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https://github.com/ru-ccmt/eDMFT
Easy to follow tutorials, easy to install (Python/C++/Fortran)

http://hauleweb.rutgers.edu/tutorials/

One of the first DFT+DMFT implementations with
many advanced & unique features:
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Or get it from Git repository

Old Python 2.7 version for compatibility.
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- High throughput scripts for eDMFT calculation, including magnetic materials
- Exact double-counting between LDA&DMFT (PRL 115, 196403 (2015))

* Forces on all atoms
» Structural relaxations within eDMFT free energy functional

* Phonons within eDMFT
* LAPW precise basis set for all electrons (with Wien2k)
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Why bother with uniform electron gas!?

* Solution of UEG serves as a proof of principle that tests the capability of a method to address
realistic materials with long range Coulomb repulsion (beyond simplified models).

* Such solution offers new insights into the ab-intion methods (DFTs and GWs), and more
understanding of screening in solids.

Variational Diagrammatic Monte Carlo (VDMC) [I,2] allows

* very precise determination of certain physical observables in electron gas: effective mass, landau-
liquid parameters, spin & charge susceptibilities.

* It also provides XC-kernel needed in TDDFT community [3].

* |t settles the debate on bandwidth in electron gas, as relevant for Na metal.

* It is useful in other fields, i.e., warm dense matter field uses the same model at higher
temperature, where VDMC performs even better.

* VDMC could be developed into electronic structure method for high-throughput calculation (like
achieved in DFT community, as well as recently by DFT+eDMFT method [4]).

-
.

VDMC: Buﬂd databa
accurate elec

[1] Kun Chen, K. Haule, Nature Communications 10, 3725 (2019)
[2] K. Haule, K. Chen, Scientific Reports 12,2294 (2022)

[3] J. P.F. LeBlanc, K. Chen, N.V. Prokof’ey, K.H., Igor S.Tupitsyn, PRL 129 (24),
246401 (2022).

[4]Kamal Choudhary et.al., npj Computational Materials 6, | (2020).
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History : Uniform electron gas X
— . ‘9 @ P
Is at the heart of the DFT success for materials property prediction.
oL y|n] / OVyeln](r, w)
E [n] V., = —— = Jrelnl(r,r', w) = p
XC xC Sn I on(r’' w)
Remains essentially unknown to this day
Dirac’s relativistic theory of the electron Needed in TDDFT
1928 |Bloch’s theory of electrons in solids - | o
Pauli-Sommerfeld free electron theory of metals Very little is known: spin susceptibility, Landau
parameters,...
1934 |Wigner’s proposal of the Wigner crystal high temperature at warm dense matter (plasma) conditions

1956 |Landau’s theory of Fermi liquids

1957 |BCS theory of superconductivity

1964 |Hohenberg-Kohn-Sham DFT

1980 |Ceperley-Alder QMC prediction of Exc

many properties of UEG remain unknown

Diffusion MC simulation of UEG (trajectories in imaginary time)
J. Chem. Phys. 151, 014108 (2019)



The Solid to Uniform Electron Gas Problem

2
H = Z f dry! ()] Zm - V(D) () + %Z f Erd’r' i, ()0 — v () (r) + H,_,

V._, electron-nuclei interaction
H,_, nuclei-nuclei interaction
, 1
Ve(r—r) =
drreplr — 1’|

neglecting spin-orbit coupling

Born-Oppenheimer: H,_, and V,_, justa classical potentials

Uniform electron gas:  V,_ (r) = — f d’r'Ve(r —r')ng where ng is constant neutralizing density

e-n and n-n terms diverge, but they cancel out exactly, so that the final Hamiltonian is simplified to

K 1 fot
H=) Ui st 50 ), YiegWiomg Ve@Wiestic,

k,s q#0,kK’,ss’

notice the absence of g=0 term, which is diverging and cancels out.



Significance of Uniform electron gas for DFT

E = <(DO‘H|(DO> — <(DO‘T T He—e T Ve—nlq)0> — <(DO|T + He—e‘q)0> + fdgl' Ve—n(r) n(I')

Hohenberg-Kohn theorem: Ground state electron density n(r) is V-representable.

The knowledge of n(r) alone gives knowledge of the external potential and hence the Hamiltonian H.
If the Hamiltonian is uniquely determined from density, then the ground state is also a functional of the
density only. (The ground state might be degenerate, but the universality of the functional can still be proven.)

Hohenberg-Kohn theorem: (®g|T + H,_.|®) is universal functional of the density n(r),i.e.,

Flin}] = (@"|T + H,_|®]"™)

V- 1
Fl{n}] = (@] ) f PrylO->=s@ + 5 ) f Erd’ e YW, (Ve — ')y () (0)|0g ™)

Universal functional can be computed from the simplest possible interacting model, i.e., the
uniform electron gas model?7??



Significance of Uniform electron gas for DFT

It is unlikely that we will ever be able to compute functional F[{n}] exactly even for the uniform electron gas.
The functional is non-local even in UEG: F[{n}] = (CD'S(”IT + He—e|q)g(r)>

We want to find a part of the functional for which a local-type approximation is good.

E = f eV, () + Exlin] + Tolin}] + Exlin}]

Eyl{n}] = % f rd’r' n(r)Ve(r — r)n(r’)

To[{n}] IS not the exact kinetic energy, but just the kinetic energy of
the corresponding non-interacting system.
We do not even know how to express the total kinetic energy
or the exchange energy as a functional of density.
They can be expressed exactly with the density matrix.

E ..[{n}] turns out to be a piece that is amenable to local approximation.

Ere ® f dr n(r)eyC [n(r)] f
map solid point by point to UEG ~ @

©

<

LDA:

to compute XC energy and XC potential

© © ©
© .0.0
© ©



Time dependent DFT=TDDFT

DFT is pretty good for ground state properties (exact DFT is exact)
But DFT has well known “gap problem” when trying to interpret KS spectra as physical excitations

T § ¢ & .U
- rwt-JC
o o ; g)‘y O | | |
N < T O [V from Richard Martin etal,, Interacting electrons
6 < O O IO _
— S o = ke
3 38 % @ . ° :
: : a =i Oa ™ .~ .
Gaps in semiconductors: g4 B gL mm b
= £ G0 gﬁ; A =-
3 o Q
87 oBEW S
o ¥
T O
o v GO GW=0 -
. LDA=H
] .l ] | ] | ] |- ] |
0 2 4 6 8

experimental gap (eV)

The same idea was extended by Gross&Kohn in 1985 to compute the excited state properties (PRL 55, 2850):
—1 /. | /. / /
X (r?raw)_XKS(rar9w)_VC(r_r)_fXC(r9raa))

density time response: x(r,r’,7) = — " (r, Dy ((r, T (0, (', 7)) w2

Kohn-Sham non-interacting response (RPA bubble): <>



Time dependent DFT=TDDFT

Hohenberg-Kohn for GS DFT: One can not find two different V/,_, potentials that give
rise to the same electron density 77(T) in the ground state.

H)=T+H,_,+V,_,(t) addtime-dependence to external potential

Runge-Gross theorem (PRL 52, 997, (1984)):

One can not find two different V,_,(¢) V _ () potentials that give rise to the same
electron density n(r, 1), if n(r,t) is time evolved by H(t) from the ground state.

Caveat: Ven(t) has to be expandable in Taylor series (analytic in time) and Ve-n(t) and V’e-n(t) differ for more than c(t)

Gross&Kohn (PRL 55, 2850, (1985)):
using time-dependent Schroedinger Eqg. the response of the interacting electrons is

X, 0) = e (0,1 0) = Ve(r = 1) = fio(r, v, w)

oVie[{in}l(r, w)
on(r’, w)

where f..[{n}](r,r"; w) = is universal functional of n... But whatis  fxc[{n}] ?



Time dependent DFT=TDDFT %

Original idea was to take the unknown f.[{7}] from the uniform electron gas.

But we do not know f,.[{n}] in UEG.

If we assume f,.[{n}] is local to a point in 3D space and local in time (constant in frequency) than:

OVyelint(r,w =0) 6% E c[{n}]
onr',w=0) on?

fxc[{n}](ra l',; w =0) = o(r — I',) Adiabatic LDA

n=ny

Considerably improves (compared to LDA) the
excitation energies of molecules

LS — P excitation energies in two-valence-electron atoms.

Not much better gaps or optical excitations In
semiconductors.

LDA
Atom Wexp WALDA wg)l))A 60 " ALDA
He 1.56 Ry 1.552 _ 50f @ :
Be 0.388 0.399 0.257 20! Si optics Experiment
Mg 0.319 0.351 0.249 a0l
Ca 0.216 0.263 0.176 |
Zn 0.426 0.477 0.352 20|
Sr 0.198 0.241 0.163 10}
Cd 0.398 0.427 0.303 SEDE = 4R

Frequency [eV]



Time dependent DFT=TDDFT

Xks(q, w)
1 — XKS (q9 w)[4gzez | fxc(qa (1))]

Optics is g->0 charge response, which is in TDDFT: x(q, w) =

. (w)
If we want a substantial change of optics in semiconductors, than we require the form:  lim /(4. ) = ¢

Should be singular in semiconductors at zero frequency, but not in metals, like UEG.

L. Reining, V. Olevano, A. Rubio, G. Onida, PRL 88, 066404 (2002)
| Exp phen. TDDFT
Phenomenological ansatz works really well: — l —
50 —

.02 |

fXC(ra r ) T 40

drlr — r’|

N

30

Im &(m)

But each semiconductor needs different number

20

10

6

Conclusion: fxc is highly non-local 2 3 4

5
dots: Exp
dot-dashed: ALDA

dashed: GW+Bethe-Salpeter

continuous: phenomenological TDDFT



Time dependent DFT=TDDFT |

Nazarov&Vignale&Chang (PRL 102, 113001, (2009))-

Instead of TDDFT for density-density response function, we might use current-current response functions.

Time Dependent Current Density Functional Theory (TDCDFT):

. drrec éq D €,
A—] / . A—] / / q q
X (q,(l ,(1)) _XKS(qaq 9w)_fXC(q9q ,(1)) 5‘1,(1’
wz q2
where X' s current-current response function.
fre = fL&fL has two components: longitunidal and transverse
Local approximation on longitudinal & transverse fx.c seems a much better a(w)
approximation as it leads to desired form for the charge fic ~ lim fi.(q,0) = —

q—0

— ) (G- eg)’[[(G, w) = f1(G, @ = 0)]Ing(G)I*

Namely: lim f,.(q, w) =
q—0 yd™ G=0

flxc(w) Is not known in uniform electron gas, hence this was not evaluated yet.
Only phenomenological kernels are used in practice.



Bandwidth of alkali metals, correspond to rs~4

Bandwidth of Na metal is controversial for 35 years:

-ARPES bandwidth show reduction for 18-25% [1,2] (newer 2021 data 10%)

-some GW calculation reproduce reduction [3], most do not.

-DMC shows increased bandwidth, not reduced [5] because of fixed node approximation.

(1] E. Jensen & E.W. Plummer, PRL 55, 19121915, (1985).
2] I.-W. Lyo & E.W. Plummer, PRL 60, 1558-1561, (1988).

3] J.E. Northrup, M.S. Hybertsen, & S.G. Louie, PRL 59, 819 (1987).
[4] X. Zhu, & A.W. Overhauser, RPB 33, 925(1986).
5] R. Maezono, M.D. Towler, Y Lee, & R.J. Needs, PRB 68, 165103, (2003).

(6] J. McClain, J. Lischner, T. Watson, D.A. Matthews, E. Ronca, S.G. Louie,
T.C. Berkelbach, G. K-L Chan, PRB 93, 235139 (2016)

Energy(eV)

LDA/mBJ

— YS-PBEO
— B3LYP

N I N

Expl: E. Jensen & E.W. Plummer, PRL 355, 1912-1915, (198)5).
Exp2: D. V. Potorochin, B. Buechner et.al., arXiv:2112.00422



Variational Diagrammatic Monte Carlo

Diagrammatic MC: provided numerically exact solution by
summing sufficiently high-order Feynman diagrams+

* N. Prokof’ev, B. Svistunov, PRL 81,2514 (1998)
N. Prokof’ev. B. Svistunov, PRB 77, 020408 (2008)

Variational Diag-MC:

* variational principle to determine best starting point (such as screening by
Yukawa form) to achieve fast convergent series.

* leverage sign blessing: exact summation of diagrams that largely cancel
optimizing internal variables (such as the conserving Baym-Kadanoff
group of Hugenholtz diagrams)

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).



Variational Perturbation Theory

PHYSICAL REVIEW

Started with Kleinert & Feynman ETTERS
Later improved by Kleinert & Janke

Convergent Strong-Coupling Expansions from Divergent Weak-Coupling Perturbation Theory

W. Janke!? and H. Kleinert?

nstitut fiir Physik, Johannes Gutenberg-Universitit Mainz, Staudinger Weg 7, 55099 Mainz, Germany
2Institut fiir Theoretische Physik, Freie Universitit Berlin, Arnimallee 14, 14195 Berlin, Germany

1

Anharmonic oscillator:  V(x) = §w2az2 + gz*
. L . 3 21 333

Weak coupling series is diverging at small w: g, = = | 2 - g U

PITS IS 079 T2 T8 T 1608

. 1 1
Rearrange perturbation: V(z) = 5&2%2 + E(ga* + §(w2 — 0%)a?)
(2 variational
counter-term
parameter

¢ = 1 settounity at the end
Perform expansion in powers of & EM) 1], E2) Q,---

dE™[Q)] .
dQ =0— Qoptimal

Principle of minimum sensitivity:

Final expansion: Q! |, E@ 0?2 l,- - -

optimal optimal



Variational Perturbation Theory

Check first order:
H = Hy + £(gz* + = (w? — 02)22)

2
Expansion:
pE(l)_<¢ ‘HW>_Q‘|‘§( 3 |1w2_ﬂ2)£;1) Q1w 3
— ORI S TS0 T 2T 20 110 T
perturbaﬂve Notice w = 0 is fine.
correction
1 2
Principle of minimum sensitivity: 420 _ 1w 3
df) 4 40)? 2013
O —w?Q—6g=0
At w =10 Qf);)timal = (69)1/3

. . 3
Final first order: EW QW 1= g1/3261/3 ~ ¢1/3(.68142

optimal 8

Exact result:  E¢*2t = ¢1/30.66798

Turned diverging series into fast converging series



Variational Perturbation Theory

1 v ' v y - Y v v .
Accuracy: E-Eexact

Higher order terms are well behaved 10 |
and rapidly converging -
101
AN
1020 -

Xy

10 + 40 digits accuracy

Even odd term optimization:

0.8

0.75
E |
().T:

0.65

0.6

stronger divergence ' larger plateau of
at small w optimal value



Variational Diagrammatic Monte Carlo

Lagrangian + counter-terms:

L = Lo+ AL(¢)

|) choose a good reference system (Lo), which allows for emergent property. VWe want
to leverage the locality of correlations (as known from success of LDA and DMFT) to
achieve fast convergence : screened short-range interaction in solids or

DFT+DMFT solution the problem.

2) Optimize parameters in AL with principal of the minimal sensitivity, or
renormalized condition. AL makes L exact, hence AL is not just the interaction, but
more complicated Lagrangian with counter-terms.

3) Use Diagrammatic Monte Carlo to evaluate Feynman expansion to high order until
convergence (use sign blessed groups to avoid sign problem)



Uniform Electron gas as testbed for method development

0 h2V? 9 FT &r
Lzzwl" (5’7‘ H 2m )wkg | QVZ'Oq g2/ r —r/| >q2
ko

q70

Coulomb interaction long ranged
bad sign problem for diagMC

r—1/

with Hubbard-Stratonovich can be transformed to

boson that mediates the interaction electron operator



Uniform Electron gas, a testbed for method development

L = Lo+ AL(E)

5 AV ¢
Lo =2 _ ¥k (67 B Tom >¢k0+2<1>1; e
ko q7#0
;
AL = Z pa®L + p_qPq
V2V =
¢Q(r) wka (I’)

boson that mediates the interaction electron operator



VDMC for electron gas

L = Lo+ AL(€)

g B2V
Lo =) Wi, (87 T ZZL | vk(€=1)> Yo+ y P
ko

q#0
A ?
AL = — Zwlg Uk (§) Yko _€Z (I)ES_;I_(I)q T \/E\/W Z pq(I):fl + p—qPq
ko q70 q70

original problem at

¢q(r) wka (I’) f = 1.

boson that mediates the interaction electron operator



VDMC for electron gas

L = Lo+ AL(¢)

O RAVE: + Mg Kun Chen
_ Z f | Z f q°
0o ko Vo (67' M Tom (& = ) Vieo " b

= S W, (€ s —gzqﬁ CER/ .
ko

Z quI)T + p_qPq
q70

V2V
original problem at

. =1

1
Gy (iw) = -
exp(—rv ) /r iw+ p— 2 —
Coulomb interaction is static electron propagator is optimized
and short ranged (DFT KS-potential or DMFT self-energy, etc)
3
ST > ’

Counter terms make sure that we get the Counter-term makes sure that the exact
exact answer at large order for any A answer is obtained for any vk at large p.o.

Open question: How to determine parameters A and v




Screening length

Possible choices for A:

A A

C]2/(87T) - ﬁq
~ Makes sure that average p. order < |
1) A= —llg=0,u=0 e

renormalized condition,
borrowed from renormalized perturbation theory

Average perturbation order:  (IN) = Tr(AWq) =

— "~/

. one Wew = ~
A\ Screened interaction: V4w T 7+ A

TN=1 :
2) —— = _Hq:(),w:() Exact cancelation of bubbles+c.t. at low energy
T l.e., self-consistent determination of screening

dﬁqw:()
d\

|) Poor convergence and rapid oscillations with orders (approx. 5-times too small)
2) To converge we need to go to order 25=87 ! (approx. 5 times too large)

The principle of smallest sensitivity.
— O — )\ (borrowed from variational perturbation theory)

3)

3) The best choice is due to variational perturbation theory, i.e., still quite small
perturbation order, but quite monotonic convergence to exact answer.



Example: expansion for polarization

First order is the standard RPA:

2 —1
Wa=(vg —Tlg)™" = (q 8—;)\ €8>7\T SPS—O(EQ)--)
g = = ¢ <> + @ Screened RPA

+€2(@ +® +© )+  2n order correction
+€3(@ ¥ @ ¥ @ +.. 3rd order correction

1/(g* + X) A
£ \/E f ST
AVA! VAV
> ’_‘
G (iw) = :

iw+p— 2 — v ve(6) = E(5F — 57 )+ €255 + s34 - -



From sign problem to sign blessing

How to group diagrams to sign-blessed groups!?

Symmetry preserved in each group:

Crossing symmetry, spin rotational symmetry,...
At the lowest order leads to “Hugenholtz diagrams”

ki—q kitq ki-q kotq kit q kotq
—_— aVaVa Va2V
— %_w + o

k k, kg k, k; k,

Ward identity (each MC step is conserving):

Baym-Kadanoftf algorithm is used to construct
oroups of diagrams with consistent internal
variables (preserve particle number, energy,
momentum in each MC step).

Vertex renormalization:

Make sure to combine diagram with the corresponding
counter-term that cancels the high-energy contributions



dielectric constant-direct comparison to DMC

Q/kF Q/kF

1.0

Momentum
dependence 0.8
challenging for DMC < 4
because they treat
finite system.

3
=
o 0.4
~—
™

0.2

New

bea

P

LS

method

DMC In

recision.

DMC: BJ.Alder, PRB 50,
14838 (1994)

Q/kF Q/kF

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).



ot O oflo _ 1 47-‘-743
Spin-susceptibility at r=4 ( - =""s )
n 3
spin susceptibility at g=0, w=0 see: Feynman & Kleinert, PRA 34, 5080 (1986)
AIEE
0.5 1.0 1.5 2.0
2.0 : : : :
" a r«=4 CFS Scan in A reveals the speed of convergence.
<
S L5 O e e——
S t broad plateau in A at large order =>
[ o~ f converged value in the plateau.
3 1.0 -
R T
P —e N=2
0.5 ——o N=3 °
—eo N=4 |
ELL 2.5 - c N=5
x —e N=06
a _
o 2.0-
g Values at the optimum (principle of minimal
- 1.5 1 7 sensitivity) converge very fast
~1.0-
1 2 3 4 5 6

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).



® ) oo 1 47-‘-/’43
Spin-susceptibility at r<=4 ( = ==
P phbility at r=4 ( —=—= )
spin susceptibility at qg=0, w=0 -
A/EF A/EF
0.5 1. O 1.5 2.0 0.5 1. O 1.5 2.0
2.0 : : :
. 4 = 4 CFS re=4 VCCFS |
<
% 1.57 M | N
o ./._._o—o—o-fo-‘—o_._.
|
| | —e N=3
21.0 /_,,._.-o—-—?‘—“"r = N=4
= — N=1 N=5
0.5 1 | | — N=2} — N=§

11.5

711.0

—m— VCCFS

Convergence to
exactly the same
value, but oscillate

2.0

(q, W = O,A)/NF

Vp)

<

1 0.5

VCCFS scheme, a different BK conserving scheme

S—paviy

[

B 2

Bethe-Salpeter ladders added

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).



Spin-susceptibility of electron

gas at rs=4

(-

Calculated values at different densities.

VDMC get four significant digits at order N=6.
Consistent with literature, but significantly more precise.

rs | Xs/Nr | literature

1 152(2) ' 1.15-1.16

2 296(6) | 1.27-1.31

3 1.438(9) 1.39-1.46

4 11.576(9) 1.51-1.62 spin susceptibility for different momenta.

RPA 57% underestimates.

= C —e— CFS I
— 2.5 -
* VCCEFS

=

S 2.0 - |
I

315- e :
g / —— cFs

1.0- . | | | | | | | |

1 2 3 5 00.0 0.5 1.0 1.5 2.0 2.5 3.0
N q/KF

Kun Chen and K. Haule, Nature Communications 10, 3725 (2019).

41r

3
S
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Spin-susceptibility & local field correction

16—a re=1 b— =3
O Tkl === re=1VC re=3VC
Lla e RNy, —— =2 7 — =4 - 1.50
§ . \ rs =2 VC | rs=4 VC 1 s
= \ .
Il 1.0 - 1.00 &
3 ‘ O
o 08" \ 0.75
N %
>2 0.6 - \ 0.50
A\
0.4 - N - 0.25
0.2 - | | . . — . . . . 0.00
00 05 10 15 20 25 0.0 0.5 1.0 1.5 2.0

q/KF q/kr
Definrtion of local field correction: 1y = (Hgl_1 + VoGq) ™!

—1 .
Spin/charge response with LDA is: g = (HS + faoe)
0% By

where  fac :(]2 502
Gq = — xTc
hence Gq 8ﬂf

LDA excellent approximation up to k=kr. RPA much worse.



The single particle-quantities

* [or single-particle quantities GO W,
we need to expand the three- F(N) ORI K K AN M(87) (87/(G2+1))?
particle vertex (Hedin-type EQ). G, 87/(2+)) AR

—— ANANAN
e \We need to optimized A/EF for 130 = _i

W, and separately for Z, and 2 o T
find optimal 4/Er of the order of 15 =150+

unity.
50 =150+ T'52) + fw?%:%i m f@

e Optimized A increases with

increasing order, hence higher W % Q‘{Q
orders are even more local + + +
A

1.00 Jld) ® VDMC C) —— N=1 (g56- o Fo.670
0954 ™ BF-RMC N=2""0.654 -
A SJ-VMC —+= N=3 |0 i
0.90 - e A < BF-VMC —— N=4 0650 - 0.665
ﬁ » GOWO —— N=5 |
0851 v e - 0.660 Z
N T A |
0.80 - ..
0.75 4 Z agrees well with p’ewé’us | 0.655
0 1o J diffusion MC data by M.
- |Holzmann et al. PRL 107, - 0.650
0651110402, (2011).
T I 1 ! T T T T T T T 0645
0 1 2 3 4 025 050 075 1.00 125 150 1.75 2.00

Is A
K. Haule and Kun Chen, Scientific Reports 12, 2294 (2022)



https://www.nature.com/srep

. AL (kp,® =0
effective mass =z (1 e (de )>

0%5.-0

" — v “‘b

—— AN

* Over the last 50 years, the mass in electron gas was controversial, some theories o"':'o
predicting monotonic behavior with density, and other with a turning point.

e Important for understanding which method predicts better Bloch bands and bandwidths
IN moderately correlated systems.

Quasiparticle dispersion near the fermi level is
o / defined by effective mass m*/m.

- DFT assumes m*/m=1 (non-interacting Kohn-
Sham ansatz)

1.00

0.95 -

£ Exact solution (VDMC) remarkably close to
ks m*/m~1. Bounded by vertex corrected
0.90 perturbation theory using local field factors.
m \/DMC
G.,.&G_ —Ccharge+spin vertex correction .
0.851 — G+ —only charge vertex corrections GOWO and QSGW overestimate mass
— GOWO GW underestimates mass
— QSGW
0'80— o GW Il Il Il ] |
00 o5 1o 15 20 o= 30 35 .o Attheuniform density limit, DFT ansatz is

I remarkably accurate, better than GW.

‘GOWO] L. Hedin, Phys. Rev. 139,A796—A823, (1965).
'G+&G-]Simion, G. E. & Giuliani, PRB 77,035131,(2008).
QSGW] A Kutepoy, G. Kotliar, arXiv:1702.04548

'GW] K.Van Houcke, et.al.,Phys. Rev.B 95, 195131 (2017)
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Uniform electron gas: Landau parameters R

.
W Ve

-
v
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Landau parameters for UEG.
have never been computed before by controlled method

g Z m* /m Fy E3

0.8725(2) | 0.955(1) | -0.171(1) | -0.209(5)

0.7984(2) | 0.943(3) | -0271(2) | -0.39(1)

1
2
3 1 0.7219(2) | 0.965(3) | -0.329(3) | -0.56(1)
4 1 0.6571(2) | 0.996(3) | -0.368(4) | -0.83(2)

Fso IS going critical at rs=5.2,
where polarization and
compressibility diverges.

Polarization also diverges at this point,

compressibility diverges at rs=5.2, and signaling subtle instability
expansion breaks down



Bandwidth of Na metal is controversial for 35 years:

-ARPES bandwidth show reduction for 18-25% [1,2]
-some GW calculation reproduce reduction [3], most do not.
-DMC shows increased bandwidth, not reduced [5].

2/EF

2 - VDMC: 4-7% reduction at rs=4.
- f A
-1 § \-X/
_ - : : - Re2-maxent
. X Im2-maxent
3 - X . — A(w)-maxent
—— Rez-pade
—4 - EF . Im3-pade
: : —— A(w)-pade
_5 i 1 [] Y 1 1
—2 -1 0) 1 2
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Real frequency quantities: exchange-correlation kernel

Recently we developed real-tfrequency diag-MC for uniform electron gas.
x(a,w) = Pgg(a,w) + Prg(a,w)[Vy + fac(a, w)]x(q,w)

1 |%
In UEG we compute:  f..(q,w) = _ q
- Pgw)  1-elgw)

dielectric function on real frequency axis Ixe(Q,w) on real frequency axis
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w/EF

. S. Tupitsyn, A. M. Tsvelik, R. M. Konik, and N. V. Prokof"ev, PRL 127, 026403 (2021) J. P.F LeBlanc, K. Chen, N.V. Prokof’ev, K.H., Igor S.Tupitsyn, PRL 129 (24), 246401 (2022).

Challenging to calculate, but a lot of non-trivial structure below EF.
Such change of sign was needed in Si to explain optical data (PRL 102, 11301 (2009)).



Screening in UEG on the two particle level KN
— — e
We find the fastest convergence for spin/charge susceptibility when A/EF~|
0.5 16\/EF 1.5 2.0
Vir) = i e "% where &= L le.o A re4ors
dmegr \/X < 15iesmee
S ——————
VA VEr  \/Ep[eV] os| = N=2

Na metal is close to electron gas with rs~4 and Er~3eV

SNCL ~ QTB ~ OSRMT ~ 025CL and Ui;éj/Uii ~ €Xp(—4) ~ 0.018

Interaction is very well screened in metals and non-local interaction corrections are small.
Hund'’s coupling is very large, because Yukawa screening reduces Fo, but not much Fy,Fa.

Local point of view converging much faster than long-range point of view.

VDMC:
[1] Kun Chen, K. Haule, Nature Communications 10, 3725 (2019)

[2] K. Haule, K. Chen, Scientific Reports 12,2294 (2022)
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Short range correlations point of view

In realistic solids (ab-initio) we do not have yet such calculations that would add
corrections in a controlled systematic way (through counter-terms), nor we have a way
to estimate error of such local approximation. Nevertheless, the local DMFT
approximation is the first step in this directions, and is already very successful in
numerous solids. It allows high-throughput calculation of physical properties.

More restrictive than short range interaction, but very good starting point when screening
makes interaction short range.

DMFT approximates: (ID[{G@']' }] ~ (I)[{Gzz}]

all local Feynman diagrams
(in fully dressed perturbation theory)

(I) I G -] can be obtained by solving an auxiliary quantum
{ 11 } impurity problem (A.Georges & G. Kotliar, 1992).

Similarity with local density approximation: DMET:
LDA: S (o) — 83 (o
V:Uc(rT, I'/’T/) — 5(1‘ — I‘l)é(T — T/)Va:c(r) Zj( ) (¥} ( )

exact in the limit of constant density Much less restrictive than LDA.

i is site, or cluster...

LR

exact in the limit of large connectivity (D).

Keeps entanglement between ion and

environment



