function variations within it. However if these additional
contributions are independent of the energy, their effect
disappears in the normalization since they don’t change
the shape of the spectra. Otherwise their effect is indis-
tinguishable from an intrinsic LDOS variation.

Assuming Eq. (1) is a good representation of the mea-
sured conductance we can now explore the effect of the
normalization. We express the LDOS in terms of the
Fourier components:

n(E, r) =n0(E) + nk1(E)eik1·r + n∗
k1(E)e−ik1·r

+ . . . (2)

where n0 is the k = 0 term, which represents the spatial
average of the LDOS, nk1 is the complex amplitude of the
density modulation with a reciprocal vector of k1 and we
only keep one k term but many others are present. Using
this and dropping the complex conjugate term we express
the integral of Eq. (1) as

N(r) =

∫ V0

0

dV n0(eV ) + nk1(eV )eik1·r (3)

= N0 + Nk1e
ik1·r (4)

where N0 is the spatial average of the integral and Nk1 is
the complex amplitude of the integral for k1. Assuming
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that Nk ≪ N0 for any k 6= 0, and keeping only terms to
first order we obtain:

g(V, r) = g0(V ) + gk1(V )eik1·r (5)

=
I0

N0

[

n0(E) +

(

nk1(E) − n0(E)
Nk1

N0

)

eik1·r

]

(6)

where g0 = I0
N0

n0 is the spatial average of the conduc-

tance and gk1 = I0
N0

(

nk1(E) − n0(E)Nk1

N0

)

is the modu-

lation of the conductance at vector k1. It is obvious from
that formulation that the measured gk1, extracted from
a Fourier transform of a conductance map is influenced
by the normalization. The correction introduced by the
setpoint effect effectively shifts the LDOS by a fraction
(Nk1

N0
) of the spatially averaged LDOS n0. The size of the

energy dependent shifts is set to nullify the integral of
gk1 between V = 0 and the setpoint V0. This is a more
general result that is independent of the approximation
to keep only first order terms. We have performed the
equivalent of integrating the Fourier transform, but if we
invert the sequence, i.e. integrate Eq. (1) then take the
Fourier transform, it becomes obvious that only the k = 0
component will be non-zero since the integral produces
the spatially uniform constant I0. The consequence is
that the n0

Nk1

N0
term behaves as an average modulation

over the voltage range between V = 0 and the setpoint
V0. This also means that the real and imaginary parts of
the gk1 signal need to cross zero at least once over that
same interval. In general it is possible that Nk = 0, which
would still show at least one zero crossing but it would
be intrinsic to the material and not due to the setpoint
effect in that case.

The complications introduced by the setpoint normal-
ization for the identification of the symmetry of the
LDOS can be better understood if many conductance
maps are gathered using different setpoint voltages. In
particular, if maps can be taken where Nk = 0 and all
nk(E) = 0 below the setpoint then the normalization
offset would be removed. At the opposite end, if the
setpoint is adjusted well outside the energy range of the
modulation then Nk remains fix while N0 increases and
this will decrease the importance of the setpoint normal-
ization.

When looking at the region around the Fermi energy,
it is quite possible that nk ≈ 0 or at least becomes small
compared to the setpoint effect. Under these conditions
the conductance will have the symmetry of n0. Since n0

is often symmetric, this would lead to the wrong conclu-
sion about the energy symmetry of the LDOS modula-
tion. Therefore extreme care needs to be taken when an-
alyzing the raw Fourier amplitudes of conductance map
to prevent an erroneous symmetry identification.

Recently many STS experiments have introduced the
ratio of conductance maps as a way to increase the con-
trast of a particular modulation5,11, to extract a doping
dependence2 and to study the behavior of the bogoliubov
superconducting quasi-particles12. The ratio Z is given

by

Z(V, r) =
g(V, r)

g(−V, r)
. (7)

Using the expression of Eq. (5) and again keeping only
terms up to first order this becomes

Z(V, r) = Z0(V ) + Zk1(V )eik1·r (8)

=
g+
0

g−0

[

1 +

(

g+
k1

g+
0

−
g−k1

g−0

)

eik1·r

]

(9)

or in terms of the LDOS

Z(V, r) =
n+

0

n−

0

[

1 +

(

n+
k1

n+
0

−
n−

k1

n−

0

)

eik1·r

]

, (10)

where we introduced the notation f+ = f(+E) and
f− = f(−E) with E = eV for both the LDOS and the
conductance. This ratio therefore becomes Z = 0 when
both the averaged density of states and the modulated
LDOS are purely symmetric, i.e. when n+

0 = n−

0 and
n+

k = n−

k . For a n0 that is not perfectly symmetric the
cancellation will no longer be achieved. However when
the modulation amplitude is related to the average am-
plitude, nk = n0(1 + αk), and where α+

k = α−

k then the
cancellation is recovered. It is important to remark how-
ever that Z = 0 does not imply a symmetric LDOS. It can
also imply that there is simply no modulation at that en-
ergy. Applied to an asymmetric LDOS modulation this
ratio extracts amplitude information that is unaffected
by the setpoint normalization.

We now proceed to test these concepts in a conven-
tional CDW material. We prepared a crystal of 2H-
NbSe2 by the standard vapor-transport technique. This
material has a CDW order at TCDW = 33.5 K and a
superconducting order at Tc = 7.2 K13. The crystal
structure is hexagonal and the incomensurate CDW has
a period of approximately 3a0 where a0 = 3.45 Å is the
crystal lattice parameter14. The mechanism of the CDW
in this material has not been understood yet. The nested
Fermi surfaces segments associated with a CDW have not
been localized and many recent ARPES measurements
have identified features probably related to the CDW but
at quite different energies15–18.

Many STM studies have been performed on this
material19–23. In particular Ref. 23 looked at explain-
ing the setpoint effect in topographic images. The the-
ory suggest that the phase of the modulation changes
with energy but that the expected phase shift of 180◦

that occurs in one-dimensional systems is not present for
2H-NbSe2. It predicts phase shifts of ±120◦ instead.

The experiments were carried out in a home built STM
installed in a custom design 3He cryostat. The sample
was prepared by cleaving inside the cryogenic vacuum at
the 4.2 K stage. All the measurements were performed
with the microscope at a temperature of 450 mK. The
images and maps all had a resolution of 256 by 256 pixels.

In Fig. 1a) we see a large (20 nm) topography taken
with a setpoint voltage of -100 mV and current of -100
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FIG. 1. (Color online) a) Constant current topography of
2H-NbSe2 over 20 nm. The inset shows a zoom of the region
identified by a square and shows a single defect marked by an
arrow. b) The +25 meV conductance map taken at the same
time as the topography. c) The FFT of the conductance map
with the identification of the 3 primary q vectors of the CDW
and of the modulation signal due to the atomic crystal lattice.

pA. Most of the other data sets that will be analyzed
were measured over a 10 nm area. The weak pattern that
modulates the atomic amplitude and that repeats every
3 atoms along the 3 crystal directions is the CDW. The
inset presents a zoom of the region where a defect was
observed, and shows the system achieved a good atomic
resolution. However some tip instability was present and
therefore some of the data sets presented later were done
under different tip conditions. Nonetheless the qualita-
tive features presented here were independent of the tip
condition. The CDW pattern becomes clearer in the con-
ductance map shown in Fig. 1b) which was taken at the
same time as the topography. The measurements are
done by stopping the feedback at every pixel of the to-
pography and taking a conductance dI/dV spectra di-
rectly using a lock-in amplifier technique. Before the
feedback is disabled the setpoint is temporarily modified
to V0 = −100 mV and I0 = −300 pA to improve the con-
ductance signal. A modulation amplitude of 5 mVRMS

was added to the sample voltage for the lock-in tech-
nique. Finally Fig. 1c) shows the fast Fourier transform
(FFT) of the conductance map. With arrows we identify
the modulation signal produced by the atomic structure
and the three primary q vectors produced by the CDW.
We obtain that |katoms/q| = 3.1 ± 0.1 as expected.

We now extract the values of the FFT at the origin
(k = 0) and at the primary vectors of the CDW and ob-
tain Fig. 2. The conductance map used for this analysis is
not the one from Fig. 1. It used a setpoint of V0 = −140
mV with a modulation amplitude of 5 mVRMS. Fig. 2a)
shows the q = 0 component which is the spatial average
of the conductance. A weak energy asymmetry of about
0.8 is displayed in the curve when comparing positive
sample voltages with the negative ones. With the mod-
ulation amplitude used here the superconducting gap is
not observable. Around ±30 mV there is a decrease in
the conductance. This was originally identified as the
CDW gap19,20 but recent ARPES measurements suggest
the feature might be a saddle point singularity instead15.
In Fig. 2b) and c) we see the real and imaginary parts
of the FFT at the three primary CDW q vectors. To
improve the clarity of the figure we have fixed the phase
of the gq to be purely real at -140 mV24. As expected
the curves cross zero between the setpoint voltage and
the Fermi energy. If both n0 and nq were symmetric we
would expect a symmetric gq. But here the gqs are not
symmetric, even considering the imperfect symmetry of
g0. They are not purely asymmetric either but that is ex-
pected from the setpoint normalization effect and from
the phase jumps that are expected to be different than
180◦. The peak in gq2 at V = 0 (and to a lesser extent in
gq3) is not present in all the data sets and is not under-
stood. However it is restricted to a small energy around
V = 0 (the voltage modulation is 5mVRMS) since the
zero crossing does not seem to be affected strongly by its
presence. Later we will show results from a conductance
map taken over that small energy range.

To observe the effect of the setpoint we also display
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FIG. 2. (Color online) a) The square are the amplitude of
the k = 0 point from the FFT of a conductance map. The
lines are a guide to the eye. b) and c) show respectively the
real and imaginary parts at the three q vectors of the CDW
from the same FFT. The setpoint was V0 = −140 mV and
I0 = −420 pA, and all the solid curves cross zero on the
negative side around -70 mV. The dashed line is obtained
after renormalizing the map to a setpoint of V0 = −40 mV
(as described in the text) and crosses the origin much closer
to 0 mV. For display purposes the phase of the q signal was
forced to be purely real at -140 mV.

data obtained for a different voltage setpoint of V0 = −40
mV as the dashed line. Here the crossing is moved closer
to the Fermi energy and the curves are modified by al-
most a constant shift which is expected since g0 is roughly
flat. This data was not obtained from a separate conduc-
tance map but was simulated from the V0 = −140 mV
conductance map. This was achieved by measuring the
current map I(V, r) at the same time as the conductance
map. With this additional information we can simulate
a new map g′ under a different setpoint V ′

0 condition by

g′(V, r) = g(V, r)
I(V ′

0)

I(V ′
0 , r)

(11)

where V ′
0 = −40 mV is the new setpoint and I is the

spatially average current over the map. At the level of
approximations used above in Eq. (1) this should have
the same result as measuring a new conductance map
under a different setpoint. We qualitatively checked and
confirmed that the same results are obtained with a mea-
sured map compared to a simulated map.
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FIG. 3. (Color online) The same as for Fig. 2 except the
energy range is ±5 meV, and the curves are forced to be
real at −1.9 mV. The setpoint conditions were V0 = −20 mV,
I0 = −800 pA and a modulation amplitude of 0.4 mVRMS was
used. The red curve in a) is an averaged point spectra using a
modulation amplitude of 70 µVRMS. The renormalized curve
(dashed) used a new setpoint of −1.9 mV.

In Fig. 3 we see the same measurement as in Fig. 2 but
for a smaller energy range around the superconducting
transition. The superconducting gap is clearly visible.
The fact the setpoint voltage was set at -20 mV explains
why almost no zero crossing is seen in Fig. 3b) and c).
Over this energy range g0 is very symmetric. The gqs
curves are also quite symmetric. This can be explained
by a symmetric density wave like a PDW but it could also
simply be the result of the setpoint effect with a weak or
absent asymmetric signal at these energies. The renor-
malized dashed curve (V ′

0 = −1.9 mV) shows that much
less signal is present and it has become less symmetric.
Therefore between ±4 mv only a very weak CDW signal
is present. Hence the original V0 = −20 mV signal was
misleading.

Another aspect of this asymmetry can be extracted
from the FFT of the Z ratio. In Fig. 4 we analyze the
same map as in Fig. 2. To correctly understand the am-
plitude of Z we need a reference scale for comparison. In
particular, for the case of a symmetric signal where we
expect Z = 0, we need to know how good the zero is.
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FIG. 4. (Color online) Using the same map as for Fig. 2
we display Z (solid lines) and Zmax (dashed line) for the 3
principal q vectors of the CDW. The dotted line is Zmax for
the data renormalized with V ′

0 = −40 mV. The proximity
between Z and Zmax suggests a mostly asymmetric CDW.
The CDW signal is present at all energies but seems to be
decreasing above 100 mV.

Therefore we also plot Zmax which is obtained as

Zmax(V, q) =
g
+

0

g
−

0

×
√

(∣

∣

∣
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+
q

g
+

0

∣

∣

∣
+

∣

∣

∣
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−
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∣

∣

∣
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∣
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q
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∣
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∣

∣

∣
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−

q
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−
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∣

∣

∣

)2

(12)

where this expression considers the signal as purely asym-
metric and handle the imaginary and real part separately.
This will provide a maximum value for Z irrespective of
the symmetry. However some care needs to be taken with
this expression. When either g+

q or g−q is zero this expres-
sion reduces to Z itself so it not useful at those energies.
Another point to be keep in mind is that Zmax includes
the effect of the setpoint normalization. Therefore if nq

becomes small, Zmax will stay stuck with a value depen-

dent on n0
Nq

N0
.

In Fig. 4 we see that Z and Zmax are close. As expected
they become almost equal at the zero crossing voltage of
Fig. 2. The renormalized setpoint (dotted) Zmax curve,
is quite different from the original one (black dashed) but
there is a unique Z curve for both. This large variation in
Zmax shows that care is needed when using it. Nonethe-
less, for a purely symmetric density wave, we expect Zmax

to be well above Z ≈ 0 irrespective of the setpoint and
this is obviously not the case here. After peaking around
80 mV, all the Z curves are decreasing above 100 mV and
they tend to separate from Zmax (note that gq2 has a zero
around +130 V which makes Zmax ≈ Z). The modula-
tion signal coming from the CDW is therefore present at
all the energies presented here but it tends to disappear at
the higher energies. This result is consistent with recent
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FIG. 5. (Color online) Using the same map as for Fig. 3
we display Z (solid lines) and Zmax (dashed line) for the 3
principal q vectors of the CDW. The dotted line is Zmax for
the data renormalized with V ′

0 = −1.9 mV. Since Z and Zmax

are separated this suggests no CDW signal. It could also
signify the presence of a symmetric density wave, but the
renormalized curve is inconsistent with that identification.

ARPES measurements18 where changes in the spectral
weight were observed over a large range of energies. The
effect of the CDW in 2H-NbSe2 does not seem restricted
to a small region around the Fermi energy.

Finally, for the low energy map, the result of the Z
analysis are displayed in Fig. 5. Here Z and Zmax are
quite separated, especially at low energy. This suggests a
symmetric signal, or a small asymmetric signal with Zmax

influenced by the setpoint effect. We see the later is the
probable because the renormalized Zmax (dashed curve)
is much lower and this is consistent with the analysis of
Fig. 3 above. Therefore the CDW modulation is very
weak or simply absent at energies below 4 meV.

In conclusion, we described some techniques to allow
the analysis of the symmetry of LDOS modulation us-
ing STM that consider the important effect of setpoint
normalization. We applied those techniques to the con-
ventional CDW material 2H-NbSe2. As expected, we
obtained that the CDW is mostly asymmetric. We also
observed that the CDW is present over a large range of
energies (up to 140 meV) peaking around 80 meV but
is mostly absent at low energies (below 4 meV). This is
consistent with the recent ARPES results of Ref. 18 and
has important implications for the theories of the CDW
in this material. Further STS measurements are needed
to more precisely identify the CDW energy range and its
relation to the superconducting energy gap.
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