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First-order Mott transition at zero temperature in two dimensions:

Variational plaquette study
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Abstract – The nature of the metal-insulator Mott transition at zero temperature has been
discussed for a number of years. Whether it occurs through a quantum critical point or through a
first-order transition is expected to profoundly influence the nature of the finite-temperature phase
diagram. In this paper, we study the zero temperature Mott transition in the two-dimensional
Hubbard model on the square lattice with the variational cluster approximation. This takes
into account the influence of antiferromagnetic short-range correlations. By contrast to single-site
dynamical mean-field theory, the transition turns out to be first order even at zero temperature.

Copyright c© EPLA, 2009

Introduction. – The correlation-driven transition
from a paramagnetic normal Fermi liquid at weak coupling
to a paramagnetic Mott insulator at strong coupling is
one of the most important paradigms in solid-state
theory [1,2]. For example, the Mott state is suggested
to represent the proper starting point for theoretical
studies of the extremely rich and difficult correlation
physics of two-dimensional systems such as cuprate-based
high-temperature superconductors [3]. A big step forward
in the understanding of the Mott transition was made by
applying the dynamical mean-field theory (DMFT) [4–6]
to the single-band Hubbard model which is believed to
capture the main physics of the Mott transition in a
prototypical way. The Hamiltonian is given by

H =−t
∑

〈ij〉,σ

c†iσcjσ +U
∑

i

ni↑ni↓, (1)

where the summation is over site indices i, j, and σ
is the spin label. c†i,σ and ci,σ are the particle creation

and annihilation operators and ni,σ = c
†
iσciσ. Each doubly

occupied site costs an energy U . All the numerical results
are presented in units where t= 1.
A number of objections concerning the DMFT picture of

the Mott transition have been raised [7] and answered [8].
However, the main criticism comes from the neglect of
the feedback of non-local magnetic correlations on the

(a)E-mail: michael.potthoff@physik.uni-hamburg.de

single-particle dynamics. This leads to a description of the
paramagnetic Mott insulator with a macroscopically large
ground-state entropy of S =L ln 2 (where L→∞ is the
number of sites). On the level of one-particle excitations,
superexchange does not lift the 2L-fold degeneracy aris-
ing from the spins of the localized electrons. This must
be considered as a mean-field artifact which has profound
consequences for the phase diagram: At finite tempera-
tures, T > 0, the large entropy term stabilizes the Mott
insulator in a situation where it competes with a metallic
Fermi liquid.
Cluster extensions of the DMFT [9] can cure this defect

since they incorporate the feedback of short-range antifer-
romagnetic correlations. This has motivated a number of
previous studies which put the relevance of the mean-field
picture for the transition into question and focus on the
qualitative change of the phase diagram due to short-range
magnetic correlations in, say, two dimensions [10–16].
Recently, novel quantum Monte-Carlo techniques to

solve the problem for a plaquette of correlated sites have
been used to study the transition at finite T on the square
lattice with nearest-neighbor hopping t. While different
embeddings of the plaquette were considered, namely the
cellular DMFT (C-DMFT) [15] and the dynamical cluster
approximation (DCA) [16], it turned out that salient
features of the DMFT phase diagram [5] are preserved
(see fig. 1). In particular, there is again coexistence of
a metallic and an insulating phase in a certain U −T
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Fig. 1: (Colour on-line) Top left: sketch of the DMFT phase
diagram. Coexistence of a metallic and a Mott insulating
solution is found in the yellow region. A first-order Mott
transition takes place at Uc(T ) (red line). The first-order line
ends in second-order critical points (red dots) at T = Tc and
T = 0. Top right: possible phase diagram within plaquette
DMFT. The first-order line ends in Uc1 for T = 0. Bottom: the
phase diagram supported by our plaquette VCA calculations.
The first-order line does not end in a critical point at T = 0.

range at half-filling bounded by lines Uc1(T ) and Uc2(T ).
Comparison of their respective free energies leads to a first-
order transition line Uc(T ) which, at a temperature Tc,
ends in a second-order critical point above which there is
a smooth crossover only.
For T < Tc there are different possibilities: Within

single-site DMFT (fig. 1, top left), the insulator wins at
higher temperatures due to the residual high entropy of
the insulator. This implies that Uc(T ) is increasing with
decreasing T . Consequently, the line ends for T = 0 in
another second-order critical point which must coincide
with the point up to which a metallic solution can be
found, i.e. Uc(0) =Uc2(0). At T = 0 the metal is stable
in the entire coexistence region. Contrary, within a
plaquette DMFT, the entropy is low in the insulator due
to short-range singlet formation. The phase diagram fig. 1
(top right) is obtained if the metal always wins at higher
T . As compared with single-site DMFT, the critical line
Uc(T ) bends back, and Uc decreases with decreasing
T [16]. Hence, Uc(0) =Uc1(0), and at T = 0 the insulator
is stable in the entire coexistence region.

Main results. – Here we use the variational cluster
approximation (VCA) [17,18] to embed a plaquette of
four correlated sites and four or eight uncorrelated
bath sites in the lattice. As the method is thermody-
namically consistent and focuses on the optimization
of a thermodynamical potential, it is ideally suited to
distinguish between different phase diagram topologies.
Here we consider T = 0 using the Lanczos method as a
cluster solver. Our results are consistent with the previous
plaquette DMFT studies [15,16] but support yet another
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Fig. 2: (Colour on-line) Reference systems consisting of four
correlated sites with U �= 0 (filled, blue circles) and four (A) or
eight (B) uncorrelated sites with U = 0 (open, red circles). One-
particle variational parameters: “hybridization” V , hopping
between correlated (t′) and uncorrelated sites (t′′) and shift
(±∆ε) of the energies of the bath sites with respect to µ.
Here, µ is the common chemical potential for both cluster and
bath. For arbitrary one-particle parameters a space of trial self-
energies Σ is spanned on which a stationary point of the SFT
grand potential Ω[Σ] is searched.

low-temperature phase diagram (fig. 1, bottom). We
find a sizable interaction range Uc1 <U <Uc2 where the
metallic and the insulating solution are coexisting at zero
temperature. The T = 0 endpoint of the line of first-order
transitions Uc =Uc(T = 0) does neither coincide with Uc1
nor with Uc2, so that the Mott transition is discontinuous
also at T = 0.

Method. – Using a plaquette of four sites to generate
an approximate self-energy Σij(ω) for the infinite D= 2
square lattice, represents the essential step to go beyond
the single-site DMFT approximation Σij(ω)≈ δijΣ(ω).
An in principle ideal embedding of the cluster in the
infinite lattice could only be achieved with a continuum
of bath degrees of freedom (uncorrelated sites with U = 0)
attached to the correlated four-site cluster in the spirit
of quantum-cluster theories [9]. For T = 0, however, this
is not yet accessible with presently known cluster solvers.
As far as static quantities and the thermodynamical phase
diagram are concerned, however, it is fortunately well
known that a few bath sites can be sufficient for reliable
predictions [19–22]. This holds on the single-site level
where the DMFT phase diagram for the Mott transition
can be recovered qualitatively with a single bath site
only [20] as well as for cluster approximations, as has been
demonstrated recently in one dimension for the filling-
controlled transition [21,22].
To address the phase diagram of the Mott transition,

we have to employ a thermodynamically consistent
method to optimize the cluster self-energy and to fix
the plaquette and bath parameters. For the reference
systems displayed in fig. 2 this can be achieved within the
self-energy-functional theory (SFT). The SFT has been
described in detail in refs. [17,18,20]. The main idea
is to use the reference system for spanning a space of
trial self-energies. Referring to the reference system in
fig. 2(A), for example, the trial self-energy is parametrized
as Σ=ΣV,t′,t′′ and calculated at a given U and at T = 0
for each set (V, t′, t′′) from the cluster Green’s function
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G
′ via Dyson’s equation. On this space, the general SFT
grand potential as a functional of the self-energy, Ω[Σ],
can be evaluated exactly via

Ω[Σ] = Ω′+Tr lnG−Tr lnG′. (2)

Here Ω′ is the grand potential of the reference system
and G is the lattice Green’s function obtained via
G= 1/(G−10 −Σ) from the free lattice Green’s function
G0. A physical state is found as a stationary point of
Ω[ΣV,t′,t′′ ] as a function of the variational parameters
(V, t′, t′′). To this end, we exploit the particle-hole symme-
try of the Hubbard model (1) at half-filling, use the (band)
Lanczos method for a simultaneous calculation of all
elements of the cluster Green’s function G′, and employ
the Q-matrix technique or integration along the imaginary
frequency axis to evaluate Tr lnG/G′ [23]. In addition,
we make use of spatial symmetries to limit the number of
independent one-particle parameters to a minimum.

Parameter optimization. – For a simultaneous inde-
pendent optimization of V , t′ and t′′ (reference system
fig. 2(A)) we apply the downhill simplex method and/or
iterative one-dimensional optimizations to find local
minima of |∇Ω[ΣV,t′,t′′ ]|

2 from which (if there are more
than one) only those are retained for which Ω[ΣV,t′,t′′ ]
has a vanishing gradient. Particle-hole symmetry fixes
the optimal values εc,opt = 0 and εb,opt = µ=U/2 for
the on-site energies of the correlated and the bath sites,
respectively. It has also been checked numerically that
the SFT functional is stationary at these values. For the
optimal hopping between bath sites we find |t′′opt < t/25
in the entire U range considered. Note that for a finite
number of bath sites Lb the inclusion of t

′′ enlarges the
space of trial self-energies while for continuous baths
(Lb→∞) the approximation becomes equivalent [18]
with C-DMFT where a coupling of baths attached to
different correlated sites is not needed for this lattice
geometry.
The optimal hopping parameter between the correlated

sites turns out as t′opt = t+∆t
′
opt with a small positive

∆t′opt < t/10 for the U range considered here. A consid-
erably larger ∆t′opt is only found in the limit U → 0.
For more itinerant electrons a stronger enhancement
of the intracluster hopping is needed to (partially)
compensate for switching-off the intercluster hopping in
the approximation for the VCA self-energy. Note that
t′opt = t for Lb→∞. This is easily derived by a 1/ω
expansion of the SFT Euler equation (equivalently the
C-DMFT self-consistency equation). The optimization of
t′ and t′′ actually turns out to be almost irrelevant as
compared to V . Setting t′ = t and t′′ = 0 and performing a
one-dimensional optimization of V only, leads to changes
in the optimal V of less than 1%. The change in the
ground-state energy is negligible.
Much more important is the inclusion of additional

bath sites. While the reference system fig. 2(A) with a
single bath site (per correlated site) at the Fermi edge is
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Fig. 3: (Colour on-line) SFT grand potential shifted by the
constant µN , E0[Σ] = Ω[Σ] +µN , and evaluated for trial self-
energies ΣV,0,0 (see fig. 2(A)) as a function of V . Results for
different U at T = 0 and for half-filling N =L (chemical poten-
tial µ=U/2). Circles indicate stationary points. Here, the value
of the functional equals the ground-state energy E0 (per site).
Filled circles: stable metallic (blue) and insulating (red) phase.
Shaded circles: metastable phases. At Uc (arrow) there is a
discontinuous metal-insulator transition. A third (metastable)
metallic phase (green circles) continuously coalesces with the
insulating one at a hidden (metastable) critical point (hcp).
The energy unit is fixed by setting t= 1.

expected to favor the metallic state, a slight bias towards
the insulator is given with reference system (B) where two
bath sites are taken into account at energies shifted by
±∆ε away from the chemical potential µ=U/2. In case of
(B), ∆ε and V are considered as independent variational
parameters.

Results and discussion. – We first concentrate on
reference system (A). Figure 3 shows the dependence of
the SFT functional on V . For U <Uc2 ≈ 6.35 (in units
of t≡ 1) we find a metallic phase with a comparatively
large optimal hybridization Vopt which decreases with
increasing U . For U >Uc1 ≈ 4.6 there is a stationary point
of the functional with a much lower Vopt which is less U
dependent. This corresponds to the Mott insulating phase
as is obvious from the local Green’s function and the
self-energy displayed in fig. 4 for an interaction U = 5.8
in the coexistence region Uc1 <U <Uc2: After Fourier
transformation of the self-energy on the cluster, we find
the self-energy for K = (0, 0) to be regular while for the
cluster momentum K = (π, 0) it develops a pole at ω= 0
(fig. 4, right). This leads to a vanishing local Green’s func-
tion Gii(iω) for ω→ 0 in the insulating phase (fig. 4, left).
The same qualitative behavior has been seen at finite T
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Fig. 4: (Colour on-line) Imaginary part of the local Green’s
function Gii (left) and of the self-energy ΣK (right) at the
cluster momenta K = (0, 0) and K = (π, 0) as functions of
imaginary frequencies iω at U = 5.8, i.e. in the coexistence
regime, for the metallic (blue), the insulating (red) and the
third phase (green). Results are obtained using reference
system (A). Note that ImΣ(π,0) = ImΣ(0,π) and ImΣ(π,π) =
ImΣ(0,0) due to particle-hole symmetry.

in a recent C-DMFT study [15]. The metallic solution at
U = 5.8 is characterized by a finite Gii(iω) and a regular
ΣK(iω) for ω→ 0 (fig. 4). Note that the K-dependence is
much weaker in the metallic solution.
Comparing the ground-state energies at the respective

stationary points (fig. 3), we find a discontinuous metal-
insulator transition at a critical value Uc = 5.79. The same
picture and almost the same value for Uc (within less
than 0.1%) is found for the simultaneous and independent
three-parameter (V, t′, t′′) optimization. Also a different
tiling of the square lattice (still using four-site plaquettes)
or using a cluster with two correlated and two bath sites
only (thereby breaking rotational symmetry) does not
yield a qualitatively different picture.
The critical Uc from our plaquette VCA is substan-

tially smaller than from single-site DMFT. The values

U
(DMFT)
c ≈ 11 (ref. [12]) and U

(DMFT)
c ≈ 12 (ref. [16])

compare well with our mean-field result U
(DIA)
c ≈ 11.3

which is obtained within the SFT by embedding a single
correlated site coupled to a single bath site into the square
lattice. Note that this two-site dynamical impurity approx-
imation (DIA) is known [20] to reproduce the DMFT
phase diagram topology (fig. 1, top left). We have also
verified numerically that it exhibits the entropy problem.
Contrary, the plaquette VCA yields a vanishing ground-
state entropy for (the metal and for) the Mott insula-
tor and consequently supports quite a different picture,
namely (fig. 1, bottom), a first-order transition at T = 0.
Figure 3 also demonstrates the presence of a third

stationary point (green) in the coexistence region which
smoothly links the metal to the insulator but represents
a metastable phase because of its higher ground-state

energy. Note that in VCA, all stationary points are
acceptable solutions. As can be verified from the finite
quasiparticle weight and the finite density of states at the
Fermi edge, this third phase is metallic in the entire coex-
istence region. This implies that for four bath sites, there is
a quantum critical point at Uc1 which marks a continuous
metal-insulator transition. The additional stationary point
is reminiscent of the third solution which is found [24] in
single-site DMFT at finite temperatures and which also
interpolates between the two main phases. At finite T ,
however, this is more like a gradual crossover opposed to
the (hidden) quantum critical point obtained here.
Formally, the plaquette VCA for a single-band model

becomes equivalent with the single-site DIA applied to a
model with four orbitals per site, namely if the four clus-
ter momenta are identified with the four orbitals. Contrary
to the doped system [25], the continuous transition at Uc1
is not orbital selective (in this interpretation), i.e. with
decreasing U all four K-points simultaneously undergo
the transition to the insulator (develop a gap in the
K-dependent spectral function). The complicated struc-
ture of the Coulomb interaction in K space, and the pres-
ence of correlated-hopping (inter-orbital) terms in partic-
ular, makes orbital selectivity implausible. For K = (π, 0)
andK = (0, π) the transition is of the Mott-Hubbard type.
This is consistent with the fact that for the particle-hole
symmetric case and in the Mott-insulating state, the self-
energy at ω= 0 diverges on the non-interacting Fermi
surface [26]. For K = (0, 0) and K = (π, π), the insulating
spectral function is neither Mott-Hubbard-like (as it is not
particle-hole symmetric) nor band-insulator-like (as the
“orbital” K = (0, 0) is not fully occupied and the “orbital”
K = (π, π) not completely empty). In the context of multi-
orbital DMFT, a transition to an insulating state with
almost complete orbital polarization has been discussed
for the titanates [27].
We now move to the reference system fig. 2(B) with

two bath sites per correlated site. Again one finds a first-
order transition, but with different critical values for the
interaction strengths. To be more specific, fig. 5 shows the
ground-state energy and the double occupancy. There are
two sets of disconnected solutions. Since the metallic and
insulating solutions with respective lowest energy belong
to families that are not directly connected, it becomes
meaningless to try to find the analog of the hidden critical
point obtained for reference system (A).
As compared to (A), the coexistence range shrinks.

We define the coexistence range from hysteresis. In other
words, decreasing U starting from large U , we follow the
insulating solution (red line) until it disappears. This
defines Uc1 = 5.25. We then follow the metallic solution
(blue line), increasing U from small U , until it disappears
at Uc2 = 6.37. These two numbers are more clearly seen
on the double-occupancy plot on the bottom panel of
fig. 5. The difference ∆Ucoex. =Uc2−Uc1 = 1.12 is not
very different from the T = 0 extrapolation of the finite-T
C-DMFT results of ref. [15] (∆Ucoex. ≈ 0.73) and clearly
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c
U

c
U

Fig. 5: (Colour on-line) U -dependence of the ground-state
energy E0 (top panel) and the double occupancy 〈ni↑ni↓〉
(bottom panel) in the metallic (red) and in the insulating
(blue) phase with reference system (B). The two solutions are
not connected; however, the insulating solution is smoothly
connected to an unstable, and then metallic solution (dashed
curves) that together form a pattern similar to the one observed
with reference system (A). That metallic solution has however
a higher energy than the disconnected metal solution (blue).
The latter is also connected to an unstable solution (not
shown) very close to it. The coexistence range, Uc1 and Uc2, is
indicated. The actual transition takes places at Uc where the
energies of the two solutions cross.

improves the result ∆Ucoex. = 1.75 obtained with (A).
This suggests convergence with respect to the number
of bath sites similar to the single-site DIA [28]. Note,
however, that our results differ from those of C-DMFT
solved by exact diagonalization at T = 0 [12,29].
The critical Uc for the actual metal-insulator transition

can be read off from fig. 5 as Uc = 5.5 to be compared
with Uc = 5.8 obtained with (A). As could be expected
from previous cluster studies [21], the reference system (B)
favors the insulating phase and brings Uc closer to Uc1 as
compared to (A). A reference system with three bath sites
would favor the metallic phase again. We therefore believe

that the transition would remain first order even if more
bath sites were added.
Within DMFT there is an insulating solution above

and below Uc2 from which at Uc2 a metallic solution
splits off when decreasing U . This is a bifurcation of the
insulating solution of the non-linear DMFT equation. By
contrast, within the plaquette approach such a bifurcation
mechanism is not necessary since the metal and the
insulator have the same (vanishing) ground-state entropy.

Discussion and conclusion. – The Mott insulator is
best characterized at high temperature by two properties:
a) insulating behavior, i.e., a gap or pseudogap between
two peaks in the single-particle density of states, b) no
long-range order [30]. In the Mott insulator at fixed high
T , if one decreases U , one crosses over to a metallic-like
state where the density of states has a single peak.
One expects the crossover to be replaced by a phase
transition at low temperature. In reality, long-range
antiferromagnetic order is present in the ground state of
the Hubbard model with nearest-neighbor hopping only.
At infinitesimal U it is driven by nesting. In other words,
at small U the gap originates from Slater physics where
antiferromagnetic correlations increase with U and the
gap increases as exp (−2π

√

(t/U)). At very large U , one is
in the Heisenberg limit where the antiferromagnetic corre-
lations decrease with U and the gap increases linearly
with U , so Mott physics is relevant. And there is no phase
transition between these two limiting antiferromagnets.
A phase transition occurs at low enough temperature
if antiferromagnetic long-range order is prohibited. In
single-site DMFT, one cuts off the correlation length to
zero and there is a T = 0 second-order transition at U
about 1.5 times the bandwidth. If one lets the antiferro-
magnetic correlations grow, the longer the range of these
correlations, the closer the transition will be to U = 0.
In the case we studied, antiferromagnetic correlations are
cutoff beyond second neighbor. We suggest that this case
is the one that is most closely connected to the high-
temperature crossover that characterizes a Mott insulator.
Indeed, the value Uc = 5.5 that we find for the first-order
transition is closest to the one extrapolated from the finite
temperature crossover studied in quantum Monte Carlo
calculations on finite lattices with up to 8× 8 sites [31].
At finite T , first-order transitions are best understood

as a tradeoff between energy and entropy in different
phases. At T = 0, we should consider the tradeoff between
potential and kinetic energy in various phases as the mech-
anism for the transition. An insulating phase, whether it
is stable or metastable, always has lower potential energy
than a metallic phase. However, between Uc1 and Uc the
lower kinetic energy (less localization) of the metal makes
it more stable than the metastable insulator despite the
potential energy advantage of the insulator. Between Uc
and Uc2, the kinetic energy of the metastable metal is not
small enough compared with that of the insulator to over-
come its lower potential energy. Indeed, the kinetic energy
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of the insulator can at best grow like −t2/U in the large U
limit while the kinetic energy of the metal can grow faster
as electrons are scattered further away from the Fermi
surface by the interaction. In practice, the first order
transition that we found is in the intermediate coupling
regime where the T = 0 insulator is neither clearly in the
Heisenberg (Mott) limit nor in the Slater limit.
The central idea of dynamical (cluster) mean-field

theory in general is that the analysis of the quantum
critical point in the paramagnetic state provides the key
to an understanding of the entire phase diagram —even
if this point is obscured by long-range magnetic order:
Namely, a T = 0 critical point of a non-magnetic origin
will also rule the physics above the ordering temperature,
in the doped system or in the presence of magnetic
frustration. In the past, this concept has been frequently
used at the single-site DMFT level.
Our main result, however, is that such a quantum

critical point is absent. The T = 0 transition is first
order. The absence of a continuous non-magnetic T = 0
transition is contrary to the widespread DMFT result
and therefore expected to have profound consequences
for our understanding of (doped) Mott insulators
in two dimensions. It has been argued based on
Hartree-Fock calculations that explicitly introducing
frustration through longer-range hopping should restore
quantum critical behavior at finite frustration [32], but
that remains to be verified.
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