

Variational wave-functions and neural networks

Agnes Valenti

Based on:

Lecture on NQS at ICTP 2024 (smr 3928) by Filippo Vicentini

Review article: M Medvidovic, J Robledo Moreno, arXiv:2402.11014 (2024)

Book: F Becca, "Quantum Monte Carlo approaches for correlated systems"

Part I Machine learning for quantum many-body simulations


```
Quantum many-body problem(s)
```

Schroedinger equation $\mathcal{H}|\Psi\rangle = i\hbar\partial_t|\Psi\rangle$

Schroedinger equation $\mathcal{H}|\Psi\rangle = i\hbar\partial_t|\Psi\rangle$

 \mathbf{x}

4

 p_N

[M Medvidovic, J Robledo Moreno, arXiv:2402.11014 (2024)]

Schroedinger equation $\mathcal{H}|\Psi\rangle = i\hbar\partial_t|\Psi\rangle$

- Ground states $\mathcal{H}|\Psi\rangle = E|\Psi\rangle$
- $\circ \quad \text{Time evolution} \qquad |\Psi_0\rangle \to |\Psi(t)\rangle$
- Finite temperature $[\mathcal{H}, \rho] = i\hbar\partial_t \rho$
- $\circ \quad \text{Open systems} \qquad \qquad \mathcal{L}(\rho) = \partial_t \rho$

[M Medvidovic, J Robledo Moreno, arXiv:2402.11014 (2024)]

Find the ground state $\mathcal{H}|\Psi\rangle = E|\Psi\rangle$

6

Find the ground state $\mathcal{H}|\Psi\rangle = E|\Psi\rangle$

$$|\Psi\rangle = \sum_{S} \Psi(S)|S\rangle$$

Find the ground state $\mathcal{H}|\Psi\rangle = E|\Psi\rangle$

Basis state: Spin-configuration

Find the ground state $\mathcal{H} |\Psi\rangle = E |\Psi\rangle$ Ψ_1 $|\Psi\rangle = \sum_{S} \Psi(S) |S\rangle = \Psi_3$ $\downarrow S = s_1, \dots s_N$ $\downarrow \Phi \Phi \Phi \Phi \Phi \Phi \Phi$ Basis state: Spin-configuration

Find the ground state

 $\mathcal{H}|\Psi\rangle = \mathbf{E}|\Psi\rangle$

Find the ground state

 $\mathcal{H}|\Psi\rangle = \mathbf{E}|\Psi\rangle$

Find the ground state

Parametrize $|\Psi\rangle$

$$\mathcal{H}|\Psi\rangle = \mathbf{E}|\Psi\rangle$$
$$\Psi\rangle = \sum_{S} \Psi(S)|S\rangle$$

Find the ground state

Parametrize $|\Psi\rangle$

Examples:

 $|\Psi\rangle = \sum_{S} \Psi(S)|S\rangle$

 $\mathcal{H}|\Psi\rangle=\mathrm{E}|\Psi\rangle$

Find the ground state $\mathcal{H}|\Psi\rangle = E|\Psi\rangle$ Parametrize $|\Psi\rangle$ $|\Psi\rangle = \sum_{S} \Psi(S)|S\rangle$ Examples: **1) Product (mean-field) ansatz** $\Psi_{\theta}(s_1, \dots s_N) = \Psi_{\theta_1}(s_1) \cdot \Psi_{\theta_2}(s_2) \cdot \dots \cdot \Psi_{\theta_N}(s_N)$ \swarrow \square \square

Find the ground state $\mathcal{H} |\Psi\rangle = E |\Psi\rangle$ Parametrize $|\Psi\rangle$ $|\Psi\rangle = \sum_{S} \Psi(S)|S\rangle$ Examples:**1) Product (mean-field) ansatz** $\Psi_{\theta}(s_1, \dots s_N) = \Psi_{\theta_1}(s_1) \cdot \Psi_{\theta_2}(s_2) \cdot \dots \cdot \Psi_{\theta_N}(s_N)$ $\widehat{\Psi_{\theta_1}}$ $\widehat{\Psi_{\theta_1}$ $\widehat{\Psi_{\theta_1}}$

Find the ground state

Parametrize $|\Psi\rangle$

$$\mathcal{H}|\Psi\rangle = \mathbf{E}|\Psi\rangle$$
$$\Psi\rangle = \sum_{S} \Psi(S)|S\rangle$$

Examples:

1) Product (mean-field) ansatz $\Psi_{\theta}(s_1, \dots s_N) = \Psi_{\theta_1}(s_1) \cdot \Psi_{\theta_2}(s_2) \cdot \dots \cdot \Psi_{\theta_N}(s_N)$

2) Matrix product states

$$\Psi_{\boldsymbol{\theta}}(s_1, \dots s_N) = \mathrm{Tr}[\boldsymbol{A}_1^{s_1} \boldsymbol{A}_2^{s_2} \dots \boldsymbol{A}_N^{s_N}]$$

Area-law entanglement

Find the ground state

Parametrize $|\Psi\rangle$

$$\mathcal{H}|\Psi\rangle = \mathbf{E}|\Psi\rangle$$
$$\Psi\rangle = \sum_{S} \Psi(S)|S\rangle$$

Examples:

1) Product (mean-field) ansatz $\Psi_{\theta}(s_1, \dots s_N) = \Psi_{\theta_1}(s_1) \cdot \Psi_{\theta_2}(s_2) \cdot \dots \cdot \Psi_{\theta_N}(s_N)$

2) Matrix product states

 $\Psi_{\boldsymbol{\theta}}(s_1, \dots s_N) = \operatorname{Tr}[\boldsymbol{A}_1^{s_1} \boldsymbol{A}_2^{s_2} \dots \boldsymbol{A}_N^{s_N}]$

3) Neural-network quantum states

$$\Psi_{\boldsymbol{\theta}}(s_1, \dots s_N) = \mathrm{NN}_{\boldsymbol{\theta}}(s_1, \dots s_N)$$

Neural-network quantum states

$$|\Psi\rangle = \sum_{s_1,\dots,s_N} \Psi_{\theta}(s_1,\dots,s_N) |s_1,\dots,s_N\rangle$$

Neural-net output

Neural-network quantum states

$$|\Psi\rangle = \sum_{s_1,\dots,s_N} \Psi_{\theta}(s_1,\dots,s_N) |s_1,\dots,s_N\rangle$$

Neural-net output

Slide adapted from: Lecture on NQS at ICTP 2024 (smr 3928) by Filippo Vicentini

Neural-network quantum states

$$|\Psi\rangle = \sum_{s_1,\dots,s_N} \Psi_{\theta}(s_1,\dots,s_N) |s_1,\dots,s_N\rangle$$

Neural-net output

Slide adapted from: Lecture on NQS at ICTP 2024 (smr 3928) by Filippo Vicentini

Deep neural networks: $||f^* - f_W|| \sim \exp[-\text{depth}]$?

Proven in some exotic cases [Z. Lu et al, NIPS 30, 6231 (2017)]

Slide adapted from: Lecture on NQS at ICTP 2024 (smr 3928) by Filippo Vicentini

Neural-network quantum states

$$|\Psi\rangle = \sum_{s_1,\dots,s_N} \Psi_{\theta}(s_1,\dots,s_N) |s_1,\dots,s_N\rangle$$

Representability

Always valid quantum state (unnormalized)

Slide adapted from: Lecture on NQS at ICTP 2024 (smr 3928) by Filippo Vicentini

Neural-network quantum states

$$|\Psi\rangle = \sum_{s_1,\dots,s_N} \Psi_{\theta}(s_1,\dots,s_N) |s_1,\dots,s_N\rangle$$

Representability

- Always valid quantum state (unnormalized)
- Encode MPS and approximate PEPS with poly resources (BUT optimization harder + no tensor contraction) [Sharir, 2022]

[Sharir et al., PRB 106 (2022)] [Carleo and Troyer, Science 355 (2017)] [Carleo et al, MRP RMP 91(2019)]

Slide adapted from: Lecture on NQS at ICTP 2024 (smr 3928) by Filippo Vicentini

Neural-network quantum states

$$|\Psi\rangle = \sum_{s_1,\dots,s_N} \Psi_{\theta}(s_1,\dots,s_N) |s_1,\dots,s_N\rangle$$

Representability

- Always valid quantum state (unnormalized)
- Encode MPS and approximate PEPS with poly resources (BUT optimization harder + no tensor contraction) [Sharir, 2022]
- $\circ~$ Volume-law in principle possible

[Sharir et al., PRB 106 (2022)] [Carleo and Troyer, Science 355 (2017)] [Carleo et al, MRP RMP 91(2019)]

Part II Variational Monte Carlo

Stochastic optimization: ML perspective

[Park and Kastoryano, PRR 2(2), 2020]

Not stable for NQS: Tends to oscillate between deep local minima Improve by taking into account Riemannian metric

Stochastic optimization: ML perspective

 E_{θ}

Variational principle

$$\coloneqq \frac{\langle \Psi_{\theta} | H | \Psi_{\theta} \rangle}{\langle \Psi_{\theta} | \Psi_{\theta} \rangle} \ge E_G$$

1 - - 1 - - - 3

Natural gradient descent

 $\theta_{new} = \theta - \eta g^{-1} \nabla_{\theta} \mathbf{E}_{\theta}$

Infinitesimal distance

$$\left| \left| d\theta \right| \right|^{2} = \sum_{\alpha\beta} g_{\alpha\beta}(\theta) d\theta_{\alpha} d\theta_{\beta} \qquad \Longrightarrow \qquad \nabla_{\theta} \to \widetilde{\nabla}_{\theta} = g^{-1} \nabla_{\theta}$$

Metric tensor

Parameter space

Euclidean distance

$$\Delta_P = |\vec{\theta} - \vec{\phi}|$$

Parameter space

$$\overset{\delta\theta}{\overset{\bullet}_{\theta}} \theta + \delta\theta$$

$$ds^{2} = \sum_{\alpha} d\theta_{\alpha}^{2} = \sum_{\alpha,\beta} \delta_{\alpha\beta} d\theta_{\alpha} d\theta_{\beta}$$

→"vanilla" gradient descent!

Stochastic optimization: ML perspective

Variational principle

$$E_{\theta} \coloneqq \frac{\langle \Psi_{\theta} | H | \Psi_{\theta} \rangle}{\langle \Psi_{\theta} | \Psi_{\theta} \rangle} \ge E_{G}$$

Natural gradient descent

 $\theta_{new} = \theta - \eta g^{-1} \, \nabla_{\theta} \mathbf{E}_{\theta}$

Infinitesimal distance

$$\left| \left| d\theta \right| \right|^{2} = \sum_{\alpha\beta} g_{\alpha\beta}(\theta) d\theta_{\alpha} d\theta_{\beta} \qquad \Box > \qquad \nabla_{\theta} \to \widetilde{\nabla}_{\theta} = g^{-1} \nabla_{\theta}$$

Metric tensor

Hilbert space

Fubini-Study distance $\Delta_{H} = \arccos |F_{\theta\phi}|,$ $F_{\theta\phi} = \langle \Psi_{\theta} | \Psi_{\phi} \rangle$

Hilbert space

$$ds^{2} = \sum_{\alpha,\beta} S_{\alpha\beta} d\theta_{\alpha} d\theta_{\beta}$$

$$\Psi_{\theta} = \int_{\alpha,\beta} S_{\alpha\beta} d\theta_{\alpha} d\theta_{\beta}$$

$$S_{\alpha\beta} = \left\langle \frac{\partial \psi_{\theta}}{\partial \theta_{\alpha}} \middle| \frac{\partial \psi_{\theta}}{\partial \theta_{\alpha}} \right\rangle - \left\langle \frac{\partial \psi_{\theta}}{\partial \theta_{\alpha}} \middle| \psi_{\theta} \right\rangle \langle \psi_{\theta} \middle| \frac{\partial \psi_{\theta}}{\partial \theta_{\beta}} \rangle$$

 \rightarrow "Stochastic Reconfiguration"

Set of symmetry operations $SG = \{g\}$:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$

$$\uparrow$$
character

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$
$$\Psi_\theta^i(\mathbf{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\mathbf{x})$$

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$
$$\Psi_\theta^i(\mathbf{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\mathbf{x})$$

Set of symmetry operations $SG = \{g\}$: Direct symmetrization: $\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$ $\Psi_g^i(\mathbf{x}) = \sum \chi_g^i \widetilde{\Psi}(g(\mathbf{x}))$

$$\Psi_{\theta}^{i}(\boldsymbol{x}) = \chi_{g}^{i} \Psi(\boldsymbol{x})$$
$$\Psi_{\theta}^{i}(\boldsymbol{x}) = \sum_{g} \chi_{g}^{i} \widetilde{\Psi}(g^{-1}\boldsymbol{x})$$

$\Psi(g(\boldsymbol{x})) = \chi_g^i \Psi(\boldsymbol{x})$ $\Psi_{\theta}^i(\boldsymbol{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\boldsymbol{x})$ Set of symmetry operations $SG = \{g\}$: Symmetry sector *i* Direct symmetrization: Example: 3 spins + PBC Symmetry sector 0: T^2 χ^0 1 1 1 Translational symmetry: χ^1 1 $\omega \omega^2$ χ^2 $\omega^2 \omega$ 1 $\omega = e^{\frac{2\pi i}{3}}$

FLATIRON

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$
$$\Psi_{\theta}^i(\mathbf{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\mathbf{x})$$

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$
$$\Psi_{\theta}^i(\mathbf{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\mathbf{x})$$

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$
$$\Psi_{\theta}^i(\mathbf{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\mathbf{x})$$

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$
$$\Psi_{\theta}^i(\mathbf{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\mathbf{x})$$

 $\Psi(g(\boldsymbol{x})) = \chi_g^i \Psi(\boldsymbol{x})$ $\Psi_{\theta}^i(\boldsymbol{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\boldsymbol{x})$ Set of symmetry operations $SG = \{g\}$: Symmetry sector *i* Direct symmetrization: Example: 3 spins + PBC Symmetry sector 1: T^2 χ^0 1 1 1 Translational symmetry: χ^1 1 $\omega \omega^2$ χ^2 $\omega^2 \omega$ 1 $\omega = e^{\frac{2\pi i}{3}}$

FLATIRON

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$
$$\Psi_{\theta}^i(\mathbf{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\mathbf{x})$$

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$
$$\Psi_{\theta}^i(\mathbf{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\mathbf{x})$$

Symmetry sector *i*

44

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

$$\Psi(g(\mathbf{x})) = \chi_g^i \Psi(\mathbf{x})$$
$$\Psi_{\theta}^i(\mathbf{x}) = \sum_g \chi_g^i \widetilde{\Psi}(g^{-1}\mathbf{x})$$

Set of symmetry operations $SG = \{g\}$:

Direct symmetrization:

Active area of research

[T Vieijra et al., PRL 124 (2020)] [T Vieijra and J Nys, PRB 104 (2021)] [C Roth and A MacDonald, arXiv:2104 (2021)] [M Reh et al., *PRB* 107 (2023)]

AFM Heisenberg
$$H = \sum_{\langle i,j \rangle} S_i \cdot S_j$$

46

Part III Applications: Architectures and benchmarks

Feed-forward architectures

visible layer

[G Carleo and M Troyer, Science (2017)]

visible layer

[G Carleo and M Troyer, Science (2017)]

• Variational state: $\Psi_{\theta}(S) = \sum_{h} \exp(E_{RBM})$, $E_{RBM} = \sum_{k} a_{k} s_{k} + \sum_{j} b_{j} h_{j} + \sum_{k,j} W_{k,j} s_{k} h_{j}$

Variational state: $\Psi_{\theta}(S) = \sum_{h} \exp(E_{RBM})$, 0 $\mathbf{E}_{\text{RBM}} = \sum_{k} a_{k} s_{k} + \sum_{j} b_{j} h_{j} + \sum_{k,j} W_{k,j} s_{k} h_{j}$ \circ "factorize": $\Psi_{ heta}(S)$ $= e^{\sum_{k} a_{k} s_{k}} \prod_{j} 2 \cosh\left(\sum_{k,j} W_{k,j} s_{k} h_{j} + b_{j}\right)$

0

• Variational state: $\Psi_{ heta}(S) = \sum_{h} \exp(E_{RBM})$,

 $\mathbf{E}_{\text{RBM}} = \sum_{k} \mathbf{a}_{k} s_{k} + \sum_{j} b_{j} h_{j} + \sum_{k,j} \mathbf{W}_{k,j} s_{k} h_{j}$

"factorize":

$$\Psi_{\theta}(S) = e^{\sum_{k} a_{k} s_{k}} \prod_{j} 2 \cosh\left(\sum_{k,j} W_{k,j} s_{k} h_{j} + b_{j}\right)$$
⁵²

Feed-forward architectures: Convolutional NN (CNN)

Convolutional filters: Capitalize on translational symmetries

[K Choo et al., PRB 100 (2019)]

$$|\Psi\rangle = \sum_{S} \exp[i\phi(S)] \sqrt{P(S)} |S\rangle$$
$$\downarrow P(S) = |\Psi(S)|^{2}$$

 $P(S) = P(s_1)P(s_2|s_1) \cdot \dots \cdot P(s_N|s_{N-1}, \dots, s_2, s_1)$

Autoregressive trick: Decompose probability distribution *P* into conditional probabilities

$$|\Psi\rangle = \sum_{S} \exp[i\phi(S)] \sqrt{P(S)} |S\rangle$$

 $P(S) = P(s_1)P(s_2|s_1) \cdot \dots \cdot P(s_N|s_{N-1}, \dots, s_2, s_1)$

Autoregressive trick: Decompose probability distribution *P* into conditional probabilities

Sampling recipe:

- 1. Sample $s_i \sim p(s_i | s_{< i})$ and concatenate to $s_{< i}$
- 2. Use samples to define $p(s_{i+1}|s_{i+1})$

Obtain uncorrelated samples

$$|\Psi\rangle = \sum_{S} \exp[i\phi(S)]\sqrt{P(S)}|S\rangle$$

Autoregressive trick: Decompose probability distribution *P* into conditional probabilities

Sampling recipe:

- 1. Sample $s_i \sim p(s_i | s_{< i})$ and concatenate to $s_{< i}$
- 2. Use samples to define $p(s_{i+1}|s_{i+1})$

Obtain uncorrelated samples

[M Hibat-Allah et al., PRR 2 (2020)] 56

$$|\Psi\rangle = \sum_{S} \exp[i\phi(S)]\sqrt{P(S)}|S\rangle$$

Autoregressive trick: Decompose probability distribution *P* into conditional probabilities

AFH Heisenberg on triangular lattice

[M Hibat-Allah et al., PRR 2 (2020)] [M Hibat-Allah et al., arXiv:2207.14314 (2022)] 57

Stochastic reconfiguration:

$$\theta_{new} = \theta - \eta S^{-1} \nabla_{\theta} \mathbf{E}_{\theta}$$

Quantum geometric tensor

$$S_{kk'} = \langle O_k^{\dagger} O_{k'} \rangle - \langle O_k^{\dagger} \rangle \langle O_{k'} \rangle \quad \text{with} \quad O_k(S) = \frac{\partial \ln \Psi_{\theta}}{\partial \theta_k}(S)$$

Stochastic reconfiguration:

$$\theta_{new} = \theta - \eta S^{-1} \nabla_{\theta} \mathbf{E}_{\theta}$$

Quantum geometric tensor

$$S_{kk'} = \langle O_k^{\dagger} O_{k'} \rangle - \langle O_k^{\dagger} \rangle \langle O_{k'} \rangle \quad \text{with} \quad O_k(S) = \frac{\partial \ln \Psi_{\theta}}{\partial \theta_k}(S)$$

$$\downarrow$$

$$[N_{parameters} \times \qquad \qquad \text{Limit: GPU memory}$$

$$N_{parameters}]$$

Stochastic reconfiguration:

$$\theta_{new} = \theta - \eta S^{-1} \nabla_{\theta} \mathbf{E}_{\theta}$$

Quantum geometric tensor

$$S_{kk'} = \langle O_k^{\dagger} O_{k'} \rangle - \langle O_k^{\dagger} \rangle \langle O_{k'} \rangle \quad \text{with} \quad O_k(S) = \frac{\partial \ln \Phi_{\theta}}{\partial \theta_k}(S)$$

$$\downarrow$$

$$[N_{parameters} \times \qquad \qquad \text{Limit: GPU memory}$$

$$N_{parameters}]$$

21 111

Linear algebra trick: Instead invert [$N_{samples} \times N_{samples}$] matrix "**minSR**"

[A Chen and M Heyl, arXiv:2302.01941 (2023)] [R Rende et al., arXiv:2310.05715 (2023)]

Stochastic reconfiguration:

$$\theta_{new} = \theta - \eta S^{-1} \nabla_{\theta} \mathbf{E}_{\theta}$$

Quantum geometric tensor

atiron

$$S_{kk'} = \langle O_k^{\dagger} O_{k'} \rangle - \langle O_k^{\dagger} \rangle \langle O_{k'} \rangle \quad \text{with} \quad O_k(S) = \frac{\partial \ln \Psi_{\theta}}{\partial \theta_k} \langle S \rangle$$

$$\downarrow$$

$$[N_{parameters} \times \qquad \qquad \text{Limit: GPU memory}$$

$$N_{parameters}]$$

A1 117

[A Chen and M Heyl, arXiv:2302.01941 (2023)] [R Rende et al., arXiv:2310.05715 (2023)]

Benchmark energies

Vision transformer

$$H = J_1 \sum_{\langle i,j \rangle} S_i \cdot S_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} S_i \cdot S_j$$

TABLE I. Ground-state energy on the 10×10 square lattice at $J_2/J_1 = 0.5$.

Energy per site	Wave function	# parameters	Marshall prior	Reference	Year
-0.48941(1)	NNQS	893994	Not available	[32]	2023
-0.494757(12)	CNN	Not available	No	[22]	2020
-0.4947359(1)	Shallow CNN	11009	Not available	[21]	2018
-0.49516(1)	Deep CNN	7676	Yes	[20]	2019
-0.495502(1)	PEPS + Deep CNN	3531	No	[33]	2021
-0.495530	DMRG	$8192 \mathrm{SU}(2) \mathrm{states}$	No	[31]	2014
-0.495627(6)	aCNN	6538	Yes	[34]	2023
-0.49575(3)	RBM-fermionic	2000	Yes	[15]	2019
-0.49586(4)	CNN	10952	Yes	[35]	2023
-0.4968(4)	RBM $(p = 1)$	Not available	Yes	[36]	2022
-0.49717(1)	Deep CNN	106529	Yes	[28]	2022
-0.497437(7)	GCNN	Not available	No	[27]	2021
-0.497468(1)	Deep CNN	421953	Yes	[30]	2022
-0.4975490(2)	VMC $(p=2)$	5	Yes	[13]	2013
-0.497627(1)	Deep CNN	146320	Yes	[29]	2023
-0.497629(1)	RBM+PP	5200	Yes	[37]	2021
-0.497634(1)	Deep ViT	267720	No	Present work	2023

[R Rende et al., arXiv:2310.05715 (2023)]

Part IV Fermionic systems

Fermions

Molecules, solids (full ab-initio), electron gas, ...

[C Kenny et al., *Nature communications* 11.1 (2020)]

[J Robledo Moreno et al., PNAS 119 (32)]

Effective lattice models of materials (Hubbard-like models) Quantum simulators: Ultracold atoms

FLATIRON

[M Medvidovic, J Robledo Moreno, arXiv:2402.11014 (2024)] 64

Fermions (continuum)

Variational wave-functions for fermions (continuum)

Non-interacting wave-function (Hartree-Fock):

$$\Psi(r_1, \dots r_N) = \frac{1}{\sqrt{N!}} \operatorname{Det}(\{\phi_{\alpha}(r_i)\}_{\alpha i})$$

Include correlations:

$$\Psi(r_1, \dots, r_N) = e^{-J(r_1, \dots, r_N)} \frac{1}{\sqrt{N!}} \operatorname{Det}(\{\phi_j(\tilde{r}_i)\}_{ij})$$
Jastrow factor

$$J(\boldsymbol{r}_1, \dots \boldsymbol{r}_N) = \sum_{ij} J_{ij}(|\boldsymbol{r}_i - \boldsymbol{r}_j|)$$

Include correlations:

70

Include correlations:

Include correlations:

Slater-Jastrow-Backflow wave-functions

Include correlations:

Slater-Jastrow-Backflow wave-functions

Include correlations:

Iterations

Slater-Jastrow-Backflow wave-functions

Example: 3D electron gas with message-passing NQS

Backflow transformation

 $\tilde{r}_i = r_i + \delta r_i (r_1, \dots r_N)$

Parametrize with Message-passing Graph NN

Example: 3D electron gas with message-passing NQS

Backflow transformation

 $\tilde{r}_i = r_i + \delta r_i (r_1, \dots r_N)$

Parametrize with Message-passing Graph NN

3D interacting Electron gas

$$H = -\frac{1}{2r_s^2} \sum_{i} \nabla_i^2 + \frac{1}{r_s} \sum_{i < j} \frac{1}{||r_i - r_j||}$$

Wigner-Seitz radius
$$r_s = \sqrt[3]{3/(4\pi n)}$$

[Pescia et al.,arXiv:2305.07240 (2023)]

Outlook: Other applications

Real time evolution

[M Schmitt and M Heyl, PRL 125 (2020)] [M Medvidovic and D Sels, PRX Quantum 4 (2023)] [A Sinibaldi et al., arXiv2305.14294 (2023)]

Open systems

[A. Nagy and V. Savona, Phys. Rev. Lett. 122 (2019)][J. Carrasquilla et al., Nature Machine Intelligence 1 (2019)][F Vicentini et al., arXiv:2206.13488 (2022)]

Finite temperature

[N Irikura and Hiroki Saito, PRR 2 (2020)] [Y Nomura et al., PRL 127 (2021)]

Quantum state reconstruction

[G Torlai et al., Nature physics 14 (2018)] [J Carrasquilla et al., *Nature Machine Intelligence* 1.3 (2019)] [S Czischek et al., PRB 105 (2022)]

Thank you.

