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Introduction to DFT and Density
Functionals

by Michel Coté, Université de Montréal, departement de physique



Introduction:

carbazole molecule INnside diamond

... a lot more than pretty pictures...



Hamiltonian in condensed matter

Here’s the complete hamiltonian in condensed matter including electrons and ions :

Nel hz Vz ]Vlon hz VR[

H = Z_ +Z_ +Vel+Vlon+Vlon el
Interaction terms:
2 2
e Z:Z,e
Vel_z |7‘-—I”- Vionzz ‘R—R‘
it b Ltk VL Tk

We assign the interaction between electrons and ions to a potential V/

R ), and not simply Ze?/ | r; — R, | as the ion potential could be “pseudo
Vion— o]l = E E Vl(r ;T Rl) potential” that accounts for the interaction of the atomic nucleus and
the core electrons contributions. In that case, the Z; are pseudo

charges, meaning only the charge of the valence electrons of that
atoms. We can always revert back to the coulomb form of the
potential if need be.



After Born-Oppenheimer approximation:

The electronic hamiltonian

H = Z [—V2+th(r)] +Z ‘r -

i<j

V..(r;) is the external potential, most often produced by the ions.
It will be represented by pseudopotentials in DFT.

We are looking for the solutions of the time-independent Schrodinger equation:
HY =EY,

The wave function is a multi-variable function:
WY(r,r,...,1y)



An impractical problem:

WY(r,,r,...,ry)

Storage required:

Let us assume that each coordinate is discretized on a 10x10x10 real
space grid, which means that there are 1000 data per coordinate.

10 electrons — 1000 data — 10 x16 bytes
=16 x10*" Gb

Impracticable!!!



Dirac’s quote of 1929

« The underlying physical laws necessary for the
mathematical theory of a large part of physics and
the whole of chemistry are thus completely known,
and the difficulty is only that the exact application
of these laws leads to equations much too
complicated to be soluble. »

Réf: Quantum mechanics of many-electron systems, Proceedings of the Royal Society of London, pp.714. (1929)



\

Dirac’s quote of 1929 (suite) ‘:

i

« It, therefore, becomes desirable that approximate
practical methods of applying quantum mechanics
should be developed, which can lead to an
explanation of the main features of complex atomic
systems without too much computation. »

Réf: Quantum mechanics of many-electron systems, Proceedings of the Royal Society of London, pp.714. (1929)

This Is the subject of this school!



Wavefunction approaches: Hartree method

X)) =0 ()0, (%) (Xy ) = H<I>/(X)

— Z}\/@)/ ¢/>

/

(I)/(X) - 7\/¢/(X) = ()

(X, X,,...
n(x) = 24)/ (X),(X)
E=(W HWY
0E  |-h*_, nx)
P _ZmV +Uion(x)+ezfdx' X—X"_
e

Vi + U, (0 + V(%)

2m

(|),(X) = 7‘/¢/(X)

Lagrange multipliers

- to assure that the ¢,

remain orthogonal.

Same eqguation
for all @;



Hartree-Fock method

WX, X Xy) = ﬁ)—l)*ﬂcpp,(x»=<I>o<)q,x2,---,xN>

q)l(xl) (I)l(xz) (I)l(XN)
L 9,(X)  0,(%) - §,(Xy) glea}cteer:ninant

q)N(Xl) (I)N(Xz) (I)N(XN)
Particles are not independent, change the position of one and all the others
are affected.

Pauli’'s exclusion principle is respected.

“Correlation” is purely statistics, and not due to interaction.



Hartree-Fock method

il V©+ Uion(X) + V,(X) [9,(X)
2m
N (X ), (X
- > 0.0;(X) fdx""’(xf"’ X,( )2 (0

N— —
~

Exchange potential

Because of the exchange term, the problem is much harder to resolve.

Results are better than those of the Hartree method but still not very satisfying.



Configuration Interaction method
‘P(XI,XZ,...,XN) - E C,-(I)I-(Xl,Xz,...,XN)

Sum of Slater determinants (configurations)

Must find the coefficients C;

Cl = configuration interaction
CIS = Cl with single excitations only

CISD = CI with single and double excitations only

Correlation energy (chemistry): contribution over that of Hartree-Fock



Wavefunction methods

Advantages:
Control approximations
Systematic approach (H, HF, CIS, ...)

Upper bound (variational principle)

Disadvantages:
Very costly numerically

(up to 20-30 electrons, forget solids!)



Progress In theoretical methods
Nobel Priz 1998 in Chemistry

"for his development of
computational methods in quantum
chemistry”

‘for his development of the density-functional
theory”

- efficient

- flexible

* precise

» parameter free

Walter Kohn



Walter Kohn and Canada/Sherbrooke

England
ooke ‘ -
—_ -

»
£, '),\ Austria

Walter Kohn
e

EEEEEEEEEEEEEEEEEEEEEE André-Marie initiated the Walter Kohn public lecture at UdeS.

| EVENTS

Walter Kohn himself was the first speaker.

SERIES OF SEMINARS

e Walter Kohn died April 16, 2016.

Toro

arvard




Milestones in DFT

Precursor: Thomas-Fermi approximation (1927)

Inhomogeneous electron gas
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

Self-consistent equations including exchange and correlation effects
W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965)

Ceperley, Alder (1980); Perdew, Zunger (1981) : computation and
parametrization of the exchange and correlation energy

needed in the local density approximation



Most cited papers

Papers published in APS journals (PRL, PRA, PRB, ..
RMP), most cited by papers published in APS journals

Table 1. Physical Review Articles with more than 1000 Citations Through June 2003

Publication # cites  Av. age Title Author(s)
PR 140, A1133 (1965) 26.7 Self-Consistent Equations Including Exchange and Caorrelation Effects§ V. Kohn, L. ). Sham

PR 136, B8b4 (1964) 2460  28.7 Inhomogeneous Electron Gas P. Hohenberg, W. Kohn

PRB 23, 5048 (1981) 2079 14.4 Selt-Interaction Correction to Density-Functional Approximations tor

Many-Electron Systems J. P. Perdew, A. Zunger

PRL 45, 566 (1980) 1781 15.4 Ground State of the Electron Gas by a Stochastic Method D. M. Ceperley, B. ). Alder

PR108, 1175 (1957) 1364  20.2 Theory of Superconductivity J. Bardeen, L. N. Cooper, ). R. Schrieffer
PRL 19, 1264 (1967) 1306 15.5 A Model of Leptons S. Weinberg

PRB 12, 3060 (1975) 1259 18.4 Linear Methods in Band Theory

PR 124, 1866 (1961) 1178  28.0 Effects of Configuration Interaction of Intensities and Phase Shiits U. Fano

RMP 57, 287 (1985) 1055 9.2 Disordered Electronic Systems P. A. Lee, T. V. Ramakrishnan

RVIF 54, 437 (1982] 1045 10.8 Electronic Properties of Two-Dimensional Systems

PRB 13,5188 (1976) 1023 20.8 Special Points for Brillouin-Zone Integrations H. ). Monkhorst, |. D. Pack

PR, Physical Review: PRB, Physical Review B: PRL, Physical Review Letters; RMP Reviews of Modern Physics.

S. Redner, Citation Statistics from 110 Years of Physical Review, Physics Today, June 2005.

Today, according to Google Scholar: K&S, 66k; H&K, 58k; PBE functional, 150k !



THE reference In DFT for solids

Electronic Structure
Basic Theory and Practical Methods

Electronic Structure

Basic Theory and Practical Methods
SECOND EDITION

2nd Edition

AUTHOR: Richard M. Martin, University of lllinois, Urbana-
Champaign

DATE PUBLISHED: October 2020

AVAILABILITY: Available

FORMAT: Hardback

ISBN: 9781108429900
Average user rating

(1 review)




What is a functional?

A function takes a number as argument and returns a number.

A functional takes a function as argument and returns a number.

Example of a function:  f(x) = Ax”
Example of a functional: fln] = JV(X)H(X)dX

df J(x +a) = f(x)

Function derivative: — = lim
dx a—0 o
. L of . JIn(x) + ad(x — x)] — fln(x)]
Functional derivative: — = lim
on(x’)  a-0 o

A functional is like a multi-variable function but with
continuous argument instead of being discrete.



DFT: first theorem

Hohenberg et Kohn, Physical Review, vol 136, B864, (1964)

Proof by contradiction

v(r) =¥ (r,...,r,) = n(r)

Different potentials same density

vi(r) = WY (ry,...,r,) = n(r)
Using variational principle:
E=(Y|H|Y) <(VNH|Y)=<(V|H -V +v(n|¥Y)=E + [n(r)(—v’(r) + v(r))

But also:
E=W|\H|V) <Y H|¥Y) =< MYIH-v@r)+Vv(|V¥Y) =E, + J'n(r)(—v(r) + v'(r))

Adding the last two expressions, we get:
E,+E <E +LE,
an obvious contradiction.



DFT: first theorem

The ground state density n_(7) of a many-electron system determines
uniquely the external potential v(r), modulo one global constant.

Consequence : formally, the density can be considered as the
fundamental variable of the formalism, instead of the potential.

‘i{L (l‘) "Oé“) No need for wavefunctions or
|

w,({r}) = Wo({r) Schrodinger equation |

The second theorem is actually simply the demonstration that the variation
principle still holds.



The constrained-search approach to DFT
M. Levy, Proc. Nat. Acad. Sci. USA, 76, 6062 (1979)

Use the extremal principle of QM.

E, = min(¥ | H|¥) = min { min (‘P\H\‘P)},
VY n(r) Y-n(r)

E = min { min (W |7+ v, + Vext|‘P>}’
n(r) ¥Y—n(r)

E = min { min (W|7+ v, |¥) + [n(r)vext(r)dr},
n(r) Y—-n(r)

E, = min {Fln] + E [n(")]}

F[n] is a universal functional of the density.
The problem is that we do not know it explicitly.



Thomas-Fermi method
A pure density approach

Although introduced before DFT, it can be considered as a pure DFT
approach that relies only on the density.

In DFT, the F|n| needs to be approximated. In the TF method, it is
approximated as the kinetic energy of the non-interacting homogeneous
electron gas at each point in space.

For a non-interacting homogeneous electron gas of density 7, we can define

its density kinetic energy by the function: E, . (n). In the TF method, the
Kinetic energy contribution to the total energy is computed be:

Fln] = E [n] = [Ekm(n(r))dr

We then proceed with a minimization that involves only the density.



The Kohn-Sham approach

A way to get a better value for the kinetic energy

F[n]: large part of the total energy, hard to approximate

Kohn & Sham (Phys. Rev. 140, A1133 (196)9)) :

A mapping of the interacting system on a non-interacting system in order to
get a better approximation for the kinetic energy.

For a non-interacting system, the ground state is a single Slater determinant
which Kkinetic energy Is easy to evaluate.

WY(r,...,ry) = Slater determinant of ¢;(r)
N hZ

TS[VL] — Z J¢;I<(If') _z_mvz ¢i(r)dr

l



Definition of exchange-correlation energy a la DFT

not quite the same as for the wave function methods

K&S assumed that there exists a non-interacting system with the same
density as the studied interacting system which they can use to approximate
the kinetic energy contribution.

Fln| = T|n] + E;[n],
Fln] = Tn] + Eyln] + (& [n] — Eyln] + T|n] — T¢[n]),
Fln] = T¢n] + Ey[n] + E, [n]

E |n] = Fln] — Eyln] — 1§|n]

This definition of £, . differs from the definition of the usual definition as it also

iIncludes the difference between the true kinetic energy and the real system
and the one obtained from the non-interacting system.



The K-S non-interacting system

/\/\(n\
in“?
QR=20,
" mae The
K@; /\/\(n\' et
Mm “‘o“
/\TmT O

The question is now: How to obtain vi.(r) ?



The K-S potential

We have to minimize (under the constraint of the number of particles):
Exdln| = Tin] + Eyln] + E.|n] + £, [7n],

Ei[n] = T¢[n] + %J n(ryn(r’

Introducing Lagrange multipliers for the constraint:

0=6| E []—A{J (r)d —N} —J{ s +J n{r) dr' +v. (1) + O /1}5 (r)d
= xsln n(ryar = o ] '+ Vo (7 () n(r)ar

If one considers the minimization for non-interacting electrons in
potential V(7), with the same density n(r), one gets:

drdr' + [Vext(r)n(r)dr + E,_|n]

jr—r]

oL

O—J s v =2\ onryar n(ry) ., xc
) lonry  ® Hence: Vig(r) = Ve (1) + —dr' +
| r —r'| on(r)



K-S orbitals and eigenvalues

Non-interacting electrons in the Kohn-Sham potential :

—h?
( o V2 + VKs(”)) P(r) = e;p(r)

N
Density () = Z PN (r)

OE

XC

_|_
on(r)

Hartree Exchange-correlation
potential potential

V(1) = v (1) +

To be solved self-consistently !

Note : by construction, at self-consistency, and assuming the exchange-correlation functional to be

exact, the density will be the exact density, the total energy will be the exact one, but Kohn-Sham
wavefunctions and eigenenergies correspond to a fictitious set of independent electrons, so they do

not correspond to any exact physical quantities.



Constructing Functionals

Doing clever approximations

The hope is that it is easier to find good approximations for £, .[n] than for F[n].
(without demonstration)

The exchange-correlation energy, functional of the density

1s the integral over the whole space of the density times the
local exchange-correlation energy per particle

E_ |n|= fn(r1 )e_ (r,;n)dr,

while the local exchange-correlation energy per particle 1s the

electrostatic interaction energy of a particle with its DFT
exchange-correlation hole.
1 n(r, |1 ;n)

e (r;n)= f dr

2 |-, ?

Sum rule : f n™(r,

r;n)dr, = -1



Local-density approximation (l)

Hypothesis :

- the local XC energy per particle only depend on the local density
- and 1s equal to the local XC energy per particle of an
homogeneous electron gas of same density
(1n a neutralizing background - « jellium » )

exo ;)= &d™(n(ry))
Gives excellent numerical results ! Why ?

1) Sum rule 1s fulfilled

2) Characteristic screening length indeed depend on local density



Local-density approximation (i)

Actual function : exchange part (x) + correlation part (¢)

g m=cn  with  C=-—(32)"
47

for the correlation part, one resorts to accurate
numerical simulations beyond DFT (e.g. Quantum Monte Carlo)

| o o, [1]
Corresponding exchange-correlation potential V. .(r) = Sn(r)
d{ ne (n)
Vs (r) = u (n(r)) e (1) = ( d )
n
4 4

)= C—pnt/3 = — ghom(y
u.(n) 3 3 & (n)



Local-density approximation (lll)

To summarize :

LDA n(r; )n(r,) LDA
E* n|=T +f V. ()n(r)dr + 2f Py dr,dr, + EX”*|n]
or
B [{w}]= 3wl - —vz\w + [V, On@dr+ f”(‘: )”:T)drdrz
+ [n(r)e,." (n(r;))dr,
and

M) e+ 1™ (n(r))
r-rl

Vi @) = Voo )+



Beyond the local-density approximation
Generalized gradient approximations (GGA)

Ex [n]= [n()e™ (n(r,),

vn(r,)

,V’n(r,))dr,

No model system like the homogeneous electron gas !
Many different proposals, including one from Perdew,
Burke and Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996),
often abbreviated « PBE ».

Others : PW&6, PW91, LYP ...

Also : « hybrid » functionals (B3LYP),
« exact exchange » functional,
« self-interaction corrected » functionals ...



Jacob’s ladder of functional

computational time

desired chemical accuracy

q.ui(r) empty =XX with partial

B -
- /‘ ] ' ™ - 1 s
e AdCL COTIT y"J;lU.‘JIJ

Y (r) occupied EXX with correlation HSEO6

Van(r),t(r) meta-GGA SCAN
R

vn(r) GGA PBEsol
-

n(r) PZ

Hartree world

accuracy



SCAN, r2SCAN COMMUNICATIONS

_ PHYSICS
an accurate meta-GGA functional

» SCAN satisfies all 17 known constraints of meta-GGA. | o |
An accurate first-principles treatment of doping-

* r2SCAN let go of a few constraints, but it is smoother dependent electronic structure of high-temperature
and therefore more suitable for plane-wave basis. Cuprate superconductors

Table 1 Various theoretically predicted properties for LTO, LTT, and HTT structures of LCO using SCAN, PBE and LSDA
functionals are compared with the corresponding experimental results

La>CuO4

LTO>® LTT°® HTT** LTO LTT HTT LTO LTT HTT LTO LTT HTT

A - —1 N /a O | a¥a 0 a¥a e 0% a¥a N

u magnetic moment  (ug) 0.495

ndirect band gap (eV) 1.0027 1.006 0.000 0.000
attice constants a A . 360 39 . 30 343 . - A0 220 78 258
b (A) 5.421 5.360 5.397 5.459 5.391 5348 5576 5.471 5.401 5.353 5.285 5.256
c (A) 13107 13.236 13.219 13.088 13.071 13.125 13,101 13.075 13.163 12956 12956 12.989
V (A3) 379.1 380.3 384.2 380.3 379.8 375.4¢ 391.0 3914 384.0¢ 362.0 3618 358.9
Octahedral Tilt axial (deg) 55 3.8 0.0 7.2 6.9 0.0 8.7 8.5 0.0 5.8 5.5 0.0
AE 4 (meVFU™ ) - 15K>° - 0.0 —0.5 18.3 0.0 —4.4 46.0 0.0 —0.4 2.7

FU denotes formula unit

40nly stabilized under special conditions, see text

bLeading edge in optical spectrum. AE and AE, are energies relative to the LTO phase in the pristine and doped cases, respectively
cSee "Comment on Calculated Lattice Volumes” in Methods section for discussion

J. W. Furness, Y. Zhang, C. Lane, I. G. Buda, B. Barbiellini, R. S. Markiewicz, A. Bansil, and J. Sun, An Accurate First-Principles Treatment of Doping-
Dependent Electronic Structure of High-Temperature Cuprate Superconductors, Communications Physics 1, 1 (2018).



What to remember

 DFT is excellent to predict ground state properties (bond length, etc.), at a
reasonable computation cost.

* Using Kohn-Sham eigenvalues as band structure is certainly abusing the
method, but it is a good first approximation.

* Treatment of Kohn-Sham eigenvalues can give them physical meaning.

 The accuracy of DFT functionals relies on exact physical constraints.



