International Summer School on Computational Quantum Materials 2024 Introduction to Wannier Functions for Materials Simulations

Localized basis

Goal: transform ab-initio electronic structure into localized basis

- both conceptual and technical advantages:
 - chemical intuition
 - connection to models
 - local physics, e.g. impurities, defects, local interactions
 - dielectric polarization
 - Wannier interpolation
 - • •
- how to do it in practice?

J. Kuneš, in Wannier Functions and Construction of Model Hamiltonians edited by E. Pavarini, E. Koch, D. Vollhardt, A. Liechtenstein (Forschungszentrum, Jülich, 2017)

From many-body to effective one-body problem

electronic Schrödinger equation:

$$\hat{H}\Psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=\epsilon\Psi(\mathbf{r}_1,...,\mathbf{r}_N)$$

with

$$\hat{H} = -\sum_{i} \frac{\hbar^2 \nabla_i^2}{2m} + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{i}^{N} v_{\text{ext}}(\mathbf{r}_i) = T + \frac{U}{U} + V_{\text{ext}}$$

in second quantization:

$$\hat{H} = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_l c_k$$

From many-body to effective one-body problem

electronic Schrödinger equation:

$$\hat{H}\Psi(\mathbf{r}_1,\cdots,\mathbf{r}_N)=\epsilon\Psi(\mathbf{r}_1,...,\mathbf{r}_N)$$

with

$$\hat{H} = -\sum_{i} \frac{\hbar^2 \nabla_i^2}{2m} + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{i}^{N} v_{\text{ext}}(\mathbf{r}_i) = T + \frac{U}{U} + V_{\text{ext}}$$

in second quantization:

$$\hat{H} = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} U_{ijkl} c_i^{\dagger} c_j^{\dagger} c_l c_k \rightarrow \hat{H}_{\mathsf{DFT}} = \sum_{ij} \tilde{t}_{ij} c_i^{\dagger} c_j$$

Effective single-particle picture

Recast full system into a ficticious, auxiliary system of separable Kohn-Sham orbitals $\{\psi_n\}$, that generates the same density as the original one

$$\hat{\mathcal{H}}_{\mathsf{KS}}\psi_{n}(\mathbf{r}) = \left[-rac{\hbar^{2}}{2m}\nabla^{2} + v_{\mathsf{eff}}(\mathbf{r})
ight]\psi_{n}(\mathbf{r}) = \epsilon_{n}\psi_{n}(\mathbf{r})$$

$$u_{\mathsf{eff}}(\mathbf{r}) = v_{\mathsf{H}}[
ho](\mathbf{r}) + rac{\delta \mathcal{E}_{\mathsf{XC}}[
ho]}{\delta
ho(\mathbf{r})} + v_{\mathsf{ext}}(\mathbf{r})$$

- solution is found self-consistently
- exchange-correlation potential is the only unknown
- Kohn-Sham orbitals have little physical meaning

 $ightarrow \hat{H}_{
m KS} = \sum_{ij} \tilde{t}_{ij} c^{\dagger}_i c_j$

The Bloch theorem

For electrons in a periodic potential the solutions to the Schrödinger equation are Bloch functions:

$$\hat{H}_{\mathsf{KS}}\,\psi_{n\mathbf{k}}(\mathbf{r})=\epsilon_{n\mathbf{k}}\psi_{n\mathbf{k}}(\mathbf{r})$$

with

$$\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$$
 with $u_{n\mathbf{k}}(\mathbf{r}) = u_{n\mathbf{k}}(\mathbf{r} + \hat{T}_i)$

A few remarks:

- $[\hat{H}, \hat{T}_i] = 0$, block diagonalization
- discrete spectrum $n \in \mathbb{Z}$
- $\mathbf{k} \in \mathsf{BZ}$, continuous variable for the infinite crystal

- $\psi_{n\mathbf{k}}(\mathbf{r})$ orthonormal
- = gauge freedom $\psi_{n\mathbf{k}}(\mathbf{r})
 ightarrow e^{i\phi(\mathbf{k})}\psi_{n\mathbf{k}}(\mathbf{r})$
- $\psi_{n\mathbf{k}}(\mathbf{r})$ can be smooth function of \mathbf{k}

F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Zeitschrift für Physik 52, 555 (1929)Â ·

From Bloch states to Wannier functions

 Bloch functions at different k have different envelope functions e^{ik·r}

 $\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$

- build localized basis by superposing Bloch functions
- requirements:
 - should span same subspace
 - should be orthonormal basis

N. Marzari *et al.*, Rev. Mod. Phys. 84, 1419-1475 (2012)

From Bloch states to Wannier functions

• for one band *n*:

$$w_{n\mathbf{0}}(\mathbf{r}) = rac{V}{(2\pi)^3} \int_{\mathsf{BZ}} d\mathbf{k} \, \psi_{n\mathbf{k}}(\mathbf{r})$$

• for multiple Wannier functions:

$$w_{n\mathbf{R}}(\mathbf{r}) = rac{V}{(2\pi)^3} \int_{\mathrm{BZ}} d\mathbf{k} \, \mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}} \psi_{n\mathbf{k}}(\mathbf{r})$$

with
$$w_{n\mathbf{R}}(\mathbf{r}) = \langle \mathbf{r} | \mathbf{R} n \rangle = w_{n\mathbf{0}}(\mathbf{r} - \mathbf{R})$$
, or

$$|\mathbf{R}n
angle = rac{V}{(2\pi)^3}\int_{\mathsf{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{n\mathbf{k}}
angle$$

w_o(x)

Wannier functions

G. H. Wannier, Phys. Rev. 52, 191-197 (1937)

Properties of Wannier functions

• they form an orthonormal set:

$$\langle \mathbf{R}n|\mathbf{R}'m
angle = \delta_{\mathbf{R}\mathbf{R}'}\delta_{nm}$$

• $\{ |\mathbf{R}n\rangle \}$ span the same space as $\{ |\psi_{n\mathbf{k}}\rangle \}$:

$$P = \frac{V}{(2\pi)^3} \int_{\mathsf{BZ}} \mathrm{d}\mathbf{k} |\psi_{n\mathbf{k}}\rangle \langle \psi_{n\mathbf{k}}| = \sum_{\mathbf{R}} |\mathbf{R}n\rangle \langle \mathbf{R}n|$$

- they are translational images of $|{f 0}n
angle$

G. H. Wannier, Phys. Rev. 52, 191-197 (1937)

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}\mathbf{n}
angle = rac{V}{(2\pi)^3}\int_{\mathsf{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{\mathbf{nk}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- = "gauge freedom": $|\psi^{\sf W}_{n{f k}}
 angle=e^{iarphi_n({f k})}|\psi_{n{f k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}n
angle = rac{V}{(2\pi)^3}\int_{\mathrm{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{n\mathbf{k}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- = "gauge freedom": $|\psi^{\sf W}_{n{\sf k}}
 angle=e^{iarphi_n({\sf k})}|\psi_{n{\sf k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}n
angle = rac{V}{(2\pi)^3}\int_{\mathrm{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{n\mathbf{k}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- = "gauge freedom": $|\psi^{\sf W}_{n{\sf k}}
 angle=e^{i\varphi_n({\sf k})}|\psi_{n{\sf k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}n
angle = rac{V}{(2\pi)^3}\int_{\mathrm{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{n\mathbf{k}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- = "gauge freedom": $|\psi^{\sf W}_{n{\sf k}}
 angle=e^{iarphi_n({\sf k})}|\psi_{n{\sf k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}n
angle = rac{V}{(2\pi)^3}\int_{\mathrm{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{n\mathbf{k}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- "gauge freedom": $|\psi^{\sf W}_{n{f k}}
 angle=e^{iarphi_n({f k})}|\psi_{n{f k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}n
angle = rac{V}{(2\pi)^3}\int_{\mathrm{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{n\mathbf{k}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- "gauge freedom": $|\psi^{\sf W}_{n{f k}}
 angle=e^{iarphi_n({f k})}|\psi_{n{f k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}\mathbf{n}
angle = rac{V}{(2\pi)^3}\int_{\mathsf{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{\mathbf{nk}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- "gauge freedom": $|\psi^{\sf W}_{n{\sf k}}
 angle=e^{iarphi_n({\sf k})}|\psi_{n{\sf k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}\mathbf{n}
angle = rac{V}{(2\pi)^3}\int_{\mathsf{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{\mathbf{nk}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- = "gauge freedom": $|\psi^{\sf W}_{n{\sf k}}
 angle=e^{iarphi_n({\sf k})}|\psi_{n{\sf k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}\mathbf{n}
angle = rac{V}{(2\pi)^3}\int_{\mathsf{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{\mathbf{nk}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- "gauge freedom": $|\psi^{\sf W}_{n{\sf k}}
 angle=e^{iarphi_n({\sf k})}|\psi_{n{\sf k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Properties of $|\mathbf{R}n\rangle$:

localized to some extent in real space

Fourier transform

$$|\mathbf{R}n
angle = rac{V}{(2\pi)^3}\int_{\mathrm{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{n\mathbf{k}}
angle$$

- smooth, periodic function has Fourier coefficients that decay rapidly
- "gauge freedom": $|\psi^{\sf W}_{n{\sf k}}
 angle=e^{iarphi_n({\sf k})}|\psi_{n{\sf k}}
 angle$
- = choose $\varphi_{\it n}({\bf k})$ so that $|\psi_{\it nk}^{\rm W}\rangle$ are smooth in ${\bf k}$

https://mriquestions.com/fourier-transform-ft.html

Wannier functions - multiple bands

• "gauge freedom" for multiple bands:

$$|\mathbf{R}j
angle = rac{V}{(2\pi)^3}\int_{\mathsf{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{j\mathbf{k}}
angle$$

- no one-to-one correspondence band $n \leftrightarrow$ orb. j
- Wannier functions strongly nonunique!
- U_k encode the gauge selection
- how to choose the unitary rotations to get localized WFs?

Example: $SrVO_3$

Wannier functions - multiple bands

• "gauge freedom" for multiple bands:

$$\begin{split} |\mathbf{R}j\rangle &= \frac{V}{(2\pi)^3} \int_{\mathsf{BZ}} d\mathbf{k} \, \mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{j\mathbf{k}}^{\mathsf{W}}\rangle \\ |\psi_{j\mathbf{k}}^{\mathsf{W}}\rangle &= \sum_{n}^{J} U_{\mathbf{k},nj} |\psi_{n\mathbf{k}}\rangle \end{split}$$

- no one-to-one correspondence band $n \leftrightarrow$ orb. j
- Wannier functions strongly nonunique!
- U_k encode the gauge selection
- how to choose the unitary rotations to get localized WFs?

Example: SrVO₃

How to get Wannier functions in practice

Projection method:

start with localized trial orbitals g_n(r):

$$|\phi_{n\mathbf{k}}\rangle = \sum_{m=1}^{J} A_{\mathbf{k},mn} |\psi_{m\mathbf{k}}\rangle$$
 with $A_{\mathbf{k},mn} = \langle \psi_{m\mathbf{k}} | g_n \rangle$ (Wannier90)

construct Löwdin-orthonormalized Bloch-like states:

$$| ilde{\psi}_{n\mathbf{k}}
angle = \sum_{m=1}^{J} |\phi_{n\mathbf{k}}
angle \, S_{\mathbf{k},mn}^{-1/2} \quad ext{ with } \quad S_{\mathbf{k},mn} = (A^{\dagger}A)_{\mathbf{k},mn}$$

- the $|\tilde{\psi}_{n{\bf k}}
 angle$ are smooth in ${\bf k}$, leading to well-localized Wannier functions
- advantages: simple, they retain the symmetry of the trial orbitals
- disadvantages: cases without good guesses, e.g. molecular orbitals, low-symmetry

N. Marzari et al., Rev. Mod. Phys. 84, 1419-1475 (2012)

Maximally localized Wannier functions (MV method)

• Marzari and Vanderbilt scheme: choose optimal $U_{\mathbf{k}}$ that minimize spread functional

$$\Omega = \sum_{j=1}^{J} \left[\langle \mathbf{0}j | \mathbf{r}^2 | \mathbf{0}j \rangle - |\langle \mathbf{0}j | \mathbf{r} | \mathbf{0}j \rangle|^2 \right]$$

- iterative minimization using steepest-descents or conjugate-gradient method
- Blount identities provide matrix elements of position operator in Wannier basis:

$$\langle \mathbf{R}i | \mathbf{r} | \mathbf{0}j \rangle = i \frac{V}{(2\pi)^3} \int d\mathbf{k} \, e^{i\mathbf{k}\cdot\mathbf{R}} \langle u_{i\mathbf{k}} | \nabla_{\mathbf{k}} | u_{j\mathbf{k}} \rangle$$

can be recast in terms of overlap matrices:

$$M_{ij}^{(\mathbf{k},\mathbf{b})} = \langle u_{i\mathbf{k}} | u_{j\mathbf{k}+\mathbf{b}}
angle$$
 (Wannier90)

- N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)
- E.I. Blount, "Formalisms of band theory," in Solid State Phys., Vol. 13 (Elsevier) p. 305. (1962)

- previous concepts extend to non-isolated ("entangled") groups of bands
- identify J-dim. Bloch manifold from a larger set of J_k Bloch eigenstates (*subspace selection*):

$$\left| ilde{\psi}_{n\mathbf{k}}
ight
angle = \sum_{m=1}^{\mathcal{J}_{\mathbf{k}}} ilde{V}_{\mathbf{k},mn} |\psi_{m\mathbf{k}}
angle$$

• where
$$ilde V_{f k,mn}$$
 are $\mathcal J_{f k} imes J$ matrices, $ilde V^{\dagger}_{f k} ilde V_{f k}=1\!\!\!1_{J imes J}$

I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

- previous concepts extend to non-isolated ("entangled") groups of bands
- identify J-dim. Bloch manifold from a larger set of J_k Bloch eigenstates (*subspace selection*):

$$\left| ilde{\psi}_{n\mathbf{k}}
ight
angle = \sum_{m=1}^{\mathcal{J}_{\mathbf{k}}} ilde{V}_{\mathbf{k},mn} |\psi_{m\mathbf{k}}
angle$$

• where
$$ilde V_{f k,mn}$$
 are $\mathcal J_{f k} imes J$ matrices, $ilde V_{f k}^\dagger ilde V_{f k}=1\!\!1_{J imes J}$

$$|\mathbf{R}j
angle = rac{V}{(2\pi)^3}\int_{\mathsf{BZ}}d\mathbf{k}\,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}}|\psi_{j\mathbf{k}}
angle$$

I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

- previous concepts extend to non-isolated ("entangled") groups of bands
- identify J-dim. Bloch manifold from a larger set of J_k Bloch eigenstates (*subspace selection*):

$$\left| ilde{\psi}_{n\mathbf{k}}
ight
angle = \sum_{m=1}^{\mathcal{J}_{\mathbf{k}}} ilde{V}_{\mathbf{k},mn} |\psi_{m\mathbf{k}}
angle$$

• where $ilde{V}_{{f k},mn}$ are $\mathcal{J}_{f k} imes J$ matrices, $ilde{V}_{f k}^{\dagger} ilde{V}_{f k}=\mathbbm{1}_{J imes J}$

$$\begin{aligned} |\mathbf{R}j\rangle &= \frac{V}{(2\pi)^3} \int_{\mathsf{BZ}} d\mathbf{k} \,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{j\mathbf{k}}^{\mathsf{W}}\rangle \\ |\psi_{j\mathbf{k}}^{\mathsf{W}}\rangle &= \sum_{n}^{J} U_{\mathbf{k},nj} |\psi_{n\mathbf{k}}\rangle \end{aligned}$$

I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

- previous concepts extend to non-isolated ("entangled") groups of bands
- identify J-dim. Bloch manifold from a larger set of J_k Bloch eigenstates (*subspace selection*):

$$\left| ilde{\psi}_{n\mathbf{k}}
ight
angle = \sum_{m=1}^{\mathcal{J}_{\mathbf{k}}} ilde{V}_{\mathbf{k},mn} |\psi_{m\mathbf{k}}
angle$$

• where
$$ilde V_{f k,mn}$$
 are $\mathcal J_{f k} imes J$ matrices, $ilde V_{f k}^\dagger ilde V_{f k}=1\!\!1_{J imes J}$

$$|\mathbf{R}j
angle = rac{V}{(2\pi)^3} \int_{\mathsf{BZ}} d\mathbf{k} \,\mathrm{e}^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{j\mathbf{k}}^{\mathsf{W}}
angle$$

 $|\psi_{j\mathbf{k}}^{\mathsf{W}}
angle = \sum_{n=1}^{\mathcal{J}_{\mathbf{k}}} V_{\mathbf{k},nj} |\psi_{n\mathbf{k}}
angle \quad \text{with} \quad V_{\mathbf{k}} = \tilde{V}_{\mathbf{k}} U_{\mathbf{k}}$

I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

Major applications of Wannier functions

- Interpolation
- Geometry and Topology
- Advanced electronic-structure methods

A. Marrazzo, SB et al., arxiv:2312.10769 (2023)

Wannier interpolation and tight-binding models

- $\{ |\mathbf{R}n\rangle \}$ span the same space as $\{ |\psi_{n\mathbf{k}}\rangle \}$
- efficient interpolation in reciprocal space important for BZ integrals

$$ar{f}_n = rac{1}{N_k} \sum_{\mathbf{k}} f_n(\mathbf{k})
ightarrow rac{1}{\Omega} \int_{\mathsf{BZ}} \mathrm{d}\mathbf{k} \, f_i(\mathbf{k})$$

reproduce correct band connectivity

A. Marrazzo, SB et al., arxiv:2312.10769 (2023)

Wannier interpolation

$$\begin{aligned} H_{ij}^{(\mathsf{W})}(\mathbf{k}) &= \left\langle u_{n\mathbf{k}}^{(\mathsf{W})} \middle| \hat{H}(\mathbf{k}) \middle| u_{m\mathbf{k}}^{(\mathsf{W})} \right\rangle \\ &= \left[V_{\mathbf{k}}^{\dagger}(\mathbf{k}) H(\mathbf{k}) V_{\mathbf{k}} \right]_{nm} \end{aligned}$$

with

$$H_{nm}(\mathbf{k}) = \epsilon_{n\mathbf{k}} \delta_{nm}$$

J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B 75, 195121 (2007)

Wannier interpolation

J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B 75, 195121 (2007)

Wannier interpolation

J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Phys. Rev. B 75, 195121 (2007)

Task: compute local single-particle Green's function (i.e. DOS)

$$G(\omega) = \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[(\omega - H(\mathbf{k}) - \Sigma(\mathbf{k}, \omega))^{-1} \right]$$

J. Kaye, SB, A. Barnett, L. Van Muñoz, and O. Parcollet, SciPost Phys. 15, 062 (2023)

Task: compute local single-particle Green's function (i.e. DOS)

$$G(\omega) = \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[(\omega - H(\mathbf{k}) - \Sigma(\mathbf{k}, \omega))^{-1} \right]$$

• Applications: e.g. self-consistency loops in DMFT and post-processing

J. Kaye, SB, A. Barnett, L. Van Muñoz, and O. Parcollet, SciPost Phys. 15, 062 (2023)

Task: compute local single-particle Green's function (i.e. DOS)

$$G(\omega) = \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \Sigma(\mathbf{k}, \omega) \right)^{-1}
ight]$$

- Applications: e.g. self-consistency loops in DMFT and post-processing
- Setting: $H(\mathbf{k})$ obtained from a Wannier Hamiltonian $H(\mathbf{R})$, $\Sigma(\mathbf{k},\omega) = i\eta$

J. Kaye, SB, A. Barnett, L. Van Muñoz, and O. Parcollet, SciPost Phys. 15, 062 (2023)

Task: compute local single-particle Green's function (i.e. DOS)

$$G(\omega) = \int_{\mathsf{BZ}} \mathrm{d}^3 \mathbf{k} \operatorname{Tr} \left[\left(\omega - H(\mathbf{k}) - \Sigma(\mathbf{k}, \omega) \right)^{-1}
ight]$$

- Applications: e.g. self-consistency loops in DMFT and post-processing
- Setting: $H(\mathbf{k})$ obtained from a Wannier Hamiltonian $H(\mathbf{R})$, $\Sigma(\mathbf{k},\omega) = i\eta$
- Goal: fully automatic, high-order and adaptive algorithm

J. Kaye, SB, A. Barnett, L. Van Muñoz, and O. Parcollet, SciPost Phys. 15, 062 (2023)

Adaptive Brillouin zone integration - DOS of SrVO3

density of states (DOS):

$$A(\omega)=-rac{1}{\pi}\,{
m Im}\,G(\omega)$$

- comparison of default (PTR) versus new (IAI) algorithm
- user-provided error tolerance eliminates convergence tests
- available in AutoBZ.jl package

https://github.com/lxvm/AutoBZCore.jl/tree/main/aps_example

L. Van Muñoz, SB, and J.Kaye, in preparation (2024)

Adaptive Brillouin zone integration - DOS of SrVO3

density of states (DOS):

$$A(\omega)=-rac{1}{\pi}\,{
m Im}\,G(\omega)$$

- comparison of default (PTR) versus new (IAI) algorithm
- user-provided error tolerance eliminates convergence tests
- available in AutoBZ.jl package

https://github.com/lxvm/AutoBZCore.jl/tree/main/aps_example

L. Van Muñoz, SB, and J.Kaye, in preparation (2024)

Beyond DFT with localized orbitals

- Idea: DFT description good for most states, many-body (MB) treatment for low-energy states
- Approach: partition the total Hilbert space efficiently using WFs
- charge self-consistency important (for some systems)
- \rightarrow see lecture by O. Parcollet

A. Marrazzo, SB et al., arxiv:2312.10769 (2023)

Low-energy subspace with Wannier functions

Degree of localization...

- depends on energy window and contained states (hybridization)
- affects difficulty of MB calculations, value/form of local interaction
- Example: 3 t_{2g} orbitals versus 5+9 dp orbitals in Sr₂RuO₄

Low-energy subspace with Wannier functions

Degree of localization...

- depends on energy window and contained states (hybridization)
- affects difficulty of MB calculations, value/form of local interaction
- Example: 3 t_{2g} orbitals versus 5+9 dp orbitals in Sr₂RuO₄

Wannier functions ecosystem

Ecosystem based on:

- theoretical advancement
 - e.g. automation workflows, novel localization algorithm, ...
- development of open-source software packages
 - Wannier Software Ecosystem Registry*
- user support[†]
 - documentation, tutorials, mailing list, schools, developers meeting, ...

https://wannier.org/support

sbeck@flatironinstitute.org

^{*}https://wannier-developers.github.io/wannier-ecosystem-registry/

Wannier functions for the practitioner using Wannier90

Building Wannier functions:

- ingredients from an electronic structure calculation:
 - overlap between Bloch states (wannier90.mmn): $M_{ij}^{(\mathbf{k},\mathbf{b})} = \langle u_{i\mathbf{k}} | u_{j\mathbf{k}+\mathbf{b}} \rangle$
 - projection onto trial localized orbitals (wannier90.amn): $A_{mn}^{(k)} = \langle \psi_{mk} | g_n \rangle$
- user-defined input (wannier90.win):
 - trial orbitals, disentanglement parameters, ...

Other quantities:

- hoppings (input: wannier90.eig \rightarrow output: wannier90_hr.dat)
- additional ingredients based on quantity of interest...

A. Marrazzo, SB et al., arxiv:2312.10769 (2023)