
Two-particle response using parquet equations

Anna Kauch

Petra Pudleiner, Tin Ribic, Clemens Watzenböck, Josef Kaufmann,
Katharina Astleithner, Christian Eckhardt, Julian Mangott

Daniel Wieser, Julius Schnee, Stefan Rohshap, Samuel Badr,

Friedrich Krien, Markus Wallerberger, Karsten Held

Institute of Solid State Physics, TU Wien

Sherbrooke Summer School, 29th May 2024



Outline

Introduction

▶ One-particle vs two-particle excitations

▶ Two-particle response functions

▶ Vertex corrections � when important?

▶ Vertex corrections � how to calculate?

Parquet equations

▶ Why parquet equations?

▶ Two-particle reducibility and parquet decomposition

▶ Optical excitations in systems with strong AFM/CDW �uctuations: π-tons

Challenges

▶ Vertex corrections in real materials?

Solutions

▶ Tiling with triangles (SBE diagrams) and sparse modeling

Summary and outlook



One-particle vs two-particle excitations

One-particle excitations � (inverse) photoemision



One-particle vs two-particle excitations

One-particle excitations � (inverse) photoemission

Two-particle excitations � optical conductivity



One-particle vs two-particle excitations

One-particle excitations � (inverse) photoemision

Two-particle excitations � optical conductivity



Two-particle response functions

▶ Optical conductivity σ(ω) =
Imχjj (ω)

ω

▶ Magnetic susceptibility χm = ∂M
∂H



When are vertex corrections important?

When they are big

▶ Spin susceptibility of the 3d-Fe atoms and corresponding absorption spectra at
T ≈ 232K (method: DFT + DMFT)

C. Watzenböck et al, Phys. Rev. Lett. 125, 086402 (2020)



When are vertex corrections important?

When they are big

▶ Optical conductivity for 8-site chains for di�erent values of the local Coulomb
interaction U (method: exact diagonalization)
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When are vertex corrections important?

When they lead to new, qualitatively distinct, features

Excitons in TM dichalcogenites

Li et al., PRB 90, 205422 (2014)

Theory: Ridol� et al., PRB 97, 205409 (2018)
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When are vertex corrections important?

When they lead to new, qualitatively distinct, features

Excitons in TM dichalcogenites

Li et al., PRB 90, 205422 (2014)

Theory: Ridol� et al., PRB 97, 205409 (2018)

Gap reduction in SmTiO3

One-particle (ARPES) gap ∼ 1.8− 2.5eV
Gössling et al., PRB 78, 075122 (2008)



How can we compute vertex corrections to response functions?

With numerically exact methods

▶ Exact diagonalization (small clusters)

▶ DMRG, Matrix Product States (1D or quasi-1D systems)

▶ Quantum Monte Carlo (small clusters or Anderson impurity model)

With diagrammatic methods

▶ RPA

χm(q) = χ0(q) + χ0(q)Uχ0(q) + χ0(q)Uχ0(q)Uχ0(q) + . . . =
χ0(q)

1− Uχ0(q)

▶ GW + BSE, FLEX, TPSC, ...

With embedded impurity methods

▶ Impurity with a dynamical self-consistent bath represents the entire lattice
system (DFT + DMFT)

▶ Impurity problem is solved with exact methods

▶ Impurity vertices are used in lattice response functions
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Calculation of vertex corrections

With diagrammatic methods

▶ RPA

χm(q) =
χ0(q)

1− Uχ0(q)

▶ GW + BSE, FLEX, TPSC, ...

With embedded impurity methods

▶ Impurity with a dynamical self-consistent bath represents the entire lattice
system (DFT + DMFT)

▶ Impurity problem is solved with exact methods

▶ Impurity vertices are used in lattice response functions: 2P response in DMFT

χm(q) =
χ0(q)

1− Γimpχ0(q)



Problems with Γph = Γimp (no momentum dependence in the vertex)

▶ Impurity vertices are used in lattice response functions

χm(q) =
χ0(q)

1− Γimpχ0(q)

▶ Violation of Mermin-Wagner theorem for 2D lattice � divergence of AFM
susceptibility χm(q = (π, π)) for Tc > 0

▶ Can be cured by using parquet diagrams instead of only ladders � parquet DΓA
C. Eckhardt et al. Phys. Rev. B 101, 155104 (2020)
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▶ Can be cured by using parquet diagrams instead of only ladders � parquet DΓA
C. Eckhardt et al. Phys. Rev. B 101, 155104 (2020)

▶ By using additionally a sum rule � λ-corrected ladder DΓA
A. A. Katanin, A. Toschi, and K. Held Phys. Rev. B 80, 075104 (2009)

▶ By using χ0(q) from a ladder DΓA calcualtion (and not DMFT) �

self-consistent ladder DΓA

J. Kaufmann et al. Phys. Rev. B 103, 035120 (2021)



Problems with Γph = Γimp (no momentum dependence in the vertex)

▶ Impurity vertices are used in lattice response functions

Vertex corrections to optical conductivity

▶ Vanish for impurity vertex or for a ph-ladder constructed from impurity vertex
(except for inter-orbital contributions)

▶ We need to construct a fully momentum dependent vertex F but not from ladder
of Γph = Γimp



Problems with Γph = Γimp (no momentum dependence in the vertex)

▶ Impurity vertices are used in lattice response functions

Vertex corrections to optical conductivity

▶ Vanish for impurity vertex or for a ph-ladder constructed from impurity vertex
(except for inter-orbital contributions)

▶ We need to construct a fully momentum dependent vertex F but not from ladder
of Γph = Γimp

▶ We use the parquet equation for F with Λ = Λimp from DMFT



The concept of irreducibility

Self-energy Σ is one-particle irreducible

Dyson equation:

One particle irreducibility � cutting one line



Two-particle irreducibility
� cutting two lines

Low order diagrams

a) fully irreducible

b) particle-hole (ph) reducible

c) particle-particle (pp) reducible

d) particle-hole vertical (ph) reducible



Ladder diagrams and the Bethe-Salpeter equation

Γr � irreducible vertex in a given channel r = {ph, ph, pp}
F︸︷︷︸

full vertex

= Γr + Φr︸︷︷︸
reducible vertex

Ladder diagrams in a given channel r = {ph, ph, pp} (here ph is shown)

Bethe-Salpeter equation:

F = Γr + Γr (GG)rF

� the reducible vertex is then

=⇒ Φr = Γr (GG)rF



Parquet equations

F is given by contributions from irreducible vertices Λimp, Γ
ph, Γph, Γpp

(parquet equation)

Bethe-Salpeter equation (BSE)
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Full set of parquet equations

F is given by contributions from irreducible vertices Λimp, Γ
ph, Γph, Γpp

(parquet equation)

Bethe-Salpeter equations (BSE)
Schwinger-Dyson equation (SDE)

+ Dyson equation

C. DeDominicis, P.C. Martin, J.Math.Phys. 5, 31 (1964), N. Bickers, Int.J.Mod.Phys.B 05, 253 (1991)



Full set of parquet equations:

▶ Parquet equation
F = Λ + Φph + Φ

ph
+ Φpp

▶ Bethe-Salpeter equation
Φr = Γr (GG)rF

▶ Schwinger-Dyson equation

Σ = ΣHF + U GGG F

and Dyson equation G = [G−1
0 − Σ]−1

Input:

▶ Fully irreducible vertex Λ, (e.g. from DMFT)

▶ Non-interacting Green's function G0 (from a model Hamiltonian or DFT)

C. De Dominicis, P. C. Martin, J. Math. Phys. 5, 31 (1964)
N. Bickers, Int. J. Mod. Phys. B 05, 253�270 (1991)

K.-M. Tam et al. Phys. Rev. B 87, 013311 (2013)

G. Li, AK, P. Pudleiner, K. Held, Comp. Phys. Comm. 241, 146�154 (2019)
C. Eckhardt, C. Honerkamp, K. Held, and AK, PRB 101, 155104 (2020)
F. Krien, AK, and K. Held, PRR 3, 013149 (2021)

F. Krien, AK, EPJB 95, 69 (2022)



Contributions to optical conductivity

▶ Optical conductivity: σ(ω) =
Imχjj (ω)

ω

▶ Parquet equation

▶ Parquet decomposition of χjj



Contributions to optical conductivity

▶ Parquet decomposition of χjj

"Divide et impera", T. Schäfer, A.Toschi, J.Phys.: Cond..Mat. 33, 214001 (2021)



Vertex corrections to optical conductivity

▶ Hubbard model, square lattice, half-�lling, σ(ω) for di�erent T from parquet DΓA
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▶ Parquet decomposition of χjj



Vertex corrections to optical conductivity

▶ Hubbard model, square lattice, half-�lling, σ(ω) for di�erent T from parquet DΓA
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▶ What can we learn from parquet equations? Vertex corrections are dominated by
conttibutions from transversal particle-hole diagrams at momentum (π, π)

AK et al., PRL 124, 047401 (2020)



Optical excitations in systems with strong AFM/CDW �uctuations

Interpretation:

▶ Light at q = 0 couples to magnetic or density �uctuations at q = (π, π)



Optical excitations in systems with strong AFM/CDW �uctuations

Interpretation:

▶ Light at q = 0 couples to magnetic or density �uctuations at q = (π, π)

SmTiO3 ???

Gössling et al., PRB 78, 075122 (2008)



Two-particle response for materials

▶ Challenge : Memory! � scattering vertices of two particles depend on
4 spin-orbital indices, 3 momenta and 3 energies (frequencies)

▶ For one orbital, 80 frequencies and 56× 56 momentum slices a single
vertex needs 240 Petabytes!



Full vertex Fm in the 2D Hubbard model on square lattice
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▶ Each vertex is a function of 3 frequencies and 3 momenta

▶ There are also 4 spin indices. We use here so-called spin diagonal notation, i.e.

Fm = F↑↑↑↑ − F↑↑↓↓

▶ The parameters are U = 4t, T = 0.1t, n = 1

▶ Approximation for the fully irreducible vertex is Λ = U, i.e. parquet approx.

▶ The results were obtained with victory code for 6× 6 momenta

G. Li, AK, P. Pudleiner, K. Held, Comp. Phys. Comm. 241, 146�154 (2019)
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Vertices in the 2D Hubbard model on square lattice
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Two-particle response for materials

▶ Challenge : Memory! � scattering vertices of two particles depend on
4 spin-orbital indices, 3 momenta and 3 energies (frequencies)

▶ For one orbital, 80 frequencies and 56× 56 momentum slices a single vertex
needs 240 Petabytes!

SOLUTIONS:

▶ Momentum dependence reduced to only a few functions: form factors
C. Eckhardt, C. Honerkamp, K. Held, and AK, PRB 101, 155104 (2020),

T. Schäfer et al, PRX 11, 011058 (2021)

▶ Smart reformulation with smaller frequency range (single-boson exchange)
F. Krien, AK, and K. Held, PRR 3, 013149 (2021),

F. Krien, AK, EPJB 95, 69 (2022)

▶ Dimensionality reduction by using IR and QTTs (work in progress)
M. Wallerberger et al, PRR 3, 033168 (2021),

H. Shinaoka et al, PRX 13, 021015 (2023)



Parquet equations

Parquet equation

Bethe-Salpeter equations (BSE)
Schwinger-Dyson equation (SDE)

+ Dyson equation

C. DeDominicis, P.C. Martin, J.Math.Phys. 5, 31 (1964), N. Bickers, Int.J.Mod.Phys.B 05, 253 (1991)
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Tiling with triangles

Parquet equation

F. Krien, AK , K. Held, Phys. Rev. Res. 3, 013149 (2021),

F. Krien, AK, EPJ B 95, 69 (2022)



Tiling with triangles

Parquet equation

▶ E�ective interaction W is given by polarisation Π = GGγ

W =
U

1− UΠ
and

▶ Schwinger-Dyson equation modi�es to: Σ = ΣHF + GWγ



Tiling with triangles � uni�es parquet equations with GW γ

Advantages of triangles reformulation

▶ Clear connection to GWγ method

▶ Physical interpretation in terms of boson-exchange diagrams: SBE vs MBE

▶ MBE diagrams (M's) require much smaller frequency boxes, which allows for
better momentum resolution (currently 16× 16, F. Krien, AK, EPJ B 95, 69 (2022))
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∆ is here the SBE contribution
and the momenta are along the Fermi surface:



Boson-exchange decomposition of optical conductivity

▶ M's are the multi-boson contributions (MBE), γWγ's are the single-boson

contributions (SBE) in each channel (ph, ph, pp)
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Summary and outlook

Vertex corrections

▶ Two-particle response often requires taking into account vertex corrections

▶ DFT + DMFT or ladder DΓA are very successful in computing two-particle
response for materials

▶ For optical conductivity parquet equations are important

We found with parquet equations

▶ Important vertex corrections: π-tons

▶ π-ton contributions to optical conductivity should be universally present in
materials with strong π-�uctuations (AFM, CDW)

▶ Still open question: Can simpler methods describe π-ton vertex corrections?

Outlook: New advances in the parquet method

▶ Dimensionality reduction by using sparse modeling and/or tensor decomposition


