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We study the Hubbard model using the cellular dynamical mean-field theory �CDMFT� with quantum Monte
Carlo �QMC� simulations. We present the algorithmic details of CDMFT with the Hirsch-Fye QMC method for
the solution of the self-consistently embedded quantum cluster problem. We use the one- and two-dimensional
half filled Hubbard model to gauge the performance of CDMFT+QMC particularly for small clusters by
comparing with the exact results and also with other quantum cluster methods. We calculate single-particle
Green’s functions and self-energies on small clusters to study their size dependence in one and two dimensions.
It is shown that in one dimension, CDMFT with two sites in the cluster is already able to describe with high
accuracy the evolution of the density as a function of the chemical potential and the compressibility divergence
at the Mott transition, in good agreement with the exact Bethe ansatz result. With increasing U the result on
small clusters rapidly approaches that of the infinite size cluster. Large scattering rate and a positive slope in
the real part of the self-energy in one dimension suggest that the system is a non-Fermi liquid for all the
parameters studied here. In two dimensions, at intermediate to strong coupling, even the smallest cluster �Nc

=2�2� accounts for more than 95% of the correlation effect of the infinite-size cluster in the single particle
spectrum, suggesting that some of the important problems in strongly correlated electron systems may be
studied highly accurately with a reasonable computational effort. Finally, as an application that is sensitive to
details of correlations, we show that CDMFT+QMC can describe spin-charge separated Luttinger liquid
physics in one dimension. The spinon and holon branches appear only for sufficiently large system sizes.
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I. INTRODUCTION

Strongly correlated electron systems realized in organic
conductors, heavy fermion compounds, transition metal ox-
ides, and more recently high temperature superconductors
continue to challenge our understanding. Various anomalous
behaviors observed in these materials cannot be well under-
stood within conventional theoretical tools based on a Fermi
liquid picture or a perturbative scheme. Because these in-
triguing features appear in a nonperturbative regime, numeri-
cal methods have played a key role. Exact diagonalization
�ED� and quantum Monte Carlo �QMC� simulations1 are
among the most popular approaches. However, severe limi-
tations due to small lattice size in ED and a minus sign
problem in QMC at low temperatures make it difficult to
extract reliable low-energy physics from these calculations.

Recently, alternative approaches,2–7 such as the dynamical
cluster approximation, cluster perturbation theory, the self-
energy functional approach, and cellular dynamical mean-
field theory �CDMFT� have been developed and have al-
ready given some promising results. Most of these quantum
cluster methods generalize the single-site dynamical mean-
field theory8–10 �DMFT� to incorporate short-range spatial
correlations explicitly. In fact the DMFT has provided the
first unified scenario for the long standing problem of the
Mott transition in the Hubbard model, completely character-
izing the criticality associated with this transition in infinite
dimension or when spatial correlations are negligible. In
spite of its great success in answering some of the challeng-

ing questions in strongly correlated electron systems, its
limitation has been also recognized in understanding low di-
mensional electronic systems such as high temperature su-
perconductors for instance. In particular, the observed nor-
mal state pseudogap in underdoped cuprates11 is in sharp
contrast with the prediction of DMFT in which any slight
doping into the half filled band always leads to a Fermi liq-
uid. Many of the discrepancies are traced back to the neglect
of short-range correlations in DMFT. The main objective of
these alternative approaches is to describe short-range spatial
correlations explicitly and to study the physics that emerges.
CDMFT has been recently applied to the Hubbard model
using ED as cluster solver at zero temperature, as we will
discuss later, and to the model for layered organic conductors
with QMC as a cluster solver.12

In this work we focus on CDMFT using the Hirsch-Fye13

QMC method to solve the cluster problem and to study its
performance particularly for small clusters in the one- and
two-dimensional half filled Hubbard model. The method is
benchmarked against exact results in one dimension. Then
we calculate single-particle Green’s functions and self-
energies on small clusters to study their size dependence in
one and two dimensions. As an application of the approach
that is particularly sensitive to system size, we study the
appearance of spin-charge separated Luttinger liquid away
from half filling in one dimension.

This paper is organized as follows. In Sec. II we review
CDMFT. In Sec. III we present algorithmic details of the
Hirsch-Fye QMC method which is used to solve the self-
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consistently embedded quantum cluster problem. In Sec. IV
we present the CDMFT+QMC algorithm. In Sec. V we
benchmark the approach against exact results. Then in Sec.
VI we show our results for size dependence of one-particle
quantities in the one-dimensional and two-dimensional half
filled Hubbard models. The application to the Luttinger liq-
uid appears in Sec. VII. Finally, in Sec. VIII, we conclude
our present work, suggesting future applications of CDMFT.

II. THE CELLULAR DYNAMICAL MEAN FIELD
THEORY (CDMFT)

Throughout the paper, we will use the one- and two-
dimensional half filled Hubbard model as an example

H = �
�ij�,�

tijci�
† cj� + U�

i

ni↑ni↓ − ��
i�

ci�
† ci�, �1�

where ci�
† �ci�� are creation �annihilation� operators for elec-

trons of spin �, ni�=ci�
† ci� is the density of � spin electrons,

tij is the hopping amplitude equal to −t for nearest neighbors
only, U is the on-site repulsive interaction and � is the
chemical potential controlling the electron density.

The5 CDMFT is a natural generalization of the single site
DMFT that treats short-range spatial correlations explicitly.
Also, some kinds of long-range order involving several lat-
tice sites, such as d wave superconductivity, can be described
in CDMFT and not in DMFT.14 In the CDMFT
construction5,15 shown in Fig. 1, the entire infinite lattice is
tiled with identical clusters of size Nc. Degrees of freedom
within a cluster are treated exactly, while those outside the
cluster are replaced by a bath of noninteracting electrons that
is determined self-consistently. This method15,16 has already
passed several tests against some exact results obtained by
Bethe ansatz and density matrix renormalization group
�DMRG� technique in one dimension. This is where the
DMFT or CDMFT schemes are expected to be in the worst
case scenario since DMFT itself is exact only in infinite di-
mension and mean-field methods usually degrade as dimen-
sion is lowered. Nevertheless, the CDMFT in conjunction
with ED correctly predicts the divergence of the compress-
ibility at the Mott transition in one dimension, a divergence
that is missed in the single-site DMFT.

We now recall the general procedure to obtain the self-
consistency loop in CDMFT in a manner independent of

which method is used to solve the quantum cluster problem.
We also refer to Ref. 6 for an alternate derivation. The first
CDMFT equation begins by integrating out the bath degrees
of freedom to obtain an Nc�Nc dynamical Weiss field
G0,��i�n� �in matrix notation� where i�n is the fermionic
Matsubara frequency. This dynamical Weiss field is like the
Weiss field in a mean-field analysis of the Ising model. Be-
cause it contains a full frequency dependence, it is dynamical
instead of static and takes care of quantum fluctuations be-
yond the cluster. The second CDMFT equation defines the
cluster self-energy from the cluster Green’s function by solv-
ing the quantum impurity problem and extracting ��i�n�
from

��i�n� = G0
−1�i�n� − Gc

−1�i�n� . �2�

To close the self-consistency loop, we obtain an updated
Weiss field using the self-consistency condition

G0
−1�i�n� = � Nc

�2��d � dk̃
1

i�n + � − t�k̃� − ��i�n�
�−1

+ ��i�n� , �3�

where d is a spatial dimension. Here t�k̃� is the hopping

matrix for the superlattice with the wave vector k̃ because of
the intercluster hopping. We go through the self-consistency
loop until the old and new Weiss fields converge within de-
sired accuracy. Finally, after convergence is reached, the lat-
tice Green’s function G�k , i�n� is obtained using

G�k,i�n� =
1

Nc
�
��

eik·�r��−r���	 1

i�n + � − t�k̃� − ��i�n�



��

,

�4�

where ��i�n� is the converged cluster self-energy, k is any
vector in the original Brillouin zone and �� label cluster
sites. This last step differs17 and improves that proposed in
Ref. 5. See also Ref. 18. The lattice quantities such as the
spectral function and the self-energy shown in this paper are
computed from this lattice Green’s function.

III. QUANTUM MONTE CARLO SIMULATIONS

A. Quantum Monte Carlo method

In this section we present the algorithmic details of the
Hirsch-Fye QMC method13,19 for the solution of the self-
consistently embedded quantum cluster problem. The basic
principle of the QMC method can be understood as a dis-
cretization of the quantum impurity model effective action

Sef f → �
���		��

c�
†��	�G0,�

−1 ����,		��c����	��

+ U�
�	

n↑��	�n↓��	� , �5�

where the imaginary time is discretized in L slices l
=1,2 , . . . ,L of 
	, and the time step 
	 is defined by �
=L
	. Here �=1/T is the inverse temperature in units where

FIG. 1. CDMFT construction. The entire infinite lattice is tiled
with identical clusters of size Nc in real space.
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Boltzmann’s constant is unity. Throughout the paper 
	
=�1/8tU is used, unless otherwise specifically mentioned.
This leads to a systematic discretization error of order �
	�2

which is a few percent. The remaining quartic term can be
decoupled using a discrete Hirsch-Hubbard-Stratonovich
transformation20

e−
	Un↑n↓ =
1

2
e−
	U/2�n↑+n↓� �

s=±1
e�s�n↑−n↓�,

where �=cosh−1�e
	U/2� and the discrete field s is an Ising-
like variable taking the values ±1. Performing this transfor-
mation at every discrete space and imaginary time point, we
are led to a quadratic action, and the partition function be-
comes, in a functional integral representation

Z  �
s�l=±1

� D�c†,c

�exp�− �
���ll��

c�
†��l�G0,�

−1 ����,ll��c����l��

+ ��
�l

s�l�n↑��l� − n↓��l��
= �

s�l=±1
� D�c†,cexp�− �

���ll��

c�
†��l�G�,�s�

−1

�����,ll��c����l���
 �

s�l=±1
�
�

det�G�,�s�
−1 � . �6�

The inverse propagator G�,�s�
−1 ���� , ll�� for a particular real-

ization of the Ising spins �s� is defined as

G�,�s�
−1 ����,ll�� = G0,�

−1 ����,ll�� − ��s�l��,���l,l�+1, �7�

where the antiperiodic � function21 �l,l�+1 is defined as 1 if
l= l�+1 and −1 if l=1 and l�=L.

The influence of the discrete field s at each space-time
point appears in eV, a diagonal matrix with elements
eV�,�s����� , ll��=e��s�l��,���l,l�. The Green functions G and

G� that are characterized by eV and eV� respectively are re-
lated by

G� = G + �G − 1��eV�−V − 1�G�. �8�

In fact Eq. �7� is a special case of Eq. �8� when all Ising spins
�s� are turned off, which reduces eV to the unity matrix, and
when eV� is expanded to linear order in V�.

B. Monte Carlo simulation

In a Monte Carlo simulation, a local change in Ising spin
configuration s�l→s�l� is proposed and accepted with a tran-
sition probability W= p�s→s�� / p�s�→s�. Since Ising spin
configurations are generated with a probability proportional
to �� det�G�,�s�

−1 � according to Eq. �6�, the detailed balance
property requires

p�s → s��
p�s� → s�

=

�
�

det�G
�,�s��
−1 �

�
�

det�G�,�s�
−1 �

.

Note that, as usual, when the determinant is negative, the
absolute value of the determinant is used as a weight and the
sign becomes part of the observable. In the case of a single
spin flip, say s�m� =−s�m, the transition probability can be
greatly simplified by rearranging Eq. �8� as follows:

G� = A−1G ,

A = 1 + �1 − G��eV�−V − 1� �9�

and by noting that

det A� = A����,mm�

= 1 + „1 − G����,mm�… � �eV�����,mm�−V����,mm� − 1 .

�10�

As a result, the transition probability W=�� det A� is given
as a simple product of numbers with a computational effort
of O�1�. Two popular algorithms have been used to compute
an acceptance probability AP

AP =
W

1 + W
, �11�

AP = � 1 if W � 1

W otherwise.
� �12�

They are, respectively, the heat bath and the Metropolis al-
gorithms. If the move s�m→s�m� =−s�m is accepted, then the
propagator must be updated by using Eqs. �9� and �10� with
a computational burden of Nc

2L2

G�����,ll�� = G����,ll�� + �G���,lm� − ��,��l,m

� �eV����,mm�−V���,mm� − 1

� �A���,mm�−1G����,ml�� . �13�

We regularly recompute the propagator G���� , ll�� with
Eq. �8� or Eq. �9� to compensate a possible deterioration �due
to round-off error� of G���� , ll�� which is generated by a
sequence of updates with Eq. �13�. After several hundreds of
warmup sweeps through the discrete space and imaginary-
time points of the cluster, we make measurements for the
Green’s function, density and other interesting physical
quantities. We reduce the statistical error by using all avail-
able symmetries. That includes the point-group symmetries
of the cluster, the translational invariance in imaginary time,
the spin symmetry in the absence of magnetic long-range
order and the particle-hole symmetry at half filling. Results
of the measurements are accumulated in bins and error esti-
mates are made from the fluctuations of the binned measure-
ments provided that the bins contain large enough measure-
ments so that the bin averages are uncorrelated. Finally the
maximum entropy method22,23 �MEM� is used to perform the
numerical analytical continuation of the imaginary-time
Green’s function.
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Because QMC simulations are performed in imaginary-
time and the CDMFT equations �Eqs. �2�–�4� are given in
Matsubara frequencies, special care must be taken in making
Fourier transforms. The direct Fourier transform at a finite
number of discrete imaginary-time steps renders the Green’s
function Gc�i�n� �Eq. �2� a periodic function of i�n instead
of having the correct asymptotic behavior Gc�i�n��1/ i�n at
large Matsubara frequencies. We used a spline interpolation
scheme

Gc
interpol�	� = �i + �i�	 − 	i� + �i�	 − 	i�2 + �i�	 − 	i�3 for 	i

� 	 � 	i+1, �14�

where the coefficients �i ,�i ,�i ,�i are analytically calculated
from the original Green’s function obtained in imaginary
time. Then the piecewise integral is performed
�d	Gc

interpol�	�ei�n	 to compute Gc�i�n�. In practice, we sub-
tract a reference function G��	� and add the corresponding
G��i�n� which is known exactly and chosen to have the same
asymptotic behavior as Gc�i�n�

Gc�i�n� = G��i�n� +� d	�Gc�	� − G��	�ei�n	. �15�

Thus errors in the spline interpolation scheme applied to the
difference of the two functions can be reduced significantly.
Recently another scheme24 was proposed to calculate the
correct high frequency behavior by exploiting additional ana-
lytic information about the moments of Gc�	�. For more al-
gorithmic details of QMC simulations see Refs. 10, 25, and
26.

IV. THE CDMFT+QMC ALGORITHM

In this section we outline the CDMFT algorithm in con-
junction with the Hirsch-Fye QMC method.

�1� We start by generating a random Ising spin configura-
tion and an initial guess for the dynamical Weiss field
G0,����� , i�n�. The latter is usually taken as the noninteract-
ing value.

�2� The Weiss field is Fourier transformed �FT� to obtain
G0,����� , ll��.

�3� The propagator G�,�s����� , ll�� for the Ising spin con-
figuration with s�l= ±1 is calculated by explicit inversion of
the matrix A in Eq. �9� with G replaced by G0 in the latter
equation.

�4� From then on, configurations are visited using single
spin flips. When the change is accepted, the propagator is
updated using Eq. �13�.

�5� The physical cluster Green’s function Gc,����� , l
− l�� is determined as averages of the configuration-
dependent propagator G�,�s����� , ll��. The biased sampling
guarantees that the Ising spin configurations are weighted
according to Eq. �10�.

�6� Gc,����� , l− l�� is inverse Fourier transformed �IFT�
by using a spline interpolation scheme �described in the pre-
vious section� to obtain Gc,����� , i�n�.

�7� The cluster self-energy ����� , i�n� is computed from
the cluster Green’s function using Eq. �2�.

�8� A new dynamical Weiss field G0,�� ���� , i�n� is calcu-
lated using the self-consistency condition Eq. �3�.

�9� We go through the self-consistency loop �2�–�8� until
the old and new Weiss fields converge within desired accu-
racy. Usually in less than 10 iterations the accuracy reaches a
plateau �for example, relative mean-square deviation of 10−4

for U=8, �=5, or smaller for smaller interaction strength�.
�10� After convergence is reached, the numerical analyti-

cal continuation is performed with MEM on the data from
the binned measurements.

Figure 2 is a sketch of the CDMFT algorithm using the
QMC method.

Figure 3 shows the speedup achieved by parallelizing the
code on the Beowulf cluster with the message passing inter-
face �MPI�.27 The simplest way of parallelizing a QMC code
is to make smaller number of measurements on each node
and to average the results of each node to obtain the final
result effectively with the desired number of measurements.
In the CDMFT+QMC algorithm, this means that the heavy
exchange of information between processors occurs at step
�5� above. In Fig. 3 the combined total number of measure-
ments is 64 000 for the circles, which means 2000 measure-
ments on each node for calculations with 32 nodes. The
switch is at 10 Gb/s on infiniband and the processors are
3.6 GHz dual core xeon. For a small number of nodes the
speedup appears nearly perfect. As the number of nodes in-
creases, it starts to deviate from the perfect line because the
unparallelized part of the code starts to compensate the
speedup. Speedup with less number of measurements on
each node �diamonds� deviates further from the dashed line.

FIG. 2. �Color online� Sketch of the CDMFT algorithm using
QMC method.
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Most of the calculations in the present work were done with
16 or 32 nodes and with up to 128 000 measurements.

V. COMPARISON WITH EXACT RESULTS
(BENCHMARKING)

The one-dimensional Hubbard model represents an ideal
benchmark for the current and other cluster methods for sev-
eral reasons. First, there exist several �analytically and nu-
merically� exact results to compare with. Second, as men-
tioned before, the CDMFT scheme is expected to be in the
worst case scenario in one dimension, so that if it reproduces
those exact results it is likely to capture the physics more
accurately in higher dimensions. Third, a study of a system-
atic size dependence is much easier because of the linear
geometry.

In Fig. 4 we show the density n as a function of the
chemical potential � in the one-dimensional Hubbard model
for U / t=4. It shows that CDMFT on the smallest cluster
�Nc=2� already captures with high accuracy the evolution of
the density as a function of the chemical potential and the
compressibility divergence at the Mott transition,28 in good
agreement with the exact Bethe ansatz result �solid curve�.29

This feature is apparently missed in the single site DMFT
�diamonds� which also misses the Mott gap at half filling for
U / t=4. The deviation from the exact location where the den-
sity suddenly drops seems to be caused by a finite-size effect
since we have checked that it does not come from finite
temperature or from the imaginary-time discretization. The
compressibility divergence as well as the Mott gap at half
filling for U / t=4 were recently reproduced by Capone et
al.16 using ED technique at zero temperature.

In Fig. 5 the imaginary part of the local Green’s function
G11 and the real part of the nearest-neighbor Green function
G12 are compared on the Matsubara axis with DMRG results
shown as dashed curves. CDMFT with Nc=2 closely follows

the DMRG on the whole Matsubara axis, and the two results
become even closer for Nc=4 �not shown here�. These results
present an independent confirmation of the ability of CD-
MFT to reproduce the exact results in one dimension with
small clusters. This is very encouraging, since mean field
methods are expected to perform even better as the dimen-
sionality increases. In the application section on the Lut-
tinger liquid, we will study quantities that are more sensitive
to the size dependence.

FIG. 3. Speedup versus the number of nodes using MPI. Circles
and diamonds represent speedup for the combined total number of
measurements respectively equal to 64 000 and 32 000.

FIG. 4. Density n as a function of the chemical potential � in
the one-dimensional Hubbard model for U / t=4, �=40, Nc=2
�circles�. The diamonds are obtained within the single site DMFT
with the same parameters, while the solid curve is computed by the
Bethe ansatz at zero temperature.

FIG. 5. �a� Imaginary part of the local Green’s function G11 and
�b� real part of the nearest neighbor Green’s function G12 in the
one-dimensional Hubbard model for U / t=7, n=1 and �=40 on
Nc=2 cluster. The dashed curves are DMRG results.
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VI. CONVERGENCE WITH SYSTEM SIZE

A. One-dimensional Hubbard model

Figure 6 shows the local Green function Glocal�	=� /2�
and the nearest-neighbor Green function Gnear�	=0� as a
function of distance from the boundary of a long linear chain
�Nc=24�. The local and nearest-neighbor Green functions
rapidly �exponentially� approach the infinite cluster limit a
few lattice sites away from the boundary. The largest devia-
tion from the infinite cluster limit occurs essentially at the
boundary. This feature has lead to recent attempts30 to
greatly improve the convergence properties of CDMFT at
large clusters by weighting more near the center of the clus-
ter. It is called weighted-CDMFT, an approach which is be-
ing developed at present.30 In this paper we focus on small
clusters and calculate lattice quantities without weighting
�Eq. �4� and study how much correlation effect is captured
by small clusters compared with the infinite size cluster. Be-
cause most of the detailed study of the Hubbard model7,17,31

in the physically relevant regime �intermediate to strong cou-
pling and low temperature� have been obtained only on small
clusters, the present study will show how much those results
represent the infinite cluster limit.

Figure 7�a� shows the imaginary-time Green function
G�k� ,	� at the Fermi point �k� =� /2� for U / t=2, �=5, n=1
with Nc=2,4 ,8 ,12. As the cluster size increases, G�k� ,	� be-
comes smaller in magnitude and the infinite cluster limit is
approached in a way opposite to that in finite size simula-
tions, a phenomenon that was observed before in the dy-
namical cluster approximation �DCA�.32

The quantity G�k� ,� /2� at the Fermi wave vector is a use-
ful measure of the strength of correlations. It varies from

−1/2 for U=0 to 0 for U=� at half filling. Thus throughout
the paper �U�0� the “correlation ratio”

Cr �	 �G�k�,�/2��Nc
+ 1/2

�G�k�,�/2��Nc=� + 1/2

 �16�

will be used as an approximate estimate of how much the
correlation effects are captured by a given cluster of size Nc,
compared with the infinite cluster. Cr is equal to unity when
finite-size effects are absent.

Figure 7�b� shows the cluster size �Nc=L� dependence of
G�k� ,� /2� for small clusters. At small L the curvature is up-
ward so that G�k� ,� /2� is much closer to the value of the
infinite size cluster than what would be naively extrapolated
from large clusters. The corresponding spectral function
A�k� ,�� in Fig. 7�c� shows a peak at the Fermi level for all
clusters up to L=12. Although this looks like a quasiparticle
peak, it is disproved by a close inspection of the correspond-
ing self-energy.

We extract the self-energy from the lattice spectral func-
tion A�k� ,��, and the relation between A�k� ,�� and G�k� ,��

G�k�,�� =� d��
A�k�,���

� + i� − ��
,

G�k�,�� =
1

� + i� − �k� − ��k�,��
, �17�

where � is an infinitesimally small positive number and �k� is
the noninteracting energy dispersion. In spite of the peak in

FIG. 6. �a� Local Green’s function Glocal�	=� /2� and �b� nearest
neighbor Green’s function Gnear�	=0� as a function of distance
from the boundary of a linear chain with Nc=24 in the one-
dimensional Hubbard model for U / t=4, n=1, �=5 �circles�. The
dashed curve is the exponential fit.

FIG. 7. �a� Imaginary-time Green’s function G�k� ,	� at the Fermi
point �k� =� /2� in the one-dimensional Hubbard model for U / t=2,
�=5, n=1 with Nc=2,4 ,8 ,12 �solid, dotted, dashed, long-dashed
curves�. �b� Cluster size �Nc=L� dependence of G�k� ,� /2� at small
clusters. �c� The corresponding spectral function A�k� ,��. The star in
�b� represents the infinite cluster limit extracted from large clusters.
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A�k� ,��, the corresponding self-energy in Fig. 8 shows not
only a local maximum at �=0 in the absolute value of the
imaginary part, but also a positive slope at the Fermi level in

the real part, which cannot be reconciled with a Fermi liquid.
The scattering rate increases with increasing cluster size, as
found in DCA,32 in contrast to the results of finite size simu-
lations.

For the more correlated case of U / t=4 �U equal to the
bandwidth in one dimension� in Fig. 9, G�k� ,	� becomes
much smaller in magnitude than 1/2, the result for an uncor-
related system. A similar cluster size dependence is also
found here. In Fig. 9�b� we compare our cluster size depen-
dence with that of32 DCA �filled diamonds� for small clus-
ters. Generally the curvatures are opposite, namely, upward
in CDMFT and downward in DCA. This upward curvature
enables even an L=2 cluster to capture, as measured by Cr,
about 82% of the correlation effect of the infinite size cluster.
The corresponding spectral function A�k� ,�� already shows a
pseudogap for L=2, in contrast to the DCA result32 in which
a pseudogap begins to appear for L=8. For U / t=4 the scat-
tering rate in Fig. 10 is large enough to create the pseudogap
in A�k� ,�� for all clusters.

For an even more correlated case of U / t=6 in Fig. 11, an
L=2 cluster captures 99% of the correlation effect �as mea-
sured by Eq. �16� of the infinite size cluster. Thus, at inter-
mediate to strong coupling, short-range correlation effect �on
a small cluster� starts to dominate the physics in the single
particle spectral function, reinforcing our recent results17

based on the two-dimensional Hubbard model. The corre-
sponding A�k� ,�� shows a large pseudogap �or real gap� for
all cluster sizes. The huge scattering rate in Fig. 12 at the
Fermi energy is responsible for the large pseudogap �or real
gap� in the spectral function.

Recently there has been a debate about the convergence of
the two quantum cluster methods �CDMFT and DCA�33–35

using a highly simplified one-dimensional large-N model

FIG. 8. Real �a� and imaginary �b� part of the self-energy
��k� ,�� at the Fermi point �k� =� /2� in the one-dimensional Hub-
bard model for U / t=2, �=5, n=1 with Nc=2,4 ,8 ,12 �solid, dot-
ted, dashed, long-dashed curves�.

FIG. 9. �a� Imaginary-time Green’s function G�k� ,	� at the Fermi
point �k� =� /2� in the one-dimensional Hubbard model for U / t=4,
�=5, n=1 with Nc=2,4 ,8 ,12 �solid, dotted, dashed, long-dashed
curves�. �b� Cluster size �Nc=L� dependence of G�k� ,� /2� at small
clusters. The filled diamonds are DCA results in Ref. 32 with the
same parameters. �c� The corresponding spectral function A�k� ,��.
The star in �b� represents the infinite cluster limit extracted from
large clusters.

FIG. 10. Real �a� and imaginary �b� part of the self-energy
��k� ,�� at the Fermi point �k� =� /2� in the one-dimensional Hub-
bard model for U / t=4, �=5, n=1 with Nc=2,4 ,8 ,12 �solid, dot-
ted, dashed, long-dashed curves�.
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Hamiltonian where dynamics are completely suppressed in
the limit of N→�. The general consensus about the conver-
gence of CDMFT �based on the study of this model Hamil-
tonian� is that purely local quantities defined on central clus-

ter sites converge exponentially, while lattice quantities such
as the lattice Green function converge with corrections of
order 1 /L. Here we address this issue with a more realistic
Hamiltonian, the one-dimensional Hubbard model at inter-
mediate coupling of U / t=4. Figure 13�a� shows the cluster
size dependence of the imaginary-time density of states N�	�
at 	=� /2. We obtained N�	� in two different ways: Taking
the average of the lattice Green function �obtained without
weighting� over the Brillouin zone �circles� and taking the
local Green function at the center of the cluster �diamonds�.
For Nc=2 they are identical while for larger clusters, N�� /2�
obtained from the local Green’s function approaches the Nc
=� limit much faster than that from the lattice Green func-
tion that converges linearly in 1/L,36 in agreement with the
previous results based on the large-N model. In spite of this
slow convergence, the slope is so small that the Nc=2 cluster
already accounts for 95% of the correlation effect of the
infinite cluster �using Cr as a measure with G�k� ,� /2�
→N�� /2�, much larger than 82% for G�k� ,� /2�. Figure
13�b� is a close up of Fig. 13�a� at large L. N�� /2� from the
two methods converge to a single value as L→�. N�� /2�
from the local Green function approaches the infinite-size
limit much faster than 1/L2 and apparently converges expo-
nentially.

B. Two-dimensional Hubbard model

The two-dimensional Hubbard Hamiltonian on a square
lattice has been intensively studied for many years, espe-
cially since Anderson’s seminal paper37 on high temperature
superconductivity. There is mounting evidence that this

FIG. 11. �a� Imaginary-time Green’s function G�k� ,	� at the
Fermi point �k� =� /2� in the one-dimensional Hubbard model for
U / t=6, �=5, n=1 with Nc=2,4 ,8 ,12 �solid, dotted, dashed, long-
dashed curves�. �b� Cluster size �Nc=L� dependence of G�k� ,� /2�
for small clusters. �c� The corresponding spectral function A�k� ,��.
The star in �b� represents the infinite cluster limit extracted from
large clusters.

FIG. 12. Real �a� and imaginary �b� part of the self-energy
��k� ,�� at the Fermi point �k� =� /2� in the one-dimensional Hub-
bard model for U / t=6, �=5, n=1 with Nc=2,4 ,8 ,12 �solid, dot-
ted, dashed, long-dashed curves�.

FIG. 13. �a� Cluster size �Nc=L� dependence of the imaginary-
time density of states N�	� at 	=� /2 in the one-dimensional Hub-
bard model for U / t=4, �=5, n=1. The circles are obtained from
the average of the lattice Green’s function �without weighting� over
the Brillouin zone, while the diamonds are calculated from the local
Green’s function at the center of the cluster �a linear chain in one
dimension�. �b� Close up of the region at large L. The star in �b�
represents the infinite cluster limit extracted by a linear extrapola-
tion at large clusters.
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model correctly describes the low-energy physics of the cop-
per oxides.38 In addition to various types of long-range order
observed in the cuprates, one must understand the intriguing
normal state pseudogap11 in the underdoped regime. In this
section we focus on the size dependence of the spectral func-
tion for the half filled two-dimensional Hubbard model for
small clusters at finite temperature. Figure 14�a� shows the
imaginary-time Green’s function G�k� ,	� at the Fermi surface
(k� = �� ,0�) for U / t=4.4, �=4, n=1 with Nc=2�2,3�3,4
�4,6�6.39 As the cluster size increases, G�k� ,	� decreases
in magnitude, as in the one-dimensional case, a behavior
opposite to that of finite size simulations. This trend is in
agreement with DCA,25 as shown in Fig. 14�b�. The spectral
weight A�k� ,�� for the same parameters shows a peak at �
=0 for small L �Nc=L�L� but starts exhibiting a pseudogap
for L�6. This is consistent with our recent results with17

CDMFT+ED where we find that at weak coupling a large
correlation length �on a large cluster� is required to create a
pseudogap. From the two-particle self-consistent �TPSC� ap-
proach, we know that to obtain a pseudogap in this regime of
coupling strength, the antiferromagnetic correlation length
has to be larger than the single-particle thermal de Broglie
wave length.40,41 Unlike in the one-dimensional case, the
imaginary part of the self-energy for L�4 has a very shallow
maximum or a minimum at the Fermi level, accompanied by
a negative slope in the real part as seen in Fig. 15. This
feature is consistent with a Fermi liquid at finite temperature.
For L�6, however, the scattering rate has a local maximum

together with a large positive slope in the real part, resulting
in the pseudogap in the spectral function.

Next we study the more correlated case of U / t=8 in Fig.
16. This regime is believed to be relevant for the hole-doped
cuprates. When U becomes equal to the bandwidth, the clus-

FIG. 14. �a� Imaginary-time Green’s function G�k� ,	� at the
Fermi surface (k� = �� ,0�) in the two-dimensional Hubbard model
for U / t=4.4, �=4, n=1 with Nc=2�2, 3�3, 4�4, 6�6 �solid,
dotted, dashed, long dashed curves�. 
	=0.25 is used here. �b�
Cluster size �Nc=L�L� dependence of G�k� ,� /2� at small clusters.
The filled diamonds are DCA results of Ref. 25. �c� The correspond-
ing spectral function A�k� ,��. The star in �b� represents the infinite
cluster limit extracted by a linear extrapolation at large clusters.

FIG. 15. Real �a� and imaginary �b� part of the self-energy
��k� ,�� at the Fermi surface (k� = �� ,0�) in the two-dimensional
Hubbard model for U / t=4.4, �=4, n=1 with Nc=2�2, 3�3, 4
�4, 6�6 �solid, dotted, dashed, long-dashed curves�.

FIG. 16. �a� Imaginary-time Green’s function G�k� ,	� at the
Fermi surface (k� = �� ,0�) in the two-dimensional Hubbard model
for U / t=8, �=5, n=1 with Nc=2�2, 3�3, 4�4 �solid, dotted,
dashed curves�. �b� Cluster size �Nc=L�L� dependence of
G�k� ,� /2� for small clusters. �c� The corresponding spectral func-
tion A�k� ,��. The star in �b� represents the infinite cluster limit ex-
tracted by a linear extrapolation.
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ter size dependence of G�k� ,	� is extremely weak. As can be
seen in Fig. 16�b�, Nc=2�2 already accounts for more than
95% of the correlation effect �as measured by Eq. �16� of
the infinite size cluster in the single particle spectrum, sup-
porting our recent result obtained with CDMFT+ED
method17 in the two-dimensional Hubbard model. The large
gap in A�k� ,�� does not change significantly with increasing
cluster size. The self-energy for U / t=8 �Fig. 17� appears
similar to what was found in the one-dimensional case with
U / t=6 where the imaginary part has a very large peak at the
Fermi energy, leading to what appears as a large gap in
A�k� ,��. When short-range spatial correlations are treated ex-
plicitly, the well-known metal-insulator transition in the
single site DMFT disappears immediately as shown in our
recent articles.17,42 Frustration would restore the metal-
insulator transition.12

VII. SPINONS AND HOLONS IN CDMFT

Spinon and holon dispersions were recently found experi-
mentally in a quasi-one-dimensional organic conductors
away from half filling by Claessen et al.43 These separate
features of the dispersion in a Luttinger liquid are a chal-
lenge for numerical approaches. Indeed, we know from
bosonization and from the renormalization group44 that they
arise from long-wavelength physics, hence it is is not obvi-
ous how these features can come out from small cluster cal-
culations. They have been seen theoretically in the one-
dimensional Hubbard model away from half filling by
Benthien et al.45 using density-matrix renormalization group.
The evidence from straight QMC calculations is based on the
analysis of chains of size 64.46 On the other hand, with clus-
ter perturbation theory one finds clear signs of the holon and
spinon dispersion at zero temperature already for clusters of
size 12.3

As an application of CDMFT+QMC, we present in this
section a study of the appearance of spinon and holons as a
function of system size at finite temperature. The spectral
function A�k� ,�� and its dispersion curve are calculated in the
one-dimensional Hubbard model for U / t=4, �=5, n=0.89
with several sizes of cluster �obtained without weighting�
shown in Fig. 18 to demonstrate the ability of CDMFT to
reproduce highly nontrivial physics in one-dimensional sys-
tems. For Nc=2, A�k� ,�� has only one broad feature near k�

=0 and �, while for Nc=12 it starts showing, near k� =�,
continuous spectra that are bounded by two sharp features.
Near k� =0 the two features do not show up clearly. For Nc
=24 however, the spectral function shows the separation of
spinon and holon dispersions near both k� =0 and �, even if
the temperature �=5 is relatively large. These features are in
agreement with recent QMC calculations for the one-
dimensional Hubbard model.47,48 As k� approaches k�F, we
loose the resolution necessary to separate the two spectra.
For U / t=6 we obtain a similar result, while at weak coupling
�U / t=2� we do not resolve the separation up to L=24.

VIII. SUMMARY, CONCLUSIONS, AND OUTLOOK

To summarize, we have studied the Hubbard model as an
example of strongly correlated electron systems using the
cellular dynamical mean-field theory �CDMFT� with quan-
tum Monte Carlo �QMC� simulations. The cluster problem
may be solved by a variety of techniques such as exact di-
agonalization �ED� and QMC simulations. We have pre-
sented the algorithmic details of CDMFT with the Hirsch-
Fye QMC method for the solution of the self-consistently
embedded quantum cluster problem. We have used the one-
dimensional half filled Hubbard model to benchmark the per-
formance of CDMFT+QMC particularly for small clusters
by comparing with the exact results. We have also calculated
the single-particle Green’s functions and self-energies on
small clusters to study the size dependence of the results in
one and two dimensions, and finally, we have shown that
spin-charge separation in one dimension can be studied with
this approach using reasonable cluster sizes.

To be more specific, it has been shown that in one dimen-
sion, CDMFT+QMC with two sites in the cluster is already
able to describe with high accuracy the evolution of the den-
sity as a function of chemical potential and the compressibil-
ity divergence at the Mott transition, in good agreement with
the exact Bethe ansatz result. This presents an independent
confirmation of the ability of CDMFT to reproduce the com-
pressibility divergence with small clusters. In the previous
tests with CDMFT+ED, some sensitivity to the so-called
distance function, had been noticed.16 This question does not
arise with QMC. This is very encouraging, since mean-field
methods would be expected to perform even better as the
dimensionality increases. We also looked at the cluster size
dependence of the Green’s function G�k� ,	�. It becomes
smaller in magnitude with increasing system size and the
infinite cluster limit is approached in the opposite way to that
in finite size simulations, as was observed before in another
quantum cluster scheme �DCA�.32 With increasing U the re-

FIG. 17. Real �a� and imaginary �b� part of the self-energy
��k� ,�� at the Fermi surface (k� = �� ,0�) for the two-dimensional
Hubbard model with U / t=8, �=5, n=1 for Nc=2�2, 3�3, 4
�4 �solid, dotted, dashed curves�.
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sult on the smallest cluster rapidly approaches that of the
infinite size cluster. Large scattering rate and a positive slope
in the real part of the self-energy in one dimension suggest
that the system is a non-Fermi liquid for all the parameters
studied here.

In two dimensions, a similar size dependence to the one-
dimensional case is found. At weak coupling a pseudogap
appears only for large clusters in agreement with the expec-
tation that at weak coupling a large correlation length �on a
large cluster� is required to create a gap. At intermediate to
strong coupling, even the smallest cluster �Nc=2�2� ac-
counts for more than 95% of the correlation effect in the
single particle spectrum of the infinite size cluster, �as mea-
sured by Eq. �16�. This is consistent with our earlier study
that showed indirectly that for U equal to the bandwidth or
larger, short-range correlation effect �available in a small

cluster� starts to dominate the physics.17 This presents great
promise that some of the important problems in strongly cor-
related electron systems may be studied highly accurately
with a reasonable computational effort.

Finally, we have shown that CDMFT+QMC can describe
highly nontrivial long wavelength Luttinger liquid physics in
one dimension. More specifically, for U=4 and �=5 the
separation of spinon and holon dispersions is clear even for
Nc=24.

Issues that can now be addressed in future work include
that of the origin of the pseudogap observed in hole under-
doped cuprates. Since the parent compounds of the cuprates
are Mott-Hubbard insulators, an understanding of such an
insulator and its evolution into a correlated metal upon dop-
ing is crucial. In particular, CDMFT+QMC offers the possi-
bility of calculating the pseudogap temperature to compare

FIG. 18. �Color online� Spectral function
A�k� ,�� for �a� Nc=2, �b� Nc=12, �c� Nc=24, and
dispersion curve �bottom� for Nc=24 in the one-
dimensional Hubbard model for U / t=4, �=5, n
=0.89.
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with experiment. This has been successfully done at interme-
diate coupling with TPSC,38 but at strong coupling, quantum
cluster approaches are needed. Single-site DMFT is not
enough since, for example, high resolution QMC study for
the half filled 2D Hubbard model49,50 found two additional
bands besides the familiar Hubbard bands in the spectral
function. These are apparently caused by short-range spatial
correlations that are missed in the single-site DMFT. The
search for a coherent understanding of the evolution of a
Mott insulator into a correlated metal by doping at finite
temperature has been hampered by the severe minus problem
in QMC away from half filling and at low temperature. An
accurate description of the physics at intermediate to strong
coupling with CDMFT+QMC with small clusters �as shown
in this paper� and modest sign problems in quantum cluster
methods �as shown in25 DCA� give us the tools to look for a
systematic physical picture of the finite temperature
pseudogap phenomenon at strong coupling.

Another issue that can be addressed with CDMFT
+QMC is that of the temperature range over which spin-
charge separation occurs in the one-dimensional Hubbard
model. In other words, at what temperature does Luttinger
physics breaks down as a function of U, and when it breaks
down what is the resulting state? We saw in this paper that
even a single peak in the single-particle spectral weight does
not immediately indicate a Fermi liquid.

Finally, one methodological issue. Two-particle correla-
tion functions are necessary to identify second order phase
transitions by studying the divergence of the corresponding
susceptibilities. This can be done with DCA.7 In the present
paper, instead, we focused on one-particle quantities such as
the Green’s function and related quantities. In some sense,

quantum cluster methods such as CDMFT use irreducible
quantities �self-energy for one-particle functions and irreduc-
ible vertices for two-particle functions� of the cluster to com-
pute the corresponding lattice quantities. Since the CDMFT
is formulated entirely in real space and the translational sym-
metry is broken at the cluster level, it appears extremely
difficult, in practice, to obtain two-particle correlation func-
tions and their corresponding irreducible vertex functions in
a closed form like matrix equations to look for instabilities.
One way to get around this problem is, as in DMFT, to
introduce mean-field order parameters such as antiferromag-
netic and d wave superconducting orders, and to study if they
are stabilized or not for given parameters such as tempera-
ture and doping level. In this way one can, for example,
construct a complete phase diagram of the Hubbard model,
including a possible regime in which several phases coexist.
Zero temperature studies with14 CDMFT+ED and with the
variational cluster approximation51,52 have already been per-
formed along these lines.
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