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Abstract – Quantum critical points exist at zero temperature, yet, experimentally their influence
seems to extend over a large part of the phase diagram of systems such as heavy-fermion
compounds and high-temperature superconductors. Theoretically, however, it is generally not
known over what range of parameters the physics is governed by the quantum critical point. We
answer this question for the spin-density wave to Fermi-liquid quantum critical point in the two-
dimensional Hubbard model. This problem is in the d= 2, z = 2 universality class. We use the
two-particle self-consistent approach, which is accurate from weak to intermediate coupling, and
whose critical behavior is the same as for the self-consistent-renormalized approach of Moriya.
Despite the presence of logarithmic corrections, numerical results demonstrate that quantum
critical scaling for the static magnetic susceptibility can extend up to very high temperatures
but that the commensurate to incommensurate crossover leads to deviations to scaling.
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There are strong indications that quantum critical
points, i.e. critical points at zero temperature, influence
the physical properties of materials at surprisingly high
temperature. But the precise region of temperature over
which this influence is felt is currently not well understood.
In solvable models of quantum critical behavior [1], power
law scaling and universality associated with quantum
criticality were found up to temperatures of order J/2,
where J is the exchange constant. That is in sharp contrast
with classical critical points where scaling is usually
observed only in a very narrow range around the critical
point. The importance of quantum critical points [2] has
thus come to the fore in the study of numerous materials,
including high-temperature superconductors and heavy-
fermion materials where quantum phase transitions and
power law scaling are observed [3].
One particularly relevant case in this context is that

of itinerant electrons undergoing a paramagnetic Fermi
liquid to spin-density wave (SDW) transition in two
dimensions. The Hubbard model is the simplest micro-
scopic model that contains this physics. There is no analog

(a)E-mail: tremblay@physique.usherbrooke.ca

of the Ginzburg criterion that allows us to determine the
parameter range where the influence of the quantum crit-
ical point is important. In that regime, temperature acts
like a finite-size cutoff for the correlation length ξ. In this
paper, we quantify the range of temperature where quan-
tum critical scaling is observable in this model, in other
words we find out whether details of the Fermi surface
(that lead for example to commensurate-incommensurate
(C-I) crossovers), logarithmic corrections, or interaction
effects, lead to sizable deviations from quantum critical
behavior at finite temperature.
For this problem, the dynamical critical exponent z

is equal to two and the corresponding universality class
(d+ z = 4) at the upper critical dimension is ill under-
stood [2–4]. In particular, the standard Hertz-Millis action
for quantum critical phenomena is invalid [5,6]. More
specifically, when the SDW is commensurate at the anti-
ferromagnetic wave vector, it has been suggested that
all the coefficients of the Ginzburg-Landau-Wilson action
become singular and that the spin susceptibility scaling
becomes 1/T η with η < 1 [5]. The generic case where
the SDW is not commensurate should not have these
singularities.
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An alternative approach is the self-consistent renormal-
ized theory of Moriya. This theory includes logarithmic
corrections [3,7]. However, it is not adequate to make
quantitative predictions for deviations from quantum crit-
ical effects in the Hubbard model since it necessitates
phenomenological constants as input. In addition, it does
not satisfy the Pauli principle. In a theory that satisfies the
Pauli principle, there is an interaction-independent sum
rule on spin and charge susceptibilities [8] that should be
enforced and, in addition, the local moment, 〈S2z 〉, with Sz
the z -component of the local spin, cannot exceed ℏ2n/4
when the filling n, satisfies n< 1 and ℏ2(2−n)/4 when
n> 1. There is nothing that imposes these constraints in
the theory of Moriya.

Method and model. – We use the non-perturbative
Two-Particle Self-Consistent (TPSC) approach [8]. This
approach respects the Pauli principle, the Mermin-Wagner
theorem and conversation laws. It also contains quantum
fluctuations in crossed channels that lead to Kanamori-
Brückner screening [9]. It is valid in the weak to inter-
mediate coupling regime (U � 6t) and not too deep in
the renormalized classical regime where a pseudogap is
observed. Numerical results obtained from TPSC in its
domain of validity are extremely close to the numeri-
cally exact solution obtained (barring statistical errors)
with benchmark quantum Monte Carlo calculations on the
Hubbard model [8–13]. The approach gives a satisfactory
description of the pseudogap in electron-doped cuprates
in a wide doping range [14,15]. It has been shown to be in
the N =∞ universality class, where N is the number of
components in the O(N) vector model [16]. Since we are
looking for deviations from universality and the theory
has been benchmarked in non-universal regimes, we argue
that our results are reliable for this question, even though
we cannot claim to be completely accurate in the N = 3
regime. Nevertheless, we will demonstrate that TPSC has
the same critical behavior as Moriya theory and hence
has the same logarithmic corrections. These logarithms
have the same functional form as those of the renormal-
ization group asymptotically close to the quantum critical
point, but in TPSC and in Moriya theory the mode-mode
coupling term does not flow, hence the corrections may
differ in the details from the renormalization group [3].
Quantum critical behavior of the susceptibility and of the
self-energy in the closely related spin-fermion model has
been discussed by Abanov et al. [17].
We study the t-t′-U two-dimensional Hubbard model on

the square lattice at weak to intermediate coupling,

H =−
∑

〈i,j〉,σ

ti,j(c
†
i,σcj,σ +h.c.)+U

∑

i

ni,↑ni,↓, (1)

where ti,j are the hopping integrals, i, j are the site index,

σ is the spin label, c†i,σ and ci,σ are the particle creation
and annihilation operators. Each doubly occupied site
costs an energy U and ni,σ = c

†
i,σci,σ. The units are such

that �= 1, kB = 1 and lattice spacing is unity. All the

numerical results are presented in units where t= 1. The
dispersion relation is written as

ǫk =−2t(cos(kx)+ cos(ky))− 4t
′ cos(kx) cos(ky). (2)

We concentrate on the behavior of the spin susceptibil-
ity. In TPSC, the retarded spin susceptibility χ(q, ω) is
written as

χ(q, ω) =
χ0(q, ω)

1−
Usp
2 χ0(q, ω)

, (3)

where χ0(q, ω) is the retarded Lindhard function at wave
vector q and angular frequency ω. The effective spin
interaction Usp is evaluated without adjustable parameter
using the ansatz [8,9]

U〈n↑n↓〉=Usp〈n↑〉〈n↓〉 (n< 1), (4)

U〈(1−n↑)(1−n↓)〉=Usp〈(1−n↑)〉〈(1−n↓)〉 (n> 1) (5)

with the local-moment sum rule that follows from the
fluctuation-dissipation theorem

n− 2〈n↑n↓〉=

∫ ∞

−∞

dω

2π

∫ ∞

−∞

d2q

(2π)
2

2

1− e−ω/T
χ′′(q, ω), (6)

where χ′′(q, ω) = Imχ(q, ω), T is the temperature, and
〈n↑n↓〉 double occupancy. We dropped the site index using
translational invariance and we used the Pauli principle to
write

S2 ≡ 〈(n↑−n↓)
2〉= n− 2〈n↑n↓〉. (7)

All the numerical results below are obtained using the
Matsubara frequency version of eqs. (2) to (6) without any
approximation, hence they are valid at arbitrary distance
from the quantum critical point. Before proceeding, we
show however that the quantum critical behavior of TPSC
is the same as that of the self-consistent renormalized
theory of Moriya and we discuss conditions for scaling.

Analytical results near the quantum critical

point. – When the correlation length is large, one can
expand the denominator of the TPSC spin susceptibility
around the wave vectors qi where the maxima in χ0 occur
to obtain

χ′′(q, ω) =
2

Uspξ20

∑

i

ω/Γ0

(ξ−2+(q−qi)2)
2
+(ω/Γ0)

2 . (8)

Defining Umf = 2/χ0(qi,0) as the value of the interaction
at the mean-field SDW transition, the other quantities in
the previous expression are

ξ2 ≡ ξ20

(

Usp
δU

)

, (9)

δU ≡Umf −Usp, (10)

ξ20 ≡−
1

2χ0 (0,qi)

∂2χ0 (q,0)

∂q2

∣

∣

∣

∣

qi

, (11)

1

Γ0
≡

1

ξ20χ0 (qi,0)

∂χR0 (qi, ω)

∂ (iω)

∣

∣

∣

∣

ω=0

. (12)
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In the expression for the spin susceptibility, the denomi-
nators are expanded around each of the four incommen-
surate wave vectors, or only around the (π, π) wave vector
depending on the situation. We checked explicitly that
higher powers of (q−qi) do not improve the description
of the C-I crossover and are not relevant.
To determine the quantum critical behavior, one

subtracts the self-consistency condition eq. (6) for a value
of temperature and filling close to the quantum critical
point from the same equation evaluated at that critical
point

S2−S2c =

∫ ∞

0

dω

π

∫

d2q

(2π)
2

[

2
(

eω/T − 1
)χ′′(q, ω)

+χ′′(q, ω)−χ′′c (q, ω)

]

. (13)

In the above expression χ′′c(q, ω) is evaluated at the
quantum critical point where ξ−2 = 0. (From now on, a
subscript c means that the quantity is evaluated at the
quantum critical point.) One then performs the integrals
over momentum in a circular domain with cutoff qB and
then the frequency integrals. To write the final answer, it
is useful to follow Moriya et al. [18] and to define

T0 =
Γ0q

2
B

2π
(14)

and dimensionless measures of ξ and T :

y≡
ξ−2

q2B
; τ ≡

T

T0
. (15)

The definition of Γ0, eq. (12), and the fact that ξ0 and q
−1
B

are both of the order of the lattice spacing shows that T0 is
a temperature of the order of the Fermi energy. With these
definitions and a single maximum in the susceptibility, the
self-consistency expression takes the form

y (1− ln y) = y0+
τ

π

[

φ

(

y

τ

)

−φ

(

y

τ
+
1

τ

)]

, (16)

where terms of order y2 have been neglected on the
left-hand side. We defined

y0 ≡−
Uspξ

2
0

T0

(

S2−S2c
)

(17)

and obtained φ(x) from the second Binet log gamma
formula [19]

φ (x) = 2

∫ ∞

0

dz
1

e2πz − 1
arctan

(

z

x

)

(18)

= lnΓ (x)−

(

x−
1

2

)

lnx+x−
1

2
ln (2π) (19)

with Re[z]> 0 and Γ(x) Euler’s gamma function. The
quantity y0 in eq. (17) measures the deviation from the

quantum critical point. Apart from the logarithm, the self-
consistency relation eq. (16), has the same functional form
as eq. (2.8) in ref. [18]. Logarithmic corrections for that
theory are mentioned without proof in ref. [7].
For large local moment, S2 >S2c , there is an SDW

ordered ground state and y0 < 0. The case y0 > 0 corre-
sponds to the Fermi-liquid ground state and y0 = 0 to
the quantum critical point. The full filling and temper-
ature dependence of y0 is found from the definitions of
Usp and ξ

−2. For example in the hole-doped case, defining
∆n≡ n−nc, we have

y0 =−
Umfξ

2
0

T0

1
ξ−2

ξ−2
0

+1

⎡

⎣∆n−
Umf
2U

n2

ξ−2

ξ−2
0

+1
+
Uc,mf
2U

n2c

⎤

⎦.

(20)

Thus, y0 depends on y= ξ
−2/q2B but in the critical regime

y≪ 1 and y0≪ 1 so we can neglect terms of order yy0.
The quantity y0 can then be written in the form

y0 =− (a∆n+ bT ) , (21)

where a is a positive number.
The various limiting solutions for the critical behavior of

the dimensionless correlation length can be obtained from
the self-consistency condition, eq. (16), as follows [18]. For
y0 < 0, one must take the limit y→ 0 first, then φ

(

y
τ

)

−

φ
(

y
τ +

1
τ

)

≃−12 ln
(

2πy
τ

)

and since y is exponentially small,
y− y ln y can be neglected on the left-hand side leading to
y≃ (τ exp(2πy0/τ))/2π. This is the renormalized classical
regime where the correlation length grows exponentially.
At the quantum critical point y0 = 0, the same limit
of the φ functions applies and one must find the solu-
tion of −y ln y≃− τ2π ln

(

2πy
τ

)

which is approximatively
y∼ τ ln(|ln τ |)/|lnτ |, as in the renormalization group [7].
Finally, in the Fermi-liquid regime, y0 > 0, the correlation
length (and hence y) is finite so the τ → 0 limit must be
taken first and φ

(

y
τ

)

−φ
(

y
τ +

1
τ

)

≃ τ/ (12y) which yields
y∼ y0+O(τ

2). At τ = 0 on the Fermi-liquid side, there
are logarithmic corrections to the dependence of y on y0
asymptotically close to the quantum critical point since
−y ln y ≃ y0, whose approximate solution is y≃−y0/ln y0.
In all regimes where ln y in the self-consistency, eq. (16),

can be neglected (large T ) or replaced by a constant in the
temperature range of interest, one can write

y

τ
≡ F

(

∆n

τ
,
1

τ

)

, (22)

where the scaling function F is the solution of

cF =
y0
τ
+
1

π

[

φ (F )−φ

(

F +
1

τ

)]

. (23)

with c= 1− ln yt, yt being the typical value of y in the
range of temperature under study. We have already
discussed limiting cases of F above. We demonstrate
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numerically below that in the range 0.01t < T < t
logarithmic corrections are negligible so that scaling
holds to an excellent approximation, except at the C-I
crossover.

Scaling function. – When the explored temperature
range is limited on a logarithmic scale, or when T is large,
logarithmic corrections can be neglected. In addition, in
the limit where τ is much smaller than y/τ , the scaling
function F in eq. (22) depends only on ∆n/τ since we are
in the limiting case φ

(

F + 1τ
)

→ φ (∞) = 0 in the equation
that defines F, eq. (23). This case occurs when the ground
state is paramagnetic, y0 > 0, or above the crossover line to
the renormalized classical regime that occurs when y0 < 0.
In such cases, near anyone of the maxima located at qi, the
quantity y= ξ−2/q2B scales as τF (∆n/τ,∞) so the spin
susceptibility, eq. (8), as a function of an arbitrary scale
factor s obeys the scaling relation

χ(T,∆n, |q−qi|, ω)−R=

sγ/νχ1(s
1/νT, sφ/ν∆n, s|q−qi|, s

zω), (24)

where the exponents have values γ = 1, ν = 1/2, z = 2 and
φ= 1. In the above equation, R will not be important
only if the incommensurate peaks are much narrower in
momentum space than the inverse correlation length. Let
ω= 0 for now and drop the dependence on that variable.
Following the above discussions on the behavior of the
correlation length, the susceptibility χ1 on the right-hand
side of the last equation should be, within log corrections,
a universal function of its arguments but with the overall
scale of each argument and of χ1 non-universal. Setting,
q≡ |q−qi|= 0, ω= 0 and choosing s such that Ts

1/ν = 1
we find

χ(T,∆n, 0, 0) =
1

T
X

(

∆n

T

)

+R, (25)

where the scale of the function X defined by this equation
and an overall prefactor in front of the argument are not
universal. X is the quantity we will focus on, but we
note in passing that the general form, eq. (24), with the
given exponents implies ω/T scaling for the q integrated
susceptibility [20]. Non-universal factors such as Usp,
ξ0 and Γ0, that enter the spin susceptibility, can have
some temperature and filling dependence in TPSC that
can in principle lead to deviations to scaling. In the
renormalization group language, these dependences are
the irrelevant variables whose importance we are trying
to gauge to delimit the scaling regime.

Commensurate-incommensurate crossover. –

In a strict sense, the value of q should be fixed at
q= qi(T = 0) to check quantum critical scaling. However,
qi itself depends on temperature in general. At high
temperature qi equals Q= (π, π), becoming incom-
mensurate at low temperature. The susceptibility there
shows four symmetry related peaks for the model we
consider [21]. The value of qi(T ) clearly depends on details
of the Fermi surface and is thus non-universal. The above

−2 −1 0 1
−2

−1

0

1

2

log
10

(T)

lo
g

1
0
(χ

)

χ

χ
0

Fig. 1: (Color online) log10(χ) as a function of log10(T ) for
U = 4t and t′ = 0 (open circles) at nc = 0.84 and for the
corresponding non-interacting susceptibility at U = 0 (open
squares). The vertical dashed lines indicate the commensurate
to incommensurate crossover region. The red dash-dotted line
has a slope −1. The black vertical line simply indicates T = t.

scaling form, eq. (24), nevertheless suggests that scaling
in the (T,∆n)-plane as in eq. (25) should occur when
q= qi(T ). It is not however possible to define qi(T ) in
the C-I crossover regime. In that regime, incommensurate
peaks necessarily overlap since the second derivative of χ
vanishes at q=Q when the crossover begins, reflecting
the fact that there is a broad maximum at Q that is split-
ting into four overlapping peaks. R in the general scaling
function, eq. (25), is not negligible in the C-I crossover
region. On general grounds then, we expect deviations
to scaling there. One may think that a better strategy to
prove scaling is to measure the correlation length ξ as a
function of T and ∆n, but ξ cannot be determined in the
C-I crossover regime for the same above reasons.
From now on, we thus look for scaling with the suscepti-

bility evaluated at its maximum, χ(T,∆n, |qmax−qi|, 0).
This is a well-defined quantity experimentally and far from
the C-I crossover we will have qmax = qi(T ).

Numerical results. – Let us first verify the scaling
at the quantum critical point ∆n= 0. Figure 1 shows
a log-log plot of both the interacting (open circles) and
non-interacting (open squares) susceptibilities as a func-
tion of temperature for two different sets of parameters.
For temperatures larger than hopping t, one obtains

trivial 1/T scaling for both the interacting and non-
interacting susceptibilities. While the non-interacting
susceptibility flattens at lower temperature, the inter-
acting susceptibility shows quantum critical 1/T scaling
down to the lowest temperature we could reach, namely
T = 0.01t. We will see that the 1/T scaling at T > 1 that
comes from the non-interacting susceptibility does not
obey the scaling equation, eq. (25). It is also clear from
fig. 1 that deviations to scaling occur in the C-I crossover
regime delimited by the vertical red lines. It is remarkable
however that the same straight line fits both the commen-
surate and the incommensurate regimes. This suggests
that non-universal scale factors are very similar on either
sides of the commensurate-incommensurate transition.
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0.5
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log
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c
−n|/T)
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g

1
0
(χ

)

b) U = 4
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log
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(|n
c
−n|/T)
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g

1
0
(T

χ
)
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U = 6, t’ = −0.05
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−0.5

0

log
10

(|n
c
−n|/T)
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g

1
0
(T

χ
)
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U = 6, t’ = −0.05

U = 6, t’ = 0

U = 4, t’ = 0

Fig. 2: (Color online) a) log10(Tχ) as a function of log10

(

|∆n|
T

)

for U = 4t and t′ = 0. Panel b) shows the data of figure a) with
the susceptibility unscaled log10(χ). c) log10(Tχ) as a function

of log10(
|∆n|
T
) for U = 6t and t′ =−0.05t. Panel d) compares

the scaled data log10(Tχ) as a function of log10(
∆n
T
) for U = 4t

and t′ = 0 (green crosses), U = 6t and t′ = 0 (red open squares)
and U = 6t and t′ =−0.05t (black open circles). In panels a)

and c) we can see deviations from the scaling at log10
|∆n|
T
<−1

that are due to the commensurate-incommensurate crossover
(see text). In these figures, for t′ = 0 we considered hole doping
with nc−n> 0, the smallest n, being n= 0.7. For t

′ =−0.05t,
we took electron doping with the largest n, equal to n= 1.3
and n−nc as argument of the log.

The slight upward curvature at the lowest temperatures
is not inconsistent with effects of logarithmic corrections.
To verify the full scaling eq. (25), we plot Tχ as a

function of |∆n|/T on a log-log plot in fig. 2. We take
values of n, on the Fermi-liquid side of nc. For a given
band structure and interaction, it is only when one has
found the correct values of the critical n= nc that all the
curves for different fillings and temperature collapse on the
same curve. We found, when t′ = 0, that nc = 0.926, 0.840
and 0.795 for U = 2t, 4t and 6t, respectively and nc = 1.180
for the electron-doped case with U = 6t, t ′ =−0.05t.More
values can be found in the thesis which is the basis for all
the results of the present paper [20].
The straight line of slope −1 at large ∆n/T in figs.

2a, c, d corresponds to the Fermi-liquid regime where
both the susceptibility and the correlation length are
temperature independent, but diverge as one approaches
the quantum critical point. In that regime, χ scales as
ξ2 ∼ 1/∆n when logarithmic corrections are negligible.
The 1/T scaling of χ corresponds to plateaus on the left of
figs. 2a, c, d. The deviations from a plateau come from the
C-I crossover. To show that the scaling is non-trivial, in
fig. 2b we do not multiply the susceptibility by T on the
vertical axis. The lined-up circles that can be caught by
the eye correspond to different temperatures for a given
filling n, the fillings closest to nc being to the left.
Scale factors depending on band structure and inter-

action strength should not influence the shape of the
scaling function. A simple translation in the (T,∆n)-plane

−3 −2 −1 0
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−0.5

0

log
10

(|n
c
−n|/T)

lo
g

1
0
(T

χ
)

a)

U = 4tT < t

T > t

−3 −2 −1 0
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−1

0

1

log
10

(|n
c
−n|/T)

lo
g

1
0
(χ

)

b)

U = 4t

−3 −2 −1 0
−1

−0.5

0

log
10

(|n
c
−n|/T)

lo
g

1
0
(T

χ
)

c)

U = 6t

−3 −2 −1 0
−1

−0.5

0

log
10

(|n
c
−n|/T)

lo
g

1
0
(T

χ
)

d)

U = 2t

Fig. 3: (Color online) The black circles are the data for T < t
and the red crosses for T > t. a) Scaled data log10(Tχ) for U =
4t. b) Unscaled values log10(χ) for the same U. c) log10(Tχ)
for U = 6t. d) for U = 2t. All four panels are at t′ = 0. The high
temperature limit of the quantum critical scaling is of the order
T ∼ t.

of the curves for different parameters should allow all of
them to collapse. In fig. 2d, we show scaling functions
for various parameters but without translation for non-
universal factors. One sees that if there were no deviations
to scaling associated with the C-I crossover in the plateau
region, simple translation would make all the curves nearly
collapse. This also shows that logarithms do not have a
large influence on scaling in this temperature range.
In fig. 3, data analogous to those in fig. 2 are represented

by black open circles and are filtered out near the C-I
crossover. The missing data is particularly clear in fig. 3b
where we do not scale the vertical axis. If Ti is the
temperature where the crossover occurs for a given doping,
the data were filtered in the range Ti−∆T < T < Ti+∆T
(∆T ∼ 0.2t) for densities nc−n< 0.04. For larger values
of nc−n, the data is sufficiently far from the C-I crossover
that no filtering is required. The remaining data are those
beyond the C-I crossover both above (commensurate) and
below (incommensurate) Ti. One sees that a plateau is
recovered (black open circles) for all three values of the
interaction strength appearing in figs. 3a, c, d as expected
in the quantum critical regime.
We now turn to the high temperature limit of the

quantum critical scaling. While the black open circles in
fig. 3 are for T < t, those for t < T < 10t are represented by
red crosses. The deviations to scaling for t < T < 10t are
obvious. Even though the non-interacting susceptibility
scales as 1/T for T > t as we saw in fig. 1, it does not
pollute the scaling associated purely with the quantum
critical point. The latter occurs for T < t, with the caveat
concerning the C-I crossover. The maximum T for scaling,
T ∼ t, is an important result that applies in the weak
to intermediate coupling regime we have considered here.
Clearly the quantum critical behavior must disappear at
U = 0, so there should be some U -dependence to the upper
temperature cutoff. At the intermediate coupling values
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that we considered, the temperature range over which
quantum critical scaling is observed should be compared
to what would have been naively estimated by substituting
U = 4t and U = 6t in J = 4t2/U [1], obtaining, respectively,
J/2 = t/2 and J/2 = t/3. Basically, the upper limit of T ∼ t
is essentially the degeneracy temperature for Fermi-Dirac
statistics, which is of the same order as T0. The irrelevant
temperature dependences of all quantities are thus on this
scale.

Conclusion. – The quantum critical behavior of TPSC
for the d= 2, z = 2 universality class is the same as that of
the self-consistent renormalized theory of Moriya, hence
it includes logarithmic corrections. In TPSC there is no
adjustable parameter. By explicit numerical calculations
away from the renormalized classical regime of the d= 2
Hubbard model in the weak to intermediate coupling, we
have been able to show that logarithmic corrections are
not really apparent in the range of temperature 0.01<
T < t and that the maximum static spin susceptibility in
the (T, n)-plane obeys quantum critical scaling. However,
near the commensurate-incommensurate crossover, one
finds obvious non-universal temperature and filling
dependence. Everywhere else, the (T, n)-dependence of
the non-universal scale factors is relatively weak. Strong
deviations from scaling occur at temperatures of order
t, the degeneracy temperature, reflecting the fact that
the temperature dependence of most irrelevant terms is
on the scale of the Fermi energy. That high temperature
limit should be contrasted with J/2 found in the strong
coupling case [1]. In generic cases the upper limit T ∼ t is
well-above room temperature. In experiment however, the
non-universality due to the C-I crossover may make the
identification of quantum critical scaling difficult. And
since the (T, n)-dependence of qi is non-universal, one
may encounter cases where this is in practice impossible.
Electron-doped high-temperature superconductors

appear as an ideal system to check quantum critical scal-
ing since they seem well described by the d= 2 one-band
Hubbard model at weak to intermediate coupling [14,15].
And experiments [22,23] strongly suggest the presence
of a quantum critical point in these materials. In the
case of heavy fermions there are examples of SDW
Fermi-liquid quantum critical behavior [3]. However,
these are multiband systems where there are additional
energy scales, such as the Kondo coherence scale, so our
results would apply only in regimes where an effective
one-band Hubbard model applies.
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[6] Pépin C., unpublished (2004).
[7] Moriya T., Proc. Jpn. Acad. Ser. B: Phys. Biol. Sci., 82
(2006) 1.

[8] Vilk Y. M. and Tremblay A.-M. S., J. Phys I, 7 (1997)
1309.

[9] Vilk Y. M., Chen L. and Tremblay A.-M. S., Phys.
Rev. B, 49 (1994) 13267.

[10] Vilk Y. M. and Tremblay A.-M. S., J. Phys. Chem.
Solids, 56 (1995) 1769.
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Béchamp-Laganière X., Truong K. D., Fournier P.

and Rauwel P., unpublished (2008).

37013-p6




