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In the experimental context of cold-fermion optical lattices, we discuss the possibilities to approach the
pseudogap or ordered phases by manipulating the scattering length or the strength of the laser-induced lattice
potential. Using the two-particle self-consistent approach, as well as quantum Monte Carlo simulations, we
provide isentropic curves for the two- and three-dimensional Hubbard models at half-filling. These quantitative
results are important for practical attempts to reach the ordered antiferromagnetic phase in experiments on
optical lattices of two-component fermions. We find that adiabatically turning on the interaction in two dimen-
sions to cool the system is not very effective. In three dimensions, adiabatic cooling to the antiferromagnetic
phase can be achieved in such a manner, although the cooling efficiency is not as high as initially suggested by
dynamical mean-field theory. Adiabatic cooling by turning off the repulsion beginning at strong coupling is
possible in certain cases.
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I. INTRODUCTION

One of the most exciting possibilities opened by research
on cold atoms in optical traps is to study model Hamiltonians
of interest to condensed matter physics in a controlled man-
ner. For example, high on the list of questions that can, in
principle, be answered by these model systems is whether
high-temperature superconductivity can be explained by the
two-dimensional Hubbard model away from half-filling.1,2

As a first step toward achieving this goal, the antiferromag-
netic phase expected at half-filling offers an easier target
state that occurs at higher temperature in the phase diagram
of cuprate superconductors.3,4

In optical lattices, the two spin species occurring in the
Hubbard model are mimicked by atoms in two different hy-
perfine states. The cooling of these atomic gases necessary to
observe ordered states has been discussed before.2,5 It has
been recently pointed out, however, that there is an addi-
tional mechanism,6 akin to Pomeranchuck cooling in liquid
helium-3, that is available to help in achieving the tempera-
tures where antiferromagnetism can be observed. In this
mechanism, the temperature can be lowered by adiabatically
turning on what amounts to interactions in the Hubbard
model �see Ref. 7 for a review�. The original calculations for
this effect were done for the Hubbard model using dynamical
mean-field theory �DMFT�.6 While it is expected that this
approach will give qualitatively correct results, accurate pre-
dictions are necessary to achieve the practical implementa-
tion of this cooling scheme. In the present paper, we present
such quantitative predictions for the isentropic curves of both
the two- and three-dimensional Hubbard models. We display
the results in the usual units for the Hubbard model and also
in the conventional units used in the context of cold atom
physics.

Solving the problem for both two- and three-dimensional
�lattice� systems fulfills several purposes. First, the two-
dimensional case is interesting in its own right even if long-

range order cannot be achieved at finite temperature in
strictly two dimensions �because of the Mermin-Wagner-
Hohenberg theorem�. Indeed, high-temperature parent anti-
ferromagnetic compounds have a strong two-dimensional
character. In addition, even though long-range order cannot
be achieved, there is a two-dimensional regime with very
strong antiferromagnetic fluctuations that is interesting in it-
self. In this regime, a pseudogap appears in the single-
particle spectral weight that is caused at weak coupling by
antiferromagnetic fluctuations that have a correlation length
larger than the single-particle de Broglie wavelength.8,9 At
strong coupling, the pseudogap appears well before the long
antiferromagnetic correlation lengths occur.10 Also, consider-
ing both two and three dimensions sheds additional light on
the mechanism for cooling.

The Hubbard model is defined in second quantization by

H = − �
i,j,�

tijci�
† cj� + U�

i

ni↑ni↓, �1�

where ci�
† �ci�� are creation and annihilation operators for

electrons of spin �, ni�=ci�
† ci� is the density of spin � elec-

trons, tij = tji
* is the hopping amplitude, and U is the on-site

repulsion obtained from matrix elements of the contact inter-
action between atoms in the basis of Wannier states of the
optical lattice.1,7 We restrict ourselves to the case where only
nearest-neighbor hopping t coming from tunneling between
potential minima is relevant. In keeping with common prac-
tice, t will be the energy unit, unless explicitly stated.

Let us recall the physics of the cooling mechanism pro-
posed in Ref. 6. If we denote by f the free-energy per lattice
site and s the corresponding entropy, then s=−��f /�T�U and
d= ��f /�U�T, where d= �n↑n↓� is the double occupancy. The
density is kept constant in all partial derivatives without fur-
ther notice. We thus have the Maxwell relation
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� �s

�U
�

T
= − � �d

�T
�

U
. �2�

Following Ref. 6, the shape of the isentropic curves
s(Ti�U� ,U)=cst can be deduced by taking a derivative of the
last equation and using the Maxwell relation �Eq. �2�	,

c�Ti�� �Ti

�U
�

s
= Ti� �d

�T
�

U
, �3�

where c�Ti�=T��s /�T�U is the specific heat. If ��d /�T�U is
negative at small U, then ��Ti /�U�s will be negative and,
hence, it will be possible to lower the temperature at constant
entropy by increasing U. Generally, double occupancy in-
creases with temperature, so ��d /�T�U is positive, but it does
happen that ��d /�T�U is negative, leading to a minimum at
some temperature. This result may seem counterintuitive. In-
deed, at strong coupling, namely, for interaction strength
much larger than the bandwidth, such a phenomenon does
not occur. Double occupancy is already minimum at zero
temperature. It only increases with increasing temperature.
At weak coupling, however, when the temperature is large
enough that it allows states to be occupied over a large frac-
tion of the whole Brillouin zone, the electrons may become
more localized than at lower temperature. An alternate way
to understand this minimum is to notice that it occurs when
the thermal de Broglie wavelength is of the order of the
lattice spacing.11 At larger temperatures, double occupancy
increases because of thermal excitation, while at lower tem-
perature, the plane-wave nature of the states becomes more
apparent and double occupancy also increases. The minimum
in ��d /�T�U has been observed in DMFT6,12 and also very
weakly in quantum Monte Carlo �QMC� simulations of the
two-dimensional model at U=4t �see Fig. 3 of Ref. 13� while
in the two-particle self-consistent �TPSC� approach8,9,14 that
we employ along with QMC, very shallow minima are ob-
served in three dimensions and are barely observable in two
dimensions depending on the value of U.11,15–17 As we shall
see, in three dimensions, a minimum in ��d /�T�U is also
predicted by second-order perturbation theory.11

In the next section, we discuss the two methods that we
use, emphasizing the points that are specific to this problem.
Then, we present the results for the constant entropy curves
in two and three dimensions and conclude. The first appendix
is about the change of coordinates to switch to units used in
the cold atom context. The last two appendixes present cal-
culational details for the entropy curves in limiting cases.

II. METHODOLOGY

In this section, we give methodological details that are
specific to this work, referring to the literature for more de-
tailed explanations of the QMC and TPSC approaches.

A. Quantum Monte Carlo simulations

In two dimensions, we perform QMC simulations follow-
ing the Blankenbecler-Sugar-Scalapino-Hirsch �determinan-
tal� algorithm.18 The standard formula to obtain the entropy
consists in integrating the specific heat. However, the evalu-

ation of the latter quantity involves a numerical derivative.
To avoid differentiating data that contain statistical uncer-
tainty, we follow Ref. 6 and perform an integration by parts
to compute the entropy from the energy density e,

s��,U� = ln 4 + �e��,U� − 

0

�

e���,U�d��, �4�

with �=1/T in units where the Boltzmann constant equals
unity. This uses the fact that the entropy at infinite tempera-
ture is known exactly. The integral is calculated from the
trapezoidal rule on a grid of about 20 points spread on a
logarithmic scale that extends from �=0 to � of order 5
depending on the cases. Each data point is obtained by up to
15�106 measurements for the 4�4 lattices and 106 mea-
surements for 8�8. By comparing with the known result at
U=0, we deduce that the error on the integral is of order
2%–3% at most at the lowest temperatures. At large values
of U, the systematic error due to the discretization of the
imaginary time can be quite large. We checked with U=14
and ��=1/10, 1 /20, and 1/40 �in units where t=1 which we
adopt from now on� that ��=1/10 and 1/20 suffice for an
accurate ��→0 extrapolation.

Size dependence becomes important at low temperature.
These effects can be estimated from the U=0 case.13 The
usual formula for the entropy,

s�T,U = 0� = −
2

N
�
k
„f ln f + �1 − f�ln�1 − f�… , �5�

with N=L�L �and L even� the number of sites and f the
Fermi-Dirac distribution, leads to a residual entropy at T=0
given by

s�0,0� =
2L − 2

L2 ln 4, �6�

which does vanish for L→� but which gives important con-
tributions for finite L. For example, for L=4, we have s
=0.52, compared with ln 4=1.386 at T=�. This entropy is
easily understood by counting the number of ways to popu-
late the states that are right at the Fermi surface of the finite
lattice in the half-filled Hubbard model.19 At T=0.3, one can
check that the relative error between the 4�4 lattice and the
infinite lattice is about 30%, while for the 8�8 lattice, it is
about 5%. At T=0.5, the finite-size error for the 8�8 lattice
is negligible while it is about 5% for the 4�4 lattice. Since
in this work we concentrate on high-temperature results, this
will in general not be a problem in QMC. The TPSC calcu-
lations can be performed in the infinite-size limit and for a
finite-size lattice.

B. Two-particle self-consistent approach

The TPSC approach has been extensively checked against
QMC approaches in both two8,9 and three15 dimensions. It is
accurate from weak to intermediate coupling �in other words,
for U less than about 3 /4 of the bandwidth, namely, U=6 in
d=2�. The double occupancy is one of the most accurate
quantities that can be calculated at the first step of the TPSC
calculation using sum rules. Hence, we can compute the en-
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tropy directly by integrating the Maxwell relation �Eq. �2�	 in
the thermodynamic limit, or for a finite-size system, using
the known value of the entropy at U=0 �Eq. �5�	 to deter-
mine the integration constant. Earlier results obtained with
TPSC for the double occupancy may be found, for example,
in Refs. 8, 15, and 16. Issues of thermodynamic consistency
have been discussed in Ref. 20.

Figure 1 compares the entropy obtained with TPSC �solid
and dashed lines� and with QMC �symbols� as a function of
U in d=2 for different temperatures. The QMC calculations
are for a 4�4 system except for T=0.5 where we also show
results for 8�8. The TPSC calculations are presented for
both 4�4 �solid line� and infinite-size limit �dashed line for
T=0.5�. Down to T=2/3, the results for the 4�4 QMC and
4�4 TPSC agree to better than a few percent for U�6. One
can verify from Fig. 1 that at T=0.5 for U�6, infinite-size
limit TPSC and 8�8 QMC results agree remarkably, the
worse disagreement being less than 10% at U=6. This is
expected from the fact that according to the discussion of the
previous section, finite-size effects are negligible in an 8
�8 lattice in this temperature range. Figure 6 in the follow-
ing section will compare TPSC estimates of the Néel tem-
perature with the latest QMC calculations21 in d=3. There
again, U equals 3 /4 of the bandwidth seems to be the limit
of validity. We stress that TPSC is in the N=� universality
class,22 so that details may differ with the exact result in the
critical region. Nevertheless, it has been checked that even
with correlation lengths of order 10 or more, the results are
still quite accurate.

III. RESULTS

A. Two dimensions

The data that are directly extracted from the QMC calcu-
lation correspond to the total energy per site. The entropy
extracted from these data by numerical integration �Eq. �4�	
is plotted as a function of �U /4=U / �4T� on a logarithmic

scale for different values of U in Fig. 2, along with the exact
atomic �single site� limit

satomic��,U� = ln�4 cosh��U

4
�� −

�U

4
tanh��U

4
� . �7�

Also plotted in Fig. 2 are the data for an 8�8 lattice when
U=0.5,1 ,2,6. One can check that for ��1 �4T	W /2� and
U	W, where W=8 is the bandwidth, the above simple for-
mula �Eq. �7�	 describes the data to better than 4% accuracy.
This is consistent with earlier QMC results13 that found that,
for U=10, the specific heat above T=1 is well described by
the atomic limit. Limiting cases of the above formula are
interesting. At infinite temperature, �U=0, one recovers the
expected ln 4 entropy with the first correction given by

satomic��,U� = ln 4 − ��U�2/32 + O„��U�4
… . �8�

In the �U=� limit, only spin entropy is left, so the atomic
limit result �Eq. �7�	 reduces to ln 2.

At small values of the entropy, the curves in Fig. 2 at
small U have a break. This can be understood as a finite-size
effect given that s0.5 is the residual entropy for a 4�4
lattice at U=0. Lower entropies can be reached at larger U
without size effects since U lifts the Fermi surface
degeneracy.19 In addition, the results for an 8�8 lattice and
small U shown by the dashed lines do extend to lower values
of the entropy.

The isentropic curves in Fig. 3 are plotted in units of T / t
and U / t. They are obtained from a standard b spline �order
10� interpolation of the QMC entropy, except for the first line
above the horizontal axis that represents the value of the
crossover temperature T* obtained from TPSC.23 We checked
that other interpolation schemes do not modify the results
significantly. As discussed above, the data in the upper right
sector, U	8 and T	1, are quite accurately explained by the
atomic limit. It should be stressed that the slow variation of
entropy with T and U translates into inaccuracies in the in-
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TPSC infinite size for T=0.5
QMC 4 x 4
QMC 8 x 8
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T=1.667
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T=0.667
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T=2

FIG. 1. Comparison of TPSC and QMC results for the entropy
as a function of U for different temperatures. The solid lines are for
4�4 TPSC and the triangles for 4�4 QMC. The dashed line is the
TPSC result for the infinite-size lattice limit for T=0.5. Also shown
by filled circles for this temperature, are the results for 8�8 QMC.
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U/(4T)
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FIG. 2. �Color online� Entropy as a function of �U /4. From
bottom to top, increasing values of U=0.5,1 ,2 ,3 ,4 ,6 ,8 ,10,
12,13,14 are displayed. The solid lines are for 4�4 lattice and
dashed lines for 8�8 lattice. The dotted line is the exact atomic
limit result for U=14.
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terpolation of the isentropic curves that can reach about 10%
in this regime. When U�4T and W�8T, one would expect
that the high-temperature perturbative result

s��,U� = s��,0� −
1

32
��U�2 + O„��U�4

… + O��3U2W�

�9�

derived in the appendixes should describe well the QMC
data. In fact, the term O��3U2W� in the range of tempera-
tures shown seems to be large enough to essentially cancel
the effect of the leading ��U�2 term. The QMC isentropic
curves leave the U=0 axis with essentially a zero curvature
and are extremely well described by the noninteracting result
s�� ,0� in Eq. �5�. More specifically, for T	1 and U
4, the
difference between QMC and s�� ,0� is less than 3%. At T
	1 again, the crossover between the atomic limit value �Eq.
�7�	 and the noninteracting value �Eq. �5�	 occurs around U
=6 where both results differ at T=1 by about 10% from the
QMC results. That regime does not lead to an isentropic
decrease in temperature concomitant with an increase in U.
In the nontrivial regime where the entropy may fall with
increasing U according to DMFT,6 it is known quite accu-
rately that for U=4, the pseudogap regime where antiferro-
magnetic fluctuations are large begins around T=0.22. Fig-
ure 3 shows that6 contrary to the three-dimensional results of
the following section, it does not appear possible to lower the
temperature substantially by following an isentropic curve
from the U=0 limit. Only a small effect is observed. Even
near T=0.5, the isentropic curve deviates only a little bit
from the noninteracting value but it is quite close to it up to
U about 6 where a slight downturn in the isentropic curve
occurs.24 The flat behavior observed in this regime is con-
firmed by TPSC calculations. The disagreement between the
two methods down to T=0.2 is inside the error induced by �
integration of QMC results. The nearly horizontal isentropic

curves are not surprising given that the minimum in the tem-
perature dependent double occupancy found earlier is shal-
low in both TPSC11,15–17 and QMC17,20,25 calculations. A
very small minimum in d�T ,U=4� has been found by ex-
trapolating double occupancy �local moment� to the infinite
size limit in the QMC calculations of Ref. 13. Note that entry
into the pseudogap �fluctuating� regime corresponds to a
rapid fall of d as T decreases.11,13,15–17 In fact, the anticipa-
tion of this downfall seems to interfere with the formation of
the minimum found in higher dimension. In the regime
where d decreases rapidly as temperature decreases, tem-
perature should increase with U along isentropic curves, go-
ing in the direction opposite to the one that would be useful
for cooling from the noninteracting regime to the fluctuating
phase.

From the large U region, an isentropic decrease in U may
also lead to a decrease in T, as is obvious already from the
atomic limit result �Eq. �7�	. In the two-dimensional case
considered here, the results of the QMC calculation in Fig. 3
show that for s�0.6, adiabatic cooling from large U is not
possible. All the temperatures along the s=0.6 isentropic
curves are above the fluctuation regime. Hence, that regime
apparently cannot be reached along a single adiabatic curve
starting from large U and large T. Note, however, the s
=ln 2 isentropic curve in Fig. 3. It corresponds to the high-
temperature spin entropy in the large U limit �U�T
�4t2 /U�.26 If one can trap only one of the two atomic spe-
cies per lattice site at random in the large U regime, we are
in the ln 2 entropy case. The lowest temperature that can be
reached by following this isentropic curve is about a factor 2
above the maximum temperature where the strongly fluctu-
ating �pseudogap� regime occurs.

We now discuss the isentropic curves in terms of experi-
mental parameters and units. In optical lattices, lasers create
a periodic potential defined by a period a=� /2 �� is the laser
wavelength� and a depth V0. The energy unit conventionally
used in this context is the recoil energy ER= 22�2

m�2 , where m is
the mass of the fermion. To create a two-dimensional �2D�
optical lattice, there is a third standing wave confining the
2D system with a depth that is large enough to prevent out-
of-plane tunneling. This leads to a 2D on-site energy U re-
lated to the geometric mean of the confinement strengths
U /ER=4�2�as /���V� /ER�1/4�V0 /ER�1/2 where as is the
s-wave scattering length.27,28 As explained in Refs. 6 and 7,
there is a relation to fulfill between as, V0, and a for the
one-band Hubbard model to be an accurate description of
cold atoms in optical traps.

The best way to change only the interaction strength for
adiabatic cooling is to change the scattering length, as can be
done by tuning through a Feshbach resonance. If only the
scattering length is changed, the shape of the adiabatic
curves will be as in Fig. 3. Only the scales need to be
changed. All energies in that plot are in units �kB=1� of
hopping t which is related to recoil energy and potential
strength through t=ER�4/���V0 /ER�3/4 exp�−2�V0 /ER�.27

We can also change U by changing the potential strength
V0, but clearly, this changes also the hopping t. Thus,
for quantitative purposes, we also display the preceding
isentropic curves in the �V0 /ER ,T /ER� plane, rather than
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FIG. 3. �Color online� Isentropic curves for d=2 extracted from
QMC simulations, including the results of the 8�8 lattice when
they differ from those of the 4�4. Increasing values of s are dis-
played from bottom to top. The first line above the horizontal axis is
the value of the crossover temperature T* determined from TPSC. It
stops at strong coupling where TPSC ceases to be accurate.
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in the �U / t ,T / t� plane. This change in coordinates is dis-
cussed in Appendix A. It has a strong influence on the
shape of the isentropic curves as can be seen in Fig. 4, ob-
tained for the value as /a=2�10−3 and U=ER4�2�as /��
��V� /ER�1/4�V0 /ER�1/2 with V� /ER=30.28 We also display
in this figure the pseudogap temperature T* determined in the
TPSC approach.23 As V0 /ER increases, the system cools
down along isentropic curves, at least for moderate V0 /ER
values. For higher values, isentropic curves corresponding to
s	 ln 2 eventually bend upward while those corresponding
to s� ln 2 bend downward in such a way that there is a large
domain of temperatures in the vicinity of the large-repulsion
spin-entropy value s=ln 2. This general behavior was also
present in Fig. 3 and will be seen in three dimensions, too.
We checked that the general appearance does not change for
other reasonable values of as /a compatible with the Hubbard
model. Given that the temperature axis is displayed on a
logarithmic scale, it thus appears that tuning the potential V0
can be very effective in reducing the temperature of the fer-
mions. The general cooling trend is due to the decrease in
hopping t associated to an increase in V0. Indeed, the ratio of
temperature to bandwidth is constant for isentropic curves of
noninteracting electrons, hence, T decreases monotonically
with decreasing t in this case. This is the mechanism dis-
cussed in Ref. 5. At V0�2.3ER �not on the figure�, heating
can also occur.5 The presence of interactions can enhance the
cooling compared with the noninteracting case.6,7 However,
cooling down the system along an isentropic curve by in-
creasing V0 does not necessarily mean an effective approach
of the strongly fluctuating regime of the system. Indeed, as
can be seen from the figure, if we increase V0 /ER further
than about 12, the pseudogap region in experimental units
moves away toward lower temperatures. Note that T* deter-
mined by TPSC is not reliable at large values of V0 /ER. The
limit of validity U

W  3
4 corresponds to

V0

ER
12 for our choice

of as /a and V� /ER.29

B. Three dimensions

To discuss the isentropic curves in three dimensions, let
us go back for a while to usual units and parameters of the

Hubbard model. In three dimensions, adiabatic cooling to-
ward the antiferromagnetic phase, starting from small U, is
possible and quite clearly so. In fact, it occurs at high enough
temperature that perturbation theory �Appendix C� suffices to
show the effect. This is made clear by Fig. 5 where �s /�U
changes sign from negative to positive on isothermal curves
as T decreases. By Maxwell’s relation �Eq. �2�	, this reflects
the change in sign of �d /�T. When the temperature is large
enough, the dashed lines from second-order perturbation
theory agree very well, up to quite a large interaction
strength, with the solid lines from the full TPSC calculation

The TPSC results for the isentropic curves in three dimen-
sions are exhibited in Fig. 6. In the low-temperature regime,
2T /W�1, TPSC is strictly valid only in the U�W�W
=12� limit. This can be checked by comparing the TPSC
Néel temperature with that of the latest QMC calculations
�shown by symbols�.21 Clearly, the agreement is satisfactory
up to U�8 �or U�3W /4, as mentioned before�, where the
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FIG. 4. �Color online� Isentropic curves for d=2 �kB=1� ex-
tracted from QMC simulations, expressed in experimental units �see
text�.
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FIG. 5. �Color online� Comparisons of full TPSC calculation
�solid lines� with second-order perturbation theory �dashed lines�
for the entropy as a function of U for different temperatures.
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FIG. 6. �Color online� Isentropic curves for d=3 extracted from
TPSC. Increasing values of s are displayed from bottom to top. The
lowest solid line is the Néel temperature. The symbols are the re-
sults of QMC calculations taken from Ref. 21.
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Néel temperature as a function of U saturates according to
TPSC but begins to decrease according to QMC.

Despite the fact that TPSC is not valid in the atomic limit,
it seems to recover the correct result at high-temperature
even if U	W. Consider, for example, T=1.5. That tempera-
ture is reached along the s=0.8 isentropic curve around U
=14 in TPSC and around U=13 in DMFT.6 Similarly, T
=1.5 is reached along the s=0.75 isentropic curve for U
17 for both TPSC and DMFT. The corresponding atomic
limit results, which are dimension independent, are that s�T
=1.5, U=11�0.80 and s�T=1.5, U=14�0.75. TPSC is
closer to DMFT than to the high-temperature atomic limit,
suggesting that both approaches take into account the same
physics at U large in the high-temperature limit. Note, how-
ever, that the DMFT and TPSC results are different at U=0
because a model density of states is used in DMFT instead of
the one following from the exact dispersion relation used in
TPSC.

As in the two-dimensional case, the value of the entropy
at T	1 and U�W is almost independent of U. Contrary to
the two-dimensional case, however, there is a region,
namely, for s�0.65, where cooling along isentropic curves
down to the interesting regime is possible. Cooling, however,
is from T0.75 to the maximum Néel temperature, T0.4.
DMFT predicted cooling to the Néel temperature beginning
around T1.1. Note also that at small values of U, isentro-
pic curves cross the Néel temperature almost at right angle.
This is where the temperature falls fastest with increasing U.
This behavior changes as one approaches the maximum Néel
temperature since, at strong coupling, the entropy must be-
come independent of U at the transition. Indeed, the value of
s there must equal a constant given by the Heisenberg model.

The possibility of adiabatically cooling all the way to the
Néel temperature starting from large U is also discussed in
Ref. 6. For this, one needs two conditions. First, the entropy
at the maximum Néel temperature has to be larger than the
entropy of the Heisenberg antiferromagnet. This condition is
satisfied according to Fig. 6 since the entropy at the maxi-
mum Néel temperature is around smax=0.65 while the en-
tropy of the Heisenberg antiferromagnet is a constant sH es-
timated in Ref. 6 to be about 50% smaller than ln 2. This
would mean that there is indeed a maximum in the value of
the entropy at the Néel temperature plotted as a function of
U. That maximum would be even more pronounced than that
sketched in Fig. 3 of Ref. 6. The second condition to be
satisfied is that the temperature should decrease as U de-
creases along isentropic curves in the range sH�s�smax.
TPSC cannot tell whether this condition is satisfied since for
temperatures less than roughly unity at strong coupling U
	8, the TPSC results cannot be fully trusted.

Incidentally, if one takes the TPSC results seriously up to
T0.7, then it is not possible to cool all the way to the Néel
temperature along the s=ln 2=0.69 “infinite-temperature”
�U /T�1� isentropic curve, contrary to what DMFT sug-
gests, since the minimum in the s=0.7 isentropic curve in
Fig. 6 is roughly a factor of 2 above the Néel temperature. As
discussed in Ref. 6, DMFT does not give an accurate esti-
mate of the entropy at the Néel temperature since the latter is
obtained in mean field.30 This is why the s=0.7 isentropic
curve ends at the Néel temperature in that approximation.

Finally, we discuss experimental units. Once again, in-
creasing the scattering length would be the simplest way to
implement directly the Pomeranchuck adiabatic cooling dis-
cussed in this paper. Indeed, varying the scattering length
value will span the abscissa axis in Fig. 6. All energies in that
plot are in units �kB=1� of hopping t which is related to
recoil energy and potential strength through t=ER�4/��
��V0 /ER�3/4 exp�−2�V0 /ER�.27 The interaction strength on
the other hand is U=ER4�2�as /���V0 /ER�3/4.27

As in the 2D case, we choose to change the potential
strength V0, which modifies both hopping t and on-site inter-
action U. This is shown in Fig. 7, where we display the
isentropic curves and the TPSC-determined Néel temperature
in the experimental units.31 For the figure, we fix as /a=2
�10−3. Increasing the potential V0 is quite efficient to cool
down the system in absolute units, but the Néel temperature
also recedes. Two trends remain: For s	 ln 2 the cooling is
not sufficient to reach the antiferromagnetic region, but a
smaller entropy value may do. In these units, the isentropic
s=ln 2 seems “noisy” for large V0 /ER values because, in this
region, the entropy surface is flat. This makes the precise
location of the isentropic curve difficult to determine.

Finally, we note that comparison between Fig. 3 valid in
d=2 and Fig. 6 valid in d=3 shows that the same value of s
and U / t generally correspond to a lower value of T / t in d
=2 than in d=3. If one can equilibrate the system in d=2 at
U=6t and s=0.5, for example, then decreasing the perpen-
dicular confining optical potential adiabatically at fixed U
and t to go to the three-dimensional case would lead to a
higher temperature, but one that can, nevertheless, be below
the three-dimensional Néel temperature. That is another way
to reach that phase. Strictly speaking, changing the perpen-
dicular confining optical potential to change perpendicular
hopping cannot be done at constant U �see Eq. �A1�	, but
since the dependence of U on that potential is algebraic
while perpendicular hopping depends exponentially on that
same quantity, changes in U can be neglected in the first
approximation.

IV. CONCLUSION

TPSC calculations confirm that the physics of adiabatic
cooling by increase of U �as found in Ref. 6� is correct for
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FIG. 7. �Color online� Isentropic curves for d=3 from TPSC
calculations, expressed in experimental units �see text�.
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three dimensions. Our quantitative estimates show a smaller
but still appreciable effect. Since it occurs at relatively high
temperature, that effect is qualitatively captured already by
second-order perturbation theory. Adiabatic cooling should
help in reaching the Néel antiferromagnetic transition tem-
perature. Reaching the antiferromagnetic phase should be a
first step in the study of d-wave superconductivity in optical
traps. In two dimensions, however, QMC shows that this
mechanism is not very effective, making it impractical to
reach the low-temperature fluctuating regime by this ap-
proach.

In both d=2 and d=3, it is possible to adiabatically cool
starting from the large U regime, as suggested in Ref. 6.
However, in d=2, the fluctuating regime cannot be reached
along a single adiabatic using this approach. In d=3, al-
though there are encouraging trends, we cannot tell unam-
biguously with TPSC whether the Néel temperature of the
Heisenberg antiferromagnet can be reached by decreasing U
along a single adiabatic that starts at high temperature.

In the context of cold fermions, to implement directly the
type of interaction driven adiabatic cooling discussed in the
present paper, one could change only the interaction strength
by manipulating the scattering length with a Feshbach reso-
nance. There is another way to experimentally implement the
cooling: changing the strength of the laser-induced lattice
potential changes both hopping t and interaction strength U.
In units of absolute temperature and potential strength then,
the shape of the adiabatic curves is quite different from those
in the T / t and U / t units appropriate for the Hubbard model.
While the change in t can, for some cases, produce drastic
cooling in absolute units, it also changes the shape of the
lines for the Néel temperature �in three dimensions� and the
pseudogap temperature �in two dimensions�. We have plotted
the results for a given scattering length as examples. Whether
a given isentropic curve crosses the Néel or the pseudogap
temperature is clearly independent of coordinates.

Adiabatic cooling away from half-filling and for other
cases can be studied with the methods of this paper.
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APPENDIX A: EXPRIMENTAL COORDINATES FOR THE
TWO-DIMENSIONAL CASE

The problem of converting from the theoretical units
�U / t ,T / t� to the experimental units �V0 /ER ,T /ER� is

straightforward in three dimensions but it requires some dis-
cussion in two dimensions. Since27,28

U

ER
= 4�2�as

�
��V�

ER
�1/4�V0

ER
�1/2

, �A1�

where V� is the optical potential that confines the system in
two dimensions, and

t

ER
=

4
�

�V0

ER
�3/4

exp�− 2�V0

ER
� , �A2�

it follows immediately that

U

t
= �2�as

�
��V�

ER
�1/4�V0

ER
�−1/4

exp�2�V0

ER
� , �A3�

T

t
= � T

ER
��

4
�V0

ER
�−3/4

exp�2�V0

ER
� . �A4�

For definiteness, we choose in this paper aS /�=10−3 and
V� /ER=30. Clearly, U / t is not a monotonic function of V0.
For a given U / t, we have two or zero real value of V0, as we
now discuss.

For the sake of simplicity, let us define the reduced units:

u =
U

t
��2�as

�
��V�

ER
�1/4�−1

, �A5�

v0 =�V0

ER
. �A6�

Then, the relation between u and v0 becomes

u = v0
−1/2 exp�2v0� . �A7�

This function has a minimum at v0=1/4. The only possible
values of u are thus u�2�e and for each such values of u,
there are two values of v0, one less than 1/4 and the other
one larger than 1/4. It is the latter that we consider as the
physical value. Indeed, it corresponds to V0 /ER�1/16 and
we know that the Hubbard model is valid only for suffi-
ciently large values of V0 /ER. The minimum value of U / t for
V� /ER=30 is about 34as /�, which is quite a small value. To
solve for v0�u�, it suffices to rewrite Eq. �A7� as

−
4

u2 = − 4v0 exp�− 4v0� . �A8�

The solution to y=x exp�x� is the Lambert function Wk �also
known as the “product log” function�. Since y�x� is non-
monotonic, there exists a family Wk of inverse functions. If
U is larger or equal to the bound discussed above, then 0
	y�−1/e and Wk=−1,0 can take real values. The branch x
=W−1�y� has x
−1, corresponding to V0 /ER�1/16 that we
want to retain. The other branch, x=W0�y�, leads to x�−1,
which we do not consider here. Hence, the solution is
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V0

ER
= �−

1

4
W−1�−

4

u2��2

= �−
1

4
W−1�−

t2

U282�as

�
�2�V�

ER
�1/2��2

. �A9�

APPENDIX B: ENTROPY IN THE LARGE
TEMPERATURE LIMIT FROM THE SELF-ENERGY

Consider the large Matsubara frequency �equivalently
high-temperature� limit of the self-energy,8

��k,ikn� = Un−� +
U2n��1 − n−��

ikn
+ ¯ . �B1�

This formula is valid when T is larger than the frequency
range over which �R� is nonzero. In practice, since in all the
diagrams that enter the calculation of the self-energy, kn
= �2n+1�T is compared with �k and there is particle-hole
symmetry at half-filling, we may expect that as soon as the
Matsubara frequencies are larger than band energies of order
±W /2, namely, T	W /2, the expansion may then apply.
This is confirmed by the numerical results in this paper. The
expansion should thus be valid for T�4 in d=2 and T
�6 in d=3. If, inspired by the exact atomic result Eq. �7�,
we replace  by 4, we recover the limits of validity men-
tioned in the text. In addition to this restriction on tempera-
ture compared with bandwidth, we note that this asymptotic
expansion for the self-energy �Eq. �B1�	 is clearly a power
series in U /T. At half-filling, using the usual canonical
transformation to the attractive Hubbard model, we can see
that if we absorb the Hartree-Fock term in the definition of
the chemical potential, then only even powers of U enter the
expansion, which makes it convergent even faster. In addi-
tion, it turns out that stopping the expansion of ��k , ikn� at
U2 / ikn at half-filling reproduces the exact result in the
atomic limit. Hence, in the special case we are interested in,
we expect that this high-temperature expansion, W /2T�1,
is excellent for arbitrary values of U, even if, strictly speak-
ing, it should be valid only if U /T�1 as well .

From the above expression for the self-energy and the
sum rule,8

T

N
�

n
�
k

��k,ikn�G�k,ikn�e−ikn0−
= U�n↑n↓� , �B2�

we can extract the double occupancy d that we need to com-
pute the entropy in the high-temperature limit. For the Green
function, we again assume that W /2T�1. This means that
we can insert the following in the previous equation:

G�k,ikn� =
1

ikn −
U2

4ikn

. �B3�

This clearly neglects band effects that would contribute to
order UW / �T�2 to double occupancy. The normalized sum
over wave vectors in the sum rule �Eq. �B2�	 contributes a
factor unity while the discrete Matsubara sum can be per-
formed exactly. One finds

−
U

4
tanh� U

4T
� = U��n↑n↓� − �n↑��n↓�� . �B4�

To extract the entropy, it suffices to use Maxwell’s relation
�Eq. �2�	 so that

s�T,U� = s�T,0� − 

0

U ��−
1

4
tanh� U

4T
��

�T
dU

= s�T,0� + ln�cosh� U

4T
�� −

U

4T
tanh� U

4T
� . �B5�

The above expression �Eq. �B5�	 with the exact value for
s�T ,0� neglects terms of order U2W / �T�3. In practice, we
found that keeping the noninteracting value of the entropy
s�T ,0� in the above formula does not improve the compari-
son with QMC data in the region where W /2T�1 is satis-
fied, whether U is small or large. When we neglect all band
effects compared with temperature, then s�T ,0� can be re-
placed by ln 4 and we recover the atomic limit result �Eq.
�7�	 that can also be found from elementary statistical me-
chanics. It is the latter result that is useful to understand the
data at large values of U.

Expansion of s�T ,U� above in powers of U /4T leads to
the perturbative result �Eq. �9�	. One can also arrive at this
result by directly neglecting higher powers of U /T and
UW / �T�2 in the self-energy and Green function,

T

N
�

n
�
k

��k,ikn�G�k,ikn�e−ikn0−

�
T

N
�

n
�
k
�Un−� +

U2n��1 − n−��
ikn

� 1

ikn
e−ikn0−

�B6�

=U�n↑��n↓� − T�
n

U2

4�2n + 1�2�T�2 �B7�

=U�n↑��n↓� −
U2

16T
= U�n↑n↓� , �B8�

so that

s�T,U� = s�T,0� − 

0

U ��−
U

16T
�

�T
dU �B9�

=s�T,0� −
U2

32T2 . �B10�

This result, appearing in Eq. �9�, keeps all powers in W /2T
and the leading term in U /T and neglects U2W / �T�3 and
higher orders �the entropy is an even function of U at half-
filling�. It does not, however, assume that U /W�1. It is the
large temperature here that controls the expansion. In prac-
tice, we found that the above formula does not lead to a good
description of the QMC data in any regime, even at small U
and large T, unless s�T ,0�→ ln 4 in the large U regime. This
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suggests that the corrections O(��U�4)+O��3U2W� are im-
portant and in fact cancel the leading one.

Note that in all the results of this section, the dimension
occurs only in the value of W and in the value of s�T ,0�. The
atomic limit is independent of dimension.

APPENDIX C: SECOND-ORDER PERTURBATION
THEORY AND TWO-PARTICLE SELF-CONSISTENT

APPROACH FOR THE ENTROPY

In the limit U�W, TPSC reproduces the standard pertur-
bative expression for double occupancy. This can be demon-
strated as follows. In TPSC, double occupancy is obtained
from the following sum rule and ansatz:8,14

n − 2�n↑n↓� =
T

N
�

q

�0�q�
1 − 1

2Usp�0�q�
, �C1�

Usp = U
�n↑n↓�

�n↑��n↓�
. �C2�

We used short-hand notation for the wave vector and Mat-
subara frequency q= �q , iqn�. Since the self-energy is con-
stant in the first step of TPSC, the irreducible susceptibility
takes its noninteracting Lindhard value �0�q�. In a perturba-
tion theory in U, we can expand the right-hand side of the
sum rule �Eq. �C1�	 and take Usp=U which leads to

n − 2�n↑n↓� =
T

N
�

q
��0�q� +

1

2
U�0

2�q��
= n − 2�n↑��n↓� +

1

2
U

T

N�
q

�0
2�q� �C3�

or

�n↑n↓� − �n↑��n↓� = −
1

4
U

T

N�
q

�0
2�q� , �C4�

which shows, as expected, that double occupancy is de-
creased by repulsive interactions compared with its Hartree-
Fock value. The above corresponds to the expression ob-
tained from direct perturbation theory for �n↑n↓�− �n↑��n↓�.
The entropy can be obtained, as usual, from integration of
the Maxwell relation �Eq. �2�	 using the known s�T ,U=0�.
This is how the perturbative result in Fig. 5 was obtained.

In the high-temperature limit, we recover results of the
previous section, as we now proceed to show in two different
ways. TPSC at the first level of approximation obeys the sum
rule �Eq. �B2�	 that expresses a consistency between single-
particle and two-particle quantities. The self-energy in the
U /W�1 and large Matsubara frequency limit has been
found in Ref. 8 �Eq. �E10�	,

��k,ikn� = Un−� +
U

ikn
�Usp + Uch

2
n−� − Uchn−�

2

+
�Usp − Uch�

2
�n↑n↓�� + ¯ . �C5�

In the high-temperature limit, T�W /2, that we are inter-

ested in, the classical �zero-frequency� contribution domi-
nates the sum rules used to find Usp and Uch, so that Usp
=Uch=U, and one recovers that the 1/ ikn term has the exact
U2 / �4ikn� form used in Appendix B. We thus recover the
high-temperature perturbative result for the entropy derived
there and appearing in Eq. �9�.

Another way to arrive at the same result in a more trans-
parent way that uses only the first step of the TPSC approach
�U /W�1� is to work directly with the previous perturbative
result �Eq. �C4�	 and evaluate it in the high-temperature
limit. We first rederive that perturbative result �Eq. �C4�	
from Eq. �43� of Ref. 8 that is valid when the correction of
double occupancy from its Hartree-Fock value is small,

�n↑n↓� = �n↑��n↓�
1

1 + �U
. �C6�

By correcting the factor of 2 misprint in Ref. 8, the quantity
� is given by

� =
1

n2

T

N
�
iqn

�
q

�0
2�q,iqn� , �C7�

with qn a bosonic Matsubara frequency and �0 the Lindhard
function. Expanding the denominator in Eq. �C6� and substi-
tuting n=1 and U�n↑��n↓�U /4, we do recover the pertur-
bative result �Eq. �C4�	.

In the limit W /2T�1, the susceptibility �0 scales as
1 /qn

2, which yields terms that are smaller in powers of
W / �2T� than the zero Matsubara frequency contribution.
Neglecting these finite Matsubara frequency terms and tak-
ing the large W / �2T� limit where f��k��0.5�1−0.5��k�,
we are left with

�0�q,0� =
− 2

N
�
q

f��k� − f��k+q�
�k − �k+q

�C8�

�
�

2
. �C9�

From this at n=1, we can evaluate that ��T / �2T�2 so that,
to leading order, the approximate double occupancy found
from Eq. �C6� is

�n↑n↓� � �n↑��n↓��1 −
U

4T
� =

1

4
−

U

16T
, �C10�

which leads again to the high-temperature perturbative result
found at the end of Appendix B �Eq. �B9�	 and hence to Eq.
�9�. Even if this time we assumed U /W�1 in the last deri-
vation �there is no Mott gap in the one-body Green func-
tions�, the fact that the asymptotic TPSC self-energy �Eq.
�C5�	 in the high-temperature limit reduces to U2 / ikn plus
corrections that involve two more powers of U /T suggests
�but does not prove� that the atomic limit is also satisfied by
TPSC at high temperature. In the high-temperature limit
where s�T ,0�→ ln 4, the result that we just found �Eq. �9�	
does reduce to the first two terms of the high-temperature
series of the atomic limit. A coincidence between atomic
limit and TPSC was also noted for the attractive Hubbard
model in Ref. 32.
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