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Conditions for magnetically induced singlet d-wave superconductivity on the square lattice
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It is expected that at weak to intermediate coupling, d-wave superconductivity can be induced by antiferro-
magnetic fluctuations. However, one needs to clarify the role of Fermi surface topology, density of states,
pseudogap, and wave vector of the magnetic fluctuations on the nature and strength of the induced d-wave
state. To this end, we study the generalized phase diagram of the two-dimensional half-filled Hubbard model as
a function of interaction strength U/, frustration induced by second-order hopping ¢’ /7, and temperature 7/1.
In experiment, U/t and ¢/t can be controlled by pressure. We use the two-particle self-consistent approach,
valid from weak to intermediate coupling. We first calculate as a function of ¢’/ and U/t the temperature and
wave vector at which the spin response function begins to grow exponentially. d-wave superconductivity in a
half-filled band can be induced by such magnetic fluctuations at weak to intermediate coupling, but only if they
are near commensurate wave vectors and not too close to perfect nesting conditions where the pseudogap
becomes detrimental to superconductivity. For given U/t, there is thus an optimal value of frustration #'/¢
where the superconducting 7. is maximum. The noninteracting density of states plays little role. The symmetry
d,2_y2 vs dy, of the superconducting order parameter depends on the wave vector of the underlying magnetic

fluctuations in a way that can be understood qualitatively from simple arguments.

DOI: 10.1103/PhysRevB.77.094501

I. INTRODUCTION

Even before the discovery of high-temperature supercon-
ductivity, research in organic and heavy-fermion compounds
led to the suggestion that antiferromagnetic spin fluctuations
can promote superconductivity with an order parameter that
changes sign along the diagonal of the Brillouin zone, the
so-called d-wave superconductivity.'"* This question can be
studied using the Hubbard model. At strong coupling,
namely, interaction strength U larger than the bandwidth,
mean-field factorization of the equivalent #-J model already
reveals the possibility of d-wave pairing. The situation is
quite different at weak coupling. There, no mean-field fac-
torization of the Hubbard model leads to a d-wave supercon-
ducting state. Instead, magnetic fluctuations are dominant.
Pairing must then be seen in a two-stage process. First, suf-
ficiently strong magnetic fluctuations are formed, then the
corresponding low energy bosons can act as a glue for pairs,
in a manner analogous to what phonons do in the standard
BCS theory. In other words, at strong coupling, it seems that
superexchange suffices to form pairs, while at weak cou-
pling, there is an intermediate process where mediating
bosons must be formed before they can bind pairs.’

There is now ample numerical and analytical evidence for
d-wave superconductivity in the one-band Hubbard
model®2° even though there are some dissenting voices.?!
While the coupling in high-temperature superconductors or
the layered bis-(ethylenedithio) (BEDT) organics is strong
enough to lead to a Mott insulating state at half-filling, it is
still interesting to understand more deeply the physics at
weak to intermediate coupling in the absence of the Mott
insulating state. There, numerical methods are limited by the
fact that small system sizes do not allow magnetic fluctua-
tions at incommensurate wave vectors.

In this paper, we study the two-dimensional Hubbard
model at half-filling. In two dimensions, the Mermin-Wagner
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theorem implies that there is no long-range magnetic order at
finite temperature. Nevertheless, there is a crossover tem-
perature at which the magnetic correlation length starts to
grow exponentially as temperature decreases. One enters the
so-called renormalized classical regime. We thus study the
influence of second-neighbor hopping ¢’ and of interaction
strength U on the magnetic crossover temperature.
Berezinsky-Kosterlitz-Thouless superconductivity is allowed
in two dimensions and can be induced by these magnetic
fluctuations. We answer the question of the relation between
the wave vector of the dominant magnetic fluctuations and
the symmetry and magnitude of d-wave superconductivity,??
as well as the question of the relative importance of the non-
interacting density of states, the double occupancy, the mag-
netic correlation length, and the detailed shape of the Fermi
surface on superconductivity.

We will use the two-particle self-consistent (TPSC)
approach?3-26 that is non-perturbative and valid at weak to
intermediate coupling. This method has been benchmarked
by comparisons with quantum Monte Carlo calculations
wherever possible. It gives results for the pseudogap, which
are in agreement with experiments in electron-underdoped
cuprates.?’?8 In addition, the superconducting transition tem-
perature obtained?® by this method is very close to more
accurate results from the dynamical cluster approximation.'?

We first introduce the model and the TPSC method, ex-
plaining in detail why it is a method of choice for this prob-
lem. We next present our numerical results, discuss various
physical aspects that can be found in the #-#'-U model, and
compare our results with other results in earlier literature. We
then discuss the relationship between d-wave superconduc-
tivity and magnetic fluctuations in terms of a simple physical
picture and conclude.

II. MODEL AND FORMALISM
We study the Hubbard Hamiltonian,
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where c¢;, (c],) are annihilation (creation) operator for elec-
trons of spin o at site i. The hopping matrix element ¢ is
between nearest neighbors (ij) whereas ¢’ is between next-
nearest neighbors ((ij)), n;, is the density operator at site i,
and U is the on-site interaction. Particle-hole transformation
with and without a phase factor shows that at half-filling, the
results do not depend on the sign of either 7 or ¢'.

The TPSC approach that we use in this paper satisfies the
Pauli principle (nlzf):(n,,), conservation of spin and charge,
as well as the Mermin-Wagner theorem. In addition, it in-
cludes renormalization of interaction (Kanamori-Briickner)
and has a self-energy that includes the vertex corrections that
must be taken into account in the absence of the conditions
necessary to satisfy Midgal’s theorem. TPSC also achieves
consistency between one- and two-particle quantities in the
form of the sum rule relating potential energy to the trace of
the self-energy time Green function. At weak to intermediate
coupling (U=61), detailed comparisons with benchmark
quantum Monte Carlo simulations'??4%6 reveal that TPSC is
accurate to a few percent.

In this approach, spin and charge susceptiblities x;,, Xcn
have random-phase-approximation (RPA)-like forms but
with two different effective interactions Uy, and U, that are
then determined self-consistently. Although the susceptibli-
ties have a RPA functional form, the physical properties of
the theory are very different from the RPA because of the
self-consistency condition on Uy, and U,,. The necessity to
have two different effective interactions for spin and charge
is dictated by the Pauli exclusion principle (n2)=(n,) which
implies that the local values of x, and x, are related to only
one local pair correlation function (n;n,). Indeed, using the
fluctuation-dissipation theorem in the Matsubara formalism,
we have the exact sum rules

1
() + () + 2nyn ) —n? = ﬂ—N% Xen(@) )
and
1
(n?) +(nty = 2nn,) = [Tzv% Xop(@) 3)

where B= lT n=(n;)+(n|), and g=(q,ig,) with q as the
wave vectors of a N-site lattice and with ig,=2minT the
bosonic Matsubara frequencies. The Pauli principle (n2)
=(n,, applied to the left-hand side of both equations with the
TPSC expressions for xy,, X, on the right-hand side leads to

n+2(nmn ) - n*= ZE Xo(@)

NZ Tl v 4)
7 1+3Uax0(@)
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with xo(g) as the susceptiblities calculated from the Green
functions whose constant self-energy can be absorbed in the
chemical potential. Hence, y,(g) takes the noninteracting
form.

If (nyn) is known, Uy, and U, are determined from the
above equations. The key quantity (n;n) can be obtained
from Monte Carlo simulations or by other means. However,
it can also be obtained self-consistently by adding to above
set of equations the relation

(nin))
Uyp=81(00U, 8N(O)=£%l?. (6)

Equations (5) and (6) define a set of self-consistent equa-
tions for U,, which involve only two-particle quantities.
Here, U, is determined by substituting in Eq. (4) the value
of (nyn) that is obtained from Eqs. (5) and (6).

Following the procedure introduced in Refs. 25 and 29,
one can show that the self-energy can be calculated from

SE(E) = (Ung) + o BU@) + U @G E + ).
)

where the Matsubara frequency associated with k is fermi-
onic and that associated with q is bosonic. In G\, the self-
energy is a constant that can be absorbed in the chemical
potential so that effectively GV is the noninteracting Green
function for half-filling.

As usual, we can compute the spectral function from
Ak, w)=-Im G?(k, )/, where

1

GPR(k,0) = :
(k) w+i6- g+ u—2R(k, )

(8)

The interacting chemical potential u is found by fixing the
number of particles calculated from G to half-filling.
The above formalism can be extended’® to compute pair-
ing correlations. Basically, the above steps are repeated in
the presence of an infinitesimal external pairing field that is
eventually set to zero at the end of the calculation. This
allows us to obtain the particle-particle irreducible vertex in
the Nambu space from the functional derivative of the off-
diagonal 3@ with respect to the off-diagonal Green function.
The d-wave susceptibility is defined by yy
=f €d7'<T7A(T)AT>, with the d-wave pair creation operator
A"':EiEyg(y)c}c;%, g(y) being a form factor for a repre-
sentative gap symmetry, 3=1/T, T, is the time-ordering op-
erator, and 7 is imaginary time. The final expression for the
d-wave susceptibility in the zero-frequency limit can be writ-

ten as follows, if we use the notation where k and k' denote
both the wave vector and the fermionic Matsubara frequency,
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In this equation, g,(k)=(cos k,—cos k,) for d,>_,» symmetry
and g,(k)=sin k, sin k, for d,, symmetry. Details of the cal-
culational procedure are explained in Ref. 26. The only dif-
ference is that, in the present paper, double occupancy is
always computed self-consistently with Egs. (5) and (6). At
high temperature, the pairing susceptibility obtained from the
above approach is in quantitative agreement with benchmark
quantum Monte Carlo simulations.”® However, because of
the sign problem, the latter are not available at very low
temperatures. Nevertheless, temperatures in the simulations
are low enough to observe the effect of the pseudogap.
Since the expression for the susceptibility [Eq. (9)] con-
tains only the first two terms of the infinite Bethe-Salpeter
series, we use the temperature where the contribution of the
vertex part (exchange of one spin and charge fluctuation)
becomes equal to that of the direct part of the d-wave pairing
susceptibility?® as a rough estimate for the transition tem-
perature for d-wave superconductivity. In other words, we
look for the equality of the sign and the magnitude of the two
terms appearing in Eq. (9). This choice is motivated by the
statement that 1/(1-x)~ 1+x diverges when x=1. The true
Kosterlitz-Thouless transition temperature in two dimensions
is expected to occur below the temperature determined from
the Bethe-Salpeter equation. The temperatures that we will
find for the transition temperature are thus upper bounds.
Strictly speaking, TPSC looses its quantitative accuracy
when it is taken below the crossover to the renormalized
classical regime. In cases where we will find the supercon-
ducting T, far below the crossover to the renormalized clas-
sical regime, we expect our results to be only qualitatively
correct. Nevertheless, as a further check of the validity of
this approach, we point out that detailed finite size studies
near optimal doping (x=0.10) using the dynamical cluster
approximation'? find that 7,.=0.023t when U=4t, t'=0,
while with TPSC,?® the corresponding value is 7,.=0.029t.

III. NUMERICAL RESULTS AND COMPARISONS WITH
OTHER APPROACHES

Let us first consider magnetic properties. In two dimen-
sions, there is no long-range magnetic order at finite tem-
perature because of the Mermin-Wagner theorem. Neverthe-
less, there can be a crossover temperature 7y where the
antiferromagnetic correlation length (£) begins to increase
exponentially. In such a case, £ becomes infinite only at zero
temperature where long-range order is established. One can
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define the crossover temperature Ty as the temperature at
which the antiferromagnetic correlation length & becomes
equal to the thermal de Broglie wavelength. At this tempera-
ture, a pseudogap begins to appear at hot spots in the zero-
frequency single-particle spectral weight.>* Hot spots are
points of the Fermi surface that are linked by the wave vector
where the magnetic fluctuations are becoming large.

In practice, as soon as the correlation length becomes
relatively large compared with the lattice spacing, the rise in
¢& as temperature is lowered is rather sharp. For convenience,
we thus choose 7y as that temperature where
Xsp(@x-4y,0)/ X0(qy-qy,0)=200, with g, and g, as the wave
vectors where the response function has a maximum. We
chose 200 for the sake of computational time and checked
that the result did not change appreciably if we chose a
higher value.

In the top panel of Fig. 1, we show the crossover diagram
of the frustrated Hubbard model on the square lattice in the
U-t' plane without superconductivity. All parameters with
dimension of energy are measured in units of nearest-
neighbor hopping ¢. Boltzmann’s constant is also taken as
unity. The color code in Fig. 1 represents the variation of the
crossover temperature. The areas indicated with (7, ), in-
commensurate spin-density wave (ISDW), (0,7-46), and
paramagnetic (PM) are the commensurate, incommensurate,
incommensurate close to (0,7) [J approaches 0 as ¢’ in-
creases in that region (see Fig. 2)], and nonmagnetic (para-
magnetic) metallic state, respectively. The PM state indicates
that the peak of the spin response function does not grow
even at temperature as low as 7=0.01.

We note that at small ¢’, the largest peak value of the spin
response function is at the (7, 7) wave vector, which is ex-
pected to mediate d,>_> superconductivity. For ' >0.8, on
the other hand, the response is peaked at the (0, 7—8) wave
vector, expected to be relevant for d,, superconductivity. Due
to the exponentially increasing correlation length with de-
creasing temperature, a small coupling between two-
dimensional planes would lead to long-range spin order at
finite temperature, especially for small " and ¢’ >0.8.

Our crossover diagram (without superconductivity) can be
compared with zero-temperature results obtained by other
methods. For t'=<0.5, there are results of the optimized
variational Monte Carlo method in Ref. 30. For U< 6, their
antiferromagnetic region extends only up to |t'/¢/=<0.2, a
result quite different from other studies including ours. For
t' <1, the phase diagram in the U-t’ plane has been obtained
by the path-integeral renormalization group (PIRG)
approach.! Restricting ourselves to the region U <6 of that
paper, we find that the area of our PM state is smaller. How-
ever, the region where (7r,7r) fluctuations occur is quite
close. They find a (7r,0) phase for ' =0.7 like us but at U
= 8. Due to the finite size of the PIRG calculations, they are
not sensitive to the incommensurate spin-density waves that
we find. That may explain why their paramagnetic region is
larger. Also, in the region where we find ISDW, they find, at
large enough U, a nonmagnetic Mott insulator and, at even
larger U, a (7/2, ) phase. Our TPSC approach cannot de-
scribe the Mott transition, so the question is whether that
transition can occur at values as small as about U=4, as
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FIG. 1. (Color online) Crossover diagram at n=1 in the U-t’
plane, where U and t" are measured in units of hopping 7. In the top
panel, there is no superconductivity. In the bottom panel, the bound-
aries where d-wave superconductivity can appear are indicated. The
color scale represents the value of the crossover temperature for the
spin response function. ISDW refers to incommensurate spin-
density wave and PM to paramagnetic phase.

found in Ref. 31. That seems to be possible within the varia-
tional cluster approximation (VCA),*?> but VCA overesti-
mates the effect of interactions. The (7, ) region in the
latter work is larger than ours, again perhaps because the
small system sizes are not sensitive to incommensurate den-
sity waves. However, the (0, 77— &) region is quite close to
ours. We should also keep in mind that we are quoting the
position of the maximum spin susceptibility at the crossover
temperature. That position may change when zero tempera-
ture is reached. In fact, quite generally, it is expected that the
magnetic fluctuations become more incommensurate as tem-
perature decreases.

We open a parenthesis on the incommensurability dis-
cussed above. It can be contrasted with what is found in spin
models that correspond to the large U limit of the Hubbard
model. Figure 2 shows the classical ground state®* of the
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FIG. 2. The classical ground state (Ref. 33) of J;-J, Heisenberg
model at 7=0 as a function of ¢’ obtained by minimizing the
dispersion  relation J(q)=2[cos(qx)+cos(qy)]+2t’2[cos(qx+qy)
+eos(q,-a,)].

Ji(=1*14U)~J, [=(1")*/4U] Heisenberg model on the square
lattice as a function of ¢'/t=+\J,/J,. Commensurate (7, )
ordering is found for 7' < \gt, while for ¢’ > \Et, two inde-
pendent antiferromagnetic sublattices appear as the ground
state. Thermal or quantum fluctuations select a collinear
phase®® with (7,0) or (0,7) and (g,,m) and (,q,) for
t'= \/g . We can see in Figs. 3 and 4 that at weak to interme-
diate coupling, Fermi surface effects as well as thermal and
quantum fluctuations reduce the region where (7, 7) com-
mensurate ordering is found, relative to the classical strong-
coupling theory (U>1).

We now turn to the regions, illustrated in the lower part of
Fig. 1, where spin fluctuations can induce d-wave supercon-
ductivity. There are only five real irreducible representations
of the tetragonal group that correspond to singlet pairing.3*
Among these, only B, (d,2_,2) and B, (d,,) have an internal
structure that can take advantage of spin fluctuations in the
two-dimensional plane (see Discussion section below). In-
commensurate fluctuations could conceivably lead to triplet
superconductivity in one of the five odd irreducible represen-
tations, a possibility we do not consider here.

At n=1 and t'=0, it was shown in Ref. 26 that strong
antiferromagnetic fluctuations create a pseudogap over the
perfectly nested Fermi surface, suppressing the possibility of
d-wave superconductivity. By including frustration in the
form of second-neighbor hopping, the pseudogap becomes
limited to the hot spot regions,® allowing the d,>_> super-
conducting state to appear. As the ordering wave vector be-
comes more incommensurate with increasing #’, the condi-
tions necessary for d,2>_» superconductivity are no longer
satisfied (see Discussion section below). This explains the
finite region over which d,>_,>» appears in Fig. 1. Magnetic
fluctuations near (7,0) lead to d,, symmetry (see Discussion
section). The area between the solid lines with circles (green)
and the dashed lines with triangles (blue) indicates, respec-
tively, the d,2_,2 and d,, superconducting regions. We can see
that the window of d-wave superconductivity decreases upon
decreasing U and vanishes at (U=1.9, t'=0.09) for d,>_,> and
at (U=3, t'=1.85) for the d,, state. When U is not large
enough in the presence of frustration, antiferromagnetic fluc-
tuations are not large enough to lead to d-wave superconduc-
tivity. The large U (=6) effect on the window where d-wave
superconductivity exists cannot be captured within TPSC
since this approach is valid only from weak to moderate
coupling.
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FIG. 3. (Color online) f(t')= V/(O.S—k;”‘”)2+(0.5—k;7‘“)2 as a
measure of the typical position of the wave vector where the maxi-
mum spin response function is located at Ty as a function of ¢’ for
U=2, 4, and 6 all at n=1. All energies are in units of z.

The region ' <0.5 in the above phase diagram bears
some similarity with that found by 7=0 extrapolation of the
fluctuation exchange (FLEX) approximation.’® The value of
(U,t") at which the d,»_» superconducting state ceases to
exist is around (3.38,0.33) in that approach. The d,2_,» win-
dow increases rapidly with increasing U and becomes ap-
proximately constant beyond U=4.0. (We are comparing the
results of this paper for positive ¢' since they do not show the
expected symmetry under change of sign of ¢’ at n=1.) In the
T=0 VCA study*? mentioned above, the d,2_2 state appears
all the way down to U=0 and up to #'=1. Our results are
expected to be more accurate in the weak-coupling region.
With TPSC, we cannot address the question of 7=0 homo-
geneous coexistence of superconductivity and antiferromag-
netism (superconducting antiferromagnet).

The d,>_,»> superconducting critical temperature T, as a
function of ¢' at U=2.5, 3, and 4 is depicted in Fig. 5. The
inset shows T.(t') for the d,, case at U=3.6 and 4. The
maximum 7, increases with increasing U, by contrast with
what is found at strong coupling.!!"1637 Here, T, for the d,>_>
state as a function of ¢/ at fixed U shows a behavior that is
similar to that found earlier as a function of doping?® for ¢’
=0. In fact, even the maximum value of 7. that can be
reached for given U is comparable in the two cases. There
are some similarities in the physics. The antiferromagnetic
fluctuations need to be large enough and also at the correct
wave vector to lead to superconductivity, but if they are too
large with hot spots that cover the whole Fermi surface, su-
perconductivity disappears. In FLEX,® there is no
pseudogap but the T=0 extrapolation leads to antiferromag-
netism destroying superconductivity at ¢’ =0.

We now study, in turn, how incommensuration, antiferro-
magnetic correlation length, double occupancy, and the
Fermi surface effects influence d-wave superconductivity.
Figure 3 illustrates at the crossover temperature Ty the in-
commensurability of the wave vector where the maximum
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FIG. 4. (Color online) The position of the wave vector where the
maximum spin fluctuations occur in the Brillouin zone for n=1,
U=4 as a function of #’. Numbers near data points indicate the
value of ¢'.

spin response oceurs. The quantity  f(¢)
=\/(0.5 —k;"‘”‘)2+(O.S—k;“”‘)2 is plotted as a function of ¢’ at
U=2, 4, and 6. Here, k;“ and k[“* are the x and y compo-
nents of the wave vector where the spin response function is
maximum. In f(¢'), &7 and kj“* are measured in units of 27
so that 0.5 corresponds to 7. The position of the peak is at
(0.5,0.5) for small ¢ and approaches (0.5,0) with increasing
t'. The peak position at Ty does not strongly depend on U
even though Ty depends on U. To be more explicit, we show
in Fig. 4 how the wave vector moves in the Brillouin zone.
Since the spin correlation function has typically several
maxima, the highest peak determining the largest spin corre-
lations sometimes suddenly jumps from one place to another
in momentum space, which clearly happens near ¢’ =0.55 and
0.7. Since the Fermi surface topology changes near ' =0.71,
this is not surprising.
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FIG. 5. (Color online) The d,2_,» superconducting critical tem-
perature T, as a function of ¢ at U=2.5, 3, and 4 for n=1. The inset
shows the d,, superconducting critical temperature 7. as a function
of ¢ for U=3.6 and 4.
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FIG. 6. (Color online) Logarithm base ten of the antiferromag-
netic correlation length (in units of the lattice spacing) as a function
of inverse temperature for three values of t'=0.15,0.21,0.31 at U
=4 for n=1. The value of T, for the corresponding ¢" is shown on
the plot.

As can be seen by comparing Figs. 4 and 5, the maximum
value of 7. for d,2_> superconductivity always occurs in the
region where the antiferromagnetic fluctuations are commen-
surate at (m,m), namely, for 0<<¢'<0.32. Similarly, the
maximum 7, for d,, superconductivity occurs where mag-
netic fluctuations are nearly commensurate at (0, 7—J), al-
though in the latter case, strict commensurability is never
achieved. The maximum 7, at U=4, for example, is smaller
for d,, compared with d,2_,2.

The antiferromagnetic correlation length ¢ is a measure of
how strong are the antiferromagnetic fluctuations. Here, we
find £ by calculating the curvature of the zero-frequency in-
teracting spin susceptibility at the maximum. To assess the
importance of this factor on superconductivity, the logarithm
of & is shown in Fig. 6 for three different values of ¢' at U
=4. An arrow indicates for what length we find a supercon-
ducting T,.. The antiferromagnetic correlation length at 7, is
smallest for the largest T.. Near perfect nesting (smallest ),
where pseudogap effects are important, superconductivity is
hindered by the removal of states near zero energy.’® To
compensate, the antiferromagnetic correlation length has to
become very large before superconductivity can set in, as we
can see from ¢'=0.15 on the figure. We can also compare at
T. the thermal de Broglie wavelength vg/ 7T in units of the
lattice spacing (and kg=1, A=1) with the value of & In our
units, the thermal length takes a value close to 1/7 on the
horizontal axis of Fig. 6. It is only for the largest value ¢’
=0.31 that the superconducting 7, occurs well above the
renormalized classical regime, i.e., for the thermal length
much larger than & The important qualitative fact is that 7'
occurs below the renormalized classical regime Ty when its
occurrence is hindered by the pseudogap and that it can oc-
cur above Ty otherwise. Near the maximum 7., the two
lengths are of the same order, in other words, for that ¢’
=0.21, T. and Ty are of the same order. However, in all
cases, & is much larger than the lattice spacing.

For large t', where d,, superconductivity occurs, the anti-
ferromagnetic correlation length is large, corresponding to
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FIG. 7. (Color online) g=g;,(0) as a function of ¢ at U=4 and
6 for n=1 at the crossover temperature 7’y. The inset shows Ty as a
function of ¢' at U=4 and 6 for n=1.

the smaller T, obtained for that pairing symmetry (not
shown). Returning to the factors influencing d-wave super-
conductivity, it is meaningful to ask how double occupancy
in the underlying normal-state influences the appearance of
superconductivity. One might naively think that larger
double occupancy would be favorable to superconductivity.
A counterargument is that larger interaction strength, hence
smaller double occupancy, is more favorable to d-wave su-
perconductivity, hence it should correspond to larger 7. We
show in Fig. 7 the double occupancy normalized to its
Hartree-Fock value, namely, g=g;,(0), as a function of ¢’ at
U=4 and 6 at the crossover temperature T'y. The value of Ty
as a function of ¢’ for the same values of U is shown in the
inset. The maximum in double occupancy in the region 0.4
<t'<0.8 corresponds to weaker spin fluctuations (as ex-
pected from the sum rule [Eq. (5)]) and vanishing 7. This is
in agreement with what one can observe (yellow region) in
Fig. 1. Comparing the overall values of g=g;,(0), we check,
as expected, that double occupancy is smaller at larger U.
The smaller double occupancy for larger U corresponds to a
larger value of the maximum 7.(z') in Fig. 5. Hence, from all
of the above, one might conclude that smaller double occu-
pancy is better for d-wave superconductivity. However, for
the d,2_,2 case, the maximum in 7, as a function of ¢ occurs
for both values of U in a region where double occupancy is
constant, independent of ¢'. Hence, one cannot conclude that
smaller double occupancy is more favorable to superconduc-
tivity. In fact, the opposite trend is seen in the fact that the
maximum 7. at U=4 in the d,, case occurs in a region where
double occupancy is large. Even more striking is the fact that
the value of double occupancy in the d,, case (¢'>1) is
monotonically increasing with ' while 7, is not. Clearly,
double occupancy, a local quantity, is not directly correlated
with the value of T, for order parameters with nodes at the
origin.
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FIG. 8. (Color online) Noninteracting Fermi surfaces (black
solid lines) at half-filling and wave vectors of the dominant spin
fluctuations for four values of ¢ and 0<k,,<2w. For negative
values of ¢, the plots are identical if —7T<7€X’V<7T. The arrows
represent the wave vectors that lead to the largeét spin susceptibil-
ity. (a) t'=0 and (b) t'=0.3. Dashed line is the antiferromagnetic
Brillouin zone. (¢) t'=1.2 and (d) ¢’ =2.0. In the last two plots, the
dashed lines are separated by (0,77) and (77,0).

We move to the influence of the shape of the Fermi sur-
face on d-wave superconductivity. First of all, the shape of
the Fermi surface influences the wave vector at which mag-
netic fluctuations are the largest. Figure 8 illustrates the fact
that at ¢’ =0, perfect nesting occurs for (7, 7r) and symmetry
related vectors, while for =2, one has nearly perfect nest-
ing at (0,7—6). The change in Fermi surface topology oc-
curs around ¢'=0.71. There is no further change in topology
between t'=0.71 and t'=2. The symmetry of the induced
superconductivity is tied to the wave vectors of the magnetic
fluctuations, namely, d,>_y» for (7, ) and d,, for (0, 7). No
singlet superconductivity occurs in the vicinity of the change
in the Fermi surface topology because of the incommensura-
bility and smallness of the fluctuations.

The single-particle density of states of the noninteracting
system is not a major factor in the occurrence of d-wave
superconductivity. This is demonstrated in Fig. 9 that shows
that there is no correlation with the maximum 7. in Fig. 5
and peaks in the single-particle density of states. There is a
jump in density of states near ¢'=0.71 where Fermi surface
topology changes. The only case where the Fermi surface
coincides with a van Hove singularity in the single-particle
density of states is at t'=0, and, in that case, there is no
d-wave superconductivity, contrary to naive expectations.
This is because the nesting allows strong antiferromagnetic
fluctuations at (7, 7) to open a pseudogap over the whole
Fermi surface. This is illustrated in Refs. 26 and 29. The
pseudogap removes density of states from the Fermi energy
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FIG. 9. Noninteracting single-particle density of states at the
Fermi level N, as a function of #’, calculated at half-filling with an
energy resolution 0.02. Spin degeneracy is included.

and is detrimental to d-wave superconductivity.?® The same
phenomenon is seen at t'=2 where there is also nearly per-
fect nesting. In the presence of a finite ', the pseudogap is
created only at hot spots and d-wave superconductivity can
arise.

IV. DISCUSSION

Our estimate of 7, from the normal state rests on the fact
that at 7., the vertex equation deduced from the Bethe-
Salpeter equation becomes singular. In that case, the vertex
equation has the same structure, symmetry wise, as the BCS
gap equation. One can thus understand very simply the rela-
tion between the symmetry of the d-wave order parameter
and the underlying magnetic fluctuations. Normally, one
would project the interaction potential in the different pairing
channels.!** A less rigorous but more intuitive approach fol-
lows Ref. 7 and starts from the BCS gap equation

1 d2p, , Ap’
Ap - 2 (27T)2 V(p P )Epf [1 zn(Ep/)]» (10)
where E, is the quasiparticle energy and n(E, ) the Fermi
function. Even though the effective potential V(p—p’) for
singlet pairing due to spin fluctuations is always positive
(repulsive), it can lead to an effective negative (attractive)
potential for d,2_,2-wave superconductivity if it is peaked at
(=77, 7) and symmetry related wave vectors, as illustrated on
the left of Fig. 10. Indeed, take a value p along the x axis
where the gap is positive. Then, the largest contribution to
the integral over p’ will come from a region around p’ lo-
cated at =90°, where the gap is negative, such that the con-
dition p—p’=(-, =) is satisfied as closely as possible.
The change in sign of the gap allows a solution of the gap
equation even with V(p—p’) positive. (Clearly also, increas-
ing the strength of the interaction will lead to a higher T..)
The analogous argument explains why (*,0), (0, £ )
scattering favors d,,-wave superconductivity and why mag-
netic fluctuations that are peaked at incommensurate wave
vectors are not favorable to any of the allowed singlet
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FIG. 10. (Color online) Illustration of the scattering by
(=, ) fluctuations for d,>_j2-wave superconductivity and by (-7
+9,0) for d,,-wave superconductivity.

pairing symmetries on the square lattice. (In addition, for a
given U, the magnitude of fluctuations at incommensurate
vectors is smaller than at commensurate vectors.) While we
have not studied the following question in detail, we note
that incommensurate wave vectors may be favorable to pair-
ing in triplet channels such as p wave (E,).>* There is, how-
ever, a change in sign of the effective interaction in the triplet
channel.** That kind of mechanism may occur in the
heavy-fermion compound CeCu,Si,,3® for example.

According to Anderson,’ that physics whereby the pair
state is orthogonal to the repulsive core of the Coulomb in-
teraction was explained by Pitaevskii and Brueckner.?*#
Note also that in our approach, we neglect the feedback of
superconductivity on spin fluctuations.*!

As discussed in the previous section, in the present case,
the noninteracting density of states has little influence on the
value of T.. Self-energy effects can strongly modify the ef-
fective density of states by creating a pseudogap that is det-
rimental to superconductivity. Self-energy effects are not so
important in calculations that do not contain the
pseudogap.*> We saw the suppression of superconductivity
by the pseudogap at ¢'=0, for example. That suppression is
already apparent at high temperature in quantum Monte
Carlo calculations®® and is reproduced by TPSC within a few
percent in that regime. In apparent contradiction with the
suppression of superconductivity by strong antiferromagnetic
fluctuations in the presence of nesting, in quantum cluster
approaches,'>!%4 one does not see the suppression of
d-wave superconductivity at half-filling for #'=0 at weak to
intermediate coupling (i.e., below the Mott transition), unless
long-range antiferromagnetism is allowed. This is because
for the small cluster sizes considered, the normal-state mag-
netic correlation length cannot become large enough to cre-
ate a weak-coupling pseudogap. Indeed, a weak-coupling
pseudogap can barely be seen in Ref. 44 for cluster sizes of
4 X4, even though they are larger than the 2 X2 clusters in
Ref. 16. It is only at even larger cluster sizes that the weak-
coupling pseudogap appears in dynamic cluster approxima-
tion calculations.** The difference between weak- and
strong-coupling pseudogaps has been discussed, for ex-
ample, in Refs. 45 and 46.

PHYSICAL REVIEW B 77, 094501 (2008)

In electron-phonon mediated superconductivity, it has
been found that the phonon frequencies near 7kzT are the
most efficient ones for pairing.*’ In the present case, the
wave vector of the magnetic fluctuations is also important.
Although we have not studied the importance of the fre-
quency dependence in detail, it is possible to make the fol-
lowing remarks. Take d,2_,> superconductivity. For small 7,
where superconductivity is reduced by self-energy effects
coming from the pseudogap, the important frequencies are
less than temperature in energy units because 7, occurs in the
renormalized classical regime. At larger ¢', where T. is re-
duced by incommensuration effects and deviations to nest-
ing, the pseudogap occurs at lower temperature than 7.
hence finite frequencies larger than temperature are still im-
portant. Optimal 7. occurs between these two cases.

V. CONCLUSION

We have studied the conditions for the appearance of
magnetic-fluctuation-induced d-wave superconductivity in
the half-filled Hubbard model in two dimensions. We have
shown that at weak to intermediate coupling, the symmetry
of the d-wave order parameter is determined by the wave
vector of the magnetic fluctuations. Those that are near
(m,m) lead to d,2_,>-wave (By,) superconductivity, while
those that are near (0, ) induce d,,-wave (B,,) supercon-
ductivity. The dominant wave vector for magnetic fluctua-
tions is determined by the shape of the Fermi surface, so we
find that d,>_>-wave superconductivity occurs for values of
t', which that are relatively small, while d,,-wave supercon-
ductivity occurs for t' > 1. For intermediate values of ¢’, the
magnetic fluctuations are smaller and incommensurate, so no
singlet superconductivity appears. The maximum value that
T. can take as a function of ¢’ increases with interaction
strength. All of the above can easily be understood physi-
cally from simple BCS-like arguments. However, contrary to
what is expected from BCS, the noninteracting single-
particle density of states does not play a dominant role. With
Fermi surfaces where hot spots can create a pseudogap on
nearly all the Fermi surface (as in the t'=0 case), self-energy
effects hinder d-wave superconductivity, even though the
strength of magnetic fluctuations can be very large. In that
case, the large inelastic scattering rates are pair breaking and
remove states near the Fermi level, decreasing the tendency
to d-wave superconductivity. There is thus an optimal value
of ' (frustration) for superconductivity. For d,2_y> supercon-
ductivity in underfrustrated systems (small '), T, occurs be-
low the temperature 7'y where the crossover to the renormal-
ized classical regime occurs. In other words, at T,, the
antiferromagnetic correlation length is much larger than the
thermal de Broglie wave length. The opposite relationship
between these lengths occurs for overfrustrated systems
(¢ larger than optimal) where T, is larger than Ty. The two
temperatures are comparable for optimally frustrated sys-
tems. However, in all cases, at T,., the antiferromagnetic
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correlation length is larger than the lattice spacing. Compari-
sons with experiments on heavy-fermion compounds, quasi-
one-dimensional organic metals, and the question of the in-
terplay of incommensurate magnetic fluctuations and triplet
pairing are left for future work.

Note added in proof. Recently, our attention was drawn to
Ref. 48, which studies the same problem using variational
mean-field theory. Their phase diagram is quite similar to
ours. They do not have the pseudogap effects and therefore
they do not see the nonmonotonic behavior of 7. with " as
we do.
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