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1. MAIN RESULTS FROM SEC-
OND QUANTIZATION

One of the most important results of quantum mechanics is that identical particles
are indistinguishible: we cannot tell that a speci�c electron is at a given coordi-
nate, we can just say that one electron is at that coordinate. Even in statistical
mechanics, this indistinguishibility is important. This means that the wave func-
tion, say  (r1; r2; r3) behaves in s speci�c way if coordinates are interchanged:
If r1 takes any particular value, say a, and r2 takes another value, say b, then
they are indistinguishible, i.e.  (a;b; r3) =  (b;a; r3) : But that is not the only
possibility since the only thing we know for sure is that if we exchange twice the
coordinates of two particles then we should return to the same wave function.
This means that under one permutation of two coordinates (exchange), the wave
function can not only stay invariant, or have an eigenvalue of +1 as in the example
we just gave, it can also have an eigenvalue of �1. These two cases are clearly
the only possibilities and they correspond respectively to bosons and fermions.
There are more possibilities in two dimensions, but that is beyond the scope of
this chapter.
When dealing with many identical particles, a basis of single-particle states is

most convenient. Given what we just said however, it is clear that a simple direct
product such as j�1i 
 j�2i cannot be used without further care because many-
particle states must be symmetrized or antisymmetrized depending on whether we
deal with bosons or fermions. For example, for two fermions an acceptable wave
function would have the form

p
2
�1 hr1j 
 hr2j [j�1i 
 j�2i � j�2i 
 j�1i] : Second

quantization allows us to take into account these symmetry or antisymmetry prop-
erties in a straightforward fashion. To take matrix elements directly between wave
functions would be very cumbersome.
The single-particle basis state is a complete basis that is used most often. Note

however that a simple wave-function such as

 (x; y) = (x� y)Ne�jx�yj=a (1.1)

for two electrons in one dimension, with N and a constants, is a perfectly ac-
ceptable antisymmetric wave function. To expand it in a single-particle basis
state however requires a sum over many (in general an in�nite number of) anti-
symmetrized one-particle states. There are cases, such as the quantum Hall e¤ect,
where working directly with wave functions is desirable, but for our purposes this
is not so.

Remark 1 Second quantization as we introduce it in this chapter looks like just
a convenient trick to work with many particles. Second and �rst quantization
are completely equivalent. In �rst quantization, we start with particles, set up
commutation relations between position and momentum, and end up with a wave
function. Second quantization can be seen as starting from a wave function, or
�eld , setting up commutation relations with the conjugate �eld and ending up with
particles, or excitations of that �eld. With the electromagnetic �eld, in a sense we
do not have the choice to do this. The next chapter will introduce the formal way
to set up second quantization from �rst principles.

Remark 2 In some ways, second quantization is the perfect formalism to see
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wave-particle duality. A state will be de�ned by having an integer number of cre-
ation operator acting on the vacuum. Each operator creates a particle, but that
particle is in a state that can be a plane wave for example. And even �worse�. The
many-body state can be a superposition of N particles in momentum eigenstates
plus N particles in position eigenstates, to take an extreme example.

1.1 Fock space, creation and annihilation operators

As is often the case in mathematics, working in a space that is larger than the
one we are interested in may simplify matters. Think of the use of functions of
a complex variable to do integrals on the real axis. Here we are interested most
of the time in Hamiltonians that conserve the number of particles. Nevertheless,
it is easier to work in a space that contains an arbitrary number of particles.
That is Fock space. Annihilation and creation operators allow us to change the
number of particles while preserving indistinguishability and antisymmetry. In
this representation, a three-electron state comes out as three excitations of the
same vacuum state j0i ; a rather satisfactory state of a¤airs since it looks very
much from what we know from the quantized harmonic oscillator. Particles in
that context correpond simply to transitions from the ground state to excited
states. To go to the third excited state, we need three particles.
It will be very helpful if you review creation-annihilation operators, also called

ladder operators, in the context of the harmonic oscillator.

1.1.1 Creation-annihilation operators for fermion wave functions

For the time being our fermions are spinless, it will be easy to add spin later on.
We assume that the one-particle states j�ii form an orthonormal basis for one
particle, namely h�ij �ji = �i;j : The notation is that � denotes the basis whose
components are labeled by the index. �1 is the �rst state, �2 the second state etc.
What concerns us here are many-body states. The state j�1�2i with two

fermions is antisymmetrized, namely

j�1�2i =
1p
2
(j�1i 
 j�2i � j�2i 
 j�1i) :

The �rst Hilbert space on the right of the above expression can be either in state
�1 or �2: Antisymmetry means that j�1�2i = � j�2�1i :
We de�ne a vaccum j0i that contains no particle. Then, we de�ne ay�1 that

creates a particle from the vacuum to put it in state j�1i and for fermions it
antisymmetrizes that state will all others. In other words, ay�1 j0i = j�1i : Up to
now, there is nothing to antisymmetrize with, but if we add another particle,

ay�1a
y
�2 j0i = j�1�2i

then that state has to be antisymmetric. In other words, we need to have j�2�1i =
� j�1�2i ; or

j�2�1i = ay�2a
y
�1 j0i = � j�1�2i = �a

y
�1a

y
�2 j0i :

14 MAIN RESULTS FROM SECOND QUANTIZATION



Clearly this will automatically be the case if we impose that the creation operators
anticommute, i.e. ay�ia

y
�j = �a

y
�ja

y
�i orn

ay�i ; a
y
�j

o
� ay�ia

y
�j + a

y
�ja

y
�i = 0: (1.2)

This property is a property of the operators, independently of the speci�c state
they act on. The anticommutation property garantees the Pauli exclusion principle
as we know it, since if i = j then the above leads to

ay�ia
y
�i = �a

y
�ia

y
�i : (1.3)

The only operator that is equal to minus itself is zero. Hence we cannot create
two particles in the same state.
If we want the whole formalism to make sense, we want to have a sign change

to occur whenever we interchange two fermions, wherever they are in the list.
In other words, we want j�i�j : : : �k : : : �l : : : �mi = � j�i�j : : : �l : : : �k : : : �mi :
To see that our formalism works, you can write the state to the left in terms of
creation operators on the vacuum

j�i�j : : : �k : : : �l : : : �mi = ay�ia
y
�j : : : a

y
�k
: : : ay�l : : : a

y
�m j0i : (1.4)

If there are n operators between ay�k and a
y
�l
; we pay a (�1)n to place ay�k to the

left of ay�l : Then there is a (�1) to interchange a
y
�k
and ay�l ; and �nally another

(�1)n to take ay�l where a
y
�k
was. Since (�1)2n = 1; there is only the minus sign

from the �local�interchange ay�k and a
y
�l
that is left.

Note that with fermions we need to determine an initial order of operators for
the states. That is totally arbitrary because of the phase arbitrariness of quantum
mechanics. But then, during the calculations we need to keep track of the minus
signs.
Now that we know how to create, let us move to destruction. The destruction

operators are the adjoints of ay�i . Their anticommutation property follows by

taking the adjoint of
n
ay�i ; a

y
�j

o
= 0 :�

a�i ; a�j
	
� a�ia�j + a�ja�i = 0: (1.5)

These adjoint operators are de�ned as follows

h�1j = h0j a�1 : (1.6)

They create and antisymmetrize in bras instead of kets. When they act on kets
instead of bras, they remove a particle instead of adding it. In particular,

a�1 j0i = 0: (1.7)

This is consistent with h�1j 0i = 0 = h0j a�1 j0i.
Since we also want states to be normalized, we need

h�ij �ji = h0j a�iay�j j0i = �i;j : (1.8)

Since we already know that a�1 j0i = 0; that will automatically be satis�ed if we
write the following anticommutation relation between creation and annihilation
operators n

a�i ; a
y
�j

o
� a�iay�j + a

y
�ja�i = �

i;j (1.9)

because then h0j a�iay�j j0i = �h0j a
y
�ja�i j0i + h0j �i;j j0i = 0 + �i;j : The above

three sets of anticommutation relations are called canonical.

FOCK SPACE, CREATION AND ANNIHILATION OPERATORS 15



At this point one may ask why anticommutation instead of commutation. Well,
two reasons. The �rst one is that given the previous anticommutation rules, this
choice seems elegant. The second one is that with this rule, we can de�ne the very
useful operator, the number operator

bn�i = ay�ia�i : (1.10)

That operator just counts the number of particles in state �i. To see that this is
so and that anticommutation is needed for this to work, we look at a few simple
cases. First note that if bn�i acts on a state where �i is not occupied, thenbn�i j�ji = bn�iay�j j0i = ay�ia�ia

y
�j j0i = �a

y
�ia

y
�ja�i j0i = 0: (1.11)

In an arbitrary many-particle state j�j ; �k; : : :i ; if the state �i does not appear
in the list, then when I compute bn�i j�j ; �k; : : :i ; I will be able to anticommute
the destruction operator all the way to the vacuum and obtain zero. On the other
hand, if �i appears in the list then

bn�i �ay�jay�k : : : ay�i : : : ay�l j0i� = ay�ja
y
�k
: : : bn�iay�i : : : ay�l j0i : (1.12)

I have been able to move the operator all the way to the indicated position without
any additional minus sign because both the destruction and the annihilation oper-
ators anticommute with the creation operators that do not have the same labels.
The minus signs from the creation and from the annihilation operators in ay�ia�i
cancel each other. This would not have occured if a�i and a

y
�j had commuted

instead of anticommuted while a�i and a�j had anticommuted. Now, let us focus
on bn�iay�i in the last equation. Using our anticommutation properties, one can
check that bn�iay�i = ay�ia�ia

y
�i = ay�i

�
1� ay�ia�i

�
: (1.13)

Since there are never two fermions in the same state, now the destruction operator
in the above equation is free to move and annihilate the vacuum state, and

bn�i �ay�jay�k : : : ay�i : : : ay�l j0i� = �ay�jay�k : : : ay�i : : : ay�l j0i� : (1.14)

This means that bn�i does simply count the number of particles. It gives one or
zero depending on whether the state is occupied or not.

Remark 3 We de�ne the bra h�1�2j by

h�1�2j = (j�1�2i)y =
�
ay�1a

y
�2 j0i

�y
= h0j a�2a�1 : (1.15)

Notice the change in the order of labels between h�1�2j and h0j a�2a�1 :

1.2 Change of basis

1.2.1 General case

Creation-annihilation operators change basis in a way that is completely deter-
mined by the way one changes basis in single-particle states. Suppose one wants
to change from the � basis to the � basis, namely

j�mi =
X
i

j�ii h�ij �mi (1.16)
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which is found by inserting the completeness relation. Let creation operator ay�i
create single particle state j�ii and antisymmetrize while creation operator cy�m
creates single particle state j�mi and antisymmetrize. Then the correspondance
between both sets of operators is clearly

cy�m =
X
i

ay�i h�ij �mi (1.17)

with the adjoint
c�m =

X
i

h�mj �ii a�i (1.18)

given as usual that h�ij �mi = h�mj �ii
�
: Physically then, creating a particle in a

state j�mi is like creating it in a linear combination of states j�ii : We can do the
change of basis in the other direction as well.
If we de�ne with h�ij �ni a matrix for the change of basis, this matrix is

unitary if h�mj �ni = ��m;�n . Indeed, inserting a complete set of states, we see
that

P
i h�mj �ii h�ij �ni = h�mj �ni = ��m;�n :

Since we have de�ned new creation- annihilation operators, it is quite natural
to ask what are their commutation or anticommutation relations. It is easy to
�nd using the change of basis formula and the completeness relation. Assuming
that the creation-annihilation operators are for fermions, we �ndn

c�m ; c
y
�n

o
=

X
i

X
j

h�mj �ii
n
a�i ; a

y
�j

o
h�j j �ni (1.19)

=
X
i

X
j

h�mj �ii �i;j h�j j �ni (1.20)

=
X
i

h�mj �ii h�ij �ni = h�mj �ni : (1.21)

Hence, if the transformation between basis is unitary, the new operators obey
canonical anticommutation relations, namelyn

c�m ; c
y
�n

o
= �m;n: (1.22)

When the change of basis is unitary, we say that we have made a canonical trans-
formation. The same steps show that a unitary basis change also preserves the
canonical commutation relations for bosons.

Remark 4 The notation c�m ; a�i is rather clumsy. In practice, one uses, for
example, fi to label destruction operators for an f electron in a state i, di for d
electrons, ci for conduction electrons etc. In other words, the basis is identi�ed by
the choice of label for creation-annihilation operators, and the component by the
index of that symbol.

1.2.2 The position and momentum space basis

We recall a strange basis. In this basis, we take continuum notation for space and
discrete notation for momentum. Starting from hr jr0i = � (r� r0) and hk jk0i =
�k;k0 it is easy to check by left or right multiplying that the following operators
give the completeness relationX

k

jki hkj = 1 =
Z
dr jri hrj
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To go from one basis to the other, we use plane-waves that are normalized to unity
in a volume V, namely

hr jki = 1p
V
eik�r (1.23)

hk jri = 1p
V
e�ik�r (1.24)

We can check that hr jr0i is normalized in the continuum while hk jk0i is normalized
as a discrete set of states

hr jr0i =
X
k

hr jki hk jr0i = 1

V
X
k

eik�(r�r
0) =

Z
dk

(2�)
3 e
ik�(r�r0) = � (r� r0)

(1.25)

hk jk0i =
Z
dr hk jri hr jk0i = 1

V

Z
dre�ir�(k�k

0) = �k;k0 : (1.26)

To take the continuum limit of the discrete sum over k, one uses eigenstates of
momentum in a box where the separation between states is given by�kx = 2�=Lx,
where Lx is the size of the box in the x direction, and similarly for the other
directions.
Creation operators in eigenstates of position are usually denoted,  y (r), while

creation operators in eigenstates of momentum are denoted cyk. The basis change
between them leads to

 y (r) =
X
k

cyk hk jri =
1p
V

X
k

cyke
�ik�r (1.27)

 (r) =
X
k

hr jki ck =
1p
V

X
k

eik�rck: (1.28)

Given our above convention, the momentum operators obey the algebra of a dis-
crete set of creation operators. Taking fermions as an example, we then haven

ck; c
y
k0

o
= �k;k0 ; fck; ck0g =

n
cyk; c

y
k0

o
= 0 (1.29)

while the position space creation-annihilation operators obeyn
 (r) ;  y (r0)

o
=
P

k

P
k0 hr jki

n
ck; c

y
k0

o
hk0 jr0i =

P
k hr jki hk jr0i = hr jr0i = � (r� r0)

(1.30)

f (r) ;  (r0)g =
n
 y (r) ;  y (r0)

o
= 0 (1.31a)

1.3 Wave functions

With N -particles, the wave function is obtained by projection on a position basis.
If we have a single many-body state, j�i = ay�1a

y
�2 : : : a

y
�i : : : a

y
�N j0i then the cor-

respondance between �rst and second quantized description is in a sense contained
in the following expression

hr1r2:::rN j �i = hr1r2:::rN j �1�2:::�N i = h0j (rN ) : : :  (r2) (r1) ay�1a
y
�2 : : : a

y
�i : : : a

y
�N j0i
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which is proportional to a so-called Slater determinant if we have fermions. Indeed,
using our change of basis formula,

 (r) =
X
i

hr j�ii a�i =
X
i

��i (r) a�i (1.32)

any of the positions r can be in a state �i; or vice versa the position r has am-
plitudes on all states, so you can check that the (unnormalized) wave function is
equal to

X
p

"p��p(1) (r1)��p(2) (r2) :::��p(N)
(rN ) = Det

2664
��1 (r1) ��1 (r2) ::: ��1 (rN )
��2 (r1) ��2 (r2) ::: ��2 (rN )
::: ::: :::

��N (r1) ��N (r2) ��N (rN )

3775
(1.33)

where the sum is over all permutations p (i) of the set i and "p is the signature
of the permutation, given by +1 if the number of transpositions (interchanges) of
pairs of creation operators to get back to the original order is even and �1 if the
number of transpositions is odd.

Remark 5 Closure relation and normalization:

1
N !

R
dr1dr2:::drN jr1r2:::rN i hr1r2:::rN j (1.34)

This closure relation implies that if we want to recover the usual expression for
normalized wave functions, h� j�i = 1; the determinant above should be multiplied
by 1=

p
N !. We recover our example with two particles where the normalization is

1=
p
2:

Remark 6 Many-Body wave function and basis states: It is very important to
note that the most general state must be written as a linear combination of the
states ay�1a

y
�2 : : : a

y
�i : : : a

y
�N j0i or of the above Slater determinants. In other words,

a general many body state j�i must be expanded as

j�i =
X

i;j;:::`;:::

Ci;j;:::`;:::
�
ay�ia

y
�j : : : a

y
�`
: : : j0i

�
(1.35)

where Ci;j;:::`;::: are expansion coe¢ cients. In a way, the Feynman diagrams that
we will encounter are a way to write the various components of a general state.

Remark 7 Wave functions live in Hilbert space: It is important to note that the
(unnormalized) wave function

 �1�2:::�N (r1r2:::rN ) = hr1r2:::rN j �1�2:::�N i

propagates, so to speak, in Hilbert space, not in ordinary space. The waves that
we are familiar with in the classical world are functions of only the three spatial
coordinates. Not so for the Schrödinger wave, unless there is a single particle to
describe.

Remark 8 One-particle wave function: The quantity  �1�2:::�N (r1r2:::rN ) is
often-called a one-particle wave function in the sense that it is just one member of
a complete set of states where all particles are independent. The most general state
j�i above contains correlations, in addition to those induced by symmetrization or
antisymmetrization.

Remark 9 Particles and waves: In  �1�2:::�N (r1r2:::rN ) we see the wave, but we
also see that there are N particles. And we need all this information to describe
the system. The continuous and discrete aspects are present all at once.

WAVE FUNCTIONS 19



Remark 10 For bosons, the expression is similar, but we compute the determi-
nant without the signs coming from the permutations. This is called a permanent.
The normalization will also have the 1=

p
N ! coming from the closure relation in

addition to the prefactor 1=
pQ

i n�i !.

1.4 One-body operators

The matrix elements of an arbitrary one-body operator bU (in the N�particle
case) may be computed in the many-body basis made of one-body states wherebU is diagonal. As an example of one-body operator, the operator bU could be an
external potential so that the diagonal basis is position space. In the diagonal
basis, bU j�ii = U�i j�ii = h�ij bU j�ii j�ii (1.36)

where U�i is the eigenvalue. In this basis, one sees that the e¤ect of the one-body
operator is to produce the same eigenvalue, whatever the particular order of the
states on which the �rst-quantized operator acts. In general then when we have
N particles in a many-body state, the action of the one-body operator is

NX
�=1

bU� j�i; �j ; �k : : :i = �U�i + U�j + U�k + : : :� j�i; �j ; �k : : :i (1.37)

Knowing the action of the number operator, we can write the same result di¤er-
ently

NX
�=1

bU� j�i; �j ; �k : : :i = 1X
m=1

U�mbn�m j�i; �j ; �k : : :i (1.38)

in other words, there will be a contribution as long as �i appears in the state. And
if �i occurs more than once, the corresponding eigenvalue U�i will appear more
than once. Note also that I have assumed that there there is an in�nite number
of basis states j�mi :
We hold a very elegant result. The one-body operator

P
m U�mbn�m in second

quantized notation makes no reference to the total number of particles nor to
whether we are dealing with bosons or fermions. Note that in �rst quantization
the sum extends over all particle coordinates whereas in second quantization the
sum over m extends over all states.
Using the change of basis formula explained above, we have thatX
i

h�ij bU j�ii ay�ia�i =X
i

X
m

X
n

cy�m h�m j�ii h�ij bU j�ii h�i j�ni c�n : (1.39)

Since U is diagonal, we can add a sum over �j and use the closure relation to
arrive at the �nal resultP

i U�ibn�i =Pm

P
n c

y
�m
h�mj bU j�ni c�n : (1.40)

Let us give examples in the position and momentum representation. A one-
body scattering potential in the continuum would be represented in second quan-
tized version1 by bU = R drU (r) y (r) (r) (1.41)

1We have denoted by bU the operator in both �rst and second quantization. Strictly speaking
the operators are di¤erent. One needs to specify which representation one is working in.

20 MAIN RESULTS FROM SECOND QUANTIZATION



which looks similar to the usual Schrödinger average. Similarly, the kinetic energy
operator in the momentum representation is diagonal and it can be rewritten in
the position basis using the change of variables of the previous section:

bT =X
k

hkj k
2

2m
jki cykck =

X
k

Z
dr

Z
dr0 y (r) hr jki hkj k

2

2m
jki hk jr0i (r0)

(1.42)

=
1

V
X
k

Z
dr

Z
dr0 y (r) eik�(r�r

0) k
2

2m
 (r0) (1.43)

=

Z
d3k

(2�)
3

Z
dr

Z
dr0 y (r)

�
� 1

2m
r2r0eik�(r�r

0)
�
 (r0) (1.44)

=

Z
dr

Z
dr0 y (r)

�
� 1

2m
r2r0� (r� r0)

�
 (r0) (1.45)

Using partial integration and assuming that everything vanishes at in�nity or is
periodic, we obtain,

bT = �� 1
2m

� R
dr y (r)

�
r2 (r)

�
= 1

2m

R
drr y (r) � r (r) : (1.46)

Again notice that second-quantized operators look like simple Schrödinger av-
erages over wave functions.

1.5 Number operator and the nature of states in
second quantization

This section is nothing new compared with what we already know, but it gives
a di¤erent perspective on the whole formalism. Once an operator (the �single-
particle" Hamiltonian for example) is in the diagonal form

P
iH�ibn�i , the theorem

on commutators of ladder operators can be used to �nd its eigenstates. Indeed,
this theorem tells that if jni is an eigenstate of bn�i , then ay�i jni is an eigenstate
with eigenvalue n+1: If a ground state exists, this means that there is a state (the
vacuum) which is such that a�i j0i = 0, in other words we cannot decrease the
eigenvalue inde�nitely if U�i for example is the Hamiltonian. Hence, the eigentates
are of the form ay�1a

y
�2 : : : a

y
�i : : : a

y
�N j0i for N particles. This is analogous to what

we have discussed for the harmonic oscillator.
It is important to note that these states form a complete set of many-body

states. The most general eigenstate will be a linear combination of such states.

Remark 11 The need to diagonalize: Note that to �nd the eigenstates of
P
m

P
n c

y
�m
h�mj bH j�ni c�n ;

we need to diagonalize the matrix h�mj bH j�ni : The rules have not changed!

1.6 Two-body operators.

A two-body operator involves the coordinates of two particles. An example is the
Coulomb potential with position basis where bV1;2 = bV (R1;R2) which is diagonal
in position space, namely bV (R1;R2) jr0i 
 jri = V (r0; r) jr0i 
 jri :
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Let us return to the general discussion. If we let the indices in bV1;2 refer to the
potential energy between the �rst and second particles in the direct product, and
if we are in the diagonal basis, we have in �rst quantization that

bV1;2 j�ii 
 j�ji = V�i�j j�ii 
 j�ji (1.47)bV1;3 j�ii 
 j�ji 
 j�ki = V�i�k j�ii 
 j�ji 
 j�ki (1.48)

The abreviation bV1;3 in the position basis means bV (R1;R3) where R1 acts on the
�rst one-particle Hilbert space and R3 acts on the third. In this basis, one sees
that again the eigenvalue does not depend on the order in which the states are
when the �rst-quantized operator acts. This means that

1

2

NX
�=1

NX
�=1
� 6=�

bV�;� j�i; �j ; �k : : :i = �V�i�j + V�i�k + V�j�k + : : :� j�i; �j ; �k : : :i
(1.49)

where now on the right-hand side every interaction is counted only once. As above,bV�;� refers to the potential energy between the � and � particles. If j�ii 6= j�ji,
then the number of times that V�i�j occurs in the double sum is equal to n�in�j .
However, when j�ii = j�ji, then the number of times that V�i�j occurs is equal
to n�i(n�i � 1) because we are not counting the interaction of the particle with
itself, as speci�ed by � 6= � in the sum. In general then,

1

2

NX
�=1

NX
�=1
� 6=�

bV�;� j�i; �j ; �k : : :i = 1

2

1X
m=1

1X
n=1

V�m�n (bn�mbn�n � �m;nbn�n) j�i; �j ; �k : : :i :
(1.50)

Again the expression for the operator to the right is independent of the state it
acts on. It is valid in general. I assumed that the basis � has an in�nite number
of states.
We can simplify the expression further. De�ning

� = �1 for fermions (1.51)

� = 1 for bosons (1.52)

we can rewrite bn�ibn�j � �i;jbn�i in terms of creation and annihilation operators in
such a way that the form is valid for both fermions and bosons

bn�ibn�j � �i;jbn�i = ay�ia�ia
y
�ja�j � �i;ja

y
�ia�i = ay�i�a

y
�ja�ia�j = ay�ia

y
�ja�ja�i :

(1.53)
Second quantized operators are thus written in the simple form

1
2

P
i

P
j V�i�j

�bn�ibn�j � �i;jbn�i� � 1
2

P
i

P
j (�i�j jV j�i�j) ay�ia

y
�ja�ja�i

(1.54)
where

j�i�j) � j�ii 
 j�ji : (1.55)

Under unitary transformation to an arbitrary basis we have

bV = 1
2

P
m

P
n

P
p

P
q (�m�njV

���p�q� cy�mcy�nc�qc�p : (1.56)

De�nition 1 When a series of creation and annihilation operators are placed
in such an order where all destruction operators are to the right, one calls this
�normal order�.
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Remark 12 Note the inversion in the order of �p and �q in the annihilation
operators compared with the order in the matrix elements (This could have been
for the creation operator instead).

Remark 13 Note that the �rst state (�i�j jV j�i�j) in both the bra and the ket
is associated with the �rst coordinate in V; and the second state with the second
label in V: This means that the notation (�m�njV

���p�q� for the two-body matrix
element stands for, in the coordinate representation for example,Z

dr1dr2�
�
�m
(r1)�

�
�n
(r2)V (r1 � r2)��p (r1)��q (r2) : (1.57)

Example 2 In the case of a potential, such as the Coulomb potential, which acts
on the densities, we have

bV = 1
2

R
dx
R
dyv (x� y) y (x) y (y) (y) (x) : (1.58)
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Part II

Lecture 2 (45 minutes)
Time-ordered product,

Green functions

25





2. PERTURBATIONTHEORYAND
TIME-ORDERED PRODUCTS

In the grand canonical ensemble, we want to evaluate

e��(
bH�� bN) (2.1)

where H is the Hamiltonian, N the number of particles and � the chemical po-
tential. For convenience, de�ne

bK = bH � � bN: (2.2)

In general you will be facing a situation where

bK = bH0 + bH1 � � bN � bK0 + bK1 (2.3)

where bK0 = H0 � �N can easily be diagonalized but not bK because bK0 and bK1

do not commute. In that case, perturbation theory can help. We now prove

e��
bK = e��

bK0 bU (�) (2.4)

bU (�) � T� he� R �0 bK1(�)d�
i

(2.5)bK1 (�) � e bK0� bK1e
� bK0�

: (2.6)

In the above expression, T� is the so-called time-ordering operator. It orders
operators from left to right in increasing order of � : Note that if bK0 and bK1

commute, then bK1 is independent of � ; bU (�) = e��
bK1 and e�� bK = e��

bK0e��
bK1

as expected.

Remark 14 Imaginary time: The quantity, � ; is called imaginary time because
the ordinary time evolution operator is e�iHt and in the Heisenberg representation,
operators evolve as follows: bK1 (t) = ei

bK0t=~ bK1e
�i bK0t=~:

To prove the above very important result is not di¢ cult. It su¢ ces to �nd a
di¤erential equation for bU: Start from

@

@�
e�

bK� =
�
� bK0 � bK1

�
e�

bK�
@

@�

�bU (�)� =
@

@�

�
e
bK0�e�

bK�� (2.7)

= e
bK0�
� bK0 � ( bK0 +K1)

�
e�

bK� (2.8)

where in the second equation, we have used the de�nition of bU; Eq.(2.4) and the
chain rule. We are left with

@

@�
bU (�) = �

�
e
bK0� bK1e

� bK0�
� bU (�) (2.9)

= � bK1 (�) bU (�) (2.10)

where bK1 (�) takes the form advertized in Eq.(2.6).
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To �nd bU (�) ; integrate both sides of the equation, remembering that bU (0) =
1: Then bU (�) = 1� Z �

0

bK1 (�) bU (�) d� : (2.11)

To solve in powers of bK1; which is the whole idea behind perturbation theory after
all, we just iterate the above equation

bU (�) = 1�
Z �

0

d� bK1 (�) + (�1)2
Z �

0

d� bK1 (�)

Z �

0

d� 0 bK1 (�
0)

+ (�1)3
Z �

0

d� bK1 (�)

Z �

0

d� 0 bK1 (�
0)

Z � 0

0

d� 00 bK1 (�
00) + � � � (2.12)

Note that the operators are always ordered from right to left in increasing order
of � : This means that with the help of the time-ordering operator T� ; the above
equation can be rearranged in the form

bU (�) = 1�
Z �

0

d� bK1 (�) +
(�1)2

2!
T�

"Z �

0

d� bK1 (�)

Z �

0

d� 0 bK1 (�
0)

#

+
(�1)3

3!
T�

"Z �

0

d� bK1 (�)

Z �

0

d� 0 bK1 (�
0)

Z �

0

d� 00 bK1 (�
00)

#
+ � � �(2.13)

where the factorial takes care of the fact that by completing all the integrals so
that the upper bound is � for all of them, operators will come in all possible orders
in � so they will need to be rearranged in the proper order bK! times for the term
of order bK: The series can now be resummed in an exponential, as written in
Eq.(2.5).

2.1 Measuring a two-point correlation function (ARPES)

In a photoemission experiment, a photon ejects an electron from a solid. This is
nothing but the old familiar photoelectric e¤ect. In the angle-resolved version of
this experiment (ARPES), the energy and the direction of the outgoing electron
are measured. This is illustrated in Fig.(2-1). The outgoing electron energy can
be measured. Because it is a free electron, this measurement gives the value of the
wave vector through k2=2m: Using energy conservation, the energy of the outgoing
electron is equal to the energy of the incident photon Eph; minus the work function
W plus the energy of the electron in the system, !; measured relative to the Fermi
level.
The energy of the electron in the system ! will be mostly negative. The value

of kjj may be extracted by simple geometric considerations from the value of k:
Since in this experiment there is translational invariance only in the direction
parallel to the plane, this means that in fact it is only the value of kjj that is
conserved. Hence, it is only for layered systems that we really have access to both
energy ! and total momentum kjj of the electron when it was in the system.
We can give a sketchy derivation of the calculation of the cross-section as fol-

lows. The cross-section we will �nd below neglects, amongst other things, processes
where energy is transferred from the outgoing electron to phonons or other excita-
tions before it is detected (multiple scattering of outgoing electron). Such processes
are referred to as �inelastic background�. We start from Fermi�s Golden rule. The
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Figure 2-1 Schematic representation of an angle-resolved photoemission experiment.
W is the work function.

initial state is a direct product jmi 
 j0i 
 j1qiem of the state of the system jmi ;
with the state j0i with no electron far away from the detector and with the state
of the electromagnetic �eld that has one incoming photon j1qiem : The �nal state
jni 
 jki 
 j0iem has the system in state jni with one less electron, the detector
with one electron in state jki and the electromagnetic �eld in state j0iem with no
photon. Strictly speaking, the electrons in the system should be antisymmetrized
with the electrons in the detector, but when they are far enough apart and one
electron is detected, we can assume that it is distinguishible from electrons in the
piece of material. The coupling of matter with electromagnetic �eld that produces
this transition from initial to �nal state is �j �A as we saw previously. Hence, the
transition rate will be proportional to the square of the following matrix element

�
X
k0

hnj 
 hkj 
 h0jem jk0 �A�k0 jmi 
 j0i 
 j1qiem : (2.14)

= �
X
k0

hnj 
 hkj jk0 jmi 
 j0i � h0jemA�k0 j1qiem (2.15)

The vector potential is the analog of the position operator for harmonic vibration
of the electromagnetic �eld. Hence, it is proportionnal to ay�k0 + ak0 ; like for the
harmonic oscillator excep that this time the particles involved are photons. The
term with k0 = q with the destruction operator will lead to a non-zero value of
h0jemA�k0 j1qi : For the range of energies of interest, the wave vector of the photon
k0 = q can be considered in the center of the Brillouin zone, k0 � 0. The current
operator is a one-body operator. In the continuum, it is then given by

jk0=0 = e
X
p

p

m
cypcp: (2.16)

The value p = kjj will lead to a non-zero matrix element. Overall then, the matrix
element is

� hnj ckjj jmi
�
hkj cykjj j0i e

kjj

m
� h0jemAk0=q�0 j1qiem

�
: (2.17)

The term in large parenthesis is a matrix element that does not depend on the
state of the system. Without going into more details of the assumptions going
into the derivation then, Fermi�s golden rule suggests, (see �rst section of Chapter
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2) that the cross section for ejecting an electron of momentum kjj and energy !
(measured with respect to �) is proportional to

@2�

@
@!
/

X
mn

e��Km
��hnj ckjj jmi��2 � (! + �� (Em � En)) (2.18)

/
X
mn

e��Km
��hnj ckjj jmi��2 � (! � (Km �Kn)) (2.19)

/
Z
dtei!t

X
mn

e��Km hmj cykjj jni hnj e
iKntckjje

�iKmt jmi (2.20)

/
Z
dtei!t

D
cykjjckjj (t)

E
: (2.21)

In the above equations, note that there is one more particle in state jmi than in
state jni : This means that the minimum change in energy that we can have is
Em � En = �. With some extra energy, we can eject an electron that is farther
away below the Fermi surface. Measuring energies with respect to the chemical
potential, we de�ne Km = Em � Nm�: For the last line, we have followed van
Hove and used the integral representation of the Dirac delta function and the fact
that the states are energy eigenstates. We have achieved our goal of expressing
the cross section in terms of a correlation function.
In the case of electron scattering that we related to density �uctuations, there

was a relation between the correlation function and the spectral weight that could
be established with the �uctuation-dissipation theorem. We will be able to achieve
the same thing below. More speci�cally, we will be able to rewrite this result in
terms of the spectral weight A

�
kjj; !

�
as follows,

@2�

@
@!
/ f (!)A

�
kjj; !

�
(2.22)

where f (!) is the Fermi function.

Remark 15 Time-evolution operator: It is very important to note that in the
above expression for the cross section, Eq.(2.21), it is K = H � �N that is the
time evolution operator. This is what we will generally use, as soon as we go to
the Matsubara formalism. The �N represents the e¤ect of a particle reservoir.
It comes in naturally above and represents the time evolution operator when we
control the chemical potential instead of the number of particles. It makes the time-
evolution operator in imaginary time more similar to the density matrix e��Km=Z:
More simply, this just corresponds to a choice of the zero of energy, namely ! is
equal to zero for energies at the chemical potential. This can be seen from the above
equations. Since we have by de�nition of Kn the equalities eiKntckjje

�iKmt =

ei(En��Nn)tckjje
�i(Em��Nm)t and Nm �Nn = 1; the phase factor ei�t can just be

added to ! in the Fourier transform over time, illustrating why this choice of time
evolution operator is related to the choice of zero of energy for !:
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3. DEFINITIONOF THEMATSUB-
ARA GREEN FUNCTION

The most useful fermion correlation function, which can be used to obtain directly
the above cross section as you will see, is the Matsubara Green function

G�� (�) = �
D
T� c� (�) c

y
� (0)

E
(3.1)

= �
D
c� (�) c

y
� (0)

E
� (�) +

D
cy� (0) c� (�)

E
� (��) : (3.2)

The last equation above de�nes the time ordering operator for fermions. It is very
important to notice the minus sign associated with interchanging two fermion
operators. This time-ordering operator is thus a slight generalization of the time-
ordering operator we encountered before. One of the motivations for de�ning
the Green function with a time-ordering operator is that T� appears naturally in
perturbation theory as we have seen above. The time-ordering operator makes the
perturbative evaluation of G�� natural.
Remark 16 The time-ordering operator for quantities that are quadratic in fermi-
ons, i.e. bosonic quantities, such as bK1 that appeared in the perturbation expan-
sion, never have a minus sign associated with the exchange of bosonic operators.

Remark 17 Physically, G�� (�) represents the amplitude that an excitation in a
state � shows up as an excitation in state � after a �time� � :

We still need to specify a few things. First, the thermodynamic average is in
the grand-canonical ensemble

hOi �
Tr
h
e��

bKOi
Tr
h
e�� bKi (3.3)

while the time evolution of the operators is de�ned by

c� (�) � e bK� c�e� bK� (3.4)

cy� (�) � e
bK� cy�e� bK� (3.5)

Remark 18 Note that cy� (�) is not the Hermitian conjugate of c� (�) : The nota-
tion is somewhat abusive, but justi�ed by the fact that if you replace immaginary
time by real time, � ! it=~, then we recover the usual case.

Remark 19 From now on, I set ~ = 1: Sorry for the lazyness.

3.1 The Matsubara frequency representation is con-
venient: antiperiodicity

Since we are working in time-translationally invariant systems, it is natural to
think for Fourier transforms and enquire about a frequency representation. Since
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we work on a �nite imaginary-time interval contained between �� and �; it is in
fact Fourier series that will come to the rescue.
The �rst thing to notice are the Kubo-Martin-Schwinger boundary conditions

that tell us that G�� (�) is antiperiodic in imaginary time. What this means is the
following.

G�� (�) = �G�� (� � �) : (3.6)

Proof: Take � > 0 for example.

G�� (�) = �
1

Z
Tr
h
e��

bKe bK� c�e� bK� cy�
i

(3.7)

The cyclic property of the trace then tells us that

G�� (�) = � 1
Z
Tr
h
cy�e

�� bKe bK� c�e� bK�i (3.8)

= � 1
Z
Tr
h
e��

bKcy�e�� bKe bK� c�e� bK�e� bKi
= � 1

Z
Tr
h
e��

bKcy�c� (� � �)
i

= �G�� (� � �) : (3.9)

where we have used � � � < 0 and the de�nition of the Green function.

The antiperiodicity that we just proved can be used in conjunction with the
theorems on Fourier series to arrive to the useful representation

G�� (�) = 1
�

P1
n=�1 e�ikn�G�� (ikn) (3.10)

where the so-called Matsubara frequencies for fermions are odd, namely

kn = (2n+ 1)�T =
(2n+1)�

� ; n integer (3.11)

The antiperiodicity property will be automatically ful�lled because e�ikn� =
e�i(2n+1)� = �1.

Choice of units Here and from now on, we have taken Boltzmann�s constant kB
to be equal to unity.

The expansion coe¢ cients are obtained as usual for Fourier series of antiperi-
odic functions from

G�� (ikn) =
R �
0
d�eikn�G�� (�) (3.12)

3.2 Gk (ikn) for the non-interacting case U = 0

Before we see how the Green function is related to the photoemission cross section
in general, it is useful to have a look at the non-interacting case to develop some
intuition. This is our �rst occasion to write down the equation of motion for G�� :
You will notice that it is the kind of equation that one encounters with Green
functions in general. Since we are considering the non-interacting case, take

bK0 =
X
p

�pc
y
pcp (3.13)
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where �p = "p � �: Using the de�nition

Gk (�) = �
D
T� ck (�) c

y
k (0)

E
(3.14)

then
@Gk (�)
@�

= �� (�)
Dn
ck; c

y
k

oE
�
�
T�
@ck (�)

@�
cyk (0)

�
: (3.15)

Since
n
ck; c

y
k

o
= 1 and using

[AB;C] = ABC � CAB = ABC + (ACB �ACB)� CAB
= A fB;Cg � fA;CgB

which yields

@ck (�)

@�
=

h bK0; ck (�)
i

(3.16)

= ��kck (�) (3.17)

we are left with
@Gk (�)
@�

= �� (�)� �kGk (�) : (3.18)

Using Matsubara frequencies, as in Eq.(3.10) you �nd

(�ikn + �k)Gk (ikn) = �1 (3.19)

so that

Gk (ikn) =
1

ikn � �k
: (3.20)

The replacement
ikn ! ! + i� (3.21)

where ! is a real frequency and � is a positive in�nitesimal, is called analytic
continuation. We are about to see why we do this and why this is useful. But for
now, let us just look at the result. Upon analytic continuation, Gk (ikn) becomes
the so-called retarded Green function

GR (!) = 1
!+i���k

: (3.22)

Using the identity

lim
�!0

1

x+ i�
= lim
�!0

x� i�
x2 + �2

= P
1

x
� i�� (x) (3.23)

with P the principal part, we �nd

� 2 ImGR (!) = 2�� (! � �k) ; (3.24)

which tells us that in a non-interacting system, in an eigenstate of momentum k;
the energy ! is �k:

Remark 20 When bands are calculated within DFT, one obtains �k;n for each of
the Bloch bands labeled by �: In that case we have a band index so states must be
labeled by both quantum numbers and

Ak;� (!) = 2��
�
! � �k;�

�
: (3.25)
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3.3 Time ordered product in practice

Suppose I want to computeD
T� (�1) 

y (�3) (�2) 
y (�4)

E
: (3.26)

We drop space indices to unclutter the equations. The time ordered product for
fermions keeps tract of permutations, so if I exchange the �rst two operators for
example, I �ndD

T� (�1) 
y (�3) (�2) 

y (�4)
E
= �

D
T� 

y (�3) (�1) (�2) 
y (�4)

E
(3.27)

I need not worry about delta functions at equal time or anything but the number
of fermion exchanges. Indeed, whichever of the above two expressions I start with,
if �1 < �2 < �3 < �4; I will �nd at the end thatD

T� (�1) 
y (�3) (�2) 

y (�4)
E
= �

D
 y (�4) 

y (�3) (�2) (�1)
E
: (3.28)

We cannot, however, have two of the times equal. We have to specify that one
is in�nitesimally larger or smaller than the other to know in which order to place
the operators.
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4. SUMS OVER MATSUBARA
FREQUENCIES

In the derivation above, we went from imaginary-time to Matsubara frequencies.
We can also do the reverse, from Matsubara frequencies to imaginary time. So you
need to learn about sums over Matsubara frequencies. This will be necessary in
doing practical calculations even when we are not trying to go back to imaginary
time. When we have products of Green�s functions, we will use contour integration
tricks that are the same as those in this section. Also, we may use partial fractions
in such a way that the only sums to evaluate will basically look like

T
X
n

1

ikn � �k
: (4.1)

where T = ��1: We have however to be careful since the result of this sum is
ambiguous. Indeed, returning back to the motivation for these sums, recall that

G (k;�) = T
X
n

e�ikn�

ikn � �k
(4.2)

We already know that the Green�s function has a jump at � = 0. In other words,�
lim
�!0+

G (k;�) = �


ckc

+
k

��
6=
�
lim
�!0�

G (k;�) =


c+k ck

��
(4.3)

This inequality in turn means that

T
X
n

e�ikn0
�

ikn � �k
6= T

X
n

e�ikn0
+

ikn � �k
6= T

X
n

1

ikn � �k
(4.4)

The sum does not converge uniformly in the interval including � = 0 because the
1=n decrease for n ! 1 is too slow. Even if we can obtain a �nite limit for the
last sum by combining positive and negative Matsubara frequencies, what makes
physical sense is only one or the other of the two limits � ! 0�:

Remark 21 The jump, lim�!0� G (k;�)�lim�!0+ G (k;�) is always equal to unity
because of the anticommutation relations. The slow convergence in 1=ikn is thus
a re�ection of the anticommutation relations and will remain true even in the
interacting case. If the (ikn)

�1 has a coe¢ cient di¤erent from unity, the spectral
weight is not normalized and the jump is not unity. This will be discussed shortly.

Let us evaluate the Matsubara frequency sums. Considering again the case of
fermions I will show as special cases that

T
P
n
e�ikn0

�

ikn��k
= 1

e��k+1
= f (�k) = G0 (k;0�) (4.5)

T
P
n
e�ikn0

+

ikn��k
= �1

e���k+1
= �1 + f (�k) = G0 (k;0+) (4.6)

Obviously, the non-interacting Green�s function has the correct jump G0 (k;0�)�
G0 (k;0+) = 1:In addition, since G0 (k;0�) =

D
cykck

E
and G0 (k;0+) = �

D
ckc

y
k

E
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the above results just tell us that
D
cykck

E
= f (�k) that we know from ele-

mentary statistical mechanics. The anticommutation relations immediately give

�
D
ckc

y
k

E
= �1+f (�k) : So these sums over Matsubara frequencies better behave

as advertized.

Proof: [?] 1 To perform the sum over Matsubara frequencies, the standard trick
is to go to the complex plane. The following function

� � 1

e�z + 1
(4.7)

has poles for z equal to any fermionic Matsubara frequency: z = ikn. Its
residue at these poles is unity since for

z = ikn + �z (4.8)

we have
� � 1

e�z + 1
= �� 1

eikn�+��z + 1
= �� 1

�1e��z + 1 (4.9)

lim
z�ikn!0

�z

�
�� 1

e�z + 1

�
= 1 (4.10)

Similarly the following function has the same poles and residues:

lim
z�ikn!0

�z

�
�

1

e��z + 1

�
= 1 (4.11)

To evaluate the � < 0 case by contour integration, we use the residue theorem
on the contour C1, which is a sum of circles going counterclockwise around
the points where z is equal to the Matsubara frequencies. Using Eq.(4.10),
this allows us to establish the equality

� 1

2�i

Z
C1

dz

e�z + 1

e�z�

z � �k
=
1

�

X
n

e�ikn�

ikn � �k
: (4.12)

This contour can then be deformed, as illustrated in Fig. (4-1), into C 01 and
then into C2+C3. There is no contribution from C3 at Re (z) =1 because
the denominator of e�z�

e�z+1
makes the integrand converge exponentially since

in e�z(�+�) , � + � is always positive (� > ��). Similarly, there is no
contribution from C2 at Re (z) = �1 because in that case e�z�

e�z+1
! e�z�

and �z� < 0. So �nally, we have

1
�

P
n
e�ikn�

ikn��k
= e��k�

e��k+1
= e��k�f (�k) (4.13)

which is the value of G0 (k; �) when � < 0: In particular, when � = 0� we
have proven the identity (4.6) .

To evaluate the � > 0 case we use the same contour but with the other form of
auxiliary function Eq.(4.11). We can again check that the integral over the
circle at in�nity vanishes because this time e�z� insures convergence when
Re (z) = 1, � > 0 and 1

e��z+1
ensures convergence when Re (z) = �1

despite e�z� in the numerator. We then obtain,

1

�

X
n

e�ikn�

ikn � �k
=

1

2�i

Z
C1

dz

e��z + 1

e�z�

z � �k
: (4.14)

1 I thank Yan Wang, 2018, for this version of the proof.
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Figure 4-1 Evaluation of fermionic Matsubara frequency sums in the complex plane.

Again, from C2 + C3, only the contribution from the pole in the clockwise
directions survives so that we have,

1
�

P
n
e�ikn�

ikn��k
= � e��k�

e���k+1
= � e��k�e��k

e��k+1
= �e��k� (1� f (�k)) : (4.15)

This is the value of G0 (k; �) when � > 0: In particular, when � = 0+ we
have proven the identity (4.5).

Remark 22 Branch cut: When there is a branch cut all the way to in�nity,
the above proof is easy to generalize. For example, for a branch cut from �k
to 1, there are three integrals to do. Two of them extend from 1 in two
directions above and below the real axis and another one is an open circle
around the end of the branch cut.

Remark 23 When there is a sum over Matsubara frequencies for a product
of Green�s function, the same trick as above applies. There are just more
poles to go around when the contour is deformed.
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Part III

Lecture 3 (45 minutes)
Spectral weight, Self-energy,

Quasiparticles
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5. SPECTRALWEIGHTANDHOW
IT IS RELATED TO GK (IKN )
ANDTOPHOTOEMISSION: LEHMANN
REPRESENTATION

The quantity �2 ImGR (!) is called the spectral weight. To understand its general
meaning, it su¢ ces to start from the de�nition of the Matsubara Green function
and to use a complete sets of states. More speci�cally,

Gk (ikn) = �
Z �

0

d�eikn�
D
ck (�) c

y
k (0)

E
(5.1)

= �
Z �

0

d�eikn�
X
n;m

e��Kn

Z
hnj eKn� cke

�Km� jmi hmj cyk jni : (5.2)

The integral over imaginary time is now easy to do,

Gk (ikn) =
P
n;m

e��Kn

Z
e�(Kn�Km)+1
ikn+Kn�Km

hnj ck jmi hmj cyk jni. (5.3)

We have used eikn� = �1: This is the so-called Lehmann representation of Gk (ikn) :
This last result may be written in the so-called spectral representation

Gk (ikn) =
R
d!
2�

Ak(!)
ikn�! (5.4)

if we de�ne the spectral weight by

Ak (!) �
X
n;m

1

Z

�
e��Km + e��Kn

�
hnj ck jmi hmj cyk jni (5.5)

�2�� (! � (Km �Kn)) (5.6)

=
X
n;m

e��Km

Z

�
1 + e�!

�
hnj ck jmi hmj cyk jni 2�� (! � (Km �Kn)) :

Given this result, the di¤erential photoemission cross section may be obtained
from

@2�

@
@!
/ Ak (!) f (!) (5.7)

with f (!) =
�
1 + e�!

��1
the Fermi function.

To �nd the physical meaning of the spectral weight, exchange the dummy
summation indices m;n in the �rst term of Eq.(5.5) and you �nd

Ak (!) �
X
n;m

1

Z
e��Kn hnj cyk jmi hmj ck jni 2�� (! � (Kn �Km))

+
1

Z
e��Kn hnj ck jmi hmj cyk jni 2�� (! � (Km �Kn)) (5.8)
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This quantity is normalized sinceZ
d!

2�
Ak (!) =

X
n;m

1

Z
e��Kn

�
hnj cyk jmi hmj ck jni+ hnj ck jmi hmj c

y
k jni

�
=

Dn
cyk (0) ; ck (0)

oE
= 1: (5.9)

Clearly then, Ak (!) = (2�) can be interpreted as the probability that the state
formed by adding to an eigenstate jni a particle of momentum k, i.e. cyk jni or
a hole ck jni ; yields an eigenstate hmj whose grand potential K has an energy !
compared with the original state jni : In the non-interacting case, for any given
k there is only one frequency ! where there will be a non-zero contribution since
cyk jni or ck jni are eigenstates. This is no-longer the case when there are inter-
actions. Then, cyk jni or ck jni are not eigenstates and there are many states hmj
with di¤erent excitation energies ! whose overlap with cyk jni or with ck jni is non-
vanishing (in other words where the quantum mechanical probability jhmj ck jnij2
is non-vanishing). This is equivalent to saying that in the presence of interac-
tions, the momentum k of a single particle is not conserved (or no-longer a good
quantum number).

Remark 24 It is important to recall once again that all the physical information
is in the spectral weight Ak (!) :

5.1 Obtaining the spectral weight from Gk (ikn):
the problem of analytic continuation

If we can compute Gk (ikn) by any means, we can obtain the spectral weight
from its analytic continuation since, using the spectral representation Eq.(5.4) of
Gk (ikn) we can simply do the analytic continuation ikn ! ! + i� and �nd

GRk (!) =
R
d!0

2�

Ak(!0)
!+i��!0 : (5.10)

From this, the spectral weight Ak (!0) is easy to �nd from

Ak (!) = �2 ImGRk (!) : (5.11)

All this is very easy analytically, but with numerical data it turns into a nightmare.
There are two methods that are widely used, Padé approximants and Maximum
Entropy analytic continuation. These are whole subjects in themselves.

Remark 25 We already mentioned that the physical information is in Ak (!) :
An equivalent way of saying this is that it is in the poles of GRk (!) :
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6. SELF-ENERGY AND THE EF-
FECT OF INTERACTIONS

6.1 A �rst phenomenological encounter with self-
energy

In this short Chapter, we want to develop an intuition for the concept of self-energy.
The concept is simplest to understand if we start from a non-interacting system
and assume that we add interactions with a potential or whatever that changes the
situation a little. We will be guided by simple ideas about the harmonic oscillator.
Let us start then from the Green function for a non-interacting particle

hkj bGR0 (!) jk0i = GR0 (k; !) = hkj
1

! + i� � bH jk0i = hkj k0i
! + i� � "k

: (6.1)

Since the momentum states are orthogonal, it is convenient to de�ne GR0 (k; !) by

GR0 (k; !) =
1

! + i� � "k
:

The corresponding spectral weight is particularly simple,

A0 (k;!) = �2 ImGR0 (k; !) = 2�� (! � "k) : (6.2)

We should think of the frequency as the energy. It is only for a non-interacting
particle that specifying the energy speci�es the wave vector, since it is only in that
case that ! = "k:
In general, if momentum is not conserved, the spectral representation

GR (k;!) =

Z
d!0

2�

A (k;!0)

! + i� � !0 (6.3)

and the explicit expression for the spectral weight

A (k;!0) =
X
n

hkj ni hn jki 2�� (!0 � En) (6.4)

tells us that a momentum eigenstate has non-zero projection on several true eigen-
states and hence A (k;!0) is not a delta function.
Intuitively, for weak perturbations, we simply expect that A (k;!0) will broaden

in frequency around ! = e"k where e"k is close to "k:We take this intuition from
the damped harmonic oscillator where the resonance is broadened and shifted by
damping. If we take a Lorentzian as a phenomenological form for the spectral
weight

A (k;!0) =
2�

(! � e"k)2 + �2 (6.5)

then the Green�s function can be computed from the spectral representation Eq.(6.3)
by using Cauchy�s residue theorem. The result is

GR (k; !) =
1

! � e"k + i� : (6.6)
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We have neglected i� in front of i�: It is easy to verify that �2 ImGR (k; !) gives
the spectral weight we started from.
With a jargon that we shall explain momentarily, we de�ne the one-particle

irreducible self-energy by

GR (k; !) =
1

! + i� � "k � �R (k; !)
=

1

GR0 (k; !)
�1 � �R (k; !)

: (6.7)

Its physical meaning is clear. The imaginary part Im�R (k; !) = �� corresponds
to the scattering rate, or inverse lifetime, whereas the real part, Re�R (k; !) =e"k � "k leads to the shift in the position of the resonance in the spectral weight.
In other words, �R (k; !) contains all the information about the interactions.
With the simple approximation that we did for the self-energy,

�R (k; !) = e"k � "k � i�; (6.8)

one notices that the second moment n = 2 diverges because the second moment of
a Lorentzian does. Hence, the high-frequency expansion becomes incorrect already
at order 1=!3:We need to improve the approximation to recover higher frequency
moments. Nevertheless, in the form

GR (k; !)
�1
= GR0 (k; !)

�1 � �R (k; !) (6.9)

equivalent to that given above, there is no loss in generality. The true self-energy
is de�ned as the di¤erence between the inverse of the non-interacting propagator
and the inverse of the true propagator. Lifetimes and shifts must in general be
momentum and frequency dependent.

Remark 26 The time dependence of the retarded Green�s function shows the
damping: Indeed, note that the Fourier transform of GR (k; !) is, for t > 0,

GR (k; t) =

Z 1

�1

d!

2�
e�i!t

1

! � e"k + i� = �i� (t) e�ie"kt��t (6.10)

which shows that when � tends to zero, then we have the expected oscillatory
behavior in time for the evolution of an eigenstate of renormalized energy e"k.
Taking the square gives a time-independent result (apart from the � (t)) for the
probability. On the other hand, a �nite � means that the amplitude to stay in
state k decays with time, as does the probability (twice as fast). That probability
can be constructed as follows. By construction, the operator bGR(t) allows us to
�nd the wave function at time t; given the initial condition jki at time zero, or as
an equation, hkj bGR(t) jki = hkj  (t)i : Using the Born rule, the probatility that
there is still a particle in state jki at time t is the absolute value of the projection
of the state at time t on the state jki, or in other words,

jhkj  (t)ij2 =
��GR (k; t)��2 = � (t) e�2�t: (6.11)

I begin by solving the Hubbard Hamiltonian when there are only interactions,
no hopping. This is the so-called atomic limit. You will see that in this case the
Green function takes a structure very di¤erent from the non-interacting case. This
will be a natural occasion to introduce the notion of self-energy as a representation
of the e¤ect of interactions and to show that the self-energy is singular in the atomic
limit, and more generally for Mott insulators. Also, we will see that in the case of
a single interacting site in a sea of non-interacting electrons, the self-energy comes
only from the interacting site. This is the Anderson impurity model, that happens
to be very important in the context of Dynamical Mean-Field Theory. We will see
Dyson�s equation and a few general properties of the self-energy.
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6.2 A few properties of the self-energy

Given the spectral representation Eq.(5.10)

GRk� (!) =

Z
d!0

2�

Ak� (!
0)

! + i� � !0 (6.12)

and the positivity of Ak�; which can easily be seen from Eq.(5.5), it is clear that
GRk� (!) has poles only in the lower-half complex plane. It can be shown that this
is a general consequence of causality. This implies that

Im�Rk� (!) < 0; (6.13)

as follows also from the positivity of Ak� and its representation in terms of the
self-energy.
Also, the self-energy cannot grow with frequency since

lim
!!1

!GRk� (!) = !

Z
d!0

2�

Ak� (!
0)

!
=

Z
d!0

2�
Ak� (!

0) = 1: (6.14)

We have used the fact that Ak� has to vanish at large frequency, as follows from
Eq.(5.5) and the fact that the matrix elements between a true eigenstate and an
eigenstate obtained from adding one excitation in a low energy state must vanish.
In practice, the real part of the self-energy can at most be a constant at in�nite
frequency (This is the Hartree-Fock result).

6.3 Some experimental results from ARPES

The state of technology and historical coincidences have conspired so that the
�rst class of layered (quasi-two-dimensional) compounds that became available
for ARPES study around 1990 were high temperature superconductors. These
materials have properties that make them non-conventional materials that are not
yet understood using standard approaches of solid-state Physics. Hence, people
started to look for two-dimensional materials that would behave as expected from
standard models. Such a material, semimetallic TiTe2 was �nally found around
1992. For our purposes, quasi-two-dimensional just means here that the Fermi
velocity perpendicular to the planes is much smaller than the Fermi velocity in
the planes. The results of this experiment[?] appear in Fig.(6-1).
We have to remember that the incident photon energy is 21:2eV while the

variation of ! is on a scale of 200meV so that, for all practical purposes, the
momentum vector in Fig.(2-1) is a �xed length vector. Hence, the angle with
respect to the incident photon su¢ ces to de�ne the value of kjj: Each curve in
Fig.(6-1) is for a given kjj; in other words for a given angle measured from the
direction of incidence of the photon. The intensity is plotted as a function of the
energy of the outgoing electron. Hence these plots are often called EDC (energy
distribution curves). The zero corresponds to an electron extracted from the
Fermi level. Electrons with a smaller kinetic energy come from states with larger
binding energy. In other words, each of the curves above is basically a plot of the
hole-like part of A

�
kjj; !

�
; or if you want f (!)A

�
kjj; !

�
. From band structure

calculations, one knows that the angle � = 14:750 corresponds to the Fermi level
(marked kF on the plot) of a Ti � 3d derived band. It is for this scattering
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Figure 6-1 ARPES spectrum of 1 � T � TiTe2; after R. Claessen, R.O. Anderson,
J.W. Allen, C.G. Olson, C. Janowitz, W.P. Ellis, S. Harm, M. Kalning, R. Manzke,
and M. Skibowski, Phys. Rev. Lett 69, 808 (1992).
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Figure 6-2 This ARPES spectrum is taken on the (1 1 1) surface of Cu. The top
plot is the MDC for the projection of a part of the bulk Fermi surface projected on the
(1 1 1) surface. The lower panel shows the EDC with the nearly parabolic dispersion
below the Fermi level,

angle that the agreement between experiment and Fermi liquid theory is best (see
Sec.(7.1) below). The plots for angles � < 14:750 correspond to wave vectors above
the Fermi level. There, the intensity is much smaller than for the other peaks.
For � = 130; the experimental results are scaled up by a factor 16: The intensity
observed for wave-vectors above ! = 0 comes from the Fermi function and also
from the non-zero projection of the state with a given k on several values of ! in
the spectral weight.
The energy resolution is 35meV: Nevertheless, it is clear that the line shapes

are larger than the energy resolution: Clearly the spectral weight is not a delta
function and the electrons in the system are not free particles. Nevertheless,
there is a de�nite maximum in the spectra whose position changes with kjj: It
is tempting to associate the width of the line to a lifetime. In other words, a
natural explanation of these spectra is that the electrons inside the system are
�quasiparticles�whose energy disperses with wave vector and that have a lifetime.
We try to make these concepts more precise below.
One can also make plots of the probability of having a certain momentum at

the Fermi level ! = 0: This is usually represented by a color plot called MDC,
momentum distribution curve. This is represented on the top of Fig. (6-2). This
is for a speci�c portion of the Fermi surface of Cu, with the corresponding depen-
dence of energy on momentum (EDC) on the lower part of Fig. (6-2). A theorist�s
dream.
A more complicated but also spectacular case, shown in Fig. (6.3), is that of

strontium ruthenate Sr2RuO4 [19], also interesting because it was proposed to be
a topological superconductor, a proposal that is still subject of research at the
time of writing:
Fig. (6-3) shows some beautiful experimental and theoretical recent work on

this compound. [84] On the left is the Fermi surface and on the right various
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Figure 6-3 Momentum distribution curves. a) at the Fermi level, and b) at various
energies below the Fermi surface. From Phys. Rev. X, 2, 021048 (2019).

MDC�s at energies below the Fermi surface. This should be contrasted with high-
temperature superconductors in Fig. 6.3. The Fermi surface seems to vanish in thin
air ([57]).Getting back to strontium ruthenate [84], Fig. (6-4) shows some detailed
comparisons between experiment and theory. The theory is based on density-
functional theory, augmented by dynamical mean-�eld calculations, topics we will
address in subsequent chapters. The calculation shows that the e¤ect of spin-orbit
interactions is crucial. The red dots are the measurements and the color curves
the calculations.
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Figure 6-4 Comparison between theory and experiment for strontium ruthenate. The
theory is from electronic structure including spin-orbit interactions and supplemented
with the e¤ect of interactions using Dynamical Mean-Field theory. From Phys. Rev.
X, 2, 021048 (2019).
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7. QUASIPARTICLES

The intuitive notions we may have about lifetime and e¤ective mass of an electron
caused by interactions in a solid can all be extracted from the self-energy, as I
will show. As we discussed in Chapter 6.1, for a general interacting system, the
one-particle Green�s function takes the form,

GR (k;!) =
1

! + i� � �k �
PR

(k; !)
(7.1)

We can drop i� since Im
PR

(k; !) is negative to preserve causality and always
larger than i� that should anyway be taken to zero at the end.1 The spectral
weight corresponding to GR (k; !) then is,

A (k;!) = �2 ImGR (k;!) (7.2)

=
�2 Im

PR
(k; !)�

! � �k � Re
PR

(k; !)
�2
+
�
Im
PR

(k; !)
�2 : (7.3)

If the imaginary part of the self-energy, the scattering rate, is not too large and
varies smoothly with frequency, conditions I will re�ne when I discuss Fermi liquids
soon, the spectral weight will have a maximum whenever, at �xed k, there is a
value of ! that satis�es

! � �k � Re�R (k; !) = 0: (7.4)

We assume the solution of this equation exists. Let Ek � � be the value of ! for
which this equation is satis�ed. Ek is the so-called quasiparticle energy [?]. This
energy is clearly in general di¤erent from the results of band structure calculations
that are usually obtained by neglecting the frequency dependence of the self-
energy. Expanding ! � �k � Re�R (k; !) around ! = Ek � � = 0 where A (k;!)
is a maximum, we �nd

! � �k � Re�R (k; !) � 0 +
@

@!

�
! � �k � Re�R (k; !)

�
!=Ek��

(! � Ek + �) + : : :

�
 
1� @ Re�R (k; !)

@!

����
Ek��

!
(! � Ek + �) + : : : (7.5)

If we de�ne the �quasiparticle weight�or square of the wave function renormal-
ization by

Zk =
1

1� @
@! Re�

R(k;!)j
!=Ek��

(7.6)

then in the vicinity of the maximum, the spectral weight takes the following simple
form in the vicinity of the Fermi level, where the peak is sharpest

A (k;!) � 2�Zk
1

�

�Zk Im
PR

(k; !)

(! � Ek + �)2 +
�
Zk Im

PR
(k; !)

�2 + inc (7.7)

= 2�Zk

"
1

�

�k (!)

(! � Ek + �)2 + (�k (!))2

#
+ inc: (7.8)

1 In exact diagonalizations where the self-energy is still represented by a set of delta functions,
the i� should be kept everywhere.
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The last equation needs some explanation. First, it is clear that I have de�ned
the scattering rate

�k (!) = �Zk Im�R (k; !) (7.9)

Second, the quantity in square brackets looks, as a function of frequency. At least
if we can neglect the frequency dependence of the scattering rate. The integral
over frequency of the square bracket is unity. Since A (k;!) =2� is normalized to
unity, this means both that

Zk � 1 (7.10)

and that there are additional contributions to the spectral weight that we have
denoted inc in accord with the usual terminology of �incoherent background�.
The equality in the last equation holds only if the real part of the self-energy is
frequency independent.
It is also natural to ask how the quasiparticle disperses, in other words, what is

its e¤ective Fermi velocity compared with that of the bare particle. Let us de�ne
the bare velocity by

vk = rk�k (7.11)

and the renormalized velocity by

v�k = rkEk (7.12)

Then the relation between both quantities is obtained by taking the gradient of
the quasiparticle equation Eq.(7.4).

rk
�
Ek � �� �k � Re�R (k; Ek � �)

�
= 0 (7.13)

v�k � vk �rkRe�R (k; Ek � �)�
@ Re�R (k; !)

@!

����
Ek��

v�k = 0 (7.14)

where rk in the last equation acts only on the �rst argument of Re�R (k; Ek � �).
The last equation is easily solved if we can write that k dependence of �R as
a function of �k instead, something that is always possible for spherical Fermi
surfaces. In such a case, rk ! (rk�k) @=@�k as we can see for example when
�k = k

2=2m and we have

v�k = vk
1+ @

@�k
Re�R(k;Ek��)

1� @
@! Re�

R(k;!)j
!=Ek��=0

: (7.15)

In cases where the electronic (band) structure has correctly treated the k de-
pendence of the self-energy, or when the latter is negligible, then the renormalized
Fermi velocity di¤ers from the bare one only through the famous quasiparticle
renormalization factor. In other words, v�k = Zkvk: The equation for the renor-
malized velocity is also often written in terms of a mass renormalization instead.
Indeed, we will discuss later the fact that the Fermi wave vector kF is unmodi�ed
by interactions for spherical Fermi surfaces (Luttinger�s theorem). De�ning then
m�v�kF = kF = mvkF means that our equation for the renormalized velocity gives
us

m
m� = limk!kF

1+ @
@�k

Re�R(k;Ek��)
1� @

@! Re�
R(k;!)j

!=Ek��
(7.16)

Remark 27 In the jargon, the quasiparticle piece of the spectral weight Eq. (7.3)
is called the �coherent�piece of the spectral weight, by contrast with the incoherent
contribution that I mentionned above.
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7.1 Fermi liquid interpretation of ARPES

Let us see how to interpret the experiments of the previous subsection in light
of the quasiparticle model just described. First of all, the wave vectors studied
are all close to the Fermi surface as measured on the scale of kF : Hence, every
quantity appearing in the quasiparticle spectral weight Eq.(7.8) that depends on
the self-energy is evaluated at the Fermi wave vector, which can however be angle
dependent. The frequency dependence of the self-energy then is most impor-
tant. The experiments were carried out at T = 20K where the resistivity has a
T 2 temperature dependence. This is the regime dominated by electron-electron
interactions, where so-called Fermi liquid theory applies. What is Fermi liquid
theory?2

It would require more than the few lines that we have to explain it, but roughly
speaking, for our purposes, let us say that it uses the fact that phase space for
electron-electron scattering vanishes at zero temperature and at the Fermi surface,
to argue that the quasiparticle model applies to interacting electrons. Originally
the model was developed by Landau for liquid 3He which has fermionic properties;
hence the name Fermi Liquid theory. It is a very deep theory that in a sense jus-
ti�es all the successes of the almost-free electron picture of electrons in solids. I
cannot do it justice here. A simple way to make its main ingredients plausible, [?]
is to assume that near the Fermi surface in the limit of zero temperature, the self-
energy is i) analytic and ii) has an imaginary part that vanishes at zero frequency.
The latter result follows from general considerations on the Pauli exclusion prin-
ciple and available phase space that are brie�y summarized in Fig. (7-1). I will
give an alternate derivation in the section on the electron-gas.
Let us de�ne real and imaginary parts of the retarded self-energy by

�R = �0 + i�00 (7.17)

Our two hypothesis imply that �00 has the Taylor expansion

�00 (kF ;!) = �! � 
!2 + : : : (7.18)

The imaginary part of the retarded self-energy must be negative to insure that
the retarded Green�s function has poles in the lower half-plane, as is clear from
the general relation between Green function and self-energy Eq. (7.1). This means
that we must have � = 0 and 
 > 0: Fermi liquid theory keeps only the leading
term

�00 = �
!2

We will verify for simple models that this quadratic frequency dependence is es-
sentially correct in d � 3:
We know that the imaginary part of the self-energy must vanish at in�nite

frequency where free-particle behavior is expected, as in the harmonic oscillator
case. Following Refs. [60], we take the following smooth cuto¤ model, neglecting
impurity scattering and temperature

�00 (!) =

�
�s !2!�2 for ! < !�

�sF
�
!
!�

�
for ! > !�

; (7.19)

where !� is the frequency at which !2 behavior stops, 2s is the electron-electron
scattering rate (in units ~ = 1) without many-body e¤ects, and the cuto¤ function

2A short summary on internet by Ross McKenzie
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxjb25kZW5zZWRjb25jZXB0czN8Z3g6MzhhZWZhNjUxNmZiMjVjNQ
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Figure 7-1 Taken from H. Bruus and K. Flensberg, "Introduction to Many-body
theory in condensed matter physics".

F (y) takes the value unity at y = 1 and then decreases monotonically to zero
afterwards3 . A more realistic model, as we will see, crosses over from !2 behavior
while continuing to increase in absolute value before decreasing. But that does
not modify the result that we are looking for, namely that the real-part of the self-
energy obtained by Kramers-Kronig gives a value of Z consistent with quasiparticle
behavior. So let us forge ahead.

The real part is then obtained from the Kramers-Kronig relation that must be
obeyed by the self-energy. We make the additional assumption that �00 (!) is even
in frequency. Another way to state that is that we assume particle-hole symmetry.
Following the same arguments as those used for damping of the harmonic oscillator,
the Kramers-Kronig relation give us for small !

[�0 (kF ;!)� �0 (kF ;1)] = P
Z
d!0

�

�00 (kF ;!
0)

!0 � ! (7.20)

= � s

(!�)
2P
Z !�

�!�

d!0

�

�
!02 � !2 + !2

�
!0 � ! (7.21)

�2sP
Z 1

!�

d!0

�

F
�
!
!�

�
!0 � !

3�
00
in this model has a discontinuous �rst derivative at ! = !�; which is why it is not a

quite realistic model, even though it is better than a sharp cuto¤ model.
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Let us focus on the �rst integral. It can be evaluated as follows

� s

(!�)
2P
Z !�

�!�

d!0

�

(!0 � !)(!0 + !)
!0 � ! � s

(!�)
2!

2P
Z !�

�!�

d!0

�

1

!0 � !(7.22)

= � s
�
� 2s
�

� !
!�

�
� s

�

� !
!�

�2
ln

����!� � !!� + !

���� : (7.23)

The constant term is added to �0 (kF ;1) to give the total contribution to the
zero-frequency limit of the real-part of the self-energy, which leads to the renor-
malization of the chemical potential. Since ln [(1� x) =(1 + x)] � �2x; in the limit
! � !� there is no linear in ! contribution from the logarithm. The remaining
term involving F can be expanded in a power series in !=!�: So there is term
linear in ! coming from that. We are �nally left with

@

@!
�0 (kF ; !)

����
!=0

= � 2s�
�!�

(7.24)

where � is a number of less than 2 when estimated with the above model for the
cuto¤ (as discussed in a remark below). Hence

@

@!
�0 (k; !)

����
!=0

< 0 (7.25)

This in turn means that the corresponding value of ZkF is less than unity, as we had
concluded in Eqs.(7.6) and (7.10) above. In summary, the analyticity hypothesis
along with the vanishing of �00 (0) implies the existence of quasiparticles.

Remark 28 Warning: there are subtleties. The above results assume that there
is a cuto¤ to �00 (kF ;!0) : The argument just mentioned in Eq.(7.24) fails when
the integral diverges. Then, the low frequency expansion for the self-energy in
Eq.(7.21) cannot be done. Expanding under the integral sign is no longer valid.
One must do the principal part integral �rst. In fact, even for a Fermi liquid at
�nite temperature, �00 (kF ;!) � !2 + (�T )

2 so that the (�T )2 appears to lead
to a divergent integral in Eq.(7.24). Returning to the original Kramers-Krönig
expression for �0 however, the principal part integral shows that the constant term
(�T )

2 for �00 (kF ;!) does not contribute at all to �0 if the cuto¤ in �00 is symmetric
at positive and negative frequencies. In practice one can encounter situations
where @�=@! > 0: In that case, we do not have a Fermi liquid since Z > 1 is
inconsistent with the normalization of the spectral weight. One can work out an
explicit example in the renormalized classical regime of spin �uctuations in two
dimensions. (Appendix D of [97]).

Remark 29 To estimate the contribution from the cuto¤, note that the denomi-
nator can be expanded in powers of !=!0 because by construction, ! < !� and we
assume that F

�
!
!�

�
decreases at least as a power law starting from unity, making

the integral convergent. So, recalling that this all started with F an even function
of its argument,

� 2s
Z 1

!�

d!0

�

F
�
!
!�

�
!0

1X
n=0

� !
!0

�2n+1
(7.26)

the linear in ! contribution from this term is

� 2s
Z 1

!�

d!0

�

F
�
!
!�

�
!0

� !
!0

�
� �2s

�

!

!�

Z 1

1

dy
1

y2
= �2s

�

!

!�
(7.27)

which must be added to the linear in ! contribution, leading to the above estimate
for the value of �:
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The solid lines in Fig.(6-1) are two-parameter �ts that also take into account
the wave vector and energy resolution of the experiment [?]. One parameter is
Ek � � while the other one is 
0; a quantity de�ned by substituting the Fermi
liquid approximation in the equation for damping Eq.(7.9)

�kF (!) = ZkF 
!
2 = 
0!2: (7.28)

Contrary to Ek, the damping parameter 
0 is the same for all curves. The solid-line
�ts are obtained with 
0 = 40eV �1 (�0 on the �gure): The �ts become increasingly
worse as one moves away from the Fermi surface, as expected. It is important to
notice, however, that even the small left-over weight for wave-vectors above the
Fermi surface

�
� < 14:750

�
can be �tted with the same value of 
. This weight is

the tail of a quasiparticle that could be observed at positive frequencies in inverse
photoemission experiments (so-called BIS). The authors compared the results of
their �ts to the theoretical estimate, [?] 
 = 0:067!p="

2
F : Using !p = 18:2eV;

"F = 0:3eV and the extrapolated value of ZkF obtained by putting
4 rs = 10 in

electron gas results, [?] they �nd 
0 < 5 (eV )
�1 while their experimental results

are consistent with 
0 = 40 � 5 (eV )�1 : The theoretical estimate is almost one
order of magnitude smaller than the experimental result. This is not so bad given
the crudeness of the theoretical model (electron gas with no lattice e¤ect). In
particular, this system is a semimetal so that there are other decay channels than
just the one estimated from a single circular Fermi surface. Furthermore, electron
gas calculations are formally correct only for small rs while there we have rs = 10:
More recent experiments have been performed by Grioni�s group [?]. Results

are shown in Fig. (7-2). In this work, authors allow for a constant damping
�0 = 17 meV coming from the temperature and from disorder and then they
�t the rest with a Fermi velocity ~vF = 0:73 � 0:1eV _A close to band structure
calculations, ~vF = 0:68 eV _A and 
0 that varies between 0:5 eV �1 (160) and
0:9 eV �1 (14:50). The Fermi liquid �t is just as good, but the interpretation of
the origin of the broadening terms is di¤erent. This shows that it is not always
easy to interpret ARPES data, even for Fermi liquids. But we saw in Fig. (6-4)
that modern electronic structure calculations that include the e¤ect of correlations
can be quite successful.
Theoretical estimates for high-temperature superconductors are two orders of

magnitude smaller than the observed result [?].

Remark 30 What allows the existence of the Fermi liquid is the vanishing of
the imaginary part of the self-energy at ! = 0: Electrons at the Fermi energy
have an in�nite lifetime at zero temperature. In addition, their lifetime vanishes
faster than their energy ! so that �quasiparticles� survive in the vicinity of the
Fermi surface. I will show that at �nite temperature and ! = 0; their lifetime
is proportional to T 2. As a consequence, their width is su¢ ciently small that it
makes sense to populate the quasiparticle states following the Fermi function.

Remark 31 Asymmetry of the lineshape: The line shapes are asymmetrical, with
a tail at energies far from the Fermi surface (large binding energies). This is
consistent with the fact that the �inverse lifetime� �kF (!) = ZkF 
!

2 is not a
constant, but is instead larger at larger binding energies.

Remark 32 Failure of Fermi liquid at high-frequency: Clearly the Fermi liquid
expression for the self-energy fails at large frequencies since we know from its
spectral representation that the real-part of the self-energy goes to a frequency-
independent constant at large frequency, the �rst correction being proportional to
1=!. Conversely, there is always a cuto¤ in the imaginary part of the self-energy.

4 rs is the average electron spacing expressed in terms of the Bohr radius.
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Figure 7-2 Figure 1 from Ref.[?] for the ARPES spectrum of 1T-TiTe2 measured
near the Fermi surface crossing along the high-symmetry �M direction (� = 0 is
normal emission). The lines are results of Fermi liquid �ts and the inset shows a
portion of the Brillouin zone with the relevant ellipsoidal electron pocket.

This is not apparent in the Fermi liquid form above but we had to assume its
existence for convergence. The cuto¤ on the imaginary part is analogous to the
cuto¤ in �00: Absorption cannot occur at arbitrary high frequency.

Remark 33 Destruction of quasiparticles by critical �uctuations in two dimen-
sions: Note that it is only if �00 vanishes fast enough at low frequency that it is
correct to expand the Kramers-Kronig expression in powers of the frequency to
obtain Eq.(7.24). When �00 (!) vanishes slower than !2, then Eq.(7.24) for the
slope of the real part is not valid. The integral does not converge uniformly and it
is not possible to interchange the order of di¤erentiation and integration. In such
a case it is possible to have the opposite inequality for the slope of the real part
@
@!�

0 (k; !)
��
!=0

> 0: This does not lead to any contradiction, such as ZkF > 1;
because there is no quasiparticle solution at ! = 0 in this case. This situation
occurs for example in two dimensions when classical thermal �uctuations create a
pseudogap in the normal state before a zero-temperature phase transition is reached
[?].
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Part IV

Lecture 4 (90 minutes)
Coherent states for fermions
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8. COHERENTSTATES FORFERMI-
ONS

Let us go back momentarily to �rst quantization: the Feynman path integral is
an integral over all coordinates. The coordinates are operators in the Hamiltonian
formalism. In the path integral case, the argument of the exponential is the action
in units of ~:
By analogy, in second quantization, we want a path integral where the argu-

ment of the exponential is the action and the integrals are over �elds. For bosons,
it su¢ ces to work in the coherent state basis. Coherent states for bosons are
the analogs of classical �elds. What are coherent states for fermions? This is
what we set to do �rst. Then the functional integral follows naturally. An excel-
lent reference is J.W. Negele and H. Orland, "Quantum Many-Particle Systems"
(Addison-Wesley, Redwood city, 1988).

8.1 Grassmann variables for fermions

We wish to compute the partition function for time-ordered products with imaginary-
time dependent Hamiltonians. This situation occurs for example when one does
perturbation theory, obtains an e¤ective Hamiltonian, or with source �elds. Fermion
coherent states are de�ned by analogy with the bosonic case. For simplicity, we
work with spinless fermions. It is easy to introduce spins afterwards.
Let c be a fermion destruction operator, then c j0i = 0 while the fermion

coherent state j�i is an eigenstate of the destruction operator, by analogy with
bosons.

c j�i = � j�i : (8.1)

Since c1c2 j�1; �2i = �c2c1 j�1; �2i the eigenvalues � must be numbers that anti-
commute. Namely,

f�1; �2g = 0: (8.2)

Since Grassmann numbers occur only inside time-ordered products, it turns out
that it su¢ ces to de�ne the adjoint in such a way that it also anticommutes, there
is no delta function: �

�; �y
	
= 0: (8.3)

Note that if we multiply � by a complex number �, then the adjoint of �� is given
by (��)y = ���y where �� is the complex conjugate of �:
Given the de�nition of Grassmann numbers, one can write an explicit de�nition

of fermion coherent states in the Fock basis if we add the de�nition that Grassmann
numbers and fermion operators also anticommute:

j�i =
�
1� �cy

�
j0i (8.4)

Given that �2 = 0, one can verify the de�ning property c j�i = � j�i Eq.(8.1):

c j�i = c j0i+ �ccy j0i = � j0i = �
�
1� �cy

�
j0i = � j�i : (8.5)
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Also, again since �2 = 0; we can use the de�nition

j�i = e��c
y
j0i (8.6)

that has the same structure as a boson coherent state.
Note that while � and �y must be considered independent, the same way that

z and z� must be considered independent, they are nevertheless adjoint from each
other. Namely, we have that

h�j = h0j
�
1� c�y

�
: (8.7)

8.2 Grassmann Calculus

In the case of bosons, the amplitude of a coherent state is arbitrary. For fermions,
we imagine something analog. We must de�ne then Grassmann integrals. To have
meaning as integrals, these must satisfy properties such asZ

d�f (� + �) =

Z
d�f (�) (8.8)

where � is another Grassmann number. The most general function of a Grassmann
variable is f (�) = a + b� since �2 = 0: Hence, the above property is satis�ed ifR
d�b� = 0; which implies R

d� = 0: (8.9)

For derivatives and integrals to be consistent, the formula for integration by
parts is also satis�ed with the above de�nition (as if f vanished at in�nity) because
df
d� can only be an ordinary number (f (�) can only be linear in �).Z

d�
df

d�
= 0: (8.10)

This de�nition is thus consistent with the natural de�nition of a derivative

df
d� =

d(a+b�)
d� = b (8.11)

with a and b ordinary C numbers.
Linearity Z

d� (af (�) + bg (�)) =

Z
d�af (�) +

Z
d�bg (�) (8.12)

will be satis�ed as long as
R
d�� is a number. The choiceR

d�� = 1 (8.13)

is convenient. The last property is consistent with the fact that the product
of two Grassmann numbers is an ordinary number. Note that derivatives also
anticommute. For example

�y
@

@�
= � @

@�
�y: (8.14)

In the end, note that the formula for integration looks the same as the formula
for di¤erentiation. The two rules Eqs.8.9 and 8.13 are all we need to remember.
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Grassmann calculus is much easier than ordinary calculus. Not many things to
remember!
One more thing. The analog of the Dirac delta function is well de�ned:Z

d�� (�0 � �)F (�) =
Z
d�(� � �0)(a+ b�) = (a+ b�0) = F (�0): (8.15)

Note that the order of � and �0 in the argument is important.

8.3 Change of variables in Grassmann integrals

With integrals of ordinary complex variables, changes of variables are relected in
the integration volume through a Jacobian. Let us take a single variableZ 1

�1
dx exp

�
�x2=2

�
=
p
2�: (8.16)

With the change of variable x = y=a then dx = dy=a so that

1

a

Z 1

�1
dy exp

�
�y2=2a2

�
=
1

a

p
2�a2 =

p
2�: (8.17)

Here, 1a turns into a Jacobian when several variables are present.
Grassman variables behave di¤erently. Indeed, let F (�) = a+ b� where a and

b are complex numbers. Then, Z
d�F (�) = b (8.18)

and if we change variable to � = �0=� then if we assume the usual Jacobian,
namely d� = d�0=�, then we obtainZ

d�F (�) =
1

�

Z
d�0F (�0=�) =

1

�

b

�
; (8.19)

which clearly shows that something went wrong. The solution is that we need the
inverse of the Jacobian when we do the change of variablesZ

d�F (�) = �

Z
d�0F (�0=�) = b: (8.20)

In the many-variable case, consider the following change of variable

 i =

NX
j=1

Uij�j (8.21)

Then
NY
i=1

Z
d i =

NY
i=1

NX
ji=1

Uiji

Z
d�ji : (8.22)

All the ji indices need to be di¤erent because of the properties of the Grassmann
numbers. In addition, if you rearrange all the d�ji in increasing order of index, j1 =
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1; j2 = 2 etc, the signature of the permutation appears. This can be summarized
with the help of the completely antisymmetric (Levi-Civita) tensor "j1j2���jN ;

NY
i=1

NX
ji=1

Uiji

Z
d�ji =

NX
j1=1

NX
j2=1

� � �
NX

jN=1

U1j1U2j2 � � �UNjN
Z
d�j1

Z
d�j2 � � �

Z
d�jN

=
NX
j1=1

NX
j2=1

� � �
NX

jN=1

U1j1U2j2 � � �UNjN "j1j2���jN
Z
d�1

Z
d�2 � � �

Z
d�N

= det [U ]
NY
k=1

Z
d�k (8.23)

This will be an integral over Grassmann variables and we know that only the part
 j1 j2 � � � jN of the function of many variables will contribute. The change of
variables will lead to the same determinant. For the same reasons as above then,
we should use det [U ]�1 instead of det [U ] for the Jacobian.

Remark 34 Note that the change of variables between imaginary time and Mat-
subara frequencies is almost unitary, but not quite since

G (�) = T
X
n

e�i!n�G (i!n) (8.24)

G (i!n) =

Z �

0

d�ei!n�G (�) (8.25)

gives a transformation matrix Te�i!n� whose inverse is d�ei!n� is not just the
complex conjugate of the transpose. There is a numerical factor that comes in.
This will lead to subtleties in the expression for the partition function below. Con-
trast this with the unitary transformation 1p

N
eik�ri that allows one to go from

discrete momentum space to discrete lattice sites. We can nevertheless relate the
Matsubara variables by changing de�nitions

eG (�) =
1p
N�

X
n

e�i!n� eG (i!n) (8.26)

eG (i!n) =
p
N�T

Z �

0

d�ei!n� eG (�) : (8.27)

with N� going to in�nity being the number of Matsubara frequencies and the num-
ber of imaginay-time points. A discretization of

p
N�Td�e

i!n� into ei!n�=
p
N�

by using Td� = T�=N� yields a transformation formula that looks unitary.

8.4 Grassmann Gaussian integrals

Let us practice with the integral we will meet all the time, the analog of the
Gaussian integral. With the above rules for integration, and e��

y� = 1� �y� that
follows from �2 = 0; we �ndZ

d�y
Z
d�e��

ya� =

Z
d�y

Z
d�
�
1� �ya�

�
= a = exp (log (a)) (8.28)

where a is an ordinary number. We used,Z
d�y

Z
d�
�
��ya�

�
=

Z
d�y�y

Z
d��a = a:
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Note the order of
R
d�y

R
d�. We have to keep this order for the rest of our calcu-

lations. This is a mere convention, but since Grassmann variables anticommute,
we should stick with one convention.
If we have two Grassman variables, notice �rst by expanding to linear orderZ

d�y1

Z
d�1e

��y1a1�1
Z
d�y2

Z
d�2e

��y2a2�2 =Z
d�y1

Z
d�1

Z
d�y2

Z
d�2e

��y1a1�1e��
y
2a2�2 = a1a2 (8.29)

= exp [ln a1 + ln a2] (8.30)

The quantity a1a2 is the determinant of the diagonal matrix with a1 and a2 on
the diagonal. Since it can easily be proven by power series expansion (or from
the fact that �y1�1 commutes with �

y
2�2) that exponentials of sums of quadratic

Grassmann expressions behave as classical objects, namely

e��
y
1a1�1e��

y
2a2�2 = e��

y
1a1�1��

y
2a2�2 ; (8.31)

we can write in matrix notation for a general basisY
i

R
d�yi

R
d�ie

��yA� = det (A) = exp [Tr ln (A)].
(8.32)

The last equalities follow by using the fact that the determinant and the trace are
both basis independent. We abbreviate further the notation with the de�nition of
the integration measureR

D�y
R
D�e��yA� �

Y
i

R
d�yi

R
d�ie

��yA�.
(8.33)

There is another gaussian integral to do that is simple and that will allow us
to use source �elds to our bene�t. De�ning the Grassman source �elds J and Jy;
we can use what we know about shifting the origin of integration, Eq.(8.8), and
obtainZ

d�y
Z
d�e��

ya���yJ�Jy� =

Z
d�

Z
d�ye�(�

y+Jya�1)a(�+a�1J)+Jya�1J(8.34)

= a exp
�
Jya�1J

�
: (8.35)

The generalization to integrals over many Grassmann variables givesZ
D�y

Z
D�e��

yA���yJ�Jy� =

Z
D�y

Z
D�e�(�

y+JyA�1)A(�+A�1J)+(JyA�1J)

R
D�y

R
D�e��yA���yJ�Jy� = det (A) exp

�
JyA�1J

�
(8.36)

We will be able to use this result to obtain Green�s functions or multipoint func-
tions from functional derivatives with respect to J .

8.5 Closure, overcompleteness and trace formula

To �nd the expression for the partition function, we will need the completeness
relation. From the last result of the previous section, you can verify the following
closure formula by applying it successively on j0i and on cy j0i :R

d�y
R
d�e��

y� j�i h�j =
R
d�y

R
d�
�
1� �y�

�
j�i h�j = I: (8.37)
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Indeed, recalling that only terms of the form
R
d�y

R
d��y� = �1 survive, we are

left with Z
d�y

Z
d�
�
1� �y�

� �
1� �cy

�
j0i h0j

�
1� c�y

�
=

Z
d�y

Z
d�
��
��y�

�
j0i h0j+ �cy j0i h0j c�y

�
= j0i h0j+ j1i h1j

Take a single state that can be empty or occupied, as above. The trace of an
operator O can be written as follows,

Tr[O] =
R
d�y

R
d�e��

y� h��jO j�i. (8.38)

The minus sign re�ects the antiperiodicity that we encounter with fermions. To
prove the above formula, it su¢ ces to use the de�nition of the fermionic coherent
state Eq.(8.4). Indeed,Z

d�y
Z
d�e��

y� h��jO j�i =

Z
d�y

Z
d�e��

y� h0j
�
1 + c�y

�
O
�
1� �cy

�
j0i

=

Z
d�y

Z
d�
�
1� �y�

�
h0j
�
1 + c�y

�
O
�
1� �cy

�
j0i

=

Z
d�y

Z
d�
�
1� �y�

� �
h0jO j0i � h0j c�yO�cy j0i

�
=

Z
d�y

Z
d�
�
1� �y�

� �
h0jO j0i � �y� h0j cOcy j0i

�
= h0jO j0i+ h1jO j1i : (8.39)

In the next to last equation, we assumed that O contains an even number of
fermion operators so that

�O = O�: (8.40)

The set is overcomplete since using the de�nition in terms of Fock states Eq.(8.4),
one �nds

h�1 j�2i = h0j
�
1� c�y1

� �
1� �2cy

�
j0i = 1 + �y1�2 = e�

y
1�2 .

(8.41)
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9. COHERENT STATE FUNC-
TIONAL INTEGRAL FOR FERMI-
ONS

9.1 A simple example for a single fermion without
interactions

For spinless fermions whose Hamiltonian is given by H =
P
i "ic

y
i ci, the partition

function is

Z = Tr (exp (��H)) =
Y
i

�
1 + e��"i

�
= det

�
1 + e��"

�
(9.1)

where " is the diagonal matrix. The expression remains valid in an arbitrary
basis. What is the generalization of this result when H depends on � and we want
a time-ordered product

Z = Tr

 
T� exp

 
�
Z �

0

d�H (�)

!!
? (9.2)

We can work this out in the usual operator formalism. With Grassmann variables,
we need to su¤er �rst, but then the calculations are easy and formally very close
to those for bosons.
Let us start with a single fermion state, so that

H = "cyc:

Then, we express the trace in the coherent fermion basis. In that basis, we do
not know how to compute e��H j�i since the expansion of the exponential gives
an in�nite number of terms. We can however use the Trotter decomposition to do
a Taylor expansion that will be easy to evaluate in the coherent state basis. The
Trotter decomposition is given by

e��H = lim
N�!1

N�Y
i=1

e��� iH = lim
N�!1

N�Y
i=1

(1��� iH) : (9.3)

with �� = �=N� : The index i on �� is just to allow us to keep track of the
di¤erent terms. Even if H was time dependent, we could use this approximation
in the limit �� ! 0 because [��H (�1) ;��H (�2)] = O (��)2 and we will neglect
terms of that order. In other words, for �� ! 0 we can assume that exponentials
of sums of operators can be rewritten as a product of exponentials.1 To linear

1There is one subtlety. We have many time-slices. Since N� (��)2 = ���; it looks as if
the error is of order �� , not (��)2 : Fye has shown that the prefactor of ��� vanishes when
one is interested in expectation values of certain kinds of operators. This is basically because
the operator in front of �� is a commutator and is thus anti-Hermitian. The trace of that
anti-hermitian operator vanishes.
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order in �� then, we have that

h�2j e��� iH[c
y;c] j�1i = e��� iH[�

y
2;�1] h�2 j�1i (9.4)

In this expression, we have assumed that all destruction operators were on the
right and all creation operators on the left so that they can be replaced by the
corresponding Grassmann variable when acting on coherent states. This order of
creation-annihilation operators is known as normal order.
Back to our task. Using the trace formula in the coherent state basis Eq.(8.38)

and inserting the completeness relation Eq.(8.37) between each term of the prod-
uct, we can evaluate the exponential in the coherent-state basis. We �nd, with
the de�nitions �� = �N�

= ��0 and

R
D�y

R
D� =

R
d�y0

R
d�0

N�Y
i=1

R
d�yi

R
d�i

that

Z = lim
N�!1

Z
D�y

Z
D�e��

y
���



��
�� e���N� "�y��N��1 ���N��1

�
e
��y

N��1
�
N��1



�N��1

��
: : : j�1i e��

y
1�1 h�1j e���1"�

y
1�0 j�0i (9.5)

= lim
N�!1

Z
D�y

Z
D�e��

y
���e(1���N� ")�

y
��N��1 e��

y
N��1�N��1e(1���N��1")�

y
N��1�N��2

: : : j�1i e��
y
1�1e(1�"��)�

y
1�0 : (9.6)

which is a time-ordered product. In the second line, we have used, e��
y
1�1 h�1 j�0i

= e��
y
1�1+�

y
1�0 and applied repeatedly formulas such as


��
�� e���N� "�y��N��1 ���N��1

�
= e�

y
��N��1e���N� "�

y
��N��1 = e(1���N� ")�

y
��N��1 :

(9.7)
The above formula is obviously generalizable to a time-dependent Hamiltonian
that appears in a time-ordered product.
To evaluate this quantity on a computer, we need to �rst do the integrals over

Grassmann variables and express the result in terms of matrices, remembering
that the de�nition of the matrices must be read o¤ the above formula. There is
no ambiguity. The matrix A that appeared in the Gaussian Grassmann integral
Eq.(8.32) Z = limN�!1

R
D�y

R
D� e��yA� can be written down, assuming that

�� is the same for all imaginary-time slices, as

A =

26666664
1 0 0 : : : 0 (1� "��)

� (1� "��) 1 0 : : : 0 0
0 � (1� "��) 1 : : : 0 0
0 0 � (1� "��) : : : 0 0
0 0 0 : : : 1 0
0 0 0 : : : � (1� "��) 1

37777775 � �G
�1.

(9.8)
The above matrix has dimension N� �N� : Labels 0 to N� � 1 or 1 to N� can be
used. In other words, either time � = 0 or � = � can be present as independent
labels, but not both. They are related by antiperiodicity. The matrix element in
the upper right corner comes from


��
���N��1

�
e�"�

y
��N��1�� = h��0

���N��1
�
e"�

y
0�N��1�� = e(�1+"��)�

y
0�N��1 :

(9.9)
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Note that in actual computations, it is more accurate to replace �1 + "�� by
�e"�� : If " is time dependent, it su¢ ces to replace its value at the appropriate
time slice. If " is time independent, the determinant of the matrix A is equal, when

N� tends to in�nity, to
�
1 + (1� "��)N�

�
=
�
1 + e��"

�
; as we would expect from

the free fermion formula Eq.(9.1) when there is a single fermion state.

9.2 Generalization to a continuum and to a time
dependent one-body Hamiltonian

The continuum limit can also be taken formally. We can combine the exponentials
coming from the completeness relation and from the overlap of fermion coherent
states as follows

e��
y
1�1 h�1 j�0i = e��

y
1�1+�

y
1�0 = e��

y
1(�1��0) = e��

y
1
@
@� �1�� : (9.10)

Also, to leading order in �� ; we approximate terms such as �y1�0�� by �
y
0�0�� :

If we take the limit and impose the �� = ��0 on the last matrix element to the
left, we can rewrite the partition function as

Z =

Z
D�y

Z
D� exp (�S) (9.11)

where, by analogy with the Lagrangian formalism, we de�ne the following quantity

S =

Z �

0

d�

�
�y (�)

@

@�
� (�) + " (�) �y (�) � (�)

�
(9.12)

as the action S: In writing this, the " (�) shows that we have generalized also to a
time-dependent Hamiltonian. The integrand is like a Lagrangian when �y (�) and
� (�) are taken as conjugate variables.
Thinking of the � at di¤erent times as di¤erent variables, we can use our

formula for Gaussian integrals over Grassmann variables Eq.(8.32) the partition
funciton can be written as

Z = det

�
@

@�
+ " (�)

�
= exp

�
Tr log

�
@

@�
+ " (�)

��
: (9.13)

The matrix entering determinant and trace above is de�ned by returning to the
discrete representation.
In the case of a time-independent Hamiltonian, the determinant can be for-

mally evaluated as follows. Go to the basis where the time derivative is diagonal,
namely the Matsubara-frequency basis, which has the correct antiperiodicity im-
posed by the trace formula Eq. 8.38:

� (�) =
p
T
X
n

e�ikn�� (ikn) (9.14)

�y (�) =
p
T
X
m

eik
0
m��y (ikm) : (9.15)
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This leads to the following formula for the action

S =

Z �

0

d�

�
�y (�)

@

@�
� (�) + " �y (�) � (�)

�
(9.16)

= T

Z �

0

d�
X
n

X
m

e�i(kn�k
0
m)��y (ik0m) (�ikn + ") � (ikn) (9.17)

=
X
n

�y (ikn) (�ikn + ") � (ikn) (9.18)

=
X
n

�y (ikn)
�
�G�1 (ikn)

�
� (ikn) : (9.19)

The determinant accompanying this change of variables is unity in the following
sense:

detUy detU = detUyU = det

 
T
X
n

X
m

e�i(kn�k
0
m)�

!
(9.20)

= detT� (�) (9.21)

The quantity T� (�) is dimensionless, and in a discrete version of the imaginary
time leads to detT� (�) = 1. In this basis, the partition function is explicitly given
by

Z = exp [Tr log (�ikn + ")] = exp
"X

n

e�ikn0 log (�ikn + ")
#

(9.22)

= exp

"X
n

e�ikn0 log
�
�G�1 (ikn)

�#
: (9.23)

The factor e�ikn0
�
is made necessary to have a unique result. Read the important

remark below to understand the di¢ culties of interpretation of the above formula.
The derivatives of this formula give correct results if we proceed without asking

questions. To verify this, look at the expression for the occupation number

n =
Tr
�
exp (��H) cyc

�
Tr (exp (��H)) = � @ lnZ

@ (�")

= �
@
X
n

log (�ikn + ") e�ikn0
�

@ (�")
= T

X
n

e�ikn0
�

(ikn � ")
=

1

1 + e��
: (9.24)

In this expression, we have assumed that the sum converged to invert the sum and
the derivative.

Remark 35 You will see this formula very often

exp

"X
n

e�ikn0 log
�
�G�1 (ikn)

�#
(9.25)

in the literature, but as the time-independent case shows, the validity of the stan-
dard trick to sum over Matsubara frequencies by deforming a contour is not obvious
because it is not even clear whether the sumX

n

e�ikn0 log (�ikn + ") (9.26)

converges. This deserves a more detailed discussion that I will not do here.
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9.3 Wick�s theorem

To �nd the Green function, we can �rst assume again that we work in the diagonal
basis. Then, in this diagonal basis, we expand the exponential to �nd

�
R
D�y

R
D�e��

y(�G�1)��1�
y
1R

D�y
R
D�e��y(�G�1)�

=
�
R
d�y1

R
d�1

�
1 + G�111 �

y
1�1

�
�1�

y
1R

d�y1
R
d�1

�
1 + G�111 �

y
1�1

�
= �

R
d�y1

R
d�1�1�

y
1R

d�y1
R
d�1

�
1 + G�111 �

y
1�1

�
= G11 (9.27)

To compute higher order correlation functions, notice thatR
D�y

R
D�e��

y(�G�1)��1�
y
1�2�

y
2R

D�y
R
D�e��y(�G�1)�

=
�
R
d�y1

R
d�1e

��y1(�G
�1
11 )�1�1�

y
1

R
d�y2

R
d�2e

��y2(�G
�1
22 )�2�2�

y
2R

d�y1
R
d�1e

��y1(�G
�1
11 )�1

R
d�y2

R
d�2e

��y2(�G
�1
22 )�2

= � 1R
d�y1

R
d�1e

��y1(�G
�1
11 )�1

R
d�y2

R
d�2e

��y2(�G
�1
22 )�2

= G11G22: (9.28)

In this diagonal basis, this is the determinant of the G matrix. This result thus
clearly generalizes, for imaginary time labels, to

(�1)n


T� c (�n) c

y (� 0n) � � � c (�2) cy (� 02) c (�1) cy (� 01)
�

(9.29)

= (�1)n 1
Z

Z
D�y

Z
D�e��

y(�G�1)�� (�n) �
y (� 0n) � � � � (�2) �y (� 02) � (�1) �y (� 01)

= det

2664
G (�1; � 01) G (�1; � 02) � � � G (�1; � 0n)
G (�2; � 01) G (�2; � 02) � � � G (�2; � 0n)
� � � � � � � � � � � �
G (�n; � 01) G (�n; � 02) � � � G (�n; � 0n)

3775 : (9.30)

This is Wick�s theorem. We have the product of all contractions with appropriate
sign for the permutations.
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theory

73





10. SOURCE FIELDS FOR MANY-
BODY GREEN�S FUNCTIONS

After introducing the concept of source �elds in the familiar context of classical
statistical physics, I will generalize this to the case of functional integrals for fermi-
ons. The derivation of the Luttinger-Ward functional will not be too complicated
after that.

10.1 A simple example in classical statistical me-
chanics

In elementary statistical mechanics, we can obtain the magnetization by di¤eren-
tiating the free energy with respect to the magnetic �eld and we can also obtain
the magnetic susceptibility, related to the magnetization �uctuations, by di¤eren-
tiating once more.
Consider directly the more general problem of computing hM (x1)M (x2)i �

hM (x1)i hM (x2)i in classical statistical mechanics. That can still be achieved if
we impose a position dependent-external �eld:

Z [h] = Tr
h
e��(K�

R
d3xh(x)M(x))

i
: (10.1)

It is as if at each position x; there were an independent variable h (x) : The position
is now just a label. The notation Z [h] means that Z is a functional of h (x) :It
takes a function and maps it into a scalar. To obtain the magnetization at a single
point, we introduce the notion of functional derivative, which is just a simple
generalization to the continuum of the idea of partial derivative. To be more
speci�c,

�

�h (x1)

Z
d3xh (x)M (x) =

Z
d3x

�h (x)

�h (x1)
M (x) (10.2)

=

Z
d3x� (x1 � x)M (x) =M (x1) : (10.3)

In other words, the partial derivative @y1=@y2 = �1;2 for two independent variables
y1 and y2 is replaced by

�h (x)

�h (x1)
= � (x1 � x) : (10.4)

Very simple.
Armed with this notion of functional derivative, one �nds that

� lnZ [h]

��h (x1)
= hM (x1)ih (10.5)

and the quantity we want is obtained from one more functional derivative

�2 lnZ [h]

�2�h (x1) �h (x2)
= hM (x1)M (x2)ih � hM (x1)ih hM (x2)ih : (10.6)
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The [h] near Z reminds us that Z is a functional of the function h (x) ; i.e. it maps
this function to a scalar, namely Z:We can then evaluate everything at h (x) = 0 is
that corresponds to the physical situation. The following generalization to Green
functions is essentially a faithful copy of the one appearing in the main text.

10.2 c-number source �elds in functional integrals
to generate fermion bilinears

We have de�ned Grassmann source �elds. Since we are generally interested in
response functions that are quadratic in fermion operators, it is also useful to de�ne
source �elds that are ordinary complex numbers that couple to two Grassmann
numbers. More speci�cally, introduce in the partition function some source �elds
� (1; 2):

Z [�] =

Z
D y

Z
D exp

�
�S �  y

�
1
�
�
�
1; 2
�
 
�
2
��

(10.7)

where we used the short-hand

(1) = (x1; �1;�1) (10.8)

with the overbar indicating integrals over space-time coordinates and spin sums.
More speci�cally,

 y
�
1
�
�
�
1; 2
�
 
�
2
�
=X

�1;�2

Z
d3x1

Z �

0

d�1

Z
d3x2

Z �

0

d�2 
y
�1 (x1; �1)��1;�2 (x1; �1;x2; �2) �2 (x2; �2) :

We can think of  y
�
1
�
�
�
1; 2
�
 
�
2
�
as vector-matrix-vector multiplication. Some

of the matrix or vector indices are continuous, but that should not confuse you I
think.
The functional derivative with respect to � is de�ned by

��
�
1; 2
�

�� (1; 2)
= �

�
1� 1

�
�
�
2� 2

�
(10.9)

where the delta function is a mixture of Dirac and Kronecker delta functions

�
�
1� 1

�
= �3 (x1 � x1) � (�1 � �1) ��1;�1 : (10.10)

We can write the Matsubara Green�s function as a functional derivative of the
generating function lnZ [�] ;

� lnZ [�]

�� (1; 2)
= � 1

Z [�]

Z
D y

Z
D 

�
 y (1) (2)

�
exp

�
�S �  y

�
1
�
�
�
1; 2
�
 
�
2
��

�
D
T� (2) 

y (1)
E
�
= �G (2; 1)� : (10.11)

where for short-hand, we de�ned averages hOi� of operators O with a � subscript
by

hOi� =
1

Z [�]

Z
D y

Z
D O exp

�
�S �  y

�
1
�
�
�
1; 2
�
 
�
2
��

(10.12)
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which is nothing but a time-ordered product. To obtain this result, we used the fact
that the functional derivative with respect to � does not in�uence at all the time
order, so one can di¤erentiate the exponential inside the Grassmann functional
integral that serves as a time-ordered product. Note the reversal in the order of
indices in G and in �. We have also used the fact that in a time ordered product
we can displace operators as we wish, as long as we keep track of fermionic minus
signs.

Remark 36 You should keep your mathematician friend as far as possible from
you when looking at this notation, because in this notation, the equality 1 = 2 is
allowed. What it means is that two di¤erent sets of coordinates are equal, so that
it is rather innocuous. It is nevertheless a bit disturbing if you are not aware of
the context.

Higher order correlation functions can be obtained by taking further functional
derivatives. For a compact notation, de�ne

S[�] = S +  y
�
1
�
�
�
1; 2
�
 
�
2
�
: (10.13)

Then,

�G (1; 2)�
�� (3; 4)

= � �

�� (3; 4)

1

Z [�]

Z
D y

Z
D exp (�S[�])  (1) y (2)

=
1

Z [�]

Z
D y

Z
D exp (�S[�])  (1) y (2) y (3) (4)

� 1

Z [�]
2

Z
D y

Z
D exp (�S[�])  (1) y (2) (10.14)

�
Z
D y

Z
D exp (�S[�])  y (3) (4) (10.15)

=
D
 (1) y (2) y (3) (4)

E
�
+ G (1; 2)� G (4; 3)� : (10.16)

The �rst term on the right-hand side of the equation for the above functional
derivative is called a four-point correlation function. The last term comes from
di¤erentiating Z [�] in the denominator. To �gure out the minus signs in that
last term note that there is one from �1=Z [�]2, one from the derivative of the
argument of the exponential and one from ordering the �eld operators in the order
corresponding to the de�nition of G�: The latter is absorbed in the de�nition of
G�:

Remark 37 The results of this section are independent of the explicit form of the
action.

Remark 38 Translational invariance: It is very important to understand that
even when the system is translationally invariant, you should not assume that it
is when using this formalism in the presence of the source term � (1; 2). This is
because � (1; 2) has to break translational invariance to generate the correlation
functions that are needed. Translational invariance is recovered at the end, when
you have all the equations that you need. Only then can you set � = 0 and recover
all the symmetries of the Hamiltonian.
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10.3 Dyson-Schwinger equation of motion

We need the equation of motion for the Green�s function. Let us start with a
general interaction

V̂ =
1

2

X
�1;�2

Z
dx1

Z
dx2v (x1�x2) y�1 (x1) 

y
�2 (x2) �2 (x2) �1 (x1)

V̂n = �
X
�1

Z
dx1

Z
dx2v (x1�x2) y�1 (x2) �1 (x2)n: (10.17)

The last piece, Vn represents the interaction between a �neutralizing background�
of the same uniform density n as the electrons. You can think of the potential as
the Coulomb potential v (x1�x2) = e2

4�"0jx1�x2j or as the Hubbard interaction. A
more compact notation can be obtained by de�ning

V (1; 2) = V�1;�2 (x1; �1;x2; �2) �
e2

4�"0 jx1�x2j
� (�1 � �2) (10.18)

and by including the e¤ect of the one-body interaction into G�10 (1; 2) :
The partition function with both Grassmann and complex-number source �elds

can then be written as

Z[�; Jy; J ] =

Z
D y

Z
D exp[�S[�]� y

�
1
�
J
�
1
�
�Jy

�
1
�
 
�
1
�
] (10.19)

where the action S[�] is

S[�] =  y
�
1
� �
�G�10

�
1; 2
�
+ �

�
1; 2
��
 
�
2
�
+
1

2
V
�
1; 2
�
 y
�
1
�
 y
�
2
�
 
�
2
�
 
�
1
�
:

(10.20)
Given that the Grassmann integral of a derivative vanishes, we have thatZ

D y
Z
D @

@ y (1)
exp[�S[�; Jy; J ]] = 0; (10.21)

with
S[�; Jy; J ] = S[�]+ y

�
1
�
J
�
1
�
+Jy

�
1
�
 
�
1
�
: (10.22)

We thus have

�
Z
D y

Z
D 

�
@S[�; Jy; J ]

@ y (1)

�
exp[�S[�; Jy; J ]] = 0 (10.23)

and, acting with a Grassmann derivative with respect to a Grassmann source
�eld,

� @

@J (2)

Z
D y

Z
D 

�
@S[�]

@ y (1)
+ J (1)

�
exp[�S[�; Jy; J ]] = 0: (10.24)

Dividing by Z[�; Jy; J ], using @J (1) =@J (2) = � (1� 2), dropping the terms odd
in fermion number and evaluating at zero Grassman source �elds, we have (note
@

@J(2)
@S[�]

@ y(1)
= � @S[�]

@ y(1)
@

@J(2) )

1

Z[�]

Z
D y

Z
D 

�
@S[�]

@ y (1)
 y (2)

�
exp[�S[�]] = � (1� 2) : (10.25)
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�G�10
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1; 2
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+ �

�
1; 2
�� D

 
�
2
�
 y (2)

E
�
+V

�
1; 2
� D
 y
�
2
�
 
�
2
�
 (1) y (2)

E
�
= � (1� 2)

(10.26)�
G�10

�
1; 2
�
� �

�
1; 2
��
G
�
2; 2
�
�
= � (1� 2)�V

�
1; 2
� D
 y
�
2
�
 
�
2
�
 (1) y (2)

E
�

(10.27)
Given the de�nition of the self-energy,h

G�10
�
1; 2
�
� �

�
1; 2
�
� �

�
1; 2
�
�

i
G
�
2; 2
�
�
= � (1� 2) (10.28)

we thus have

�
�
1; 2
�
�
G
�
2; 2
�
�
= �V

�
1� 2

� D
 y
�
2+
�
 
�
2
�
 (1) y (2)

E
�
; (10.29)

which is known as the Dyson-Schwinger equation for the self-energy. The notation

2+ is to remind ourselves that in the time-ordered product  y
�
2+
�
is to the

left of  
�
2
�
; a notation that is super�uous in the Grassmann functional integral

formulation.
We can combine the two previous equations in the formh

G�10
�
1; 2
�
� �

�
1; 2
�
� �

�
1; 2
�
�

i
G
�
2; 2
�
�
= � (1� 2) (10.30)

leading to the useful equation

G�1
�
1; 2
�
�
= G�10

�
1; 2
�
� �

�
1; 2
�
� �

�
1; 2
�
� (10.31)

10.4 Four-point function from functional derivatives

Since we need a four-point function to compute the self-energy and we know G�
if we know the self-energy, let us �nd an equation for the four-point function in
terms of functional derivatives as we saw at length in Eq.(10.16)

�G(1;2)�
��(3;4) =

D
T� (1) 

y (2) y (3) (4)
E
�
+ G (1; 2)� G (4; 3)�. (10.32)

The equation for the functional derivative is then easy to �nd using GG�1 = 1 and
our matrix notation,

�
�
GG�1

�
��

= 0 (10.33)

�G
��
G�1 + G �G

�1

��
= 0 (10.34)

�G
��

= �G �G
�1

��
G: (10.35)

With Dyson�s equation Eq. (10.30) for G�1 we �nd the right-hand side of that
equation

�G
��

= G ��
��
G + G ��

��
G: (10.36)

Just to make sure what we mean, let us restore indices. This then takes the form
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1 2

3 4

=

1 2

3 4

1 2

5 6

7 8

3 4

+

Figure 10-1 Diagrammatic representation of the integral equation for the four point
function represented on the left of the equation. The two lines on the right of the
equal sign and on top of the last block are Green�s function. The �lled box is the
functional derivative of the self-energy. It is called the particle-hole irreducible vertex.
It plays, for the four-point function the role of the self-energy for the Green�s function.

�G (1; 2)�
�� (3; 4)

= G
�
1; 1
�
�

��
�
1; 2
�

�� (3; 4)
G
�
2; 2
�
�
+ G

�
1; 5
�
�

��
�
5; 6
�
�

�� (3; 4)
G
�
6; 2
�
�

= G (1; 3)� G (4; 2)� + G
�
1; 5
�
�

��
�
5; 6
�
�

�� (3; 4)
G
�
6; 2
�
�
: (10.37)

If you take the convention that G (1; 2) is represented by an arrow going from 1

to 2 from left to right, then we can represent
�G(1;2)�
��(3;4) as G (1; 2) being pinched by

� (3; 4), i.e. having an arrow starting at 1 and ending at 2 with 3; 4 at the bottom.
This last equation shows that � has no explicit dependence on �: It depends on

� only through its dependence on G:We will see this is a self-consistent assumption.
Taking that into account, and using the chain rule, this last equation can also be
written in the form

�G (1; 2)�
�� (3; 4)

= G (1; 3)� G (4; 2)�

+G
�
1; 5
�
�

 
��
�
5; 6
�
�

�G
�
7; 8
�
�

�G
�
7; 8
�
�

�� (3; 4)

!
G
�
6; 2
�
�
: (10.38)

This general equation can also be written in short-hand notation

�G
��

= G^G+ G
��
�G
�G
��

G ; (10.39)

where the caret ^ reminds us that the indices adjacent to it are the same as those
of � and where the two terms on top of one another are matrix multiplied top
down as well. In the top down multiplication, it is pairs of indices of G that
are considered as a single matrix index. Fig. 10-1 illustrates the equation with
the indices. The diagrams go from top to bottom to remind ourselves of where
the indices are in the algebraic equation, but we may rotate the diagrams in any
direction we want.

De�nition 3 In the jargon, ��
�G is the vertex function which is irreducible in a

particle-hole channel. (There are two particle-hole channels). This means that
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if we iterate the equation for �G
�� , we generate all the diagrams that have Green�s

function lines going in opposite direction. Those diagrams for �G
�� can thus be cut

in two by cutting these two lines. They are reducible. ��
�G contains the diagrams

that cannot be cut in two in this way. It sort of plays the role of a self-energy for
response functions.

Remark 39 Connection between labels (that we also call indices) in the Green�s
function and the direction of the arrow in the diagram: We take the convention
that for G (1; 2)� the arrow begins at the annihilation operator 1 and ends at the
creation operator 2: It might have been natural to begin at the creation operator
instead. In fact it does not matter, as long as one is consistent. Both conventions
can be found in the literature.

Remark 40
�G(1;1+)

�

��(2+;2) in Eq. (10.32) is related to minus the density-density cor-
relation function:

�
�D
 y
�
1+
�
 (1) y

�
2+
�
 (2)

E
�
�
D
 y
�
1+
�
 (1)

E
�

D
 y
�
2+
�
 (2)

E
�

�
:

(10.40)
Using the exact result for this quantity, namely Eq. (10.38), we see that even
when there are no interactions, this quantity is G (1; 2)� G (2; 1)� : We thus see
the necessity to know Green�s functions to compute observables, even in the non-
interacting case. Physically, this term is a so-called exchange term. It makes sure
that two electrons with the same spin are not on top of exach other. This comes
from the Pauli exclusion principle.

10.5 Self-energy from functional derivatives

To compute the self-energy, according to Eq.(10.29), what we need is

� (1; 3)� = �V
�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 (1) y

�
4
�iE

�
G�1�

�
4; 3
�
. (10.41)

We write the four-point function with the help of the functional derivative Eq.(10.32)
by replacing in the latter equation 3! 2+; 4! 2; 1! 1; 2! 4 so that

� (1; 3)� = �V
�
1� 2

�24 �G �1; 4��
��
�
2+; 2

� � G �2; 2+�
�
G
�
1; 4
�
�

35G�1 �4; 3�
�
(10.42)

Remark 41 Mnemotechnic: The �rst label of the V
�
1� 2

�
is the same as the

�rst label of G
�
1; 4
�
�
on the numerator and the same as the �rst label on the left-

hand side of the equation. The second label is summed over and is the same as the

label on the denominator of
�G(1;4)

�

��(2+;2)
. The two Green�s function in G

�
2; 2+

�
�
G
�
1; 4
�
�

can be arranged on top of one another so that this rule is preserved.

The �nal expression is easy to obtain if we change the labels of the exact four-
point function Eq.(10.38) so that they correspond to those above. Namely, we
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Figure 10-2 Diagrams for the self-energy. The dashed line represent the interaction.
The �rst two terms are, respectively, the Hatree and the Fock contributions. The
textured square appearing in the previous �gure for the four-point function has been
squeezed to a triangle to illustrate the fact that two of the indices (coordinates) are
identical.

write

�G
�
1; 4
�
�

��
�
2+; 2

� = G
�
1; 2+

�
�
G
�
2; 4
�
�

+G
�
1; 7
�
�

0@�� �7; 8��
�G
�
5; 6
�
�

�G
�
5; 6
�
�

��
�
2+; 2

�
1AG �8; 4�

�
: (10.43)

Substituting in the expression for the self-energy Eq.(10.42) using G
�
1; 4
�
�
G�1

�
4; 3
�
�
=

� (1� 3) (and changing the dummy label 7! 4) this yields,

� (1; 3)� = �V (1� 3)G
�
1; 3+

�
�
�V

�
1� 2

�
G
�
1; 4
�
�

��
�
4; 3
�
�

�G
�
5; 6
�
�

�G
�
5; 6
�
�

��
�
2+; 2

�
+V

�
1� 2

�
G
�
2; 2+

�
�
� (1� 3) : (10.44)

The second term is the only one that will give a frequency dependence, and hence
an imaginary part, to the self-energy. The other two terms in the above equation
are the Hartree-Fock contribution that we will discuss at length later on. Note
that V

�
1� 2

�
is instantaneous, i.e. there is a delta function � (�1 � �2), and

whether we have V (1� 3) or V (1� 3+) is irrelevant. In the Green�s functions
however, it is important to keep track of the +. Indeed, that re�ects the fact that
in the Hamiltonian, the creation operators are always to the left of the annihilation
operators. That is the way to preserve that property in a time-ordered product.
The equation for the self-energy is represented schematically in Fig. 10-2. Note

that the diagrams are one-particle irreducible, i.e. they cannot be cut in two
seperate pieces by cutting a single propagator.

Remark 42 Historically, the expressions �self-energy�is inspired by the fact that
it is the electromagnetic �eld of the electron itself that leads to modi�cations of the
properties of the electron even when it is moving in a vacuum. In the latter case,
the electromagnetic �eld of the electron contains virtual photons that can in turn
create virtual electron-positron pairs, the analog of electron-hole excitations.
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10.6 The self-energy, one-particle irreducibility and
Green�s function

It is clear from the diagrammatic illustration of the self-energy in Fig. 10-2 that
all internal indices are integrated over, as the Feynman rules would specify. In
addition, the diagrams are connected and none of them can be cut into two distinct
pieces by cutting one Green�s function line. We say that the self-energy contains all
the diagrams that are one-particle irreducible. The Feynman rules tell us that the
self-energy contains all the topologically distinct connected diagrams that end and
begin with an interaction and a Green�s function at the same point. There are rules
for their sign as well: One minus sign for each order in perturbation theory and
one minus sign for every closed loop. The Feynman rules are generally formulated
in terms of bare Green�s functions. Here, the dressed Green�s functions appear
but, as you will check in an exercise, it is also possible to recover the perturbation
theory in terms of bare Green�s functions.
Finally notice that if we iterate the Dyson equation,

G = G0 + G0�G (10.45)

= G0 + G0�G0+G0�G0�G0 + G0�G0�G0�G0 + : : : (10.46)

it becomes clear that the Green�s function is given by the sum of all diagrams that
end at the destruction operator and begin at the annihilation operator and contains
all possible topologically distinct diagrams. The Green�s function diagrams are,
however, one-particle reducible.
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11. LUTTINGER-WARD FUNC-
TIONAL

There is a very elegant formulation of the Many-Body problem that focuses on a
functional of the interacting Green function instead of on a functional of source
�elds. The two approaches are related by a Legendre transform. This is where one
encounters the so-called Luttinger-Ward functional [46][73], that plays a prominent
role in de�ning approximations that satisfy conservation laws, thermodynamic
consistency and in deriving Dynamical Mean-Field Theory. But �rst, a short
digression to argue that the self-energy can be written as a functional derivative
with respect to the Green�s function.

11.1 The self-energy can be expressed as a func-
tional derivative with respect to the Green�s
function

In this section, I follow Baym [9] to show that the functional derivative of the self-
energy obeys a curl condition that proves that the self-energy itself is a functional
derivative with respect to G of an appropriately de�ned Luttinger-Ward functional
that we �nd in the following sections.
We have seen in Eq. (10.36) that the four-point function can be written as

�G
��

= G ��
��
G + G ��

��
G: (11.1)

This suggests that the functional dependence of � on � comes only from the
dependence of G on �: Hence, the above equation may be rewritten as follows

�G
�� = G

��
��G + G

�
��
�G

�G
��

�
G: (11.2)

Multiplying by G�1 on both sides, we are left with the following

G�1 �G
��
G�1 = ��

��
+

�
��

�G
�G
��

�
: (11.3)

To avoid confusion, let us rewrite all the indices. Then, the above can be rewritten
as follows"

G�1
�
10; 1

�
G�1

�
2; 20

�
� �� (10; 20)

�G
�
1; 2
� # �G �1; 2�

�� (3; 4)
= � (10 � 3) � (20 � 4) : (11.4)

This equation means that the quantity in brackets is the inverse of �G (1; 2) =�� (3; 4) :
But since G (1; 2) = �� lnZ[�]=�� (2; 1) ; the matrix �G (1; 2) =�� (3; 4) is symmet-
ric under the interchange 2; 1! 3; 4; in other words,

�G (1; 2)
�� (3; 4)

=
�G (4; 3)
�� (2; 1)

(11.5)
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Note that the symmetry here means interchanging indices of the numerator with
those of the denominator, and then permuting the indices of the numerator and
of the denominator separately. So for example, G�1

�
10; 1

�
G�1

�
2; 20

�
has this

symmetry taking 10 and 20 as indices in the numerator and 1; 2 as indices of the
denominator.
The inverse of as symmetric matrix is also symmetric. This will be true if and

only if
�� (10; 20)

�G (1; 2) =
�� (2; 1)

�G (20; 10) : (11.6)

This is a curl condition that will be satis�ed if and only if the self-energy is itself
a functional derivative with respect to G, in other words if

1

T

�� [G]
�G (20; 10) = � (1

0; 20) : (11.7)

The quantity � [G] will be the Luttinger-Ward functional. We will see that it also
has a diagrammatic expansion that is related to the potential energy.

11.2 The Luttinger-Ward functional and the Legen-
dre transform of �T lnZ [�]

The �rst two equations of the previous section can be used to de�ne a Legendre
transform of the generating function, where G is the natural variable:


[G] = F [�]� Tr [�G] : (11.8)

The physical free energy is F [� = 0] :

Remark 43 Legendre transforms are usually de�ned between convex functions.
We cannot prove continuity in our case. The best we can hope is that the Legendre
transform is de�ned locally and check that the results make sense. Recent results
show that indeed there may be problems with the assumption that the Legendre
transform is always well de�ned [37]. In the latter reference, it is shown that
perturbation in the dressed G at large interaction can lead to an unphysical branch
of the self-energy when the interaction is large. This does not happen with the
expansion is in terms of G0.

The functional 
[G] is the so-called Kadano¤-Baym functional. As expected
for Legendre transforms

1

T

�
 [G]
�G (1; 2) = �� (2; 1) : (11.9)

Proof:

1

T

�
 [G]
�G (1; 2) =

1

T

�F [�]

�� (�3; �4)

�� (�3; �4)

�G (1; 2) �
�

�G (1; 2) [� (
�3; �4)G (�4; �3)](11.10)

= G (�4; �3) �� (
�3; �4)

�G (1; 2) �
�� (�3; �4)

�G (1; 2)G (
�4; �3)� � (2; 1) : (11.11)
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Using the Dyson-Schwinger equations of motion, we have that the relation
between � and G is given by

G�1 (1; 2)� = G
�1
0 (1; 2)� � (1; 2)� � (1; 2)� (11.12)

which means that

1

T

�
 [G]
�G (1; 2) = �� (2; 1) = G

�1 (2; 1)� � G
�1
0 (2; 1) + � (2; 1)� (11.13)

and Dyson�s equation in its usual form is satis�ed only for � = 0 where the
extremum principle

1

T

�
 [G]
�G (1; 2) = 0 (11.14)

is satis�ed and where the functional 
[G] is simply equal to the free energy as
follows from the de�nition Eq.(11.8) with � = 0:
We can guess an explicit expression for 
 [G] in the general case (� 6= 0) by

starting from its derivative Eq.(11.13). We obtain the so-called Baym-Kadano¤
functional,


 [G] = � [G]� Tr
��
G�10 � G�1

�
G
�
+ Tr

�
ln

�
�G
�G1

��
(11.15)

which gives the correct result in the non-interacting case and in the general case
( G1 is included for convergence reasons. See the full lecture notes) and reduces
to Eq.(11.13) when functionally di¤erentiated, as long as

1

T

�� [G]
�G (1; 2) = � (2; 1) : (11.16)

That this functional exists was discussed in section (11.1) above. We also need to

prove that 1
T

�
�G(1;2)Tr

h
ln
�

�G
�G1

�i
= G�1 (2; 1) : The proof follows the same steps

as those in the previous section. Also, note that

1

T
Tr
�
ln

�
�G
�G1

��
= � 1

T
Tr
�
ln

�
�G�1

�G�11

��
: (11.17)

The latter form is more common.
The functional � [G] is the so-called Luttinger-Ward functional. We can ob-

tain an explicit form for it by using the basic property of Legendre transforms
exempli�ed by our example with pressure in ordinary statistical mechanics. More
speci�cally, multiply the potential energy term in the Hamiltonian by �; then
the physical case corresponds to � = 1 and the general properties of Legendre
transforms tell us that

@
� [G]
@�

����
G
=
@F� [�]

@�

����
�

: (11.18)

But the explicit form of the Baym-Kadano¤ functional Eq.(11.15) tells us that

@
� [G]
@�

����
G
=
@�� [G]
@�

����
G

(11.19)

while the derivative of the free energy is

@F� [�]

@�

����
�

=
1

�

D
�V̂
E
�
: (11.20)
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The average hi� means that the potential energy is averaged with the Hamiltonian
where the coupling constant is multiplied by � so that V̂ ! �V̂ : Hence, knowing
that ��=0 = 0; I can obtain the Luttinger-Ward functional by a coupling constant
integration

��=1 [G] =
Z 1

0

d�
1

�

D
�V̂
E
�
: (11.21)

Note that since the equality of the two potentials with respect to �; Eq.(11.18), is
valid for any G and the corresponding �; the coupling constant integration for the
Luttinger-Ward functional may be evaluated for � = 0 and for G that satis�es the
usual Dyson equation or for any G we wish. The average of the potential energy
in the last equation is related to the density-density correlation function. The
resulting integral over coupling constant gives for �� [G] the same result that we
would have obtained from the linked cluster theorem. There is a 1=n factor for a
term of order n:

Remark 44 � [G] is the sum of two-particle irreducible skeleton diagrams hence
1
T

��[G]
�G(1;2) = �(2; 1) is the sum of all one-particle irreducible skeleton diagrams.

This is proven in Section (11.3). A skeleton diagram is a diagram that has no
self-energy insertions.

11.3 Another derivation of the Baym-Kadano¤func-
tional

Instead of �guessing�the correct form of the Baym-Kadano¤functional Eq. (11.15),
as we did above, we can start from the di¤erential equation (11.18) for the coupling-
constant dependence of the Baym-Kadano¤ functional 
� [G] : We �nd that


�=1 [G] = 
�=0 [G] +
Z 1

0

d�
1

�

D
�V̂
E
�

(11.22)

= 
�=0 [G] + ��=1 [G] (11.23)

But we know 
�=0 [G] since G is given and � = 0 means that we are considering
a case when there is no interaction but where G takes the value it should have for
the full problem. So, using the Legendre transform formula Eq.(11.8), we have


�=0 [G] = F�=0 [�0]� Tr [�0G] (11.24)

where the �constraining �eld��0 is the value of the source �eld that is nec-
essary for G to take the correct value for the Green�s function. When � = 0 we
know that

F�=0 [�0] = Tr
�
ln

�
�G
�G1

��
(11.25)

because this is the result for the non-interacting case when we know G, the actual
value of G as enforced by our choice of �0. Substituting the equation for F�=0 [�0]
in our expression for 
�=0 [G] and then in our expression for 
� [G] in Eq.(11.23),
we are left with


�=1 [G] = Tr
�
ln

�
�G
�G1

��
� Tr [�0G] + ��=1 [G] (11.26)
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All that we need to know is �0 (1; 2) :But by de�nition of �0 (1; 2) as the source
�eld that allows the non-interacting problem to have the same Green�s function
as the interacting one, we have that

G�1 (1; 2)� = G
�1
0 (1; 2)� �0 (1; 2) : (11.27)

This gives us the expression for �0 (1; 2) (basically the self-energy when � = 0) so
that, �nally, 
�=1 [G] in the next to last equation takes the form


�=1 [G] = Tr
�
ln

�
�G
�G1

��
� Tr

�
(G�10 � G�1)G

�
+��=1 [G] ; (11.28)

which is what we were looking for.
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12. FIRST STEPS WITH FUNC-
TIONALDERIVATIVES: HARTREE-
FOCK AND RPA

These are the two most famous approximations: Hartree-Fock for the self-energy
and RPA for the density-density correlation function. We will see later on why
these come out naturally from simple considerations, including the variational
principle.

12.1 Hartree-fock and RPA in space-time

The expression for the self-energy and an iterative procedure can be used to com-
pute ��

�G that appears both in the exact expression for the self-energy Eq.(10.44)
and in the exact expression for the four-point function Eq.(10.38), four-point func-
tion that also appears in the self-energy. A look at the last two �gures that we
drew is helpful.
Refering to the exact expression for the four-point function Eq.(10.38), what

we need to obtain the so-called Random Phase Approximation (RPA) is
��(5;6)�
�G(7;8)�

evaluated from the the Hartree-Fock approximation, namely the �rst two terms
in Fig. (10-2).

�� (5; 6)�
�G (7; 8)�

= V
�
5� 9

�
�
�
9� 7

�
�
�
9� 8

�
� (5� 6)�V (5� 6) � (7� 5) � (8� 6)

= V (5� 7) � (7� 8) � (5� 6)�V (5� 6) � (7� 5) � (8� 6) :

It is easier to imagine the result by looking back at the illustration of the Hartree-
Fock term in Fig. 10-1. The result of the functional derivative is illustrated in
Fig. 12-1. When two coordinates are written on one end of the interaction line,
it is because there is a delta function. For example, there is a � (5� 6) for the
vertical line.
Substituting back in the equation for the exact found-point function �G�� Eq.(10.38);

we �nd

�G (1; 2)�
�� (3; 4)

= G (1; 3)� G (4; 2)�

+G
�
1; 5
�
�

 
V
�
5� 7

� �G �7; 7��
�� (3; 4)

!
G
�
5; 2
�
�

(12.1)

�G
�
1; 5
�
�

 
V
�
5� 6

� �G �5; 6��
�� (3; 4)

!
G
�
6; 2
�
�
: (12.2)
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­ 5 6

7 8

Figure 12-1 Expression for the irreducible vertex in the Hartree-Fock approximation.
The labels on either side of the bare interaction represented by a dashed line are at
the same point, in other words there is a delta function.

1 2

3 4

=

1 2

3 4

1 2

3 4

­
5 6

1 2

3 4

5

7+

Figure 12-2 Integral equation for �G=�� in the Hartree-Fock approximation.

This expression is easy to deduce from the general diagrammatic representation of
the general integral equation Fig. 10-1 by replacing the irreducible vertex by that
in Fig. 12-1 that follows from the Hartree-Fock approximation. This is illustrated
in Fig. 12-2.
To compute a better approximation for the self-energy we will need �� (2+; 2)

instead of �� (3; 4) ; as can be seen from our exact result Eq.(10.44). Although
one might guess it from symmetry, we will also see that all that we will need is,
�G (1; 1+), although it is not obvious at this point. It is quite natural however that
the density-density correlation function plays an important role since it is related
to the dielectric constant. From the previous equation, that special case can be
written

�G (1; 1+)�
�� (2+; 2)

= G (1; 2)� G (2; 1)� (12.3)

+G
�
1; 5
�
�

 
V
�
5� 7

� �G �7; 7��
�� (2+; 2)

!
G
�
5; 1
�
�

(12.4)

�G
�
1; 5
�
�

 
V
�
5� 6

� �G �5; 6��
�� (2+; 2)

!
G
�
6; 1
�
�
: (12.5)

This equation is refered to as the generalized RPA. When the last term is neg-
elected, this is the RPA. We will discuss this in more details later.

Remark 45 Clearly, external points, such as 1; 2; 3; 4 are �xed, but the coordi-
nates that appear inside diagrams must be integrated over. This is a simple rule
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for interpreting diagrams. There are analogous rules in momentum-Matsubara
space when there is translational invariance, as we proceed to show.

12.2 Hartree-Fock and RPA in Matsubara and mo-
mentum space with � = 0

We are ready to set � = 0. As we have discussed, it is important not to do
that too soon. Once this is done, we can use translational invariance so that
� (1; 2) = � (1� 2) and G (1; 2) = G (1� 2) : In addition, spin rotational invariance
implies that these objects are diagonal in spin space. We then Fourier transform to
take advantage of the translational invariance. In that case, restoring spin indices
we can de�ne

G� (k) =
Z
d (x1 � x2)

Z �

0

d (�1 � �2) e�ik�(x1�x2)eikn(�1��2)G� (1� 2) (12.6)

In this expression, kn is a fermionic Matsubara frequency and the Green�s function
is diagonal in spin indices �1 and �2. For clarity then, we have explicitly written
a single spin label. We thus make the following rule:

� When in position space there is an arrow representing G (1� 2) in the trans-
lationally invariant case, in momentum space, you can think of this arrow
as carrying a momentum k:

For the potential we de�ne

V�;�0 (q) =

Z
d (x1 � x2)

Z �

0

d (�1 � �2) e�iq�(x1�x2)eiqn(�1��2)V�;�0 (1� 2)
(12.7)

where qn is, this time, a bosonic Matsubara frequency, in other words

qn = 2n�T (12.8)

with n an integer. Again we have explicitly written the spin indices even if
V�;�0 (1� 2) is independent of spin.

� An interaction in a diagram is represented by a dotted line. Note that
because V (1� 2) = V (2� 1) ; in momentum space we are free to choose
the direction of q on the dotted line at will. Once a convention is chosen,
we stick with it.

Remark 46 General spin-dependent interaction: In more general theories, there
are four spin labels attached to interaction vertices. These labels correspond to
those of the four fermion �elds. Here the situation is simpler because the interac-
tion not only conserves spin at each vertex but is also spin independent.

Whether we compute G (1� 2) or a susceptibility � (1� 2) ; when we go to
momentum space, it is as if we were injecting a momentum (frequency) in the
diagram. It is convenient to work completely in momentum space by starting from
the above position space expressions, and their diagrammatic equivalent, and now
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write every G (1� 2) and V (1� 2) entering the internal lines of a diagram also in
terms of their Fourier-Matsubara transforms, namely

G� (1� 2) =
Z

d3k

(2�)
3T

1X
n=�1

eik�(x1�x2)e�ikn(�1��2)G� (k) (12.9)

V�;�0 (1� 2) =
Z

d3q

(2�)
3T

1X
n=�1

eiq�(x1�x2)e�iqn(�1��2)V�;�0 (q) (12.10)

or in the discrete version of momentum

G� (1� 2) =
1

V

X
k

T
1X

n=�1
eik�(x1�x2)e�ikn(�1��2)G� (k) (12.11)

V�;�0 (1� 2) =
1

V

X
q

T
1X

n=�1
eiq�(x1�x2)e�iqn(�1��2)V�;�0 (q) (12.12)

I hope the change of notation does not confuse you. I have taken out the spin
index explicitly, so that now, 1 = (x1; �1):
Then, consider an internal vertex, as illustrated in Fig.(12-3), where one has

q

k

k

1

2

Figure 12-3 A typical interaction vertex and momentum conservation at the vertex.

to do the integral over the space-time position of the vertex, say 2 (in addition to
the spin sum). Leaving aside the spin coordinates, that behave just as in position
space, the integral to perform isZ

dx2

Z �

0

d�2e
�i(k1�k2+q)�x2ei(k1;n�k2;n+qn)�2 (12.13)

= (2�)
3
� (k1 � k2 + q)��(k2;n�k1;n);qn (12.14)

= V�k1�k2;q��(k2;n�k1;n);qn (12.15)

�k1�k2;q�(k2;n�k1;n);qn are Kronecker delta functions. The last line is for the dis-
crete version of momentum. Note that the sum of two fermionic Matsubara fre-
quencies is a bosonic Matsubara frequency since the sum of two odd numbers is
necessarily even. This means that the integral over � 01 is equal to � if k1;n�k2;n+
qn = 0 while it is equal to zero otherwise because exp (i (k1;n � k2;n + qn) � 01)is
periodic in the interval 0 to �: The conclusion of this is that momentum and Mat-
subara frequencies are conserved at each interaction vertex. In other words, we
obtain the following rule:

� The sum of all wave vectors entering an interaction vertex vanishes. And
similarly for Matsubara frequencies.

This means that a lot of the momentum integrals and Matsubara frequency
sums can be done by simply using conservation of momentum and of Matsubara
frequencies at each vertex. We are left with the following rules:
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= ­
k’

q=0
q

k+q

Figure 12-4 Diagram for the self-energy in momentum space in the Hartree-Fock
approximation. There is an integral over all momenta and spins not determined by
spin and momentum conservation.

� One must integrate over the momenta and sum over Matsubara frequencies
that are not determined by momentum conservation. In general, there are
as many integrals to perform as there are closed loops in a diagram.

� We must also sum over spins that appear in internal indices, conserving
spin at each interaction vertex when the interaction has this property. The
propagator G�will then be diagonal in spin index.

Suppose we have G� (1� 2) in terms of products of various G� and interactions.
We want to write the corresponding expression in momentum space. This means
that we take the Fourier-Matsubara transform of G� (1� 2) to obtain G� (k) : As
mentioned above, a momentum k must �ow in and out.

Example 4 Writing

k = (k; ikn) ; (12.16)

the Hartree-Fock approximation for the self-energy is

� (k) = � 1
V

X
q

T

1X
n=�1

V (q)G (k + q) e�ikn0
�
+V (q = 0)

1

V

X
k

T

1X
n=�1

e�ikn0
�
G (k) :

(12.17)
The sign of the wave vector q; or direction of the arrow in the diagram, must
be decided once for each diagram but this choice is arbitrary since the potential
is invariant under the interchange of coordinates, as mentioned above. This is
illustrated in Fig. 12-4Note that here the q = 0 contribution in the Hartree (so-

called tadpole diagram) is cancelled by the positive ion background since G
�
2; 2+

�
is just the electron density, which is the same as the ion density. You can convince

yourself that G
�
2; 2+

�
= 1

V

P
k T

P1
n=�1 eikn0

+G (k) :

Example 5 For the four-point function, there are four outside coordinates so we
would need three independent outside momenta. However, all that we will need, as
we shall see, are the density-density �uctuations. In other words, as we can see
from the general expression for the self-energy in Fig. 10-2, we can identify two
of the space-time points at the bottom of the graph. We have already written the
expression in coordinates in Eq.(12.3). Writing the diagrams for that expression
and using our rules for momentum conservation with a four-momentum q �owing
top down, the four-point function in Fig. 12-2 becomes as illustrated in Fig. 12-5.
You can skip the next chapter if you are satis�ed with the functional derivative
(source, or Schwinger) approach.
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= k+q k

k+q k

­ +
k+q k

k­k’
q

Figure 12-5 Diagrams for �G=��, which is minus the density-density correlation
function. We imagine a momentum q �owing from the top of the diagram and
conserve momentum at every vertex.

12.3 Density response in the non-interacting limit
in terms of G0�

The density response can be expressed in terms of Green�s function starting either
from the Feynman or from the functional derivative approach. In this section we
focus on the Schwinger way.

12.3.1 The Schwinger way (source �elds)

Start from the expression for the four-point function Eq.(10.32) for � = 0 and
point 2 = 1+ and 3 = 2+; and 4 = 2: Then we �nd

�G (1; 1+)
�� (2+; 2)

= �
D
T� 

y �1+� (1) y �2+� (2)E+ G �1; 1+�G �2; 2+� : (12.18)

If we sum over the spins associated with point 1 and the spins associated with
point 2 and recall that once we sum over spins, we have G (1; 1+) = G (2; 2+) = n
where n is the average density, then

�
X
�1;�2

�G (1; 1+)
�� (2+; 2)

=
X
�1;�2

D
T� 

y �1+� (1) y �2+� (2)E� n2 (12.19)
= hT�n (1)n (2)i � n2 (12.20)

= hT� (n (1)� n) (n (2)� n)i
= �nn(1� 2): (12.21)

The last expression is from the de�nition of the density-density correlation func-
tion.
The non-interacting contribution is given by the �rst term in Fig. 12-5 (taking

into account the minus sign above) or, if you want, from the �rst term in Eq.(12.3)
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for the functional derivative. It takes the form

�nn(1� 2) = �
X
�

G0� (1� 2)G0� (2� 1) : (12.22)

Only one spin sum is left because the spins corresponding the label 1 are identical

in
�G(1;1+)
��(2+;2) , as are the spin labels for label 2: Furthermore, spin is conserved, so the

spin cannot �ip in going from 1 to 2 in G0� (1� 2). Taking the Fourier transform
and using the convolution theorem, one obtains,

�0nn(q; iqn) = �
1

V
X
�

X
k

T
X
ikn

G0� (k+ q;ikn + iqn)G0� (k;ikn) : (12.23)

One of the sums over spins has disappeared because we should think of G0� as a
matrix that is diagonal in spin indices. This is the so-called Lindhard function. It
is also known as the bubble diagram .

Remark 47 To obtain the above result from the �rst term in Fig. 12-5, note that
it is as if we were injecting a momentum (Matsubara-frequency) q on one side of
the diagram and using our rules for momentum conservation at each vertex.

12.4 Density response in the non-interacting limit:
Lindhard function

To compute

�0nn(q; iqn) = �
1

V
X
�

X
k

T
X
ikn

G0� (k+ q;ikn + iqn)G0� (k;ikn) (12.24)

the sums over Matsubara frequency should be performed �rst and they are easy
to do. The technique is standard. First introduce the notation

�k � "k � � (12.25)

and note that

T
X
ikn

G0� (k+ q;ikn + iqn)G0� (k;ikn) = T
X
ikn

1

ikn + iqn � �k+q
1

ikn � �k
: (12.26)

Substituting in the expression for the susceptibility and decomposing in partial
fractions, we �nd.

�0nn(q; iqn) = �2
Z

d3k

(2�)
3T
X
ikn

�
1

ikn � �k
� 1

ikn + iqn � �k+q

�
1

iqn � �k+q + �k
:

(12.27)
The factor of two comes from the sum over spin �. After the decomposition in
partial fractions, it seems that now we need a convergence factor to do each sum
individually. Using the general results of the preceding chapter for Matsubara
sums, Eqs.(4.5) and (4.6), it is clear that as long as we take the same convergence
factor for both terms, the result is

�0nn(q; iqn) = �2
Z

d3k

(2�)
3

f (�k)� f
�
�k+q

�
iqn + �k � �k+q

(12.28)
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independently of the choice of convergence factor. Before the partial fractions, the
terms in the ikn series decreased like (ikn)

�2 so, in fact, no convergence factor is
needed.
The retarded function is easy to obtain by analytic continuation. It is the

so-called Lindhard function

�0Rnn(q; !) = �2
R

d3k
(2�)3

f(�k)�f(�k+q)
!+i�+�k��k+q

(12.29)

This form is very close to the Lehmann representation for this response function.
Clearly at zero temperature poles will be located at ! = �k+q � �k as long as the
states k and k+ q are not on the same side of the Fermi surface. These poles are
particle-hole excitations instead of single-particle excitations as in the case of the
Green�s function. The sign di¤erence between �k+q and �k comes from the fact
that one of them plays the role of a particle while the other plays the role of a
hole.

Remark 48 Summing over ikn �rst: Note that the iqn in the denominator of
1

ikn+iqn��k+q
did not in�uence the result for the sum over Matsubara frequencies

ikn because iqn is bosonic, which means that ikn+iqn is a fermionic frequency: an
odd number plus an even number is an odd number and the sum is from minus to
plus in�nity. The sums over Matsubara freuencies must be performed �rst, before
analytic continuation (unless the sums and integrals are uniformly convergent, and
that is rare).

Remark 49 Diagrammatic form of particle-hole excitations: If we return to the
diagrams, we should notice the following general feature. If we cut the diagram
in two by a vertical line, we see that it is crossed by lines that go in opposite
directions. Hence, we have a particle-hole excitation. In particle-particle or hole-
hole excitations, the lines go in the same direction and the two single-particle
energies �k+q and �k add up instead of subtract.

Remark 50 Absorptive vs reactive part of the response, real vs virtual excita-
tions: There is a contribution to the imaginary part, in other words absorption,
if for a given k and q energy is conserved in the intermediate state, i.e. if the
condition ! = �k+q � �k is realized. If this condition is not realized, the corre-
sponding contribution is reactive, not dissipative, and it goes to the real part of
the response only. The intermediate state then is only virtual. To understand the
type of excitations involved in the imaginary part, rewrite f (�k) � f

�
�k+q

�
=�

1� f
�
�k+q

��
f (�k) � (1� f (�k)) f

�
�k+q

�
. We see that either �k can corre-

spond to a hole and �k+q to a particle or the other way around. In other words a
single Green function line contains both the hole and the particle propagation, as
we expect from its de�nition that allows either a creation operator or a destruction
operator to act �rst.

Remark 51 When there are many Green�s functions, partial fractions are always
an option, but it can be much more e¢ cient to use the Fermi function and contour
integration as in Fig. (4-1) and to deform it around the poles using Cauchy�s
theorem.

12.5 Density-density correlations, RPA

We keep following our �rst step approach that gave us the Hartree-Fock approx-
imation and corresponding susceptibility. Returning to our expression for the
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= k+q k

k+q k

+ q

Figure 12-6 Fourier transform of
�G(1;1+)
��(2+;2) with a momentum q �owing top to

bottom that is used to compute the density-density correlation function in the RPA
approximation.

susceptibility in terms a functional derivative Eq.(12.19), namely

�
X
�1;�2

�G (1; 1+)
�� (2+; 2)

= �nn (1� 2) (12.30)

and Fourier transforming, we obtain in the case where the irreducible vertex is
obtained from functional derivatives of the Hartree-Fock self-energy the set of
diagrams in Fig. 12-5. In the middle diagram on the right-hand side of the equality,
there is a sum over wave vectors k0 because three of the original coordinates of the
functional derivative at the bottom of the diagram were di¤erent. This means there
are two independent momenta, contrary to the last diagram in the �gure. One
of the independent momenta can be taken as q by momentum conservation while
the other one, k0; must be integrated over. The contribution from that middle
diagram is not singular at small wave vector because the Coulomb potential is
integrated over. By contrast, the last diagram has a 1=q2 from the interaction
potential, which is divergent. We thus keep only that last term. The integral
equation then takes an algebraic form

�nn(q) = �0nn(q)� �0nn(q)Vq�nn(q): (12.31)

To �gure out the sign from the �gure, recall that the green triangle stands for
�G(1;1+)
��(2+;2) ; while there is a minus sign in the equation for the susceptibility. Since
the integral equation for �nn(q) has become an algebraic equation in Fourier-
Matsubara space, it is easy to solve. We �nd,

�nn(q) =
�0nn(q)

1 + Vq�0nn(q)
=

1

�0nn(q)
�1 + Vq

: (12.32)

This is the so-called Random Phase Approximation, or RPA. The last form of the
equality highlights the fact that the irreducible vertex, here Vq, plays the role of
an irreducible self-energy in the particle-hole channel. The analytical continuation
will be trivial.
Note that we have written �0nn(q) for the bubble diagram, i.e. the �rst term

on the right-hand side of the equation in Fig. 12-5 even though everything we
have up to now in the Schwinger formalism are dressed Green�s functions. The
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reason is that neglecting the middle diagram on the right-hand side of the equality
is like neglecting the contribution from the Fock, or exchange self-energy in Fig.
12-4. The only term left then is is the Hartree term that we argued should vanish
because of the neutralizing background. Hence, the Green�s functions are bare
ones and the corresponding susceptibility is the Linhard function.

Remark 52 The integral equation (12.31) for �nn shows very well that the ir-
reducible vertex Vq here plays the role of a self-energy for the particle-hole re-
sponse function. Compare that equation with G = G0 + G0�G: Alternatively, com-
pare G�1 = G0�1 � � and the equation for the RPA susceptibility Eq. (12.32)
��1nn = �0�1nn � Vq:

Remark 53 Equivalence to an in�nite set of bubble diagrams: The integral equa-
tion for the susceptibility has turned into an algebraic equation in (12.31). By
recursively replacing �nn(q) on the right-hand side of that equation by higher and
higher order approximations in powers of Vq we obtain

�(1)nn(q) = �0nn(q)� �0nn(q)Vq�0nn(q)
�(2)nn(q) = �0nn(q)� �0nn(q)Vq�0nn(q) (12.33)

+�0nn(q)Vq�
0
nn(q)Vq�

0
nn(q) + : : : (12.34)

etc. By solving the algebraic equation then, it is as if we had summed an in�nite
series which diagrammatically would look, if we turn it sideways, like Fig. ??.The
analogy with the self-energy in the case of the Green�s function is again clear.

Remark 54 A direct expansion in powers of Vq without resumming would have
been disatrous. Already the �rst term �0nn(q)Vq�

0
nn(q) diverges as 1=q

2 as q van-
ishes, and the following term as 1=q4 etc. Doing perturbation theory with the
Feynman formalism immediately leads to the questions of why are there diver-
gences and why should we do in�nite resummation to get rid of them. The reason
why is clearer in the Schwinger formalism. Self-consistency is built in naturally in
the formalism.
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13. SECOND STEP OF THE AP-
PROXIMATION: GWCURINGHARTREE-
FOCK THEORY

In this Section, we present the solution to the failure of Hartree-Fock that was
found by Gell-Man and Brueckner[?]. In brief, in the �rst step of the calculation
we obtained collective modes with bare Green�s functions. We saw that just trying
to do Hartree-Fock at the single-particle level was a disaster. Now we want to
improve our calculation of the single-particle properties. The Physics is that the
interaction appearing in Hartree-Fock theory should be screened. Or equivalently,
the self-energy that we �nd should be consistent with the density �uctuations
found earlier since �G is simply related to density �uctuations. The resulting
expresssion that we will �nd is also known as the GW approximation. We will
come back on this nomenclature.
The �rst subsection should be read if you follow the Feynman way. Otherwise,

skip to the next subsection.

13.1 Self-energy and screening, GW the Schwinger
way

We have derived an expression for the product �G: When � = 0 and 2 = 1+; this
equation reduces to

�
�
1; 2
�
�
G
�
2; 1+

�
�
= V

�
1� 2

� D
T�

h
 y
�
2+
�
 
�
2
�
 y (1+) (1)

iE
. (13.1)

It shows that we should have an approximation for the self-energy that, when
multiplied by G, gives the density-density correlation function. That is a very
general result, or sum-rule, is a sort of consistency relation between one- and two-
particle properties. This is a very important property that we will use also later
in the context of non-perturbative treatments of the Hubbard model.
To obtain an approximation for the self-energy � that is consistent with the

density-density correlation function that we just evaluated in the RPA approx-
imation, we return to the general expression for the self-energy Eq.(10.44) and
the corresponding pictorial representation Eq.(10-2). We replace the irreducible
vertex ��=�G by the that we used to compute the density-density correlation func-
tion illustrated in Fig. 12-5. Note however that, as we did before, we keep only
the terms where Vq carries a momentum q: We neglect the next to last diagram
in Fig.12-5. The other way to justify why we keep only these terms is that they
are the most divergent diagrams. Their sum to in�nity is however �nite. We also
know that by summing all diagrams to in�nity, we are calculating the two-particle
equivalent of a self-energy, shifting poles of the non-interacting density-density
correlation function, as we should.
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Figure 13-1 Coordinate (top) and momentum space (bottom) expressions for the
self-energy at the second step of the approximation. The result, when multiplied by
G; is compatible with the density-density correlation function calculated in the RPA
approximation.

The �nal result is illustrated in Fig. 13-1. We just need to replace the functional
derivative of the Green function appearing at the bottom right by the RPA series.
Recalling that the Hartree term vanishes, the �nal result is equivalent, when looked
at sideways, to the series of bubble diagrams
The algebraic expression for this second level of approximation for the self-

energy can be read o¤ the �gure. It takes the explicit form

�RPA (k;ikn) = �(2) (k;ikn) (13.2)

= �
Z

d3q

(2�)
3T
X
iqn

Vq

�
1� Vq�

0
nn (q;iqn)

1 + Vq�0nn (q;iqn)

�
G0 (k+ q; ikn + iqn)

where the �rst term comes from the Fock contribution. The minus sign in the
second term comes from the fact that the bubble with vertex is related to �G=��
that is minus the charge susceptibility. The two terms can be combined into the
single expression

�(2) (k;ikn) = �
Z

d3q

(2�)
3T
X
iqn

Vq
1 + Vq�0nn (q;iqn)

G0 (k+ q; ikn + iqn) : (13.3)

Using our result for the longitudinal dielectric constant that follows from the
density �uctuations in the RPA approximation, the last result can be written as

�(2) (k;ikn) = �
Z

d3q

(2�)
3T
X
iqn

Vq
"L (q;iqn) ="0

G0 (k+ q; ikn + iqn) (13.4)
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which has the very interesting interpretation that the e¤ective interaction entering
the Fock term should be the screened one instead of the bare one. The two are
equal only at very high frequency. The screened potential

Vq
"L (q;iqn) ="0

=
e2

"L (q;iqn) q2

is often denoted W which means that the integrand is WG0, hence the name GW
approximation.

Remark 55 We can check that the relation between �G Eq.(13.1) and density
�uctuations is satis�ed by noticing that when we integrate this equation over 1;
it is equivalent to computing a trace. That trace can be computed in any basis,
in particular in the k basis. Diagrammatically, from Fig. 13-1, it is clear that
multiplying by G0 and summing over k (i.e. taking the trace), we obtain the series
of bubble diagrams for the density �uctuations, multiplied by the potential. That
corresponds to the total potential energy. Hence, one recovers the sum-rule relating
single and two-particle properties. Algebraically, we start from Eq.(13.3) just above
and compute Z

d3k

(2�)
3T
X
ikn

�(2) (k;ikn)G0 (k; ikn) e�ikn0
�
=

�
Z

d3q

(2�)
3T
X
iqn

Vq
1 + Vq�0nn (q;iqn)

Z
d3k

(2�)
3T
X
ikn

G0 (k+ q; ikn + iqn)G0 (k; ikn) e�ikn0
�

The convergence factor e�ikn0
�
is necessary to enforce �

�
1; 2
�
G
�
2; 1+

�
and obtain

the potential energy to the right. It is not obvious from the right-hand side that
we need the convergence factor until one realizes that there is a sum over kn and
qn and only two Green�s functions G0 (k+ q; ikn + iqn)G0 (k; ikn) that survive at
very large frequency, giving a result that is formally divergent. Hence we should
not invert the order of summation over kn and qn as we did.
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14. THE HUBBARD MODEL IN
THE FOOTSTEPS OF THE ELEC-
TRON GAS

In this Chapter, we follow the same steps as the electron gas and derive RPA equa-
tions for the response functions. While spin �uctuations did not play a prominent
role in the electron gas, they will be dominant in the Hubbard model and we will
see why. The one-band Hubbard model (I do not justify it here) is given by

bH = �
X
i;j

X
�

ti;j

�
cyi;�cj;�

�
+ U

X
i

ni;"ni;#: (14.1)

There is one orbital per lattice site. The interaction is screened by the dielec-
tric constant and is as short-range as it can be, namely local. The interaction
is diagonal in position space while the kinetic energy, represented by the hop-
ping parameters ti;j is diagonal in momentum space. So, when the potential and
kinetic energy are comparable, the problem is extremely di¢ cult. We can start
with Hartree-Fock and RPA. RPA for the Hubbard model however has major de�-
ciencies: It does not satisfy the Mermin-Wagner theorem, nor the Pauli exclusion
principle, as we will see. This had no major consequence for the eletron gas, but
in the case of the Hubbard model this is crucial. We will see how to cure this
problem and others using the Two-Particle Self-Consistent Approach in the next
Chapter.

14.1 Response functions for spin and charge

Response (four-point) functions for spin and charge excitations can be obtained
from functional derivatives (�G=��) of the source-dependent propagator. We will
see that a linear combination of these response functions is related to �G� (1; 2)� =���� (1+; 1)
above. Following the standard approach and using matrix notation to abbreviate
the summations and integrations we have,

GG�1 = 1 (14.2)

�G
��
G�1 + G �G

�1

��
= 0: (14.3)

Using the Dyson equation G�1 = G�10 � �� � this may be rewritten

�G
��

= �G �G
�1

��
G = G^G + G

��

��
G; (14.4)

where the symbol ^ reminds us that the neighboring labels of the propagators have
to be the same as those of the � in the functional derivative. If perturbation theory
converges, we may write the self-energy as a functional of the propagator: From
the chain rule, one then obtains an integral equation for the response function in
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the particle-hole channel that is the analog of the Bethe-Salpeter equation in the
particle-particle channel

�G
��

= G^G + G
�
��

�G
�G
��

�
G: (14.5)

The labels of the propagators in the last term are attached to the self energy, as
in Eq.(14.4) 1 .
In the Coulomb-gas case, we have solved this equation in the RPA approxi-

mation, where only charge �uctuations are involved. Here let us drop any special
assumption, other than spin-rotation invariance, concerning the form of the irre-
ducible vertices. We will see that in general, both spin and charge �uctuations
in�uence the self-energy, contrary to the Coulomb gas where only charge �uctua-
tions were involved.

Remark 56 In the RPA approximation for the Coulomb gas, the spin �uctuations
are given by a single bubble. The diagrams that are reducible with respect to the
Coulomb interaction all vanish. See the exercises.

To obtain spin and charge �uctuations from the above formula, we restore
spin indices explicitly and represent coordinates with numbers (in our previous
convention, numbers included spin labels, but not here). When the external �eld
is diagonal in spin indices we need only one spin label on G and �. The response
function that can be used then to build both spin and charge �uctuations is

� �G� (1; 1+)
���0 (2

+; 2)
=

D
T� 

y
�

�
1+
�
 � (1) 

y
�0

�
2+
�
 �0 (2)

E
�
� G�

�
1; 1+

�
�
G�0
�
2; 2+

�
�

= hT�n� (1)n�0 (2)i� � hn� (1)i� hn�0 (2)i� : (14.6)

The charge and spin given by

ni � ni" + ni# (14.7)

Szi � ni" (�)� ni# (�) : (14.8)

Hence, the charge �uctuations are obtained from

�ch (1; 2) = �
X
�;�0

�G� (1; 1+)
���0 (2

+; 2)
(14.9)

and the spin �uctuations from

�sp (1; 2) = �
X
�;�0

�
�G� (1; 1+)
���0 (2

+; 2)
�0: (14.10)

We want to write separate equations for the spin and charge �uctuations. It is
useful to proceed as follows. De�ne the matrix

��;�0 = �
�G�
���0

: (14.11)

The spin and charge susceptibilities are then given by

�ch =
X
�;�0

��;�0 ; �sp =
X
�;�0

���;�0�
0 (14.12)

1To remind ourselves of this, we may also adopt an additional �vertical matrix notation�

convention and write Eq.(7) as �G
��

= G^G+G

�
��
�G
�G
��

�
G.
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With the 2� 2 matrix
� =

�
�"� �"#
�#" �##

�
(14.13)

and vectors

s =

�
1
1

�
; a =

�
1
�1

�
: (14.14)

we can rewrite in matrix rotation

�ch = s
T� s ; �sp = a

T� a: (14.15)

Because we have spin rotational invariance, the following relations hold �"� = �##
et �"# = �#" so that the following holds

0 = sT� a ; 0 = aT� s (14.16)

It is convenient to have a similar de�nition of the vertex

��;�0 =
���
�G�0

(14.17)

and of the corresponding matrix

� =

�
�"� �"#
�#" �##

�
(14.18)

that has the same properties as � under spin rotation (This is related to the fact
that �� itself is a functional derivative oa the Luttinger Ward with respect to G�).
De�ning

P aij = aiaj ; P
s
ij = sisj (14.19)

that we write as

Pa = a
 aT =
�
1 �1
�1 1

�
; Ps = s
 sT =

�
1 1
1 1

�
(14.20)

so that
P aij + P

s
ij = 2�i;j : (14.21)

This allows us to easily project the general equation

�G�
���0

= G^G��;�0 + G�
�
���
�G�

�G�
���0

�
G�: (14.22)

into the spin and charge chanels:

� sT� s = 2 G^G + G sT�
�
a
 aT + s
 sT

2

�
(� � s)G (14.23)

which, given sT�a = 0 leads to

�ch = �2G^G + G
h�

��"
�G" +

��#
�G"

�
�ch

i
G
: (14.24)

Similarly for spin, form

� aT� a = 2 G^G + G aT�
�
a
 aT + s
 sT

2

�
(� � a)G (14.25)

we �nd, given aT�s = 0

�sp = �2G^G � G
h�

��"
�G# �

��"
�G"

�
�sp

i
G
: (14.26)
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In summary, we de�ne irreducible vertices appropriate for spin and charge
responses as follows,

Usp =
��"
�G# �

��"
�G"

Uch =
��"
�G# +

��"
�G" : (14.27)

14.2 Hartree-Fock and RPA

As an example of calculation of response functions, consider the Hartree-Fock
approximation which corresponds to factoring the four-point function in the def-
inition of the self-energy as if there were no interactions, in which case it is easy

to see that
�G�(1;2)�
����(1

+;1) = 0: To be more speci�c, starting from

��
�
1; 1
�
�
G�
�
1; 2
�
�

= �U
D
T� 

y
��
�
1+
�
 �� (1) � (1) 

y
� (2)

E
�
(14.28)

= �U
�
�G� (1; 2)�
���� (1

+; 1)
� G��

�
1; 1+

�
�
G� (1; 2)�

�
(14.29)

the Hartree-Fock approximation is

�H�
�
1; 1
�
�
GH�
�
1; 2
�
�
= UGH��

�
1; 1+

�
�
GH� (1; 2)� :

Multiplying the above equation by
�
GH�
��1

; we are left with

�H� (1; 2)� = UGH��
�
1; 1+

�
�
� (1� 2) ; (14.30)

so that
��H" (1; 2)�
�GH# (3; 4)�

�����
�=0

= U� (1� 2) � (3� 1) � (4� 2) ; (14.31)

and
��H" (1; 2)�
�GH" (3; 4)�

�����
�=0

= 0:

which, when substituted in the integral equation (14.5) for the response function,
tells us that we have generated the random phase approximation (RPA) with,
from Eq.(14.27), Usp = Uch = U: Indeed, when the irreducible vertex comes from
the Hartree term, the same structure as the one found before for the electron
gas results. The charge susceptibility that follows from the result of the previous
section Eq.(14.24) for �ch and the de�nition Uch for the corresponding irreducible
vertex Eq.(14.27) is

�ch (1; 2) = �(0) (1; 2)� 1
2
�(0)

�
1; 3
�
Uch�ch

�
3; 2
�

(14.32)

with �(0) (1; 2) = �2G (1; 2)G (2; 1) : The Fourier transform is

�ch (q) = �(0) (q)� Uch
2
�(0) (q)�ch (q) : (14.33)
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Since at this point the self-energy is a constant, we take for G the non-interacting
Green�s function. In Fourier-Matsubara space, �0(q) then is the Lindhard function
that, in analytically continued retarded form is, for a discrete lattice of N sites,

�0R(q; !) = � 2
N

X
k

f (�k)� f
�
�k+q

�
! + i� + �k � �k+q

: (14.34)

Similarly, for the spin susceptibility, using the integral equation Eq.(14.26) and
the de�nition Usp for the corresponding irreducible vertex Eq.(14.27), we obtain

�sp (q) = �(0) (q) +
Usp
2
�(0) (q)�sp (q) : (14.35)

The equations for the spin and charge �uctuations can easily be solved and yield,
respectively

�sp(q) =
�0(q)

1� 1
2U�0(q)

(14.36)

�ch(q) =
�0(q)

1 + 1
2U�0(q)

(14.37)

It is known on general grounds [9] that RPA satis�es conservation laws. We
will describe the general methods that lead to approximations that are consistent
with conservation laws in a later chapter. But it is easy to check that for a special
case. Since spin and charge are conserved, then the equalities �Rsp(q = 0;!) = 0

and �Rch(q = 0;!) = 0 for ! 6= 0 follow from the corresponding equality for the
non-interacting Lindhard function �0R(q = 0;!) = 0:

Remark 57 If we had used dressed Green�s function to compute the Lindhard
susceptibility, the conservation law �sp;ch (q = 0,i!n) = 0 for i!n 6= 0 would have
been violated, as shown in Appendix A of Ref.[97]. In general, irreducible vertices
and self-energy (and corresponding Green�s functions) must be taken at the same
level of approximation.

14.3 RPA and violation of the Pauli exclusion prin-
ciple

RPA has a drawback that is particularly important for the Hubbard model. It
violates the Pauli exclusion principle that is assumed to be satis�ed exactly in its
de�nition where up spins interact only with down spins. To see this requires a bit
more thinking. We derive a sum rule that rests on the use of the Pauli exclusion
principle and check that it is violated by RPA to second order in U .
First note that if we sum the spin and charge susceptibilities over all wave

vectors q and all Matsubara frequencies iqn, we obtain local, equal-time correlation
functions, namely

T

N

X
q

X
iqn

�sp(q;iqn) =
D
(n" � n#)2

E
= hn"i+ hn#i � 2 hn"n#i (14.38)

and
T

N

X
q

X
iqn

�ch(q;iqn) =
D
(n" + n#)

2
E
� hn" + n#i2 = hn"i+ hn#i+ 2 hn"n#i � n2

(14.39)
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where on the right-hand side, we used the Pauli exclusion principle n2� =
�
cy�c�

� �
cy�c�

�
=

cy�c� � cy�cy�c�c� = cy�c� = n� that follows from cy�c
y
� = c�c� = 0: This is the sim-

plest version of the Pauli exclusion principle. Full antisymmetry is another matter
[13, 33]. We call the �rst of the above displayed equations the local spin sum-rule
and the second one the local charge sum-rule. For RPA, adding the two sum rules
yields

T

N

X
q

X
iqn

�
�sp(q;iqn) + �ch(q;iqn)

�
= (14.40)

T

N

X
q

�
�0(q)

1� 1
2U�0(q)

+
�0(q)

1 + 1
2U�0(q)

�
= 2n� n2: (14.41)

Since the non-interacting susceptibility �0(q) satis�es the sum rule, we see by
expanding the denominators that in the interacting case it is violated already to
second order in U because �0(q) being real and positive�the quantity

P
q �0(q)

3

cannot vanish.

14.4 RPA, phase transitions and theMermin-Wagner
theorem

The RPA predicts that the normal state is sometimes unstable, namely that if
we decrease the temperature, spin �uctuations at zero frequency start, in certain
cases, to diverge. Below the temperature where that occurs, the spin susceptibility
is negative, which is prohibited by thermodynamic stability. This indicates that
a paramagnetic ground state is an unstable state. This happens even in two-
dimensions with RPA because

�0(q) =

Z
d!0

�

�00sp(q; !
0)!0

!02 + q2n

is positive so that the expression for the spin susceptibility

�sp (q) =
�0(q)

1� 1
2U�0(q)

(14.42)

is quite likely to become negative for a U su¢ ciently large.
By the way, why does a negative spin susceptibility at qn = 0 signal an insta-

bility? Because there is a thermodynamic inequality that says that susceptibilities
of the form dA=da, where A and a are thermodynamically conjugate variables, are
positive since entropy is a maximum at equilibrium. But there is another way to
look at this from the thermodynamic sum rule

�sp(Q; 0) =

Z
d!

�

�00sp(Q; !)

!
: (14.43)

Indeed, if the left-hand side is negative, this means that the imaginary part of
the spin susceptibility for positive frequencies has to be negative.2 This violates
the positivity criterion imposed by stability, namely �00sp(Q; !)! > 0: Hence, the
system is unstable.

2 It is positive at negative frequencies since it must be odd.
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Such an instability in two dimensions at �nite temperature is prohibited by the
Mermin-Wagner theorem that says that a continuous symmetry cannot be broken
in two dimensions at �nite temperature. We will come back on this theorem in a
later chapter, but for now the theorem may intuitively be understood as follows.
If there is long-range order in the presence of a continuous symmetry, there will
be a term in the free energy that will be proportional to jr�j2 ; where � is the
angle representing the deviation of the spins say, from their equilibrium position.
The equipartition theorem then says that

q2


�q��q

�
=
T

2
: (14.44)

Thus, in two dimensions, the thermal �uctuations of that angle are in�nite, proving
the theorem by contradiction:


�2
�
=

Z 1

0

d2q

q2
T

2
=1:

We may think that the instability will occur for U so large that anyway RPA
does not apply. This is not the case. Let us illustrate that this happens with a
speci�c example where in fact the instability occurs for in�nitesimal U .
We evaluate the Lindhard function Eq.(14.34) at zero frequency in the case

where we have only nearest neighbor hopping on a cubic lattice, in other words,
"k = �2t (cos kx + cos ky + cos kz) : In d = 2 this would be replaced by �k =
"k = �2t (cos kx + cos ky) : Then, if we take � = 0; which in this case corresponds
to half-�lling, and choose the wave vector corresponding to an antiferromagnetic
�uctuation, namely Q = (�; �; �) that leads to a phase +1 or �1 on alternating
sites, we �nd

�0R(Q; 0) = � 2
N

X
k

2f ("k)� 1
2"k

(14.45)

because of the equality f (�") = 1 � f (") and the co-called nesting property
"k = �"k+Q: But 2f ("k)�1 = � tanh (�"k=2) which allows one to write by using
the de�nition of the density of states N (")

�0R(Q; 0) =
2

N

X
k

tanh (�"k=2)

2"k
(14.46)

� 2

Z
d3k

(2�)
3

tanh (�"k=2)

2"k
(14.47)

�
Z
d"N (")

tanh (�"=2)

2"
: (14.48)

This last result takes the same form in d = 2: You just need to replace the density
of states by the two-dimensional one. The last integral diverges when T ! 0
or � ! 1: Indeed, take N (") constant near the Fermi level, up to a cuto¤
energy �EF : Near the Fermi level, " = 0; when " > T we can approximate
tanh (�"=2) =2" � 1=4T: So we can extract the logarithmically divergent part of
the integral as follows:Z

d"N (")
tanh (�"=2)

2"
�

Z EF

T

d"N (0)
1

"

� N (0) ln

�
EF
T

�
: (14.49)

For T su¢ ciently small, �0R(Q; 0) diverges, which means that at a certain tem-
perature, the denominator of the spin susceptibility Eq.(14.36) goes through zero,
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even with in�nitesimal U . At that temperature, the spin susceptibility diverges.
Below that it is negative, signaling an instability.
This instability signals a second-order phase transition that it physical. In two

dimensions, N (") has a logarithmic divergence at " = 0 so the above result must
be modi�ed. We would obtain a ln2 (EF =T ) instead of ln (EF =T ) : Nevertheless,
the qualitative result would be the same. There is an instability even in the
presence of an in�nitesimal U: However, in two-dimensions, one cannot have a
phase transition that breaks a continuous symmetry at �nite temperature in two
dimensions. That is the content of the Mermin Wagner theorem.[59, 31] Hence,
RPA fails miserably on many grounds in two dimensions: It violates the Pauli
exclusion principle and the Mermin-Wagner theorem. The approach in the next
section �xes these two problems and more.
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15. THE TWO-PARTICLE-SELF-
CONSISTENT APPROACH

The two-particle-self-consistent approach (TPSC) is designed to remedy the de�-
ciencies found above in the study of the the one-band Hubbard model. It is also
possible to generalize to cases where near-neighbor interactions are included.
TPSC is valid from weak to intermediate coupling. Hence, on the negative side,

it does not describe the Mott transition. Nevertheless, there is a large number of
physical phenomena that it allows to study. An important one is antiferromag-
netic �uctuations. It is extremely important physically that in two dimensions
there is a wide range of temperatures where there are huge antiferromagnetic �uc-
tuations in the paramagnetic state, without long-range order, as imposed by the
Mermin-Wagner theorem. The standard way to treat �uctuations in many-body
theory, the Random Phase Approximation (RPA) misses this and also, as we saw,
the RPA also violates the Pauli exclusion principle in an important way. The com-
posite operator method (COM), by F. Mancini, is another approach that satis�es
the Mermin-Wagner theorem and the Pauli exclusion principle. [52, 53, 51] The
Fluctuation Exchange Approximation (FLEX) [11, 12], and the self-consistent
renormalized theory of Moriya-Lonzarich [62, 45, 63] are other approaches that
satisfy the Mermin-Wagner theorem at weak coupling. Each has its strengths and
weaknesses, as discussed in Refs. [97, 4]. Weak coupling renormalization group
approaches become uncontrolled when the antiferromagnetic �uctuations begin to
diverge [23, 77, 42, 32]. Other approaches include the e¤ective spin-Hamiltonian
approach [89].
In summary, the advantages and disadvantages of TPSC are as follows. Ad-

vantages:

� There are no adjustable parameters.

� Several exact results are satis�ed: Conservation laws for spin and charge, the
Mermin-Wagner theorem, the Pauli exclusion principle in the form

D
n2"

E
=

hn"i ; the local moment and local-charge sum rules and the f sum-rule.

� Consistency between one and two-particle properties serves as a guide to the
domain of validity of the approach. (Double occupancy obtained from sum
rules on spin and charge equals that obtained from the self-energy and the
Green function).

� Up to intermediate coupling, TPSC agrees within a few percent with Quan-
tum Monte Carlo (QMC) calculations. Note that QMC calculations can
serve as benchmarks since they are exact within statistical accuracy, but
they are limited in the range of physical parameter accessible.

� We do not need to assume that Migdal�s theorem applies to be able to obtain
the self-energy.

The main successes of TPSC include

� Understanding the physics of the pseudogap induced by precursors of a long-
range ordered phase in two dimensions. For this understanding, one needs
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a method that satis�es the Mermin-Wagner theorem to create a broad tem-
perature range where the antiferromagnetic correlation length is larger than
the thermal de Broglie wavelength. That method must also allow one to
compute the self-energy reliably. Only TPSC does both.

� Explaining the pseudogap in electron-doped cuprate superconductors over a
wide range of dopings.

� Finding estimates of the transition temperature for d-wave superconductivity
that were found later in agreement with quantum cluster approaches such
as the Dynamical Cluster Approximation.

� Giving quantitative estimates of the range of temperature where quantum
critical behavior can a¤ect the physics.

The drawbacks of this approach, that I explain as we go along, are that

� It works well in two or more dimensions, not in one dimension 1 [66].

� It is not valid at strong coupling, except at very high temperature and large
U where it recovers the atomic limit [20].

� It is not valid deep in the renormalized classical regime [93].

� For models other than the one-band Hubbard model, one usually runs out
of sum rules and it is in general not possible to �nd all parameters self-
consistently. With nearest-neighbor repulsion, it has been possible to �nd a
way out [21].

For detailed comparisons with QMC calculations, discussions of the physics
and detailed comparisons with other approaches, you can refer to Ref.[97, 4]. You
can read Ref.[88] for a review of the work related to the pseudogap and super-
conductivity up to 2005 including detailed comparisons with Quantum Cluster
approaches in the regime of validity that overlaps with TPSC (intermediate cou-
pling). A more recent review appeared in Ref. [87].

15.1 TPSC First step: two-particle self-consistency
for G(1);�(1); �(1)sp = Usp and �(1)ch = Uch

Details of the more formal derivation may be also be found in Ref. [3]. In con-
serving approximations, the self-energy is obtained from a functional derivative
� [G] = �� [G] =�G of � the Luttinger-Ward functional, which is itself computed
from a set of diagrams. We will see this approach later in the course. To liber-
ate ourselves from diagrams and �nd results that are valid beyond perturbation
theory, we start instead from the exact expression for the self-energy

��
�
1; 1
�
�
G�
�
1; 2
�
�
= �U

D
T� 

y
��
�
1+
�
 �� (1) � (1) 

y
� (2)

E
�

and notice that when label 2 equals 1+; the right-hand side of this equation is equal
to double-occupancy hn"n#i. Factoring as in Hartree-Fock amounts to assuming

1Modi�cations have been proposed in zero dimension to use as impurity solver for DMFT [26]
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no correlations. Instead, we should insist that hn"n#i should be obtained self-
consistently. After all, in the Hubbard model, there are only two local four point

functions: hn"n#i and
D
n2"

E
=
D
n2#

E
: The latter is given exactly, through the

Pauli exclusion principle, by
D
n2"

E
=
D
n2#

E
= hn"i = hn#i = n=2; when the �lling

n is known: In a way, hn"n#i in the self-energy equation can be considered as an
initial condition for the four point function when one of the points, 2, separates
from all the others which are at 1: When that label 2 does not coincide with 1,
it becomes more reasonable to factor à la Hartree-Fock. These physical ideas are
implemented by postulating

�(1)�
�
1; 1
�
�
G(1)�

�
1; 2
�
�
= A�G(1)��

�
1; 1+

�
�
G(1)� (1; 2)� (15.1a)

where A� depends on external �eld and is chosen such that the exact result 2

��
�
1; 1
�
�
G�
�
1; 1+

�
�
= U hn" (1)n# (1)i� (15.2)

is satis�ed. It is easy to see that the solution is

A� = U
hn" (1)n# (1)i�
hn" (1)i� hn# (1)i�

: (15.3)

Substituting A� back into our ansatz, we obtain our �rst approximation for the

self-energy by right-multiplying by
�
G(1)�

��1
:

�(1)� (1; 2)� = A�G(1)��
�
1; 1+

�
�
� (1� 2) : (15.4)

We are now ready to obtain irreducible vertices using the prescription of section
14.1, Eq.(14.27), namely through functional derivatives of � with respect to G: In
the calculation of Usp; the functional derivative of hn"n#i = (hn"i hn#i) drops out,
so we are left with 3 ,

��
(1)
" (1; 2)�

�G(1)# (3; 4)�

�����
�=0

�
��

(1)
" (1; 2)�

�G(1)" (3; 4)�

�����
�=0

= Usp� (1� 2) � (3� 1) � (4� 2)

Usp = A�=0 = U
hn"n#i
hn"i hn#i

: (15.5)

The renormalization of this irreducible vertex may be physically understood as
coming from the physics described by Kanamori and Brueckner [97] (in the lat-
ter case in the context of nuclear physics): The value of the bare interaction is
renormalized down by the fact that the two-particle wave function will want to be
smaller where U is larger. In the language of perturbation theory, one must sum
the Born series to compute how two particles scatter o¤ each other and not work
in the �rst Born approximation. This completes the derivation of the ansatz that
is central to TPSC.
The functional-derivative procedure generates an expression for the charge ver-

tex Uch which involves the functional derivative of hn"n#i = (hn"i hn#i) which con-
tains six point functions that one does not really know how to evaluate. But, if
we again assume that the vertex Uch is a constant, it is simply determined by
the requirement that charge �uctuations also satisfy the �uctuation-dissipation

2See footnote (14) of Ref. [4] for a discussion of the choice of limit 1+ vs 1�.
3For n > 1, all particle occupation numbers must be replaced by hole occupation numbers.
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theorem and the Pauli exclusion principle, as in Eq.(14.39). In summary, spin and
charge �uctuations are obtained from

�sp(q) =
�(1)(q)

1� 1
2Usp�

(1)(q)
(15.6)

�ch(q) =
�(1)(q)

1 + 1
2Uch�

(1)(q)
: (15.7)

with the irreducible vertices determined from the sum rules

T

N

X
q

X
iqn

�(1)(q)

1� 1
2Usp�

(1)(q)
= n� 2 hn"n#i (15.8)

and
T

N

X
q

X
iqn

�(1)(q)

1 + 1
2Uch�

(1)(q)
= n+ 2 hn"n#i � n2: (15.9)

along with the relations that relates Usp to double occupancy, Eq.(15.5).

Remark 58 Note that, in principle, �(1) also depends on double-occupancy, but
since �(1) is a constant, it is absorbed in the de�nition of the chemical potential
and we do not need to worry about it in this case. That is why the non-interacting
irreducible susceptibility �(1)(q) = �0(q) appears in the expressions for the suscep-
tibility, even though it should be evaluated with G(1) that contains �(1): A rough
estimate of the renormalized chemical potential (or equivalently of �(1)), is given
in the appendix of Ref. ([4]). One can check that spin and charge conservation
are satis�ed by the TPSC susceptibilities.

Remark 59 Usp hn"i hn#i = U hn"n#i can be understood as correcting the Hatree-
Fock factorization so that the correct double occupancy be obtained. Expressing the
irreducible vertex in terms of an equal-time correlation function is inspired by the
approach of Singwi [82] to the electron gas. But TPSC is di¤erent since it also
enforces the Pauli exclusion principle and connects to a local correlation function,
namely hn"n#i :

15.2 TPSC Second step: an improved self-energy
�(2)

Collective charge and spin excitations can be obtained accurately from Green�s
functions that contain a simple self-energy, as we have just seen. Such modes are
emergent objects that are less in�uenced by details of the single-particle properties
than the other way around, especially at �nite temperature where the lowest
fermionic Matsubara frequency is not zero. The self-energy on the other hand is
much more sensitive to collective modes since these are important at low frequency.
The second step of TPSC is thus to �nd a better approximation for the self-energy.
This is similar in spirit to what is done in the electron gas [48] where plasmons
are found with non-interacting particles and then used to compute an improved
approximation for the self-energy. This two step process is also analogous to
renormalization group calculations where renormalized interactions are evaluated
to one-loop order and quasiparticle renormalization appears only to two-loop order
[58, 16, 99].
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Figure 15-1 Exact expression for the three point vertex (green triangle) in the
�rst line and for the self-energy in the second line. Irreducible vertices are the red
boxes and Green�s functions solid black lines. The numbers refer to spin, space and
imaginary time coordinates. Symbols with an over-bard are summed/integrated over.
The self-energy is the blue circle and the bare interaction U the dashed line.

The procedure will be the same as for the electron gas. But before we move
to the algebra, we can understand physically the result by looking at Fig. 15-1
that shows the exact diagrammatic expressions for the three-point vertex (green
triangle) and self-energy (blue circle) in terms of Green�s functions (solid black
lines) and irreducible vertices (red boxes). The bare interaction U is the dashed
line. One should keep in mind that we are not using perturbation theory despite
the fact that we draw diagrams. Even within an exact approach, the quantities
de�ned in the �gure have well de�ned meanings. The numbers on the �gure refer
to spin, space and imaginary time coordinates. When there is an over-bar, there
is a sum over spin and spatial indices and an integral over imaginary time.
In TPSC, the irreducible vertices in the �rst line of Fig. 15-1 are local, i.e.

completely momentum and frequency independent. They are given by Usp and
Uch: If we set point 3 to be the same as point 1; then we can obtain directly
the TPSC spin and charge susceptibilities from that �rst line. In the second
line of the �gure, the exact expression for the self-energy is displayed4 . The
�rst term on the right-hand side is the Hartree-Fock contribution. In the second
term, one recognizes the bare interaction U at one vertex that excites a collective
mode represented by the green triangle and the two Green�s functions. The other
vertex is dressed, as expected. In the electron gas, the collective mode would be
the plasmon. If we replace the irreducible vertex using Usp and Uch found for
the collective modes, we �nd that here, both types of modes, spin and charge,
contribute to the self-energy [95].
Moving now to the algebra, let us repeat our procedure for the electron gas

to show how to obtain an improved approximation for the self-energy that takes
advantage of the fact that we have found accurate approximations for the low-
frequency spin and charge �uctuations. We begin from the general de�nition
of the self-energy obtained from Dyson-Schwinger�s equation (10.29). The right-
hand side of that equation can be obtained either from a functional derivative with
respect to an external �eld that is diagonal in spin, as in our generating function

Eq.(10.11), or by a functional derivative of
D
 �� (1) 

y
� (2)

E
�t

with respect to a

4 In the Hubbard model the Fock term cancels with the same-spin Hartree term

TPSC SECOND STEP: AN IMPROVED SELF-ENERGY �(2) 119



transverse external �eld �t; namely an external �eld that is not diagonal in spin
indices.
Working �rst in the longitudinal channel, the right-hand side of the general

de�nition of the self-energy Eq.(10.29) may be written as

��
�
1; 1
�
G�
�
1; 2
�
= �U

"
�G� (1; 2)�
���� (1

+; 1)

����
�=0

� G��
�
1; 1+

�
�
G� (1; 2)�

#
: (15.10)

The last term is the Hartree-Fock contribution. It gives the exact result for the
self-energy in the limit ! ! 1.[97] The �G�=���� term is thus a contribution
to lower frequencies and it comes from the spin and charge �uctuations. Right-
multiplying the last equation by G�1 and replacing the lower energy part �G�=����
by its general expression in terms of irreducible vertices, Eq.(14.5) (recalling that
for �G�=���� the �rst term vanishes) we �nd

�(2)� (1; 2) = UG(1)��
�
1; 1+

�
� (1� 2) (15.11)

�UG(1)�
�
1; 3
�24 ��(1)� �

3; 2
�
�

�G(1)�
�
4; 5
�
�

������
�=0

�G(1)�
�
4; 5
�
�

���� (1
+; 1)�

������
�=0

35 :
Every quantity appearing on the right-hand side of that equation has to be taken
from the TPSC results. This means in particular that the irreducible vertices
��

(1)
� =�G(1)�0 are at the same level of approximation as the Green functions G(1)�

and self-energies �(1)� : In other approaches one often sees renormalized Green func-
tions G(2) appearing on the right-hand side along with unrenormalized vertices,
���=�G�0 ! U:We will see later in the context of electron-phonon interactions that
this is equivalent to assuming, without justi�cation, that the so-called Migdal�s
theorem applies to spin and charge �uctuations.
In terms of Usp and Uch in Fourier space, the above formula[95] reads,

�(2)� (k)long = Un�� +
U

4

T

N

X
q

h
Usp�

(1)
sp (q) + Uch�

(1)
ch (q)

i
G(1)� (k + q): (15.12)

This can be seen simply by noting in Eq.(15.11) that

��
(1)
�

�G(1)�
�G(1)�
����

=
1

2
(Uch � Usp)

1

4

�
�ch � �sp

�
(15.13)

��
(1)
�

�G(1)��

�G(1)��
����

=
1

2
(Uch + Usp)

1

4

�
�ch + �sp

�
: (15.14)

The approach to obtain a self-energy formula that takes into account both lon-
gitudinal and transverse �uctuations is detailed in Ref.([4]). Crossing symmetry,
rotational symmetry and sum rules and comparisons with QMC dictate the �nal
formula for the improved self-energy �(2) as we now sketch.
There is an ambiguity in obtaining the self-energy formula [65]. Within the

assumption that only Usp and Uch enter as irreducible particle-hole vertices, the
self-energy expression in the transverse spin �uctuation channel is di¤erent. What
do we mean by that? Consider the exact formula for the self-energy represented
symbolically by the diagram of Fig. 15-2. This is the so-called Schwinger-Dyson
equation. It can be understood from the fact that �G is a four-point function,
which means two Green�s functions in, and two out that scatter in the middle.
One of the Green�s functions has disappeared because to obtain �; we need to
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Figure 15-2 Exact self-energy in terms of the Hartree-Fock contribution and of the
fully reducible vertex � represented by a textured box.

multiply by G�1: In the �gure, the textured box is the fully reducible vertex
� (q; k � k0; k + k0 � q) that depends in general on three momentum-frequency in-
dices. � (q; k � k0; k + k0 � q) comes from the four-point function in the de�nition

of the self-energy
�G�(1;2)

�

����(1
+;1)

����
�=0

G�1�
�
2; 3
�
�
with two incoming Green�s function

and one outgoing one explicitly written down. The other outgoing Green�s function
is removed by G�1�

�
2; 3
�
�
: The longitudinal version of the self-energy corresponds

to expanding the fully reducible vertex � (q; k � k0; k + k0 � q) in terms of dia-
grams that are irreducible in the longitudinal (parallel spins) channel illustrated
in Fig. 15-1. This takes good care of the singularity of � when its �rst argument
q is near (�; �) : The transverse version [65, 4] does the same for the dependence
on the second argument k�k0, which corresponds to the other (antiparallel spins)
particle-hole channel. But the fully reducible vertex obeys crossing symmetry. In
other words, interchanging two fermions just leads to a minus sign. One then
expects that averaging the two possibilities gives a better approximation for �
since it preserves crossing symmetry in the two particle-hole channels [65]. By
considering both particle-hole channels only, we neglect the dependence of � on
k + k0 � q because the particle-particle channel is not singular. The �nal formula
that we obtain is [65]

�(2)� (k) = Un�� +
U

8

T

N

X
q

�
3Usp�sp(q) + Uch�ch(q)

�
G(1)� (k + q): (15.15)

The superscript (2) reminds us that we are at the second level of approximation.
G(1)� is the same Green�s function as that used to compute the susceptibilities
�(1)(q). Since the self-energy is constant at that �rst level of approximation, this
means that G(1)� is the non-interacting Green�s function with the chemical potential
that gives the correct �lling. That chemical potential �(1) is slightly di¤erent from
the one that we must use in

�
G(2)

��1
= iqn + �

(2) � "k ��(2) to obtain the same
density [38]. Estimates of �(1) may be found in Ref. [4, 38]. Further justi�cations
for the above formula are given below in Sect. (15.3).

Remark 60 Note that a spin �uctuation has S = 1; to that is why, physically,
there is a factor of 3 in front of the spin �uctuations.
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15.3 TPSC, internal accuracy checks

How can we make sure that TPSC is accurate? We will show sample compar-
isons with benchmark Quantum Monte Carlo calculations, but we can check the
accuracy in other ways. For example, we have already mentioned that the f-sum
rule is exactly satis�ed at the �rst level of approximation (i.e. with n(1)k on the
right-hand side). Suppose that on the right-hand side of that equation, one uses
nk obtained from G(2) instead of the Fermi function. One should �nd that the
result does not change by more than a few percent. This is what happens when
agreement with QMC is good.
When we are in the Fermi liquid regime, another way to verify the accuracy of

the approach is to verify if the Fermi surface obtained from G(2) satis�es Luttinger�s
theorem very closely. Luttinger�s theorem says that even an interacting system,
when there is a jump in nk at the Fermi surface at T = 0 (as we have seen in the
electron gas) then the particle density is determined by the number of k points
inside the Fermi surface, as in the non-interacting case.
Finally, there is a consistency relation between one- and two-particle quantities

(� and hn"n#i). The relation

��
�
1; 1
�
G�
�
1; 1+

�
� 1
2
Tr (�G) = T

N

X
k

X
n

�(k; iqn)G(k; iqn)e�iqn0
�
= U hn"n#i

(15.16)
should be satis�ed exactly for the Hubbard model. In standard many-body books
[49], it is encountered in the calculation of the free energy through a coupling-
constant integration. In TPSC, it is not di¢ cult to show 5 that the following
equation

1

2
Tr
�
�(2)G(1)

�
= U hn"n#i (15.17)

is satis�ed exactly with the self-consistent U hn"n#i obtained with the susceptibili-
ties6 . An internal accuracy check consists in verifying by how much 1

2Tr
�
�(2)G(2)

�
di¤ers from 1

2Tr
�
�(2)G(1)

�
: Again, in regimes where we have agreement with

Quantum Monte Carlo calculations, the di¤erence is only a few percent.
The above relation between � and hn"n#i gives us another way to justify our

expression for �(2): Suppose one starts from Fig. 15-1 to obtain a self-energy
expression that contains only the longitudinal spin �uctuations and the charge
�uctuations, as was done in the �rst papers on TPSC [93]. One �nds that each
of these separately contributes an amount U hn"n#i =2 to the consistency relation
Eq.(15.17). Similarly, if we work only in the transverse spin channel [65, 4] we
�nd that each of the two transverse spin components also contributes U hn"n#i =2
to 1

2Tr
�
�(2)G(1)

�
: Hence, averaging the two expressions also preserves rotational

invariance. In addition, one veri�es numerically that the exact sum rule (Ref. [97]
Appendix A)

�
Z
d!0

�
�00R� (k;!0) = U2n�� (1� n��) (15.18)

determining the high-frequency behavior is satis�ed to a higher degree of accuracy
with the symmetrized self-energy expression Eq. (15.15).
Eq. (15.15) for �(2) is di¤erent from so-called Berk-Schrie¤er type expressions

[10] that do not satisfy 7 the consistency condition between one- and two-particle
properties, 12Tr (�G) = U hn"n#i :

5Appendix B or Ref. [97]
6FLEX does not satisfy this consistency requirement. See Appendix E of [97]. In fact double-

occupancy obtained from �G can even become negative [6].
7 [97] Appendix E)
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Remark 61 Schemes, such as the �uctuation exchange approximation (FLEX),
that we will discuss later, use on the right-hand side G(2), are thermodynamically
consistent and might look better. However, as we just saw FLEX misses some
important physics. The reason [97] is that the vertex entering the self-energy in
FLEX is not at the same level of approximation as the Green�s functions. Indeed,
since the latter contain self-energies that are strongly momentum and frequency de-
pendent, the irreducible vertices that can be derived from these self-energies should
also be frequency and momentum dependent, but they are not. In fact they are the
bare vertices. It is as if the quasi-particles had a lifetime while at the same time in-
teracting with each other with the bare interaction. Using dressed Green�s functions
in the susceptibilities with momentum and frequency independent vertices leads to
problems as well. For example, the conservation law �sp;ch (q = 0,iqn) = 0 is
violated in that case, as shown in Appendix A of Ref.[97]. Further criticism of
conserving approaches appears in Appendix E of Ref.[97] and in Ref.[4].

15.4 Benchmarking

Quantum Monte Carlo calculations, that we explain in a later Chapter of this
book, can be considered exact within statistical sampling. Hence they can be
used as benchmarks for any approximation scheme. In this section, we present a
few benchmarks on spin and charge �uctuations, and then on self-energy. More
comparisons may be found in Refs. [88] and [93, 97, 95, 41] and others quoted in
these papers.

15.4.1 Spin and charge �uctuations

The set of TPSC equations for spin and charge �uctuations Eqs.(??,??,??) is
rather intuitive and simple. The agreement of calculations with benchmark QMC
calculations is rather spectacular, as shown in Fig.(15-3). There, one can see
the results of QMC calculations of the structure factors, i.e. the Fourier trans-
form of the equal-time charge and spin correlation functions, compared with the
corresponding TPSC results.
This �gure allows one to watch the Pauli exclusion principle in action. At U =

4t; Fig.(15-3a) shows that the charge structure factor does not have a monotonic
dependence on density. This is because, as we approach half-�lling, the spin
�uctuations are becoming so large that the charge �uctuations have to decrease so
that the sum still satis�es the Pauli exclusion principle, as expressed by Eq.(14.41).
This kind of agreement is found even at couplings of the order of the bandwidth
and when second-neighbor hopping t0 is present [90, 91].

Remark 62 Even though the entry in the renormalized classical regime is well
described by TPSC [40], equation (??) for Usp fails deep in that regime because
�(1) becomes too di¤erent from the true self-energy. At n = 1, t0 = 0, deep in
the renormalized classical regime, Usp becomes arbitrarily small, which is clearly
unphysical. However, by assuming that hn"n#i is temperature independent below
TX ; a property that can be veri�ed from QMC calculations, one obtains a qualita-
tively correct description of the renormalized-classical regime. One can even drop
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Figure 15-3 Wave vector (q) dependence of the spin and charge structure factors
for di¤erent sets of parameters. Solid lines are from TPSC and symbols are QMC
data. Monte Carlo data for n = 1 and U = 8t are for 6 � 6 clusters and T = 0:5t;
all other data are for 8 � 8 clusters and T = 0:2t. Error bars are shown only when
signi�cant. From Ref. [93].

the ansatz and take hn"n#i from QMC on the right-hand side of the local moment
sum-rule Eq.(??) to obtain Usp:

15.4.2 Self-energy

We check that the formula for the self-energy Eq.(15.15) is accurate by comparing
in Fig. 15-4 the spectral weight (imaginary part of the Green�s function) obtained
from Eq.(15.15) with that obtained from Quantum Monte Carlo calculations. The
latter are exact within statistical accuracy and can be considered as benchmarks.
The meaning of the curves are detailed in the caption. The comparison is for
half-�lling in a regime where the simulations can be done at very low temperature
and where a non-trivial phenomenon, the pseudogap, appears. This all important
phenomenon is discussed further below in subsection 16.1 and in the �rst case
study, Sect. 16.2. In the third panel, we show the results of another popular Many-
Body Approach, the FLuctuation Exchange Approximation (FLEX) [11]. It misses
[22] the physics of the pseudogap in the single-particle spectral weight because it
uses fully dressed Green�s functions and assumes that Migdal�s theorem applies,
i.e. that the vertex does not need to be renormalized consequently Ref.[97, 61].
The same problem exists in the corresponding version of the GW approximation.
[30]

Remark 63 The dressing of one vertex in the second line of Fig. 15-1 means
that we do not assume a Migdal theorem. Migdal�s theorem arises in the case
of electron-phonon interactions [49]. There, the small ratio m=M; where m is
the electronic mass and M the ionic mass, allows one to show that the vertex
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Figure 15-4 Single-particle spectral weight A(k; !) for U = 4, � = 5, n = 1, and
all independent wave vectors k of an 8� 8 lattice. Results obtained from maximum
entropy inversion of Quantum Monte Carlo data on the left panel, from TPSC in the
middle panel and form the FLEX approximation on the right panel. (Relative error in
all cases is about 0.3%). Figure from Ref.[65]

corrections are negligible. This is extremely useful to formulate the Eliashberg
theory of superconductivity.

Remark 64 In Refs. [97, 65] we used the notation �(1) instead of �(2): The
notation of the present paper is the same as that of Ref. [4]

15.4.3 TPSC+, Beyond TPSC

TPSC has been compared to a number of other state of the art methods in [75].
Fig. (15.4.3) for the Hubbard model at half-�lling at U = 2t shows the correlation
length as a function of temperature. The DiagMC result can be considered exact.
This is one of the cases where TPSC is at its worse. It is expected that it does
not work in the renormalized classical regime. An improvement of TPSC, namely
TPSC+ [24] gives better results. The combination of TPSC with DMFT also
gives some improvements [54] and, more importantly, it will allow TPSC to be

BENCHMARKING 125



generalized to multi-band cases. It has already been applied to the three-band
Emery model for the cuprates [25].
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16. *ANTIFERROMAGNETISM
CLOSE TO HALF-FILLING AND
PSEUDOGAP IN TWO DIMEN-
SIONS

We return to the normal state and look at the dominant instability in the half-
�lled case n = 1. In that case, the Fermi surface of the Hubbard model with
nearest-neighbor hopping exhibits the phenomenon of nesting. For example, the
Fermi surface in the two-dimensional case is a diamond, as illustrated in Fig. (?).
All the points of the �at surfaces are connected by the same wave vectorQ =(�; �)
which leads to a very large susceptibility. Whereas at low �lling the maximum
susceptibility is at q = 0; in the present case it is a local maximum that is smaller
than the maximum at Q; as we will see.

Let us compute the spin susceptibility at that nesting wave vector. Nesting in
the present case means that

�p+Q = �2t (cos (kx + �) + cos (ky + �)) = ��p: (16.1)

Using this result we �nd that the zero-frequency susceptibility at that wave vector
Q is

�R0 (Q; 0) = � 2
N

X
p

f
�
�p
�
� f

�
�p+Q

�
�p � �p+Q

= � 2
N

X
p

f
�
�p
�
� f

�
��p

�
2�p

(16.2)

=
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N

X
p

1� 2f
�
�p
�

�p
=

Z
d"N (")

tanh
�
�"
2

�
"

: (16.3)

Assume that the density of states is a constant. For " � T; we are integrating
1=": However, for " < T the singularity in the denominator of the integrand is
cuto¤. In other words, we obtain a contribution that diverges at low temperature
like ln (W=T ) where W is the bandwidth. This means that at su¢ ciently low
temperature, the criterion 1 � U

2 �
R
0 (Q; 0) = 0 will always be satis�ed whatever

the value of U and there will be a transition to a state characterized by the wave
vector Q. This is the antiferromagnetic state where spins alternate in direction
from one site to the other. In two dimensions for example, the chemical potential
at n = 1 sits right at a logarithmic van Hove singularity in N (") so that in fact
�R0 (Q; 0) scales like ln

2 (W=T ), which is larger than the single power of ln that
one would obtain at q = 0.

When there is no nesting, like when the next-nearest neighbor hopping t0 con-
tributes, the susceptibility does not diverge at low temperature. In that case, the
transition will occur only if U is large enough.
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Figure 16-1 Cartoon explanation of the pseudogap due to precursors of long-range
order. When the antiferromagnetic correlation length � becomes larger than the
thermal de Broglie wavelength, there appears precursors of the T = 0 Bogoliubov
quasi-particles for the long-range ordered antiferromagnet. This can occur only in the
renormalized classical regime, below the dashed line on the left of the �gure.

16.1 Pseudogap in the renormalized classical regime

When we compared TPSC with Quantum Monte Carlo simulations and with
FLEX in Fig. 15-4 above, perhaps you noticed that at the Fermi surface, the
frequency dependent spectral weight has two peaks instead of one. In addition, at
zero frequency, it has a minimum instead of a maximum. That is called a pseudo-
gap. A cartoon explanation [88] of this pseudogap is given in Fig. 16-1. At high
temperature we start from a Fermi liquid, as illustrated in panel I. Now, suppose
the ground state has long-range antiferromagnetic order as in panel III, in other
words at a �lling between half-�lling and nc. In the mean-�eld approximation we
have a gap and the Bogoliubov transformation from fermion creation-annihilation
operators to quasi-particles has weight at both positive and negative energies. In
two dimensions, because of the Mermin-Wagner theorem, as soon as we raise the
temperature above zero, long-range order disappears, but the antiferromagnetic
correlation length � remains large so we obtain the pseudogap illustrated in panel
II. As we will explain analytically below, the pseudogap survives as long as � is
much larger than the thermal de Broglie wave length �th � vF =(�T ) in our usual
units. At the crossover temperature TX , the relative size of � and �th changes and
we recover the Fermi liquid.
We now proceed to sketch analytically where these results come from starting

from �nite T . Details and more complete formulae may be found in Refs. [93,
95, 97, 94]1 . We begin from the TPSC expression (15.15) for the self-energy.
Normally one has to do the sum over bosonic Matsubara frequencies �rst, but
the zero Matsubara frequency contribution has the correct asymptotic behavior
in fermionic frequencies iqn so that, as in Sect.??, one can once more isolate on
the right-hand side the contribution from the zero Matsubara frequency. In the

1Note also the following study from zero temperature [14]
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renormalized classical regime then, we have 2

�(kF ; ikn) / T
Z
qd�1dq

1

q2 + ��2
1

ikn � "kF+Q+q
(16.4)

whereQ is the wave vector of the instability. This integral can be done analytically
in two dimensions [97, 92]. But it is more useful to analyze limiting cases [95].
Expanding around the points known as hot spots where "kF+Q = 0, we �nd after
analytical continuation that the imaginary part of the retarded self-energy at zero
frequency takes the form

�00R(kF ; 0) / ��T
Z
dd�1q?dqjj

1

q2? + q
2
jj + �

�2 �(v
0
F qjj) (16.5)

/ �T

v0F
�3�d: (16.6)

In the last line, we just used dimensional analysis to do the integral.
The importance of dimension comes out clearly [95]. In d = 4, �00R(kF ; 0)

vanishes as temperature decreases, d = 3 is the marginal dimension and in d = 2
we have that �00R(kF ; 0) / �=�th that diverges at zero temperature. In a Fermi
liquid the quantity �00R(kF ; 0) vanishes at zero temperature, hence in three or
four dimensions one recovers the Fermi liquid (or close to one in d = 3). But
in two dimensions, a diverging �00R(kF ; 0) corresponds to a vanishingly small
A(kF ; ! = 0) as we can see from

A(k; !) =
�2�00R(kF ; !)

(! � "k � �0R(kF ; !))2 +�00R(kF ; !)2
: (16.7)

Fig. 31 of Ref.[88] illustrates graphically the relationship between the location of
the pseudogap and large scattering rates at the Fermi surface. At stronger U the
scattering rate is large over a broader region, leading to a depletion of A(k;!) over
a broader range of k values.

Remark 65 Note that the condition �=�th � 1, necessary to obtain a large scat-
tering rate, is in general harder to satisfy than the condition that corresponds
to being in the renormalized classical regime. Indeed, �=�th � 1 corresponds
T=vF � ��1 while the condition !sp � T for the renormalized classical regime
corresponds to T � ��2; with appropriate scale factors, because !sp scales as �

�2

as we saw in Eq. (??) and below.

To understand the splitting into two peaks seen in Figs. 15-4 and 16-1 con-
sider the singular renormalized contribution coming from the spin �uctuations in
Eq. (16.4) at frequencies ! � vF �

�1: Taking into account that contributions to
the integral come mostly from a region q � ��1, one �nds

�0R(kF ; !) =

�
T

Z
qd�1dq

1

q2 + ��2

�
1

ikn � "kF+Q

� �2

! � "kF+Q
(16.8)

which, when substituted in the expression for the spectral weight (16.7) leads to
large contributions when

! � "k �
�2

! � "kF+Q
= 0 (16.9)

2This formula is similar to one that appeared in Ref.[43]
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or, equivalently,

! =
("k + "kF+Q)�

p
("k � "kF+Q)2 + 4�2
2

; (16.10)

which, at ! = 0, corresponds to the position of the hot spots3 . At �nite frequen-
cies, this turns into the dispersion relation for the antiferromagnet [76].
It is important to understand that analogous arguments hold for any �uctua-

tion that becomes soft because of the Mermin-Wagner theorem,[97, 21] including
superconducting ones [97, 3, 38]. The wave vector Q would be di¤erent in each
case.
To understand better when Fermi liquid theory is valid and when it is replaced

by the pseudogap instead, it is useful to perform the calculations that lead to
�00R(kF ; 0) / �=�th in the real frequency formalism. The details may be found in
Appendix D of Ref. [97].

16.2 Pseudogap in electron-doped cuprates

High-temperature superconductors are made of layers of CuO2 planes. The rest of
the structure is commonly considered as providing either electron or hole doping
of these planes depending on chemistry. At half-�lling, or zero-doping, the ground
state is an antiferromagnet. As one dopes the planes, one reaches a doping, so-
called optimal doping, where the superconducting transition temperature Tc is
maximum. Let us start from optimal hole or electron doping and decrease doping
towards half-�lling. That is the underdoped regime. In that regime, one observes
a curious phenomenon, the pseudogap. What this means is that as temperature
decreases, physical quantities behave as if the density of states near the Fermi
level was decreasing. Finding an explanation for this phenomenon has been one
of the major challenges of the �eld [85, 67].
To make progress, we need a microscopic model for high-temperature super-

conductors. Band structure calculations [5, 70] reveal that a single band crosses
the Fermi level. Hence, it is a common assumption that these materials can be
modeled by the one-band Hubbard model. Whether this is an oversimpli�cation
is still a subject of controversy [71, 44, 72, 81, 47, 27]. Indeed, spectroscopic stud-
ies [18, 71] show that hole doping occurs on the oxygen atoms. The resulting
hole behaves as a copper excitation because of Zhang-Rice [100] singlet formation.
In addition, the phase diagram [79, 50, 2, 1, 29, 34] and many properties of the
hole-doped cuprates can be described by the one-band Hubbard model. Typically,
the band parameters that are used are: nearest-neighbor hopping t = 350 to
400 meV and next-nearest-neighbor hopping t0 = �0:15 to �0:3t depending on
the compound [5, 70]. Third-nearest-neighbor hopping t00 = �0:5t0 is sometimes
added to �t �ner details of the band structure [70]. The hoppings beyond nearest-
neighbor mean that particle-hole symmetry is lost even at the band structure
level.
In electron-doped cuprates, the doping occurs on the copper, hence there is

little doubt that the single-band Hubbard model is even a better starting point in
this case. Band parameters [55] are similar to those of hole-doped cuprates. It is
sometimes claimed that there is a pseudogap only in the hole-doped cuprates. The
origin of the pseudogap is indeed probably di¤erent in the hole-doped cuprates.

3For comparisons with paramagnon theory see [74].
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But even though the standard signature of a pseudogap is absent in nuclear mag-
netic resonance [101] (NMR) there is de�nitely a pseudogap in the electron-doped
case as well [7], as can be seen in optical conductivity [68] and in Angle Resolved
Photoemission Spectroscopy (ARPES) [8]. As we show in the rest of this section,
in electron-doped cuprates strong evidence for the origin of the pseudogap is pro-
vided by detailed comparisons of TPSC with ARPES as well as by veri�cation
with neutron scattering [64] that the TPSC condition for a pseudogap, namely
� > �th; is satis�ed. The latter length makes sense from weak to intermediate
coupling when quasi-particles exist above the pseudogap temperature. In strong
coupling, i.e. for values of U larger than that necessary for the Mott transition,
there is evidence that there is another mechanism for the formation of a pseudo-
gap. This is discussed at length in Refs. [80, 28] 4 . The recent discovery [83] that
at su¢ ciently large U there is a �rst order transition in the paramagnetic state
between two kinds of metals, one of which is highly anomalous, gives a sharper
meaning to what is meant by strong-coupling pseudogap.
Let us come back to modeling of electron-doped cuprates. Evidence that these

are less strongly coupled than their hole-doped counterparts comes from the fact
that a) The value of the optical gap at half-�lling, � 1:5 eV, is smaller than for
hole doping, � 2:0 eV [86]. b) In a simple Thomas-Fermi picture, the screened
interaction scales like @�=@n: Quantum cluster calculations [80] show that @�=@n
is smaller on the electron-doped side, hence U should be smaller. c) Mechanisms
based on the exchange of antiferromagnetic calculations with U=t at weak to inter-
mediate coupling [12, 41] predict that the superconducting Tc increases with U=t.
Hence Tc should decrease with increasing pressure in the simplest model where
pressure increases hopping t while leaving U essentially unchanged. The oppo-
site behavior, expected at strong coupling where J = 4t2=U is relevant [34, 36],
is observed in the hole-doped cuprates. d) Finally and most importantly, there
is detailed agreement between TPSC calculations [39, 28, 88] and measurements
such as ARPES [8, 56], optical conductivity [68] and neutron [64] scattering.
To illustrate the last point, consider Fig. 16-2 that compares TPSC calcula-

tions with experimental results for ARPES. Apart from a tail in the experimental
results, the agreement is striking. 5 . In particular, if there was no interaction, the
Fermi surface would be a line (red) on the momentum distribution curve (MDC).
Instead, it seems to disappear at symmetrical points displaced from (�=2; �=2) :
These points, so-called hot spots, are linked by the wave vector (�; �) to other
points on the Fermi surface. This is where the antiferromagnetic gap would open
�rst if there was long-range order. The pull back of the weight from ! = 0 at the
hot spots is close to the experimental value: 100 meV for the 15% doping shown,
and 300 meV for 10% doping (not shown). More detailed ARPES spectra and
comparisons with experiment are shown in Ref. [88]. The value of the tempera-
ture T � at which the pseudogap appears [39] is also close to that observed in optical
spectroscopy [68]. In addition, the size of the pseudogap is about ten times T � in
the calculation as well as in the experiments. For optical spectroscopy, vertex cor-
rections (see Sect. ??) have to be added to be more quantitative. Experimentally,
the value of T � is about twice the antiferromagnetic transition temperature up to
x = 0:13. That can be obtained [39] by taking tz = 0:03t for hopping in the third
direction. Recall that in strictly two dimensions, there is no long-range order.
Antiferromagnetism appears on a much larger range of dopings for electron-doped
than for hole-doped cuprates.
These TPSC calculations have predicted the value of the pseudogap temper-

ature at x = 0:13 before it was observed experimentally [56] by a group unaware

4See also conclusion of Ref.[88].
5Such tails tend to disappear in more recent laser ARPES measurements on hole-doped com-

pounds [35].
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Figure 16-2 On the left, results of TPSC calculations [39, 88] at optimal doping,
x = 0:15; corresponding to �lling 1:15; for t = 350 meV, t0 = �0:175t; t� = 0:05t;
U = 5:75t; T = 1=20: The left-most panel is the magnitude of the spectral weight
times a Fermi function, A (k; !) f (!) at ! = 0; so-called momentum-distribution
curve (MDC). Red (dark black) indicates larger value and purple (light grey) smaller
value. The next panel is A (k; !) f (!) for a set of �xed k values along the Fermi
surface. These are so-called energy-dispersion curves (EDC). The two panels to
the right are the corresponding experimental results [8] for Nd2�xCexCuO4: Dotted
arrows show the correspondence between TPSC and experiment.

of the theoretical prediction in Fig.16.2. In addition, the prediction that � should
scale like �th at the pseudogap temperature has been veri�ed in neutron scattering
experiments [64] in the range x = 0:04 to x = 0:15. The range of temperatures and
doping explored in that work is shown in Fig. 16.2. Note that the antiferromag-
netic phase boundary, that occurs here because of coupling in the third dimension,
is at a location di¤erent from earlier estimates that appear in Fig. 16.2. However,
the location of the pseudogp temperature has not changed. At the doping that
corresponds to optimal doping, T � becomes of the order of 100 K, more than four
times lower than at x = 0:04: The antiferromagnetic correlation length � beyond
optimal doping begins to decrease and violate the scaling of � with �th: In that
doping range, T � and the superconducting transition temperature are close. Hence
it is likely that there is interference between the two phenomena [17], an e¤ect that
has not yet been taken into account in TPSC.
An important prediction that one should verify is that inelastic neutron scat-

tering will �nd over-damped spin �uctuations in the pseudogap regime and that
the characteristic spin �uctuation energy will be smaller than kBT whenever a
pseudogap is present. Equality should occur above T �.
Finally, note that the agreement found in Fig. 16-2 between ARPES and TPSC

is for U � 6t: At smaller values of U the antiferromagnetic correlations are not
strong enough to produce a pseudogap in that temperature range. For larger U;
the weight near (�=2; �=2) disappears, in disagreement with experiments. The
same value of U is found for the same reasons in strong coupling calculations
with Cluster Perturbation Theory (CPT) [80] and with slave boson methods [98].
Recent �rst principle calculations [96] �nd essentially the same value of U: In
that approach, the value of U is �xed, whereas in TPSC it was necessary to
increase U by about 10% moving towards half-�lling to get the best agreement
with experiment. In any case, it is quite satisfying that weak and strong coupling
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methods agree on the value of U for electron-doped cuprates. This value of U
is very near the critical value for the Mott transition at half-�lling [69]. Hence,
antiferromagnetic �uctuations at �nite doping can be very well described by Slater-
like physics (nesting) in electron-doped cuprates.
For recent calculations including the e¤ect of the third dimension on the

pseudogap see [78]. Finally, note that the analog of the above mechanism for the
pseudogap has also been seen in two-dimensional charge-density wave dichalco-
genides [15].
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17. DEFINITIONS

1. Dirac�s delta � (!) and Heaviside�s theta

� (!) =

8<: 1 if ! > 0
1
2 if ! = 0
0 if ! < 0

(17.1)

2. Grand-canonical averageP
i e
��(Ei��Ni) hij O jiiP
i e
��(Ei��Ni)

=

P
i hij e��(H��N)O jiiP

i e
��(Ei��Ni)

=
Tr
�
e��(H��N)O

�
Tr
�
e��(H��N)

� = hOi

(17.2)

3. We often de�ne the density matrix by

b% = e��H=Tr
�
e��H

�
: (17.3)

Then, we can write

hAs (t)Asi = Tr [b%As (t)As] (17.4)

4. Conductivity sum ruleZ 1

�1

d!

2�
Re [�xx(qx; !)] =

ne2

2m
=
!2p
8�

(17.5)

5. Dielectric constants

 !
�T (q; !) =

 
1�

!2p
(! + i�)2

!
 !
I +

4�

(! + i�)2

� !
�Rjj(q; !)

�T
: (17.6)

1

�L(q; !)
= 1� 4�

q2
�R��(q; !): (17.7)

6. Equalities.
� Asymptotically equal to (17.8)

� Scales as (17.9)

� Is equal by de�nition (17.10)

' Is approximately equal to (17.11)

7. f sum rule Z 1

�1

d!

�
!�"nn(k; !) =

nk2

m
: (17.12)

8. Fluctuation-dissipation theorem

SAiAj
(!) =

2~
1� e��~! �"AiAj

(!) (17.13)
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9. Fourier transforms

fk =

Z
d3r f(r)e

�ik�r

f(r) =

Z
d3k

(2�)
3 fke

ik�r

g! =

Z
dt g(t)ei!t

g(t) =

Z
d!

2�
g!e

�i!t

(note the di¤erence in sign in the exponent for space and time Fourier trans-
forms.)

Convolution theorem:Z
dtei!t

�Z
dt0a(t0)b(t� t0)

�
� a!b!

Parseval�s theorem is obtained by taking
R
d!
2� on both sides of the previous

equality Z
dt0a(t0)b(�t0) �

Z
d!

2�
a!b!

The above two theorems may also be written in a reciprocal mannerZ
d!

2�
e�i!t

�Z
d!0

2�
a!0b!�!0

�
= a(t)b(t)

Z
d!0

2�
a!0b�!0 =

Z
dtei!ta(t)b(t)

For a translationally invariant system, note that with V the volume,Z
d (r� r0) e�iq�(r�r

0)f(r� r0) = 1

V

Z
dre�iq�r

Z
dr0e�iq�r

0
f(r� r0)

(17.14)

10. Heisenberg representation

O(t) = eiHt=~Oe�iHt=~

11. Interaction representation

OI(t) = eiH0t=~OSe�iH0t=~

i~
@

@t
UI(t; t0) = HI(t)UI(t; t0) (17.15)

UI(t; 0) = Tce
�i
R t
0
HI(t

0)dt0

UI(t0; t0) = 1

1. Kramers-Krönig relations

Re
h
�RAiAj

(!)
i
= P

Z
d!0

�

Im
h
�RAiAj

(!0)
i

!0 � !

Im
h
�RAiAj

(!)
i
= �P

Z
d!0

�

Re
h
�RAiAj

(!0)
i

!0 � ! :
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2. Kubo formula for longitudinal conductivity

�xx(qx; !) =
1

i(! + i�)

�
�Rjxjx(qx; !)�

ne2

m

�
=

�
1

iqx
�Rj��(qx; !)

�
: (17.16)

for transverse conductivity

�yy(qx; !) =
1

i(! + i�)

�
�Rjyjy (qx; !)�

ne2

m

�
: (17.17)

3. Mathematical identities (Sokhatsky-Weierstrass formula)

lim
�!0

1

! + i�
= lim
�!0

! � i�
!2 + �2

= lim
�!0

�
!

!2 + �2
� i�

!2 + �2

�
= P 1

!
� i��(!)

lim
�!0

1

! � i� = lim
�!0

! + i�

!2 + �2
= lim
�!0

�
!

!2 + �2
+

i�

!2 + �2

�
= P 1

!
+ i��(!)

4. Normalization:

Continuum normalization for plane waves:

hR jkii =
1


1=2
eiki�R (17.18)Z

dk

(2�)
3 =

1

V
X
k

; V = LxLyLz ; kx =
�nx
Lx

::: ; nx = �
Lx
a
+1; :::;�1; 0; 1; :::; Lx

a

(17.19)
This is another consistent normalizationZ

dr jri hrj = 1 (17.20)

hr jr0i = � (r� r0) (17.21)

hr jki = eik�r (17.22)Z
dk

(2�)
3 jki hkj = 1 (17.23)

hk jk0i = (2�)3 �
�
k� k0

�
(17.24)

1. Plasma frequency

!2p =
4�ne2

m
(17.25)

2. Response function (Susceptibility)

�RAB(r; r
0; t; t0) =

i

~
h[A(r; t); B(r0; t0)]i �(t� t0)

or in short hand,

�"AiAj
(t� t0) = 1

2~
h[Ai(t); Aj(t0)]i :

�RAiAj
(t� t0) = 2i�"AiAj (t� t0)�(t� t0):

For operators with the same signature under time reversal,
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Im
h
�RAiAj

(!)
i
= �"AiAj

(!)

while two operators Ai; Aj with opposite signatures under time reversal

Re
h
�RAiAj

(!)
i
= �"AiAj (!):

Spectral representation

�AiAj
(z) =

Z
d!0

�

�"AiAj
(!0)

!0 � z (17.26)

3. Minimal coupling to the electromagnetic �eld. N.B. e is the charge of the
particle. It can be positive or negative

p� =
~
i
r� !

~
i
r� � eA(r�; t) (17.27)

i~
@

@t
! i~

@

@t
� e�(r�; t): (17.28)

4. Tensors. Multiplication by a vector� !
�T �A

�
�

=
X
�

�T��A� : (17.29)

Unit vector bq = q= jqj
Transverse part

 !
�T (q; !) =

� !
I �bqbq� �  !� (q; !) � � !I �bqbq� (17.30)

Dyadic product represention of a matrix

(bqbq)ab = bqabqb (17.31)

Longitudinal part  !
�L(q; !) = bqbq �  !� (q; !) � bqbq (17.32)

5. Thermal average (see canonical average)

6. Theta function (Heaviside function)

�(t) =
1 if t > 0
0 if t < 0

(17.33)

7. Kronecker delta function

�k;0 =
1 if k = 0
0 otherwise

(17.34)

8. Electromagnetic constants: "0 = 8:85�10�12 farad/meter is the permittivity
of vacuum and �0 = 4� � 10�7 henry/meter its permeability.

"0�0 =
1

c2
:
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