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1. INTRODUCTION

Physics is a question of scale! Even though we know the basic laws of Physics,

say at the level of quarks and gluons, much of the structure of the laws at this

level are of no relevance for atomic Physics. Exchange of gluons between quarks

in the atomic nucleus will influence the difference between energy levels of the

atom at say, the tenth decimal place (?). These details are for all practival pur-

poses irrelevant. In some sense this is a consequence of the structure of quantum

mechanics itself. The influence of physics at a high energy scale on physics at a

lower energy scale that is well separated from the former can be computed with

perturbation theory. More generally, the “renormalization group” tells us how to

construct effective theories that depend on the scale.

In addition, “More is different”, as emphasized by P.W. Anderson. Suppose

we give ourselves the Hamiltonian that should suffice to describe all homogeneous

substances at room temperature and normal pressure. It consists in the sum over

individual kinetic energies, plus pairwise interactions between constituents, plus

spin-orbit interactions (a relativistic effect that can be deduced from perturbation

theory). The energy scales involved are of the order of 10 to 100 eV. All physics

at these energy scales and less should be contained in that Hamiltonian. But the

challenge we are facing is enormous. Suppose we write down the Hamiltonian for

a piece of aluminum. It is a superconductor at a few degrees Kelvin, or if you

want at energies of the order of about 10−4 eV. This means that to predict from
first principles the presence of superconductivity in aluminum, we need a precision

of 105 to 106 in a calculation that involves a macroscopic number of degrees of

freedom, say 1023. Let us mention a few more scales, taken from lecture notes

by P. Coleman. Take the time scale at the atomic level to be ~1 eV ∼ 10−15
If we take the characteristic macroscopic scale to be 1 the leap to go between

the two scale is as big as that necessary to go from 1 to a sizeable fraction of

the age of the universe. Length scales from the atom to the  differ by 108,

and typically, the number of atoms we look at in an experiment done on a 3 of

matter is 1023. Clearly, this is an impossible task. What we need to proceed are

new concepts, new principles, new laws if you want, that “emerge” from the basic

theory. In the same way that entropy is a concept that emerges when one studies

the statistical mechanics of matter, the concept of broken symmetry is necessary to

study a phenomenon such as superconductivity. And before that concept emerges,

other conceptual steps had to be taken: the Born-Oppenheimer approximation, the

introduction of collective quantum coordinates such as phonons, density functional

theory to obtain a first guess at the structure of electronic energy levels, Migdal’s

approximation for electron-phonon interaction.

Note that indifference to details about higher energy scales, or shorter distances

if you wish, also occurs in purely classical mechanics. Ordinary hydrodynamics, as

contained in the Navier-Stokes equation, is a theory that is valid for a very broad

class of liquids. The specific atomic details will come in for example in determining

the specific value of viscosity for example, but the concept of viscosity is a notion

that emerges at long wave lengths and large time scales.

This course is thus a course about principles, as well as a course on calculational

approaches, although the latter will often appear to take the whole stage.

The first principle we will use is that of adiabatic continuity. It is possible to

describe a “phase”, say the normal state of a metal, by starting from a simple

Hamiltonian with known properties, such as that of band electrons, and including
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interactions with perturbation theory. This is the subject of the first part of

these lecture notes, where we will develop the formalism of correlation functions

and perturbation theory. In the presence of interactions, “quasiparticles” are

adiabatically connected to our notion of free electrons. But they are not the

same as free electrons. In studying this, we will understand the limitations of the

ordinary band theory of solids. The quasiparticles we have in mind, are those of

the Fermi-liquid theory, put forward by Landau in the 1960’s.

But eventually, perturbation theory breaks down and interactions lead to phase

transitions, in other words to new phases of matter that are not adiabiatically

connected to the original Hamiltonian. At phase transitions, the free energy has

mathematical singularities that cannot be treated by perturbation theory. These

new phases can very often be connected to a new Hamiltonian, that must be

“guessed”, a Hamiltonian that breaks some of the symmetries present in the orig-

inal phase. This will be the subject of the second part of these notes. And the

underlying principle is that of broken symmetries. Adiabatic continuity and bro-

ken symmetry are the two most important basic principles of condensed matter

physics, according to P.W. Anderson.

Finally, the third part is concerned with modern problems and more recent

calculational tools.

Yes, this course is also about calculational tools, about formalism. In quantum

mechanics in general, what we normally call the “Physics” is very much tied to the

calculational tools. These notes are also about calculational tools and about the

Physics that comes out of these tools. If you think of the wave function of a system

with  degrees of freedom, it gives one complex number for any given specified

value of the  degrees of freedom. What can you tell from this? In principle

everything, in practice, this list of complex numbers grows exponentially with the

number of degrees of freedom and it is not very illuminating. The density at a

point, that we can extract from the wave function, has physical content. Similarly,

the average of the product of the density at a point, times the density at some

other point and some other time has meaning. It is a correlation function, that

tells us how a density perturbation will propagate, how changing the density at one

point influences density at another point. Furthermore, this correlation function

is measurable and, as usual in quantum mechanics, by focusing on observables,

much is gained. By analogy to the case of density correlation functions, in quantum

mechanics we can look at amplitudes, namely we can ask what is the amplitude

for an electron to go from one point at one time to another point at another

time. This is a correlation function, the Green function, that, in cunjunction to

perturbation theory, behaves in the way that is closest to the concept of a particle

that propagates and interacts with other particles. In fact, without perturbation

theory, describing the “Physics” often becomes impossible, or extremely difficult.

Other emergent concepts that come out of these calculational tools are that of self-

energy and vertex functions. These quantities will, in a way, play the same role

as viscosity in ordinary hydrodynamics. They are quantities where much of our

ignorance about the exact solution to the problem can be hidden. Identifying these

hidding places, is part of what it means to understand the physics of a problem.

We work part with images, part with formalism, but in quantum mechanics, often

the images or physical intuitions are meaningless without the formalism.

This is work in progress. Many-body physics is an open frontier. Everyday

new materials lead to new surprises, new phases, new phenomenon appear, and

often new calculational tools must be developed. This course is about the foun-

dations. Much of it will be like learning spelling and grammar, but rest assured,

there are great novels, great stories to be read while you grasp the rules of this

language. And whether you are a theorist or an experimentalist, this language is

indispensable. It is behind the calculations, but it is also behind the interpretation

18 INTRODUCTION



of the experiments, it is behind the workings of nature.
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Part I

A refresher in statistical

mechanics and quantum

mechanics
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This first part will contain some of the results you might have seen in earlier

courses on statistical mechanics and quantum mechanics that do not use Green’s

functions. They will help set some of the notation but they are not necessarily a

prerequisite for what follows.
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2. STATISTICAL PHYSICS AND

DENSITY MATRIX

2.1 Density matrix in ordinary quantum mechanics

Quantum mechanics tells us that the expectation value of an observable  in a

normalized state |i is given by h| |i . Expanding over complete sets of states,
we obtain

h| |i =
X


h| i h| |i h |i (2.1)

=
X


h |i h| i h| |i (2.2)

=
X


h|  |i h| |i (2.3)

= Tr [] (2.4)

where the Density Matrix  is defined, as an operator, by

 ≡ |i h|  (2.5)

This is when we have a pure state. If the state is prepared in a statistical

superposition, in other words, if we have a certain probability  that the state

that is prepared is |i  then the expectation value of an observable will be given
by the weighted sum of the results in each state, in other words, in the above

formula for the average we should use

 ≡
X


 |i h|  (2.6)

This is the density matrix for a mixed state. Note that

2 =
X


 |i h| i h|  (2.7)

We have the property 2 =  only for a pure state.

When a system of interest is in contact with an environment, it is very useful

to work with an effective density matrix obtained by taking the trace first over the

degrees of freedom of the environment. This idea is common in particular in the

field of quantum information. In this school, we will see that by considering part

of a large system as the environment, we can greatly reduce the size of the Hilbert

space that needs to be considered to diagonalize a Hamiltonian, especially in one

dimension. The optimal way of doing this was found by Steve White and will be

discussed in the context of the "Density Matrix Renormalization Group". Not so

surprisingly, quantum information theory has helped to improve even further this

approach. Uli Schollwöck will explain this.
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2.2 Density Matrix in Statistical Physics

Statistical Physics tells us that conserved quantities play a special role. Indeed,

at equilibrium, the density matrix cannot depend on time, so it depends only on

conserved quantities. This means that generally, the density matrix is diagonal in

the energy and number basis for example. All that is left to do is to specify  The

basic postulate of statistical physics is that in an isolated system, all mcroscopic

states consistent with the value of the conserved quantities are equiprobable. This

is the microcanonical ensemble where  is identical for all energy eigenstates

|i  The other ensembles are derived in the usual way by considering the micro-
canonical system as including the system of interest and various reservoirs. In the

canonical ensemble for example,  = − where  is the partition functionP
 
− and  = ( )

−1


Alternatively, the various ensembles are obtained by maximizing the entropy

 ≡ −Tr [ ln ] (2.8)

subject to constraints such as fixed average energy and normalization in the case

of the canonical ensemble. Important properties of the entropy include extensivity

and concavity. The entropy also plays a major role in quantum information.

2.3 Legendre transforms

Legendre transforms are encountered in mechanics when going from a Lagrangian

to a Hamiltonian formulation. That transformation is extremely useful in sta-

tistical physics as well and it will be used for example by Gabi Kotliar at this

School.

The important idea of statistical physics that we start with is that of potentials.

If you know the entropy as a function of mechanical quantities, like energy volume

and number of particles for example, then you know all the thermodynamics.

Indeed,

 =  −  +  (2.9)

 =
1


 +




 − 


 (2.10)

so you can obtain temperature  pressure  and chemical potential  simply by

taking partial derivatives of the entropy. (1 ) (  ) (−) are pairs of
conjugate variables. Instead of using   as independent variables, given the

concavity of the entropy and the uniqueness of the equilibrium state, you can write

 as a function of any three other variables. Nevertheless, the purely mechanical

variables   are the most natural ones for the entropy. The entropy plays the

role of a thermodynamic potential. As a function of all microscopic variables not

fixed by  it is maximum at equilibrium.

Remark 1 When there are broken symmetries, additional variables must be added.

For example, for a ferromagnet with magnetization M in a magnetic field H

 =  −  +  +M·H (2.11)
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There are other potentials. For example, if a system is in contact with a heat

reservoir, the work that will be done at constant temperature will be modified by

the presence of the reservoir. It is thus physically motivated to define for example

the Helmholtz free energy

 =  −  (2.12)

 =

µ




¶


(2.13)

In this case

 =  −  −  = − −  +  (2.14)

The Helmholtz free energy  can be written in terms of any three thermodynamical

variables, but   are the most natural ones. At fixed   it is the free

energy that is a minimum instead of the energy because we have to take into

account the reservoir. The change from  to  as a natural variable has been

done through the pair of equations (2.12,2.13). This is the general structure of a

Legendre transform.  and  are potentials, and the subtraction of the product of

the conjugate variables − ¡


¢


 does the trick of relating the two potentials

Remark 2 Note that
¡
22

¢
= () = 1 ( ) = −1 ¡2 2¢ 

2.4 Legendre transform from the statistical mechan-

ics point of view

Note that since

− 


=  − 


(2.15)

=  −
µ




¶


 (2.16)

the quantity − can be seen as the Legendre transform of the microcanonical

entropy. From the point of view of statistical mechanics, if we define Ω () as the

number of microstate  corresponding to a given energy, then  = 1Ω () for

every microstate and

 () = −Tr [ ln ] = −
X


1

Ω ()
ln

1

Ω ()
(2.17)

=  lnΩ () (2.18)

So, from the point of view of statistical mechanics, the Legendre transform of the

entropy is obtained from

− 


=  ln =  ln

X


− (2.19)

=  ln
X


Ω () − (2.20)

=  ln
X


lnΩ()− (2.21)

=  ln
X


(()− ) (2.22)
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Whereas the microcanonical entropy is a function of the energy of microstates, its

Legendre transform is summed over energy and is a function of 1 the coefficient

of  in both the thermodynamical expression of the Legendre transform Eq.(2.17)

and the statistical one Eq.(2.22).

We know that

hi = − ln


= − (− )
 (1 )

(2.23)

which clarifies the connection between the statistical mechanics and thermody-

namical definitions of Legendre transform.  in the case of thermodynamics is

really the average energy from the statistical mechanical point of view. The last

equation could have been written down directly from the statistical expression for

−
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3. SECOND QUANTIZATION

3.1 Describing symmetrized or antisymmetrized states

States that describe identical particles must be either symmetrized, for bosons,

or antisymmetrized, for fermions. To simplify the calculations, it is useful to

use second quantization. As its name suggest, there is also an axiomatic way to

introduce this method as a quantization of fields but here we will just introduce it

as a calculational tool. The approach will be familiar already if you master ladder

operators for the harmonic oscillator.

For definiteness, let us concentrate on fermions. This can be translated for

bosons. Define the operator † (r) that creates a particle in a position eigenstate
|ri and antisymmetrizes the resulting wave function. Define also the vacuum state
|0i that is destroyed by the adjoint, namely  (r) |0i = 0 In this language

† (r)† (r0) |0i =
1√
2
(|ri |r0i− |r0i |ri) (3.1)

≡ |r r0i = − |r0 ri  (3.2)

The state to the right is clearly normalized and antisymmetric. There are two

copies of the one-particle Hilbert space. In one component of the wave function,

the particle in the first copy is at |ri  in the other component the particle in the
first copy is at |r0i  Clearly, that can become quite complicated. The two body-
wave function hr r0 |i is antisymmetric and in the case where there are only two
one-particle states occupied it is a Slater determinant. Clearly, that becomes a

mess. In terms of the creation-annihilation operators however, all we need to know

is that by definition of these operators,

† (r)† (r0) + † (r0)† (r) = 0 (3.3)

We use the short-hand for anticommutationn
† (r)  † (r0)

o
= 0 (3.4)

Taking the adjoint,

{ (r)   (r0)} = 0 (3.5)

The only thing missing is thatn
 (r)  † (r0)

o
=  (r− r0)  (3.6)

That is a bit more complicated to show, but let us take it for granted. It is clear

that if † (r) creates a particle, then  (r) removes one (or destroys it). If the

particles are at different positions, that can be done in any order. If r = r0 then
it will matter if we create a particle before destroying it. If the creation occurs

before the destruction, there will be one more particle to destroy. The Dirac delta

function comes from normalization in the continuum. For discrete basis, we would

have unity on the right.
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3.2 Change of basis

A key formula for the “field” operators † (r) is the formula for basis change.
Suppose that one has a new complete basis of one-particle states |i. Then, we
can change basis as follows:

|ri =
X


|i h| ri (3.7)

Given the definition of creation operators, the creation operator † (r) for a par-
ticle in state |ri is related to the creation operator † for a particle in state |i by
the analogous formula, namely

† (r) =
X


† h| ri  (3.8a)

This formula is quite useful.

3.3 Second quantized version of operators

3.3.1 One-body operators

If we know the matrix elements of an operator in the one-particle basis, the cal-

culation of any observable can be reduced to some algebra with the creation-

annihilation operators. In other words, not only states, but also operators cor-

responding to observables can be written using creation-annihilation operators.

The expression for these operators is independent of the number of particles and

formally analogous to the calculation of averages of operators in first quantized

notation.

To be more specific, consider the operator for the density of particles at position

|ri  It can be written as † (r) (r) as we prove now. Since  −  =

 + − −  the commutator ot this operator with † (r0) is,h
† (r) (r)  † (r0)

i
= † (r)

n
 (r)  † (r0)

o
−
n
† (r)  † (r0)

o
 (r)(3.9)

=  (r− r0)† (r) (3.10)

We can now use the following little “theorem” on commutator of ladder operators:

Theorem 1 If [] =  and |i is an eigenstate of  with eigenvalue  then
 |i is an eigenstate of  with eigenvalue + as follows from  |i− |i =
 ( |i)−  ( |i) =  ( |i) 

Since † (r) (r) |0i = 0 the above implies that † (r) (r)
³
† (r1) |0i

´
=

 (r− r1)
³
† (r1) |0i

´
 and generally a state † (r1)

† (r2)    |0i is an eigenstate
of † (r) (r) with eigenvalue  (r− r1) +  (r− r2) +    Clearly, the potential

energy of identical electrons in a potential  (r) can ve writtenZ
† (r) (r) (r) 3r (3.11)

30 SECOND QUANTIZATION



The same reasoning leads to the kinetic energy in the momentum basis, where it

is diagonal Z
† (k)

~2k2

2
 (k)

3k

(2)
3
 (3.12)

Returning to the position-space basis, we obtainZ
† (r)

µ
−~

2∇2

2

¶
 (r) 3r (3.13)

In other words, for any one-body operator, we can always obtain its second-

quantized form in the one-particle basis |i where it is diagonal:X


† h| |i  =
X


† h| |i  (3.14)

If we change to an arbitrary basis

|i =
X


|i h| i (3.15)

the operator takes the formX


† h| |i  =
X


† h| i h| |i h| i  =
X



†
 h| |i   (3.16)

Exemple 2 Let † (r) be the creation operator for the position state |ri with the
spin  =↑ ↓ . We know the matrix elements of all component of the spin operators
in the basis where  is diagonal. Thus, from the last formula, we see that the

three components of the spin operator areZ
† (r)

µ
~
2
σ

¶
 (r) 

3r (3.17)

where, as usual, the Pauli matrices are given by  =

µ
1 0

0 −1
¶
  =

µ
0 −
 0

¶
  =µ

0 1

1 0

¶


3.3.2 Two-body operators

Let us now consider a two-body operator such as the potential energy. It is

diagonal in position-space. The Coulomb interaction

 (r− r0) = 2

|r− r0| (3.18)

is an example. The second quantized Coulomb energy takes the formZ
 (r− r0) 1

2
( (r)  (r0)−  (r− r0)  (r)) 3r3r0 (3.19)

where the 12 comes from avoiding double-counting and  (r− r0)  (r) is necessary
not to count the interaction of an electron with itself. Including spin, the density

operator is

 (r) =
X


† (r) (r)  (3.20)
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Substituting in the expression for the Coulomb interaction and using anti-commutation

relations, we obtain

1

2

X
0

Z
 (r− r0)† (r)†0 (r0)0 (r0) (r) 3r3r0 (3.21)

It is an interesting and not very long exercise to prove that formula (which happens

to have the same form for bosons and fermions).

Let us change to some arbitrary basis. First notice that in terms of the potential

energy operator ̂
 (r− r0) = hr| hr0| ̂ |ri |r0i  (3.22)

Then, the change of basis

† (r) =
X



†
 h| ri  (3.23a)

leads to the following two-particle analog of the one-body operator Eq.(3.16) in

an arbitrary basis

1

2

X
0

X


h| h| ̂ |i |i ††00 (3.24)
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4. HARTREE-FOCK APPROXIMA-

TION

The Hartree-Fock approximation is the simplest approximation to the many-body

problem. It is a mean-field theory of the full Hamiltonian, that we will call “The

theory of everything”. We will begin by writing it explicitely then proceed with

two theorems that form the basis of this approximation.

4.1 The theory of everything

Gathering the results of the previous section, an electron gas interacting with a

static lattice takes the form

 =
X


Z
† (r)

µ
−~

2∇2

2
+ − (r)

¶
 (r) 

3r

+
1

2

X
0

Z
 (r− r0)† (r)†0 (r0)0 (r0) (r) 3r3r0 (4.1)

where − (r) is the electron-ion Coulomb potential. The dynamics of the ions
(phonons) can be added to this problem, but until the rest of these introductory

notes, we shall take the lattice as static. We need the to allow the lattice to move

to have the complete "theory of everything" we want to solve in this School. But

the above is certainly a non-trivial start.

4.2 Variational theorem

The Ritz variational principle states that any normalized wave function satisfies

h| |i ≥ h0| |0i (4.2)

where |0i is the ground state wave function.
Proof. That follows easily by expanding |i = P

  |i  where  |i =
 |i  and using 0 ≤  :

h| |i =
X


∗
­

¯̄
 |i =

X


||2

≥ 0
X


||2 = h0| |0i (4.3)

In the Hartree Fock approximation, we use the variational principle to look for

the best one-body Green function for . In other words, we use our formula
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for a change of basis (there is no sum on repeated spin index here)

† (r) =
X



†
 h | r i =

X



†

∗
 (r) (4.4)


†
 =

Z
3r† (r) hr|  i =

Z
3r† (r) (r) (4.5)

and write our ground state wave function as

| i = 
†
1↑

†
1↓

†
2↑

†
2↓    

†
2↑

†
2↓ |0i  (4.6)

Our variational parameters are the one-particle Green functions ∗ (r)  Note that
the most general wave function would be a linear combination of wave functions

of the type | i  each with different one-particle states occupied.

4.3 Wick’s theorem

To compute h | | i  we expand each of the creation-annihilation opera-
tors in the Hamiltonian Eq.(4.1) in the basis we are looking for, using the change of

basis formula Eq.(4.4). Consider first the quadratic term and focus on the second

quantized operators. We need to know

h | †↑↑ | i (4.7)

The key to compute such matrix elements is to simply use the anticommutation

relations for the creation-annihilation operators and the fact that annihilation

operators acting on the vacuum give zero. Let us do this slowly.

The anticommutation relations for the operators 
(†)
 are as follows:n

 
†
0

o
=

Z
3r

Z
3r0∗ (r)

n
 (r)  

†
0 (r

0)
o
0 (r

0) (4.8)

=

Z
3r∗ (r)0 (r) = 0 (4.9)

so

h0| ↑†↑ |0i = 1− h0| †↑↑ |0i = 1 (4.10)

Generalizing this reasoning, we see that h |  i = 1Now, h | †↑↑ | i
will vanish if either  or  are not in the list of occupied states in | i since †↑
also annihilates the vacuum in the bra. If  and  are both in the list of occupied

states, h | †↑↑ | i =  since ↑ will remove a particle in state  in | i
while 

†
↑ will remove a particle in state  in h |  If the list of particles is not the

same in the bra and in the ket, the annihilation operators can be anticommuted

directly to the vacuum and will destroy it. With this, we have that

h |
X


Z
† (r)

µ
−~

2∇2

2
+ − (r)

¶
 (r) 

3r | i (4.11)

=
X


2X
=1

Z
∗ (r)

µ
−~

2∇2

2
+ − (r)

¶
 (r) 

3r (4.12)

To compute the expectation value of the interacting part of  we need

h | ††00 | i  (4.13)
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Since | i is a direct product of wave functions for up and down spins, if the
spins are different, we obtain

h | ††00 | i =  (4.14)

If the spins are identical, something new happens. If the conditions  =  or

 =  are satisfied, the expectation value vanishes because of the anticommutation

relations (Pauli principle). Consider  different from  Since all we need is that

the list of states created be the same as the list of states destroyed there are two

possibilities

h | †† | i =  −  (4.15)

The last contribution is known as the exchange contribution. The difference in

sign comes from the anticommutation. All these results, including the cases  = 

or  =  for same spin, can be summarized by

h | ††00 | i =  − 0  (4.16)

The last result can be written as

h | ††00 | i = h | † | i h | †00 | i(4.17)
− h | †0 | i h | †0 | i (4.18)

A four point correlation function has been factored into a product of two-point

correlation functions. For states such as | i that are single-particle states,
creation operators are “contracted” in all possible ways with the destruction op-

erators. This elegant form is a special case of Wick’s theorem. It applies to

expectation values of any number of creation and annihilation operators. The

signs follow from anticommutation.

4.4 Minimization and Hartree-Fock equations

Using Wick’s theorem Eq.(4.16) and proceeding with the Coulomb interaction

between electrons as we did with the one-body part of the Hamiltonian in Eq.(4.12)

we obtain

h | | i =
X


2X
=1

Z
∗ (r)

µ
−~

2∇2

2
+ − (r)

¶
 (r) 

3r

+
X
0

2X
=1

2X
=1

1

2

Z
 (r− r0)

£
∗ (r) (r)

∗
0 (r

0)0 (r
0) (4.19)

− 0
∗
 (r) (r

0)∗0 (r
0)0 (r)

¤
3r3r0 (4.20)

To find our variational parameters, namely the functions  (r), we minimize

the above, subject to the constraint that the wave functions must be orthonor-

malized. This means that we take partial derivatives with respect to all variables

in the above expression. We satisfy the constraintsZ
∗ (r)0 (r) 

3r−0 = 0 (4.21)

using Lagrange multipliers. We have to think of ∗ (r) and  (r) as independents
variable defined at each different position r and for each index   To take the
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partial derivatives carefully, one should discretize space and take the limit but the

final result is pretty obvious. All we need to know is that what replaces the partial

derivative in the continuum version is the functional derivative

 (r)

0 (r
0)

=  (r− r0) 0 (4.22)

∗ (r)
0 (r

0)
= 0 (4.23)

The result of the minimization with respect of ∗ (r) is straightforward. One
obtains µ

−~
2∇2

2
+ − (r)

¶
 (r) +  (r) (r)−

Z
3r0 (r r0) (r

0)

=

2X
=1

 (r) (4.24)

 (r) =

Z
3r0 (r− r0)

X
0

2X
=1

¯̄
0 (r)

¯̄2
(4.25)

 (r r
0) =  (r− r0)

2X
=1

∗ (r
0) (r)  (4.26)

The matrix  is a real symmetric matrix of Lagrange multipliers. Diagonalizing

 and writing the eigenvalues , the above equation looks like a Schrödinger

equation. The Hartree contribution  (r) has the physical interpretation that

each electron interacts with the average density of the other electrons

 (r) =
X
0

2X
=1

¯̄
0 (r)

¯̄2
 (4.27)

The exchange contribution  (r r
0) has no classical analog. It comes from the

anticommutation of indistinguishible particles. The  can be interpreted as single-

particle excitation energies only if removing a particle does not modify too much

the effective potentials.
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5. MODEL HAMILTONIANS

Suppose we have one-body states, obtained either from Hartree-Fock or from

Density Functional Theory (DFT). The latter is a much better approach than

Hartree-Fock. Nevertheless, it does not diagonalize the Hamiltonian. If the prob-

lem has been solved for a translationally invariant lattice, the one-particle states

will be Bloch states indexed by crystal momentum k and band index  If we

expand the creation-annihilation operators in that basis using the general formu-

las for one-particle Eq.(3.16) and two-particle Eq.(3.24) parts of the Hamiltonian,

clearly it will not be diagonal. Suppose that a material has  and  electrons,

for which DFT does a good job. In addition, suppose that there are only a few

bands of  character near the Fermi surface. Assuming that the only part of the

Hamiltonian that is not diagonal in the DFT basis concerns the states in those 

band, it is possible to write a much simpler form of the Hamiltonian. We will see

that nevertheless, solving such “model” Hamiltonians is non-trivial, despite their

simple-looking form.

Model Hamiltonians can now explicitly be constructed using cold atoms in

optical traps. A laser interference pattern can be used to create an optical lattice

potential using the AC Stark effect. One can control tunneling between potential

minima as well as the interation of atoms between them.

5.1 The Hubbard model

Restricting ourselves to a single band and expanding in the Wannier basis associ-

ated with the Bloch states, the Hamiltonian takes the form

 =
X


X



†
 h| ̂ |i  + 1

2

X
0

X


h| h| ̂ |i |i ††00 (5.1)

where ̂ contains all the one-body parts of the Hamiltonin, namely kinetic energy

and lattice potential energy. The operator 
(†)
 annihilate (create) a particle in

a Wannier state centered at lattice site  and with spin  The one-body part

by itself is essentially the DFT band structure. In 1964, Hubbard, Kanamori

and Gutzwiller did the most dramatic of approximations, hoping to have a model

simple enough to solve. They assumed that h| h| ̂ |i |i would be much larger
than all other interaction matrix elements when all lattice sites are equal. Defining

 ≡ h| ̂ |i and  ≡ h| h| ̂ |i |i  and using  = 0 they were left with

 =
X


X



†
 +

1

2

X
0

X



†


†
00

=
X


X



†
 +

X



†
↑

†
↓↓↑ (5.2)

=
X


X



†
 +

X


↓↑ (5.3)

Most of the time, one considers hopping only to nearest neighbors. The model can

be solved exactly only in one dimension using the Bethe ansatz, and in infinite
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dimension. The latter solution is the basis for Dynamical Mean Field Theory

(DMFT) that will be discussed at this School. Despite that the Hubbard model

is the simplest model of interacting electrons, it is far from simple to solve.

Atoms in optical lattices can be used to artificially create a system described

by the Hubbard model with parameters that are tunable. The laser intensity of

the trapping potential and the magnetic field are the control parameters. The

derivation given in the case of solids is phenomenological and the parameters

entering the Hamiltonian are not known precisely. In the case of cold atoms, one

can find conditions where the Hubbard model description is very accurate. By

the way, interesting physics occurs only in the nano Kelvin range. Discussing how

such low temperatures are achieved would distract us to much.

Important physics is contained in the Hubbard model. For example, the in-

teraction piece is diagonal in the localized Wannier basis, while the kinetic energy

is diagonal in the momentum basis. Depending on filling and on the strength of

 compared with band parameters, the true eigenstates will be localized or ex-

tended. The localized solution is called a Mott insulator. The Hubbard model

can describe ferromagnetism, antiferromagnetism (commensurate and incommen-

surate) and it is also believed to describe high-temperature superconductivity,

depending on lattice and range of interaction parameters.

5.2 Heisenberg and t-J model

Suppose we are in the limit where  is much larger than the bandwidth. One

expects that in low energy eigenstates, single-particle Wannier states will be either

empty or occupied by a spin up or a spin down electron and that double occupation

will be small. If we could write an effective Hamiltonian valid at low energy, that

means that we would reduce the size of the Hilbert space from roughly 4 to 3

for an  site lattice. This is possible. The effective Hamiltonian that one obtains

in this case is the − model, which becomes the Heisenberg model at half-filling.
To obtain this model, one can use canonical transformations or equivalently

degenerate perturbation theory. Although both approches are equivalent, the one

that is most systematic is the canonical transformation approach. Nevertheless,

we will see a simplified version of the degenerate perturbation theory approach

since it is sufficient for our purpose and simpler to use.

We start from the point of view that the unperturbed part of the Hamiltonian

is the potential energy. If there is no hopping, the ground state has no double

occupancy and it is highly degenerate since the spins can take any orientation.

Hopping will split this degeneracy. Let us write the eigenvalue problem for the

Hubbard Hamiltonian in the block formµ
11 12

21 22

¶µ




¶
= 

µ




¶
(5.4)

where 11 contains only terms that stay within the singly occupied subspace, 12

and 21 contains hopping that links the singly occupied subspace with the other

ones and 22 contains terms that connect states where there is double occupancy.

Formally, this separation can be achieved using projection operators. To project

a state in the singly occupied subspace, one uses 11 =  where the projector

 is

 =

Y
=1

(1− ↑↓)  (5.5)
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Returning to the block form of the Hamiltonian, we can solve for  = ( −22)
−1

21

and write ³
11 +12 ( −22)

−1
21

´
 =  (5.6)

What save us here is that the eigenstates we are looking for are near  = 0 whereas

22 will act on states where there is one singly occupied state since the hopping

term in 12 can at most create one doubly occupied state from a state with no

double occupation. The leading term in 22 will thus simbply give a contribution

 which is large compared to  We are left with the eigenvalue problemµ
11 − 1221



¶
 =  (5.7)

The first part of the Hamiltonian 11 contains only hopping between states

where no site is doubly occupied. The potential energy in those states vanishes.

The quantity1221 can be computed as follows. The only term of the original

Hamiltonian that links singly and doubly occupied states is the hopping part. Let

us consider only nearest neighbor hopping with  = − Then

1221 = 2
X
hi

X
hi0

³

†
 + 

´³

†
00 + 

´
(5.8)

where each nearest-neighbor bond hi is counted only once in the sum. Since
we leave from a state with singly occupied sites and return to a state with singly

occupied sites, hi = hi survives as well as cases such as hi = hi if one of
the sites  is empty in the initial state. The latter contribution is called correlated

hopping. It describes second-neighbor hopping through a doubly occupied state.

In the − model, this term is often neglected on the grounds that it is proportional
to 2 whereas 11 is of order  That is not necessarily a good reason to neglect

this term.

Let us return to the contribution coming from hi = hi  Discarding terms
that destroy two particles on the same site, we are left with only

− 1221


= − 

2



X
hi0

³

†


†
00 + ↔ 

´
(5.9)

where  is the projection operator that makes sure that the intermediate state is

doubly occupied. We have to consider four spin configurations for the neighboring

sites  and  . The configurations | ↑i | ↑i and | ↓i | ↓i do not contribute
since the intermediate state is prohibited by the Pauli principle. The configuration

| ↑i | ↓i when acted upon by the first term in the last equation Eq.(5.9) has non-
zero matrix elements with two possible finite states, h ↑| h ↓| and h ↓| h ↑|  The
matrix element has the value−2 for the first case and 2 for the configuration
where the spins have been exchanged because of the fermionic nature of the states

The configuration | ↓i | ↑i has the corresponding possible final states. And

the  ↔  term in Eq.(5.9) just doubles the previous results, in other words

the magnitude of the non-zero matrix elements is 22 . Since only spins are

involved, all we need to do is to find spin operators that have exactly the same

matrix elements.

What we are looking for is

42

~2
X
hi

µ
S · S − ~

2

4


¶
= 

X
hi

µ
 


 +

1

2

¡
+ 

−
 + − 

+


¢− ~2
4


¶
(5.10)

where  ≡ 42~2 Indeed, if the neighboring spins are parallel, the quantity
+ 

−
 + − 

+
 has zero expectation value while the expectation of 


 


 , namely
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~24 is cancelled by the expectation of −~24. For antiparallel spins,   −
~24 has expectation value −~22 between configurations where the spins do
not flip while 1

2

¡
+ 

−
 + − 

+


¢
has vanishing matrix elements. In the case where

the spins flip between the initial and final state, only1
2

¡
+ 

−
 + − 

+


¢
has non-

zero expectation value and it is equal to ~22With the definition of  given, this
corresponds to the matrix elements we found above.

This is the form of the Heisenberg Hamiltonian. Including the correlated hop-

ping term, the −  Hamiltonian takes the following form

 = 

⎡⎣X
hi


†
 + 

X
hi

µ
S · S − ~

2

4


¶⎤⎦ (5.11)

+

⎡⎣−
4

X
 6=0

³

†
−−

†
++0 + 

†
+−

†
−−+0

´⎤⎦
where the last term is the three-site hopping term that is usually neglected.

It is remarkable, but expected, that at half-filling the effective Hamiltonian is

a spin-only Hamiltonian (The first term in the above equation does not contribute

when there is no hole because of the projection operators). From the point of

view of perturbation theory, the potential energy is the large term. We are in an

insulating phase and hopping has split the spin degeneracy.

Classically, the ground state on a hypercubic lattice would be an antiferromag-

net. This mechanism for antiferromagnetism is known as superexchange.

In closing, one should remember that to compute the expectation value of any

operator in the singly occupied space, one must first write it in block form, in other

words, one should not forget the contribution from the  component of the wave

function. For example, the kinetic energy hi of the Hubbard model calculated
in the low energy subspace will be equal to minus twice the potential energy h i.
That can be seen from

hi = (  )

µ




¶
= ( ) + ( ) = − 2


(  ) (5.12)

h i = (  )

µ




¶
= (   ) = +

1


(  ) (5.13)

since in the intermediate state,  gives the eigenvalue  in all intermediate states.

5.3 Anderson lattice model

In the Anderson lattice model, on purely phenomenological grounds one considers

localized states
³

†


´
with a Hubbard  , hybridized with a conduction band

³

†
k

´
of non-interacting electrons. This model is particularly useful for heavy fermions,

for example, where one can think of the localized states as being  electrons:

 =  + + (5.14)

 ≡
X


X



†
 +

X



³

†
↑↑

´³

†
↓↓

´
(5.15)

 ≡
X


X
k

k
†
kk (5.16)

 ≡
X


X



†
 +  (5.17)
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In the case where there is only one site with  electrons, one speaks of the Anderson

impurity model. When  is large, one can proceed as for the − Hamiltonian and
obtain an effective model where there is no double occupancy of the impurity and

where the spin of the conduction electrons interacts with the spin of the impurity.

The transformation is called the Schrieffer-Wolf transformation and the effective

Hamiltonian is the Kondo Hamiltonian.
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6. BROKEN SYMMETRY AND

CANONICALTRANSFORMATIONS

The occurence of broken symmetry can be obtained from mathematical arguments

only in very few situations, such as the Ising model in two dimensions. A simple

paramagnetic state and a state with broken symmetry are separated by a phase

transition, in other words by singularities in the free energy. Hence, the broken

symmetry state cannot be obtained perturbatively. One postulates a one-body

Hamiltonian where the symmetry is broken its stability verified using variational

arguments. In this and many other contexts, canonical transformations are key

tools to understand and solve the problem. We have seen examples above. Basis

changes obtained from unitary transformations preserve the (anti)commutation

relations. Such transformations are called canonical. We will illustrate these

concepts with the example of superconductivity.

6.1 The BCS Hamiltonian

The general idea of Cooper pairs is that 
†
p↑

†
−p↓ almost plays the role of a boson

†p. Commutation relations are not the same, but we want to use the general
idea that superconductivity will be described by a non-zero expectation value of

†p by analogy to superfluidity. The expectation value
D

†
p↑

†
−p↓

E
occurs in the

Ginzburg-Landau theory as a pair wave function. The mean-field state will be

described by a coherent state.

We first write the general Hamiltonian in momentum space and, in the spirit

of Weiss, the trial Hamiltonian for the mean-field takes the form

 −  = 0 −  +
1



X
pp0

 (p− p0)
D

†
p↑

†
−p↓

E
−p0↓p0↑

+
1



X
pp0

 (p− p0) †p↑†−p↓ h−p0↓p0↑i

= 0 −  +
X
p

³
∆∗p−p↓p↑ + 

†
p↑

†
−p↓∆p

´
(6.1)

where we defined

∆p =
1



X
p0

 (p− p0) h−p0↓p0↑i  (6.2)

The potential  (p− p0) is an effective attraction that comes from phonons in

standard BCS theory. We take this for granted. The states within an energy shell

of size ~ around the Fermi level are those that are subject to that attraction.The
kinetic part of the Hamiltonian is given by

0 −  =
X
p

(p − ) †pp (6.3)

≡
X
p

p
†
pp (6.4)
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In the so-called jellium model, p = ~2p22 but one can take a more general

dispersion relation. In matrix form, the combination of all these terms gives,

within a constant

 −  =
X
p

³

†
p↑ −p↓

´µ
p ∆p
∆∗p −−p

¶µ
p↑

†
−p↓

¶
 (6.5)

One is looking for a canonical transformation that diagonalize the Hamiltonian.

When this will be done, the 
(†)
−p↓ will be linear combinations of eigenoperators.

These linear combinations will involve ∆p To find the value of ∆p it will suffice

to substitute the eigenoperator expression for p in the definition of ∆p Eq.(6.2).

This will give a self-consistent expression for ∆p

Let us define the Nambu spinor

Ψp =

µ
p↑

†
−p↓

¶
(6.6)

whose anticommutator is n
ΨpΨ

†
p0

o
= pp0 (6.7)

where  and  identiby the components of the Nambu spinor. Any unitary trans-

formation of the Nambu spinors will satisfy the anticommutation relations, as one

can easily check. Since the Hamiltonian matrix is Hermitian, it can be diagonalized

by a unitary transformation.

Eigenvalues p are obtained from the characteristic equation¡
p − p

¢ ¡
p + p

¢− |∆p|2 = 0 (6.8)

where one used p = −p valid for a lattice with inversion symmetry. The solutions
are

p = ±p = ±
q
2p + |∆p|2 (6.9)

and the eigenvectors obeyµ ±p − p −∆p
−∆∗p ±p + p

¶µ
1p
2p

¶
= 0 (6.10)

whose solution is ¡±p − p
¢
1p = ∆p2p (6.11)

The constraint of normalization for a unitary transformation is

|1p|2 + |2p|2 = 1 (6.12)

The unitary transformation 

 =

µ
p −p
∗p ∗p

¶
(6.13)

† =

µ
∗p p
−∗p p

¶
(6.14)

where µ
p
∗p

¶
=

1√
2

⎛⎜⎝
³
1 +

p
p

´12
−1p³

1− p
p

´12
2p

⎞⎟⎠
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diagonalizes the Hamiltonianµ
p 0

0 −p

¶
= †

µ
p ∆p
∆∗p −p

¶


Using this result, we can write

 −  =
X
p

³

†
p↑ −p↓

´
†

µ
p ∆p
∆∗p −p

¶
†

µ
p↑

†
−p↓

¶
(6.15)

=
X
p

³

†
p↑ −p↓

´µ
p 0

0 −p

¶µ
p↑

†
−p↓

¶
(6.16)

=
X
p

p
†
pp +  (6.17)

where the new operators are related to the old by the Bogoliubov-Valentin (1958)

transformationµ
p↑

†
−p↓

¶
= †

µ
p↑

†
−p↓

¶
=

µ
∗p p
−∗p p

¶µ
p↑

†
−p↓

¶
 (6.18)

The ground state is the state that is annihilated by these new operators

p |i = 0

The new operators are linear combination of creation-annihilation operators since

the eigenstate is a linear combination of states having different numbers of parti-

cles. At zero temperature for example, one can check explicitely that the following

state is indeed annihilated by p

|i =
Y
k

µ
1 +

k

∗k

†
−k↓

†
k↑

¶
|0i 

The value of the gap∆p is obtained from the self-consistency equation Eq.(6.2).

It suffices to write the p↑ en as a function of the diagonal operators p Inverting
the Bogoliubov transformation Eq.(6.18) gives

µ
p↑

†
−p↓

¶
=

µ
p −p
∗p ∗p

¶µ
p↑

†
−p↓

¶
(6.19)

whose adjoint is

³

†
p↑ −p↓

´
=
³


†
p↑ −p↓

´µ
∗p p
−∗p p

¶
 (6.20)

We also note that

 (p) ≡
D

†
p↑p↑

E
=

1


0p + 1

 (6.21)

The Fermi-Dirac distribution arises from the fact the the Hamiltonian is diagonal

and quadratic when written as a function of fermionic operators 
(†)
p We can now
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compute the mean value of the pair operator.

h−p0↓p0↑i =
D³

p0
†
p0↑ + p0−p0↓

´³
p0p0↑ − p0

†
−p0↓

´E
(6.22)

= p0p0
D

†
p0↑p0↑ − −p0↓

†
−p0↓

E
(6.23)

= −p0p0 (1− 2 (p0)) (6.24)

= −1
2

Ã
1− 2p0

2p0

!12
−1p0−2p0 (1− 2 (p0)) (6.25)

= −1
2

|∆p0 |
p0

−1p0−2p0 (1− 2 (p0))  (6.26)

= −1
2

∆p0

p0
(1− 2 (p0)) (6.27)

Substituting in self-consistency equation, we Eq.(6.2) on obtain

∆p = − 1

2

X
p0

 (p− p0) ∆p0
p0

(1− 2 (p0))  (6.28)

where ∆p is in general complex. This is known as the BCS equation.

Remark 3 Even when the interaction depends on p− p0, the phase is necessarily
independent of p. Indeed, the gap equation can be rewritten in the form

[p∆p] = − 1

2

X
p0

p (p− p0)p0 [p0∆p0 ]  (6.29)

where

p =

µ
(1− 2 (p))

p

¶12
 (6.30)

The gap equation can then be reinterpreted as an eigenvalue equation. The eigen-

vectors are in brackets and the eigenvalue is unity. Since the matrix −p (p− p0)p0 (2 )
whose eigenvalues we are looking for is real and symmetric, the eigenvector is real

within a global phase, i.e. a complex number  that multiplies all components

of the eigenvector. This independence of p of the phase is known as “phase co-

herence”. It is key to superconductivity, If the eigenvalue of the gap equation is

degenerate, something new can happen. One obvious degeneracy is associated with

time-reversal symmetry. When this symmetry is broken, there is still an overall

p independent phase, but the order parameter is complex in a way that does not

correspond to a global phase. This in general gives, for example, a non-trivial

value of the orbital angular momentum.

Remark 4 Coherence: Since 1p + 2p =  for all values of p all the pairs are

added to the wave function with exactly the same phase. This can be seen from

the BCS wave function at zero temperatureY
k

µ
1 +

k

∗k

†
−k↓

†
k↑

¶
|0i 

It is the interactions that impose that phase coherence that is at the origin of the

phenomenon of superconductivity. Only the overall p independent phase of ∆ is

arbitrary. The global gauge symmetry is broken by fixing the phase since phase

and number obey an uncertainty relation. Fixing the phase thus corresponds to

making the total number of particles uncertain.
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7. ELEMENTARY QUANTUMME-

CHANICS AND PATH INTEGRALS

Chapter moved to the end of the introduction to Green’s functions.

7.1 Coherent-state path integrals

In the many-body context, the amplitudes that are interesting are of the form

Tr
h
 () 

†


i
 (7.1)

In the special case where only the ground state contibutes and that state is the

vacuum state (i.e. no particle present), the above reduces precisely to our pre-

vious definition since 
†
 |0i = |i and h0| − () = h0| −

− =

h0| − = h | −

To derive a path integral formulation for that type of amplitude, we note that

destruction operators in  always appear first on the right. Hence, if we replace

the position eigenstates in the one-particle case by eigenstates of the destruction

operator, we will be able to derive a path integral formulation in the many-body

case by following an analogous route. We will not do the full derivation here. The

final result is that both for bosons and fermions, the path integral also involves

exponentials of the action. For fermions, one must introduce Grassmann algebra

with non-commuting numbers to define coherent states. For bosons the situation

is simpler.

Let us see how boson coherent states are constructed. Let
£
 †

¤
= 1 then

define the coherent state |i by

|i = −||
22

† |0i  (7.2)

To show that this is an eigenstate of  note first that one can easily show by

induction that h

¡
†
¢i

= 
¡
†
¢−1

(7.3)

which formally looks like h

¡
†
¢i

=

¡
†
¢

†
(7.4)

and since the exponential is defined in terms of its power seriesh
 

†i
=


†

†
= 

†
(7.5)

Using our little theorem on commutators of ladder operators (3.2), we have that

since  |0i = 0 then 
³


† |0i
´
= 

³


† |0i
´
and |i is an eigenstate of 

To show that |i is normalized, consider

h |i = −||
2 h0| ∗† |0i = −||

2

||
2 h0| † |0i

= 1 (7.6)
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In the last step, one has simply expanded the exponential in a power series and

used the normalization of the vacuum.

Finally we the closure relation

 =
1



Z
∗ |i h| (7.7)

that can be proven by taking matrix elements with states with arbitrary number

of bosons |i = ¡†¢ |0i √! and doing the integral in polar coordinates.
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Part II

Correlation functions,

general properties
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Whenever the N-body problem can be solved exactly in  dimensions, the result

is a function of  coordinates and of time, Ψ(1 1    ; ). Variational

approaches, such as that used in the description of the fractional Quantum-Hall

effect, start from such a wave-function. While all the Physics is in the wave-

function, it is sometimes not easy to develop a physical intuition for the result.

One case where it is possible is when the wave function has a simple fariational

form with very few physically motivated parameters. We encounter this in the

fractional Quantum Hall effect for example, or in BCS theory. In the cases where

perturbation theory can be applied, Feynman diagrams help develop a physical

intuition.

Whether perturbation theory is applicable or not, we rarely need all the infor-

mation contained in the wave-function. A reduced description in terms of only a

few variables suffices if it allows us to explain what can be observed by experimen-

tal probes. Correlation functions offer us such a description. As for any physical

theory, we thus first discuss which quantities are observable, or in other words,

what it is that we want to compute.

In this Chapter, we will introduce correlation functions. First, we show that

what is measured by experimental probes can in general be expressed as a correla-

tion function, whether the experiment is a scattering experiment, such as neutron

diffraction, or a transport measurement in the linear response regime.

Whatever the appropriate microscopic description of the system, or whatever

the underlying broken symmetry, the result of any given type of experiment can

be expressed as a specific correlation function.

We will need to treat two different aspects of correlation functions.

First, general properties, which are independent from the specific manner in

which we compute correlation functions. For example

• Symmetries
• Positivity
• Fluctuation-dissipation theorems relating linear response and equilibrium
fluctuations

• Kramers-Kronig transformations, which follow from causality

• Kubo relations, such as that relating linear response to a specific correlation
function.

• Sum rules

• Goldstone theorem, which follows from Bogoliubov inequalities

Second, we will need to develop techniques to compute specific correlation func-

tions. Sometimes, phenomenological considerations suffice to find, with unknown

parameters, the functional dependence of correlations functions on say wave-vector

and frequency. These phenomenological considerations apply in particular in the

hydrodynamic regime, and whenever projection operator techniques are used.

Microscopic approaches will lead us to use another type of correlation functions,

namely Green’s functions. They will occupy a large fraction of this book. In fact,

Green’s function are just one type of correlation function. They will appear very

naturally. Furthermore, many of the general properties of correlation functions

which we discuss in the present chapter will transpose directly to these functions.

Much of this chapter is inspired from Foster.[1]

In this part of the book, we intend to

• Show that scattering experiments are a measure of equilibrium fluctuations
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• Linear response to an external perturbation can be expressed as an equilib-
rium correlation function

And this correlation function can be related to equilibrium fluctuations by the

fluctuation-dissipation theorem.

• Then we discuss general properties of correlation functions
• Give a specific example of sum-rule calculation.
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8. RELATION BETWEEN COR-

RELATION FUNCTIONS AND EX-

PERIMENTS

Physical theories are rooted in experiment, hence, the first question is about mea-

surement and how it is performed. If you want to know something about a macro-

scopic system, you probe it. The elegance of Condensed Matter Physics stems in

part from the plethora of probes that can be used. Neutron scattering, electron

scattering, nuclear magnetic resonance, resistivity, thermopower, thermal conduc-

tivity, Raman and Infrared scattering, muon resonance, the list is long. What

they all have in common is that they are weak probes. Quantum mechanics tells

us that all probes influence what they measure. Nevertheless, by looking at the

probe, we can tell something about the state of the system.

In this chapter, we want to first illustrate the fact that scattering experiments

with weak probes usually measure various equilibrium correlation functions of a

system. This is one of the reasons why we will be so concerned about correlation

functions. The other reason will be that they also come out from linear response.

What we mean by “weak probes” is simply that Fermi’s Golden rule and the Born

approximation are all that we need to describe the effect of the system on the

external probe, and vice-versa.

As an example, we will describe in detail the case of inelastic electron scattering

but it should be clear that similar considerations apply to a large number of cases:

inelastic light scattering, neutron scattering, etc... The first figure in the next

section illustrates what we have in mind. The plan is simply to use Fermi’s Golden

Rule to compute the differential cross section. We will obtain


Ω

=
h

2

(2)3~5



¯̄
 
−q
¯̄2i R

 
­
q()−q(0)

®
 (8.1)

Forgetting for the moment all the details, the key point is that the cross section is

related to the Fourier transform of the density-density correlation function. The

trick, due to Van Hove, to derive this formula from the Golden rule is to use the

Dirac representation of the delta function for energy conservation and the Heisen-

berg representation to express the final result as a correlation function. Since in

the Born approximation, incident and final states of the probe are plane waves,

everything about the probe is known. The only reference to it will be through ex-

plicitly known matrix elements and quantum numbers, such as momentum, energy,

spin etc...

To illustrate the main ideas in a simple but sketchy manner, before entering

the nitty gritty details, recall that the elements of the Hamiltonian involving the

probe are

 = 0
 + (8.2)

where 0
 describes the evolution of the probe and  the interaction of the probe

with the system. In general 0
 is simple. It describes the propagation of a free

electron for example. The interaction of the system and the probe will generally

take the form

 =  (8.3)
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where  is some coupling constant while  and  are respectively operators that

belong respectively to the system and to the probe. In the case where you shoot

an electron, these operators will be the charge density of each system.

We assume that the final state of the probe belong to a continuum.Then we

can use Fermi’s Golden rule that tells us that the transition rate from an initial

state  to a final state  is given by

→ =
2
~ ||

2
( − − ~) (8.4)

where  is the initial energy of the system and  the final one. The quantum

of energy ~ is the energy lost by the probe. In other words, ~ = −  in such

a way that there is energy conservation:  +  = +  The transition matrix

element  is given by

 = h |⊗ h | |i⊗ |i =  h |⊗ h | |i⊗ |i
=  h | |i h | |i (8.5)

where at the beginning and at the end of the experiment, probe and system do

not interact, which means that the state of the system is a direct product of the

system |i and probe |i states. Hence, we find

→ =
2

~

h
2 |h | |i|2

i
|h | |i|2 ( −  − ~) (8.6)

The transition probability has thus factored into a prefactor, in square brackets,

that is completely independent of the system that is probed. If we know about free

electrons, or free neutrons, or whatever the probe, we can compute the prefactor.

What we are interested in is what the transition probability tells us about the

system. Since the final state of the probe is measured but not that of the system,

the correct transition probability for the probe must be computed by summing

over all final states of the system. In other words, what we need isX


→ =

∙
2

~2
|h | |i|2

¸
2~

X


|h | |i|2 ( − − ~) (8.7)

The next elegant step in the derivation is due to van Hove. It takes advantage of

the fact that there is as sum over final states that can allow us to take advantage of

the completeness relation. Using the integral representation of the delta function,

 = † and the Heisenberg equations of motion with the system Hamiltonian,

we find

2~
X


|h | |i|2 ( − − ~) =
X


h| | i h | |i
Z

 −(−)~

=

Z
 

X


h| ~
−~ | i h | |i

=

Z
  h| ~

−~ |i (8.8)

=

Z
  h| () |i (8.9)

where in the last equation we have used the completeness relation. Clearly then,

the transition probability of the probe is proportionnal to the time Fourier trans-

form of h| () |i This object is what we call a correlation function.
In general, when we work at finite temperature, we do not know the initial

state. All we know is that the probability of each initial state is given by the
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Boltzmann factor for a system in thermal equilibrium with a reservoir. In this

case to compute the transition probability for the probe we will need the proper

canonical average over the initial states of the system, namely it is the following

expectation value that will enter the transition probability:P
 
− R   h| () |iP

 
− =

Z
 

Tr
£
− ()

¤
Tr [− ]

(8.10)

≡
Z

  h ()i  (8.11)

In the last line, we have defined what we mean by averages hi  Correlation func-
tions will essentially always be computed in thermal equilibrium, as above. There

is no need to average over the initial state of the probe which is assumed to be in

a pure state. We often define the density matrix by

 = −Tr
£
−

¤
 (8.12)

Then, we can write

h ()i = Tr [ ()] (8.13)

Clearly, the above is a canevas that can be used for a wide range of probes of

Condensed Matter. With linear response theory, it forms the foundation of mea-

surement theory for us. In the next section, we perform the detailed calculation

for electron scattering. You can skip that section on first reading.

Remark 5 In quantum information, (or atomic physics) when a two-level system

(a qubit) is in an excited state, this is not a stationnary state of the whole system.

It can decay to the ground state because of its coupling to the electromagnetic

field. In this case, the “probe” is the qubit and the “system” is the electromagnetic

environment. With a coupling of the form j ·A where j is the current and A the

vector potential, we see that the decay rate depends on the correlation function

between the vector potential at two different times, in other words, it depends on

vacuum fluctuations of the electromagnetic field. More precisely, it is the size of

the vacuum fluctuations at the transition frequency of the qubit that determines

the transition rate.

8.1 Details of the derivation for the specific case of

electron scattering

Consider the experiment illustrated on figure (8-1). V is the volume of the system,
and Ω a quantization volume.

The Hamiltonian of the system is  and the interaction between the probe

electron and the system is simply the potential energy (R) felt by the probe-

electron of charge  at position R due to the  other charged particles inside the

system, namely

(R) =

X
=1


(R− r) =

Z
3(r) (R− r) (8.14)

with  (R) the Coulomb potential and

(r) =

X
=1

(r− r) (8.15)
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Figure 8-1 Electron scattering experiment. Ω is the quantization volume for the

incoming and outgoing plane waves while  is the sample’s volume. Each charge

inside is labeled by  while the probe’s charge is  and the incident and outgoing

momenta are resprectively k and k 

the charge density operator for the system being probed. Fermi’s Golden rule tells

us that the transition rate from an initial state  to a final state  is given by

→ =
2
~ ||

2
( − − ~) (8.16)

where  is the initial energy of the system and  the final one. Correspondingly,

the initial and final energies and momentum of the probe electron are given by,

 =  − ~
~k = ~k − ~q (8.17)

We proceed to evaluate the matrix element as far as we can. It should be

easy to eliminate explicit reference to the probe electron since it has rather trivial

plane-wave initial and final states. It is natural to work in the basis where the

system’s initial and final eigenstates are energy eigenstates, respectively |i and
|i  while for the probe electron they are |ki and |k i. The latter eigenstates in
the box of volume Ω are plane waves:

hR |ki = 1

Ω12
k·R

Then, in the Born approximation, we have that

 = h |⊗ hk |
Z

3(r) (R− r) |ki⊗ |i (8.18)

where the plane-wave matrix element can easily be evaluatedZ
3 hk | i  (R− r) h| ki = Ω−1

Z
3(k−k )·R (R− r) =  

−q
Ω

q·r

(8.19)

so that substitution in the expression for the matrix element gives,

 =
 
−q
Ω

Z
3 h | (r) |i q·r =  

−q
Ω

h | −q |i  (8.20)

Substituting back in Fermi’s Golden rule (8.16), we obtain

→ =
2

~

¯̄̄̄
 
−q
Ω

¯̄̄̄2
h| q |i h | −q |i ( − − ~) (8.21)

Only the momentum and energy of the probe electron appear in this final expres-

sion, as we had set-up to do.
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Definition 3 Note in passing that we use the following definitions for Fourier

transforms in the continuum

q =
R
3 (r)e

−q·r
(8.22)

(r) =
R

3
(2)3

qe
q·r (8.23)

 =
R
 () (8.24)

() =
R


2

− (8.25)

To compute the cross section of that probe electron, one proceeds in the usual

manner described in textbooks. We will use a standard approach, but a more

satisfactory derivation of cross section based on incident wave packets can be

found in Ref.([4]). The total cross section, whose units are those of a surface, is

equal to

 =
Number of transitions per unit time

Number of incident particles per unit time per unit surface
(8.26)

What we want is the differential cross section, in other words we want the cross

section per solid angle Ω and per energy interval  . This is computed as

follows. Since we cannot resolve the final electron state to better than Ω
all the final states in this interval should be counted. In other words, we should

multiply → by the number of free electron states in this interval, namely

Ω3(2)
3 = ΩΩ~−2(2)3 (8.27)

We should also trace over all final states |i of the system since those are not

measured. These states are constrained by conservation laws as we can see from

the fact that energy conservation is insured explicitly by the delta function, while

momentum conservation should come out automatically from the matrix element.

The initial state of the system is also unknown. On the other hand, we know that

the system is in thermal equilibrium, so a canonical average over energy eigenstates

should give us the expected result. The differential cross section for scattering in

an energy interval  and solid angle Ω should then read,



Ω
=
Number of transitions per unit time in given solid angle and energy interval

Number of incident particules per unit time per unit surface


(8.28)

=

∙
Ω~−2(2)3

~(Ω)

¸ P
 
−P

 →P
 
−

where we have used that the number of incident particles per unit time per unit

surface is the velocity ~ divided by the volume.

When we substitute the explicit expression for the transition probability in this

last equation, it is possible to make the result look like an equilibrium correlation

function by using Van Hove’s trick to rewrite the matrix elements coming in the

transition probability. Using the Heisenberg representation for the time evolution

of the operators

O() = ~O−~ (8.29)

and taking  as the Hamiltonian for the system excluding probe electron, we

have,  |i =  |i so that

2~ h| q |i ( − − ~) =
Z

  h| q |i −(−)~ (8.30)
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=

Z
  h| ~q

−~ |i =
Z

  h| q() |i  (8.31)

Substituting this expression in the equation for the transition probability, (8.21)

X


→ =

¯̄̄̄
 
−q
Ω~

¯̄̄̄2 Z
  h| q()−q(0) |i (8.32)

the cross section is proportional toP
 
− R   h| q()−q(0) |iP

 
− =

P


R
  h| −q()−q(0) |iP

 
−

(8.33)

=

Z
 


£
−q()−q(0)

¤
 [− ]

=

Z
 

­
q()−q(0)

®
 (8.34)

More explicitly, we find Eq.(8.1) quoted at the beginning of the section. We

thus have succeeded in expressing the inelastic electron-scattering experiment as

a measurement of equilibrium density fluctuations!

Definition 4 In the last equation, we have also introduced what we mean by the

thermal average hi  Here we used the canonical ensemble, but we will mostly use
the grand-canonical one. The only change implied is − → −(−) Note
also that the quantity

 ≡ −

Tr[− ] (8.35)

is often called the density matrix. The fact that thermal averages are traces is an

important fact that we will often use later. In the grand canonical ensemble, we

would use instead

 ≡ −(−)

Tr[−(−)]
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9. TIME-DEPENDENT PERTUR-

BATION THEORY

To compute the response of a system to a weak external probe, such as an ap-

plied electic field or temperature gradient, as opposed to a scattering probe as

above, it seems natural to use perturbation theory. In fact, perturbation theory

will be useful in many other contexts in this book, since this is the method that

is behind adiabatic continuity. In this chapter we thus first pause to recall the

various representations, or pictures, of quantum mechanics, introducing the inter-

action representation as the framework where perturbation theory is most easily

formulated. Then we go on to derive linear response theory in the next chapter.

9.1 Schrödinger and Heisenberg pictures.

Since the Hamiltonian is the infinitesimal generator of time translations, Schrödinger’s

equation for a time-dependent Hamiltonian takes the same form as usual,

~



= H()  (9.1)

Using the fact thatH() is Hermitian, one can easily prove that  h |i  = 0,
in other words that probability is conserved. Hence, the solution of this equation

will be given by

() = ( 0)(0) (9.2)

where ( 0) is a unitary operator, not simply equal to an exponential as we will

discuss later, that satisfies

(0 0) = 1 (9.3)

while by time-reversal symmetry

(0 )( 0) = 1 (9.4a)

Conservation of probability gives

( 0)
†( 0) = 1 (9.5)

so that combining the last result with the definition of the inverse, we have,

( 0)
−1 = ( 0)

† (9.6)

Furthermore, when we can use time-reversal invariance, Eq.(9.4a), we also have

( 0)
−1 = ( 0)

† = (0 ) (9.7)

By definition, for all values of , the expectation value of an operator is the

same in either the Schrödinger, or the Heisenberg picture.

h ()|O | ()i = h | O () |i  (9.8)
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In the Heisenberg picture the operators are time-dependent while in the Schrödinger

picture, only the wave functions are time dependent. Let us choose  = 0 to be

the time where both representations coincide. The choice of this time is arbitrary,

but taking  = 0 simplifies greatly the notation. We have then that

O( = 0) = O( = 0) ≡ O (9.9)

 ( = 0) =  ( = 0) ≡  (9.10)

Using the expression for the time-dependent wave function, and the equality of

matrix elements Eq.(9.8), we obtain

O() = †( 0)O( 0) (9.11)

One recovers all the usual results for time-independent Hamiltonians by noting

that in this case, the solution of Schrödinger’s equation is,

( 0) = −H(−0)~  (9.12)

Remark 6 When there is time-reversal invariance, then it is useful to replace the

adjoint by the time-reversed operator, so that the connection between Heisenberg

and Schrödinger picture Eq.(9.11) becomes

O() = (0 )O( 0) (9.13)

Because we do not want to assume for the time being that there is time-reversal

invariance, we shall stick here with the usual expression Eq.(9.11) but in much

of the later chapters, the above representation will be used. Aharonov and others

have been proponents of this time symmetric formulation of quantum mechanics

(Physics Today, Novembre 2010).

9.2 Interaction picture and perturbation theory

Perturbation theory is best formulated in the “interaction representation”. In this

picture, one can think of both operators and wave functions as evolving, as we

will see. We take

H () = 0 + H() (9.14)

where 0 is time-independent as above, but the proof can be generalized to time-

dependent 0 simply by replacing 0~ everywhere below by the appropriate

evolution operator.

The definition of the evolution operator in the interaction representation ( 0)

is given by

( 0) ≡ −0~( 0) (9.15)

and, as follows from ( 0)(0 ) = 

(0 ) ≡ (0 )
0~  (9.16)

so that for example

( 0) ≡ −0~( 0)
00~ (9.17)

We have used the fact that ( 0) obeys the same general properties of unitarity

as an ordinary evolution operator, as can easily be checked. Again the interaction
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representation will coincide with the other two at  = 0. The justification for

the definition of  above is that when the external perturbation H() is small,
( 0) is close to unity. If we write again the equality of matrix elements in the

general case, we obtain

h ()| O | ()i = h |†( 0)O( 0) |i (9.18)

= h |† ( 0)0~O
−0~( 0) |i (9.19)

= h |† ( 0)O ()( 0) |i (9.20)

This last result is important. It can be interpreted as saying that the operators

in the interaction representation evolve with

O () = 0~O
−0~ (9.21)

while the wave functions obey

| ()i = ( 0) |i (9.22)

In other words, in the interaction picture both the operators and the wave function

evolve.

We still have to find the equation of motion for ( 0). The result will

justify why we introduced the interaction representation. Start from Schrödinger’s

equation,

~
( 0)


= H()( 0) (9.23)

which gives the equation of motion for ( 0), namely

0
−0~( 0) + −0~ ~




( 0) = H()−0~( 0) (9.24)

~



( 0) = 0~H()−0~( 0) (9.25)

so that using the definition of time evolution of an arbitrary operator in the inter-

action representation as above (9.21), the equation for the time evolution operator

( 0) in the interaction representation may be written,

~



( 0) = H()( 0) (9.26)

with the initial condition

(0 0) = 1 (9.27)

As expected, Eq.(9.26) tells us that, if there is no perturbation,  is equal to

unity for all times and only the operators and not the wave function evolve. The

interaction representation then reduces to the Heisenberg representation. Multi-

plying the equation of motion from the right by (0 0) we have for an arbitrary

initial time

~ 

( 0) = H()( 0) (9.28)

We will come back later to a formal solution of this equation. To linear order

in the external perturbation, it is an easy equation to solve by iteration using

the initial condition as the initial guess. Indeed, integrating on both sides of the

equation of motion (9.28) and using the initial condition, (0 0) = 1 we have

( 0) = 1− 
~

R 
0
0 H(

0)(0 0) (9.29)
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which, iterated to first order, gives,

( 0) = 1− 

~

Z 

0

0 H(
0) +O(H2

) (9.30)

and correspondingly


†
 ( 0) = 1 +



~

Z 

0

0 H(
0) +O(H2

) (9.31)
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10. LINEAR-RESPONSE THEORY

We are interested in the response of a system to a weak external perturbation.

The electrical conductivity is the response to a weak applied field, the thermal

conductivity the response to a weak thermal gradient etc... The result will be

again an equilibrium correlation function. In fact, we can already guess that if we

evolve some operator  in the interaction representation with a  on the right

and a 
†
 on the left to first order in H(

0) as in the last two equations of the
previous section, we will simply end up with the thermal average of a commutator.

We will be able to relate the latter correlation function to equilibrium correlation

functions of the type just calculated at the end of the last section by relying on

the so-called “fluctuation-dissipation theorem”. The plan to compute the effect

of an external perturbation is to add it to the Hamiltonian and then to treat it

as a perturbation, taking the full interacting Hamiltonian of the system  as the

unperturbed Hamiltonian. Let us move to the details, that are unfortunately a

bit messy, but really straightforward.

Let

H () =  + H() (10.1)

where  is the Hamiltonian of the system under study (that we called  in the

example of system interacting wih probe above) and H() is the perturbation
given by the time-dependent Hamiltonian

H()= − R 3(r)(r) (10.2)

In this expression,  is some observable of the system (excluding external per-

turbation) in the Schrödinger representation, while (r) is the external field.

Examples of such couplings to external fields include the coupling to a magnetic

field h through the magnetization M, ( (r) =  (r) ; (r) = (r )) or

the coupling to an electromagnetic vector potential A through a current j,

( (r) = (r); (r) = (r)) or that of a scalar potential  through

the density  ( (r) =  (r) ; (r) = (r )). In this approach, it is clear that

the external perturbation is represented in the semi-classical approximation, in

other words it is not quantized, by contrast again with the scattering of probe

with system discussed above.

In the case of interest to us the external perturbation in the interaction repre-

sentation is of the form,

H()= −
R
3(r )(r) (10.3)

where for short we wrote (r ) to represent a system’s observable evolving in

the system’s Heisenberg representation,

(r ) =
~(r)

−~  (10.4)

Suppose we want the expectation value of the observable  in the presence

of the external perturbation turned on at time 0. Then, starting from a thermal

equilibrium state b = −Tr
£
−

¤
at time 0, it suffices to evolve the operator

 (r) defined in the Schrödinger picture with the full evolution operator, including
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the external perturbation 1

h(r )i =
­
†( 0)(r)( 0)

®
 (10.5)

In this expression, the subscript  on the left reminds us that the time depen-

dence includes that from the external perturbation. Using the interaction repre-

sentation Eq.(9.17), with  now playing the role of 0 in the previous section,

the last equation becomes

h(r )i =
D
−0~

†
 ( 0)

~(r)−~( 0)
0~

E
(10.6)

h(r )i =
D

†
 ( 0)(r )( 0)

E
 (10.7)

In this last expression, (r ) on the right-hand side is now in the system’s Heisen-

berg representation without the external perturbation. In the previous section, this

Hamiltonian was called 0 To cancel the extra −0~ and 0~ appearing

in the equation for the evolution operator in Eq.(9.17), we used the facts that

the trace has the cyclic property and that the density matrix Eq. 8.12, namelyb = −Tr
£
−

¤
commutes with 0~ . This expression for the density

matrix is justified by the fact that initially the external probe is absent.

Using the explicit expression Eq.(10.3) for the external perturbation in the

equation for the evolution operator in the interaction representation (9.30), we

have that the term linear in applied field

 h(r )i = h(r )i− h(r )i (10.8)

is then given by,

 h(r )i = 

~

Z 

0

0
Z

30 h[(r ) (r
0 0)]i (r00) (10.9)

It is customary to take 0 = −∞ assuming that the perturbation is turned-on

adiabatically slowly. One then defines a “retarded” response function, or suscep-

tibility , by

 h(r )i = R∞−∞ 0
R
30 (r ; r

0 0)(r00) (10.10)

with,

(r ; r
0 0) = 

~ h[(r ) (r
0 0)]i (− 0) (10.11)

This response function is called “retarded” because the response always comes

after the perturbation, as expected in a causal system. The function ( − 0)
ensures this causality. One can also define anti-causal response functions. We come

back to this later. We notice that the linear response is given by an equilibrium

correlation function where everything is determined by the Hamiltonian without

the external probe.

This completes our derivation of the different types of correlation functions

measured by the two great types of weak probes: scattering probes and semiclas-

sical probes. We move on to discuss properties of these correlation functions and

relations between them.

Remark 7 Translationally invariant case: Since we compute equilibrium aver-

ages, the susceptibility (r ; r
0 0) can depend only on the time difference. In

1We let the density matrix take its initial equilibrium value. This is physically appealing. But

we could have as well started from a representation where it is the density matrix that evolves

in time and the operators that are constant.
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the translationally invariant case, the susceptibility is also a function of only r−r0
so that Fourier transforming the expression for the linear response (10.10), we

obtain from the convolution theorem in this case,

 h(q )i = (q )(q ) (10.12)

Remark 8 Frequency of the response: The response is at the same frequency as

the external field, a feature which does not survive in non-linear response.

Remark 9 Onsager reciprocity relations: Given the expression for the response

function in terms of a commutator of Hermitian operators, it is clear that the

response of the operator  to an external perturbation that couples to  is sim-

ply related to the response of  to a perturbation that couples to  in other

words where the operators have reversed roles. These are “Onsager’s reciprocity

relations”. The classic example is the relation between the Seebeck and Peltier co-

efficients. In the first case a thermal gradient causes a voltage difference whereas

in the other case a voltage difference causes a thermal gradient.

Remark 10 Validity of linear response and heating: Finally, we can ask whether

it is really justified to linearize the response. Not always since the external pertur-

bation can be large. But certain arguments suggest that it is basically never correct

in practice to linearize the response. Indeed, assume we apply an external electric

field . As long as the energy gained by the action of the field is smaller than

 , the linearization should be correct. In other words, linear response theory

should be valid for a time

 



 (10.13)

This is unfortunately a ridiculously small time. Taking  ≈
p
 the condi-

tion becomes  
√
 with  = 1,

√
 ≈

√
10−3010−2310210−19 ≈

10−6. Indeed, one finds that unless there is a temperature gradient, or an explicit
interaction with a system in equilibrium (such as phonons), the second order term

in perturbation theory is secular, i.e. it grows linearly with time. This is nothing

more than the phenomenon of Joule heating.[2] We are then forced to conclude

that linear response theory applies, only as long as the system is maintained in

equilibrium by some means: for example by explicitly including interactions with

phonons which are by force taken to be in thermal equilibrium, or by allowing for a

thermal gradient in the system that carries heat to the boundaries. In a Boltzmann

picture, one can see explicitly that if the second-order term in  is kept small by

collisions with a system in thermal equilibrium, then the linear term is basically

equal to what we would have obtained by never going to second-order in the first

place.[2]

Remark 11 Reversibility and linear response: Other arguments against linear

response theory center on the fact that a correlation function where operators all

evolve reversibly cannot describe irreversible processes. [3] We will see explicitly

later that it is possible to compute irreversible absorption with this approach. We

will also see how irreversibility comes in the infinite-volume limit.
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10.1 Exercices

10.1.1 Autre dérivation de la réponse linéaire.

Redérivez la théorie de la réponse linéaire mais cette fois-ci en laissant l’Hamiltonien

exterieur n’influencer que la matrice densité plutôt que l’operateur dont on veut

calculer la réponse.
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11. GENERAL PROPERTIES OF

CORRELATION FUNCTIONS

There are unfortunately very few things that one can know exactly about a piece

of condensed matter. Turning this around, it is in fact remarkable that we know

at least a few. So it is useful to become familiar with such exact results. We begin

with analytic properties that do not depend on the microscopic model considered.

This has at least two advantages: a) to check whether approximation schemes

satisfy these exact relations b) to formulate phenomenological relations which are

consistent. We will see that approximate calculations usually cannot satisfy all

known exact relations for correlation functions, but it will be obvious that violat-

ing certain relations is more harmful than violating others. Many of the general

properties which we will discuss in the present context have trivial generalizations

for Green’s function. Working on these general properties now will make them

look more natural later when we introduce the curious Green’s function beast!

11.1 Notations and definition of 00

To start with, recall the definition

(r ; r
0 0) =



~
h[(r ) (r0 0)]i (− 0) (11.1)

We define one more correlation function which will, in most cases of physical

interest, play the role of the quantity that describes absorption. Welcome 00

00(r ; r
0 0) = 1

2} h[(r ) (r0 0)]i  (11.2)

The factor of two in the denominator looks strange, but it will allow 00 to generally
be the imaginary part of a response function without extra factors of 2. With this

definition, we have

(r ; r
0 0) = 200(r ; r

0 0)(− 0) (11.3)

The quantity 00 has symmetry properties, discussed below, that suffice to find
those of the retarded response. It also contains all the physics, except causality

that is represented by the  function.

To shorten the notation, we will also use the short hand

 (− 0) = 
~ h[() (

0)]i (− 0) (11.4)

where we include in the indices  and  the positions as well as any other label

of the operator such as vector or spin component. In this notation, we have

not assumed translational invariance. We did however assume time-translation

invariance. Since we are working with equilibrium averages above, this is always

true.
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Exercise 11.1.1 Check time-translational invariance explicitly by using Heisen-

berg’s representation, the cyclic property of the trace and the fact that the den-

sity matrix (−1− in the canonical ensemble, or Ξ−1−(−) in the grand-
canonical) commutes with the time-evolution operator −~ .

Corresponding to the short-hand notation, we have

00 (− 0) ≡ 1
2~ h[() (

0)]i  (11.5)

 (− 0) = 200 (− 0)(− 0) (11.6)

11.2 Symmetry properties of  and symmetry of

the response functions

The quantity 00 (−0) contains all the non-trivial information on the response.
Indeed, the causal response is simply obtained by multiplying by a trivial (− 0)
function. Certain symmetries of this response function depend on the particular

symmetry of the Hamiltonian, others are quite general. We begin with properties

that depend on the symmetry of  [1]

Let  be a symmetry of the Hamiltonian. By this we mean that the operator

 representing the symmetry commutes with the Hamiltonian

[] = 0 (11.7)

To be more precise, in the context of statistical mechanics we say that  is a

symmetry of the system when it commutes with the density matrix

[ ] = 0 (11.8)

In other words, −1 =  thus the spectrum of the density matrix is unaffected

by the symmetry operation. The operator  is in general unitary or antiunitary

as we will see below.

To extract non-trivial consequences of the existence of a symmetry, one first

takes advantage of the fact that the trace can be computed in any complete basis

set. This means that the thermal average of any operator O is equal to its thermal
average in a basis where the symmetry operation  has been applied to every

basis function. Since the symmetry operation commutes with the density matrix

by assumption, one can then let the symmetry operations act on the operators

instead of on the basis functions. In other words, we have

­
−1O® = hOi (11.9)

It is because  and O in general do not commute that the above equation leads

to non-trivial consequences.

Let us look in turn at the consequences of translational invariance and of

invariance under a parity transformation r→ −r
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11.2.1 Translational invariance

When there is translational invariance, it means that if all operators are translated

by R the thermal averages are unchanged. In other words,

00(r ; r
0 0) = 00(r+R ; r

0 +R 0) (11.10)

so that 00 is a function of r− r0 only. Since we already know that 00 is a

function only of − 0, in such cases we write

00(r ; r
0 0) = 00(r− r0; − 0) (11.11)

In the general case, to go to Fourier space one needs two wave vectors, corre-

sponding respectively to r and r0 but in the translationally invariant case, only
one wave vector suffices. (You can prove this by changing integration variables in

the Fourier transform to the center of mass and difference variables).

11.2.2 Parity

Under a parity transformation, operators transform as follows

−1O (r) = O (−r) (11.12)

where  = ±1 This number is known as the “signature” under parity transfor-
mation. That  = ±1 is the only possibility for simple operators like density
and momentum follows from the fact that applying the parity operation twice is

the same as doing nothing. In other words,  2 = 1 To be more specific,  = 1

for density since performing the symmetry operation r→ −r for every particle
coordinate appearing in the density operator

(r) =

X
=1

(r− r) (11.13)

we find

−1(r)=
X
=1

(r+ r) =

X
=1

(−r− r) = (−r) (11.14)

For the momentum operator,  = −1, as we can show by the following manipu-
lations

p(r) =

X
=1

}

∇r(r− r) (11.15)

−1p(r) =
X
=1

−}

∇r(r+ r) = −

X
=1

}

∇r(−r− r) = −p(−r) (11.16)

In general then, this implies that

00(r ; r
0 0) = 




00
(−r ;−r0 0) (11.17)

When we also have translational invariance, the last result means that 00(r− r0; −
0) is even or odd in r− r0 depending on whether the operators have the same or
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opposite signatures under parity. Correspondingly, the Fourier transform in the

translationally invariant case is odd or even, as can easily be proven by a change

of integration variables in the Fourier transform

00(q; − 0) = 



00
(−q; − 0) (11.18)

Remark 12 To clarify the meaning of the operators above, recall that for example

to obtain the charge density of a two-particle wave function, you need to compute

h|  (r) |i = 

Z
3r1

Z
r2

∗ (r1 r2)  (r) (r1 r2)

= 

Z
3r2

∗ (r r2) (r r2) + 

Z
3r1

∗ (r1 r) (r1 r)(11.19)

which gives the contributions to the charge density at point r from all the particles.

11.2.3 Time-reversal symmetry in the absence of spin

What happens to operators under time reversal we can easily guess by knowing

the classical limit. To take simple cases, position does not change but velocity and

momentum change sign. To achieve the latter result with the momentum density

operator

p(r) =

X
=1

}

∇r(r− r) (11.20)

it appears that complex conjugation suffices. Does this mean that for the wave

function, the operation of time reversal is simply complex conjugation? The an-

swer is yes, except that in the most general case, there can be an additional unitary

operation. We will encounter the latter in the case of spin in the following subsec-

tion. What we cannot guess from the classical limit is what happens to the wave

function under time reversal. But inspired by the case of momentum, it is natural

to suggest that in the simplest case, time reversal corresponds to complex conju-

gation. Inverting time again would mean taking complex the conjugate again and

hence returning to the original state. That is reassuring. If we accept that time

reversing an operator is taking its complex conjugate, then ∗should correspond
to time inversion of 

We can give another plausibility argument. Consider the solution of the

Schrödinger equation for a time-independent Hamiltonian:

 () = −~ (0)  (11.21)

Suppose that  involves the square of momentum and some space dependent

potential so that it is clearly invariant under time reversal. Then, evolving some

state backwards from an initial state e (0) means thate (−) = ~ e (0)  (11.22)

But by taking the complex conjugate of the Schrödinger equation and noting that

the Hamiltonian we have in mind has the property  = ∗ we find that

∗ () = ~ e∗ (0)  (11.23)

It thus looks as if the complex conjugate just evolves backward in time.
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We can see the full time-inversion invariance in an alternate manner by doing

the quantum mechanical analog of the following classical calculation for equations

of motion that are time-reversal invariant. Evolve a system for a time 0 stop

and invert all velocities and evolve again for a time 0 If we change the sign

of all velocities again we should have recovered the initial state. The quantum

mechanical analog is as follows. a) Start from  (0) b) Evolve it until time 0We

then have the state  (0) = −0~ (0) c) Take time inversion on that state.

This is the equivalent in classical mechanics of inverting all velocities. Quantum

mechanically, the new state is ∗ (0) = 
∗0~∗ (0)  d) Evolve that state for

a time  again using the usual time evolution operator for the usual Shcrödinger

equation, not its complex conjugate i.e. ∗ (0 + ) = −~
¡


∗0~∗ (0)
¢
. If

we follow our classical analogy, when  = 0 we should have returned to our initial

state if  is time-reversal invariant, except that the velocities have changed sign.

In quantum mechanics, time reversal invariant means  = ∗ When this is the
case, what we find for the quantum mechanical state is ∗ (0 + 0) = ∗ (0) The
equivalent of changing the velocities again in the classical case is that we take

complex conjugation. That returns us indeed to the original state  (0). That

is all there is in the simplest scalar case. Time inversion means taking complex

conjugate.

A system in equilibrium obeys time-inversion symmetry, unless an external

magnetic field is applied. This means that equilibrium averages evaluated with

time-reversed states are equal to equilibrium averages evaluated with the original

bases. In fact time-inversion symmetry is a very subtle subject. A very complete

discussion may be found in Gottfried [4] and Sakurai [8]. We present an oversim-

plified discussion. Let us call  the operator that time-reverses a state. This is

the operation of complex conjugation that we will call  The first thing to notice

it that it is unlike any other operator in quantum mechanics. In particular, the

Dirac notation must be used with extreme care. Indeed, for standard operators,

say  we have the associative axiom

h| |i = h| ( |i) = (h|) |i (11.24)

This is clearly incorrect if  is the complex conjugation operator. Hence, we must

absolutely specify if it acts on the right or on the left. Hence, we will write −→
when we want to take the complex conjugate of a ket, and ←− to take the complex
conjugate of a bra.

• Remark 13 Antiunitary operators: Time reversal is an antiunitary oper-
ation. The key property that differentiates an anti-unitary operator from a

unitary one is its action on a linear combination

 (1 |1i+ 2 |2i) = ∗1 |1i+ ∗2 |2i (11.25)

In general such an operator is called antilinear. Antiunitarity comes in when

we restrict ourselves to antilinear operators that preserve the norm. The time

reversal operator is such an operator. Under time reversal, an arbitrary ma-

trix element preserves its norm, but not its phase. This is easy to see from

the fact that for an arbitrary matrix element h1|←−−→ |2i = h2 |1i 6=
h1 |2i the phase changes sign under complex conjugation while the square
modulus h2 |1i h1 |2i is invariant. Gottfried[4] shows that only discrete
transformations (not continuous ones) can be described by anti-unitary op-

erators. This reference also discusses the theorem by Wigner that states

that if we declare that two descriptions of quantum mechanics are equiva-

lent if |h2 |1i| =
¯̄­
02
¯̄
01
®¯̄
(equality of “rays”) then both unitary and

anti-unitary transformations are allowed.
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Remark 14 The adjoint is not the inverse. Note that 
†
  = ←−−→, so this

last quantity is not the identity because the rightmost complex conjugation

operator acts to the right, and the leftmost one to the left. Again, it is not

convenient to talk about time-reversal in the usual Dirac notation.

Returning to the action of the time reversal operation on a Schrödinger op-

erator, we see that the expectation value of an arbitrary operator between time

reversed states is

h|←−O−→ |i =
³
h|←−

´³
−→O

∗ |i
´
= (h| O∗ |i)∗ = h| O†∗ |i  (11.26)

In the above expression, we used one of the properties of the hermitian product,

namely h |i∗ = h |i  as well as the definition of the adjoint of an operator A :
h| Ai = ­A†¯̄ i which implies, that h| A |i∗ = h| A† |i  Applying this ex-
pression Eq.(11.26) for diagonal expectation values, and recalling that the density

matrix is real, we find for equilibrium averages,D
←−O−→

E
=
­O†∗® = 

­O†®  (11.27)

The last equality defines the signature of the time-reversal operation for operators.

One easily finds that  = +1 for position while  = −1 for velocity or momentum,
etc... We can use this last result to find the effect of the time-reversal invariance

on general correlation functions. The action of time reversal Eq.(11.27) gives,

when  and  are self-adjoint operators, and in addition the Hamiltonian is real

(−→ = −→ ) D
←−()−→

E
=

D
∗−}∗}

E
= 


 h(−)i (11.28)

In addition to the signature, the order of operators is changed as well as the sign

of time. For 00 (− 0) this immediately leads to

00 (− 0) = 


00


(−0 − (−)) (11.29)

and for the corresponding Fourier transform in frequency,

00 () = 


00


()  (11.30)

• Remark 15 In the case of an equilibrium average where both the density

matrix and the Hamiltonian commute with the time-reversal operation, we

have, as in Eq.(11.9), ­
−1 O

®
= hOi  (11.31)

Hence as expected, Eqs.(11.27) and (11.31) together imply that Hermitian

operators that have an odd signature with respect to time reversal symmetry

have a vanishing expectation value in equilibrium.

11.2.4 Time-reversal symmetry in the presence of spin

Spin should transform under time reversal like angular momentum r× p in other
words it should change sign since r does not while p does. Complex conjugation
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has this property for r× p but not for spin represented by Pauli matrices. We
should really wait for the section where we treat fermions to discuss this problem

but we can start to address it here. To come out from the problem that complex

conjugation does not suffice anymore, it suffices to notice that in general the

time reversal operator has to be represented by a unitary operator times complex

conjugation. The resulting operator is still anti-unitary, as can easily be proven.

Let us thus write

 = −→ (11.32)

where −→ is complex conjugation again and  is a unitary operator † = 1 in

spin space that we need to find. Note that the action on a bra is given by

†←− (11.33)

Let us first repeat the steps of calculating expectation values in time-reversed

states, as in Eq.(11.26), but for the more general case

h|†←−O−→ |i =
³
h|†←−

´³
−→O

∗ |i
´
=
¡h|†O∗ |i¢∗ = h|†O†∗ |i

(11.34)

Computing the equilibrium trace with †O†∗ is thus equivalent to computing

the equilibrium trace in time-reversed states but with O. If we take for O the spin
σ, the net effect of the time-reversal operation should be to change the direction

of the spin, in other words, we want

†σ†∗ = −σ (11.35)

The expression for  will depend on the basis states for spin. Using the Pauli

matrix basis

 ≡
∙
0 1

1 0

¸
;  ≡

∙
0 −
 0

¸
;  ≡

∙
1 0

0 −1
¸

(11.36)

we have σ† = σ and ∗ =  
∗
 = − ∗ =  so that Eq.(11.35) for time

reversal gives us the following set of equations for the unitary operator 

† = − (11.37)

† =  (11.38)

† = − (11.39)

Given the fundamental properties of Pauli matrices

 +  = 0 for  6= 

2 = 1 (11.40)

 =  (11.41)

where    are cyclic permutations of    the solution to the set of equations

for  is

 =  (11.42)

where  is an arbitrary real phase. This is like a  rotation along the  axis so

that already we can expect that up will be transformed into down as we were

hoping intuitively. In summary, the time reversal operator in the presence of spin

multiplies the spin part by  and takes the complex conjugate.

 = −→ (11.43)
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Note the action of this operator on real spinors quantized along the  direction

 |↑i = −− |↓i (11.44)

 |↓i = − |↑i (11.45)

The time reversal operator thus transforms up into down and vice versa but with

a phase. Even if we can choose  =  to make the phase real, the prefactor

cannot be +1 for both of the above equations. In particular, note that  |↑i =
− |↑i  another strange property of spinors. The application of two time reversal
operations on spinors is like a 2 rotation around  so that it changes the phase

of the spinor. It can be proven that this result is independent of the choice of

quantization axis, as we can expect.[4] As far as the main topic of the present

section is concerned, observables such as angular momentum will have a simple

signature under time reversal (they are always two spinors that come in for each

observable ) so that the results of the previous section are basically unmodified.

When 00 () is real, the properties of being a commutator (11.47) and of
Hermiticity (11.49) allow us to further show that 00() is also an odd function
of frequency, an important result that we show in the following section.

11.3 Properties that follow from the definition and

00q−q() = −00q−q(−)

Let us thus write down the general symmetry properties of 00 ( − 0) that
simply follow from its definition (11.5). These properties are independent of the

specific form of the Hamiltonian. It only needs to be Hermitian.

• Commutator: Since it is a commutator, we have
00 (− 0) = −00(0 − ) (11.46)

which when we move to frequency space with
R
  reads,

00 () = −00(−)  (11.47)

• Hermiticity: Taking the observables as Hermitian, as is the case most of
the time (superconductivity leads to an exception), one can use the cyclic

property of the trace and the Hermiticity of the density matrix to show that

00 (− 0) =
h
00(

0 − )
i∗
. (11.48)

(Proof for Hermitian operators: h[  ]i∗ =  { − }∗
=  {−} =  { [  ]} with  the density matrix.)

In Fourier space, this becomes,

00 () =
h
00()

i∗
 (11.49)

In other words, seen as a matrix in the indices    the matrix 00 () is
hermitian at all frequencies.
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Remark 16 Non-hermitian operators: It is important to note that the operators

 may be non-Hermitian, as is the case for superconductivity. In such cases, one

should remember that the above property may not be satisfied.

Most useful property: The most important consequence of this section that we

will often use is that correlation functions such as 00q−q() are odd in frequency
and real

00q−q() = −00q−q(−) =
h
00q−q()

i∗
(11.50)

To prove this, we first use Hermiticity Eq.(11.49) in the form

00rr0 () =
h
00r0r()

i∗
(11.51)

to show that 00q−q() is real

00q−q() =

Z
3r

Z
3r0−q·(r−r

0)00rr0 () (11.52)

=

∙Z
3r

Z
3r0q·(r−r

0)00r0r()
¸∗

(11.53)

=
h
00q−q()

i∗
(11.54)

The commutator property Eq.(11.47), 00q−q() = −00−qq(−) and sym-
metry under parity transformation Eq.(11.18), 00−qq(−) = 00q−q(−) then
suffice to show that 00q−q() is also odd in frequency 

00
q−q

() = −00q−q(−).
Instead of parity, one could have invoked time-reversal symmetry Eq.(11.30)

00rr0 () = 00r0r() and the commutator property Eq.(11.47) 
00
r0r

() = −00rr0 (−)
which imply 00q−q() = −00−qq(−) to show that 00q−q() is odd, namely
00q−q() = −00q−q(−)
Quite generally, using the commutator property Eq.(11.47) and time reversal

symmetry Eq.11.30, we see that for operators that have the same signature under

time reversal

00 () = −00 (−) (11.55)

in other words, that function, 00 (), that we will call the spectral function be-
low, is odd and hence vanishes at  = 0, a property we will use for thermodynamic

sum rules below.

11.4 Kramers-Kronig relations and causality

You are familiar with optical conductivity for example, or with frequency de-

pendent impedance. Generally one can measure the real and imaginary parts of

frequency-dependent response functions, namely the dissipative and reactive parts

of the response. Those are not independent. In reality, all the information on the

system is in 00 () That is the single function containing the physics.
Since the physics is in a single function, there are relations between real and

imaginary parts of response functions. These are the Kramers-Kronig relation.

These are by far the best known and most useful properties for response functions.

The Kramers-Kronig relation follows simply from causality. Causality is insured

by the presence of the  function in the expression for the response functions
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Eq.(11.6). Causality simply states that the response to an applied field at time

0 occurs only at time  later. This is satisfied in general in our formalism, as

can be seen by looking back at the formula for the linear response Eq.(10.10).

Kramers-Kronig relations are the same causality statement as above, seen from

the perspective of Fourier transforms. To be more specific, in this section we will

derive the following results:

Re
h
 ()

i
= P R 0



Im



(0)


0− (11.56)

Im
h
 ()

i
= −P R 0



Re



(0)


0−  (11.57)

They come from analytic properties of the response functions in the complex

frequency plane. We give two derivations.

11.4.1 The straightforward manner:

Let us first derive the relations the easy way. Suppose that we know the Fourier

transform in frequency  () of the response function. We call it the retarded

function because the response comes after the perturbation. It is causal. One way

to make sure that its real time version  ( − 0) contains ( − 0) is to have
 () analytic in the upper half-plane. To see that analyticity in the upper

half-plane is a sufficient condition to have (− 0), consider

 (− 0) =
Z ∞
−∞



2
−(−

0) () (11.58)

If  − 0 is negative, then it is possible to close the contour in the upper half
plane since the exponential will decrease at positive imaginary frequencies. Since

 () is analytic in that half-plane, the result will be zero, which is just another

way to say that  ( − 0) is proportional to ( − 0), as we had planned to
show. In the next subsection, we will show that analyticity in the upper half plane

is also a necessary condition to have (− 0)
Assuming that  () is analytic in the upper half plane, it is then easy to

derive the Kramers-Kronig relations. It now suffices to use

lim
→0

Z
0



1

0 −  − 
 (

0) = 2 lim
→0

 ( + ) (11.59)

which is easy to prove by applying the residue theorem on a contour closed in the

upper half plane where  () is analytic. Here and from now on, it is assumed

that  is a positive infinitesimal. The last formula also assumes that  (
0)

falls off at least like a small power of 10 so that there is no contribution from the
part at ∞. Otherwise, if there is a term that does not decay, we need to subtract

it before we use the residue theorem.

We then need the following all important identity,

lim→0 1
∓ = lim→0

±
2+2

= lim→0
h


2+2

± 
2+2

i
= P 1


±  ()

(11.60)

where  is Dirac’s delta function and P means principal part integral. – Suppose

the factor 1 ( + ) on the left is in an integral that can be done by contour
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integration. Then, knowing the definition of the delta function, this can be used

as the definition of principal part.– Using this identity and setting equal the real

parts of our contour integral (11.59) we obtain, upon taking the lim  → 0,

P
Z

0



Re
h
 (

0)
i

0 − 
− Im

h
 ()

i
= −2 Im

h
 ()

i
(11.61)

while from the imaginary part,

P
Z

0



Im
h
 (

0)
i

0 − 
+Re

h
 ()

i
= 2Re

h
 ()

i
 (11.62)

This is precisely what we mean by the Kramers-Kronig relations, namely we re-

cover the results Eqs.(11.56)(11.57) at the beginning of this section. From the

proof just given, Kramers-Kronig relations will apply if

•  () is analytic, as a function of complex frequency, in the upper half-

plane.

•  () falls off at least as a small power of  at infinity. If there is a

term that does not decay, it needs to be subtracted off before we can apply

Kramers-Kronig relations.

11.5 Spectral representation

It is instructive to perform a derivation which starts from what we found earlier.

We will gain as a bonus an explicit expression for real and imaginary parts in

terms of correlation functions, as well as a derivation of the analyticity properties

from scratch. In fact this will also complete later the proof that analyticity in the

upper half-plane is both necessary and sufficient to have causality.

Using the convolution theorem, we would write for the frequency-space version

of the response functions, (11.6)

 () = 2

Z
0

2
00 (

0)( − 0) (11.63)

This looks nice, but it does not really mean anything yet because we encounter a

serious problem when we try to evaluate the Fourier transform of the  function.

Indeed, Z ∞
−∞

() =



|∞0 (11.64)

and we have no idea what ∞ means. To remedy this, we have to return to

the expression for the linear response (10.10). Assuming that the external field

 is turned-on adiabatically from  = −∞, we multiply whatever we had before
by 

0
, taking the limit of vanishing  at the end of the calculation. We also

adiabatically turn off the response at →∞ by using a factor −.The equation
for the response in time (11.6) is then simply multiplied by (

0−), so that it
still depends only on the time difference. Furthermore, when we take its Fourier

transform,
R∞
−∞ ( − 0)(−

0), everything proceeds as before, except that we

can use the extra convergence factor −(−
0), to make sense out of the Fourier
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transform of the Heaviside theta function. To be more specific, the equation for

the response (11.6) now reads,

 (− 0)−(−
0) = 200 (− 0)(− 0)−(−

0) (11.65)

so that in the calculation of the response (11.63) we have,Z ∞
−∞

(− 0)(+−
0)(−0)(− 0) =

(+−
0)(−0)

( +  − 0)
|∞0 =

1

(0 −  − )


(11.66)

Everything behaves as if we had computed the Fourier transform for + instead

of ,

 ( + ) = 2

Z
0

2
00 (

0)( +  − 0) (11.67)

=

Z
0



00 (
0)

0 − ( + )
 (11.68)

This function is called the “retarded response” to distinguish it from what we

would have obtained with (0 − ) instead of ( − 0). The retarded response is
causal, in other words, the response occurs only after the perturbation. In the anti-

causal case (“advanced response”) the response all occurs before the perturbation

is applied. In the latter case, the convergence factor is −(
0−) instead of (

0−).
Introducing a new function

 () =
R

0


00 (
0)

0− (11.69)

we can write for the retarded response,

 () = lim→0  ()|=+ (11.70)

and for the advanced one, which we hereby define,

 () = lim→0  ()|=− (11.71)

Using the above results, it is easy to see that  () is analytic in the upper-half

plane, while  () is analytic in the lower-half plane. The advanced function

is useful mathematically but it is acausal, in other words the response occurs

before the perturbation. In the time representation it involves  (0 − ) instead of

 (− 0) 
 () is a function which is equal to  () for  infinitesimally above

the real axis, and to  () for  infinitesimally below the real axis. On the

real axis of the complex  plane  () has a cut whenever 
00


() 6= 0 sinceh
 ( + )−  ( − )

i
= 200 () (11.72)

Definition 5 Equations such as (11.69) are called spectral representations.

So much for taking the Fourier transform of a response which is so simple look-

ing in its ordinary time version Eq.(11.6). Time-reversal invariance (11.30) and

Hermiticity in Eq.(11.49) imply, for two operators with the same signature under

time-reversal, that 00 (
0) is a real function. Hence, from the mathematical

identity for principal part Eq.(11.60) and from the spectral representation (11.69)
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we have, for two hermitian operators   with the same signature under time

reversal, that

Im
h
 ()

i
= 00 () (11.73)

so that from the spectral representation we recover the first of the Kramers-Krönig

relation (11.56). The other one can be derived following the same route as in

the simpler derivation, namely apply
R




1
−0+ on both sides of the spectral

representation. For two hermitian operators   with opposite signatures under

time reversal Eqs.(11.30) and (11.49) imply that 00 (
0) is purely imaginary.

In this case,

Re
h
 ()

i
= 00 ()  (11.74)

Remark 17 Kramers-Kronig and time reversal: The Kramers Krönig relations

do not depend on these subtleties of signatures under time-reversal. However

the relation between real and imaginary parts of the response and commutator

Eq.(11.73) does. If we can compute either the real or imaginary part of the re-

sponse, the Kramers Krönig relations give us the part we do not know. In any

case, everything about the system is in 00 ().

11.6 Lehmann representation and spectral represen-

tation

Definition 6 The function that contains the information, 00 (
0) is called the

spectral function.

The reason for this name is that, as we discuss in the next section below,

00 (
0) contains information on dissipation or, alternatively, on the spectrum

of excitations. Hence, in that kind of equations, the response is expressed in

terms of the spectrum of excitations. We will also have spectral representations

for Green’s functions.

To see the connection with the spectrum of excitations and develop physical

intuition, it is useful to express 00 (
0) in terms of matrix elements and exci-

tation energies. We begin with the definition and use the Heisenberg equations of

motion and insert a complete set of energy eigenstates so that we find

00 () =
1

2~
Tr [ ( () (0)− (0) ())] (11.75)

=
1

2~

X


−



h
h| ~

−~ |i h| |i

− h| |i h| ~
−~ |i

i
(11.76)

Changing dummy summation indices  and  in the last term, we have

00 () =
1

2~

X


− − −


h| |i h| |i (−)~ (11.77)

so that the Fourier transform is

00 () =
X


− − −


h| |i h| |i   (~ − ( −)) 

(11.78)
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Substituting in the spectral representation Eq.(11.69), we find

 () =
X


− − −



h| |i h| |i
( −)− ~ (11.79)

From this, one trivially deduces, by letting  → +  the so-called Lehmann

representation for the retarded response function. The poles or the integrand are

indeed in the lower-half frequency plane, as we wanted to prove. They are just

below the real axis, a distance  along the imaginary direction. The position of

the poles carries information on the excitation energies of the system. The residue

at a given pole will depend on the value of 00 at the corresponding value of the
real coordinate of the pole. The residues tell us how strongly the external probe

and system connect the two states. The Lehmann representation reminds us of

low order perturbation theory in the external probe.

To refine our physical understanding of 00 () let us go back to the original
form we found in the time domain, Eq.(11.76), before we changed dummy indices.

Taking Fourier transforms directly on this function, we find

00 () =
X


−


[h| |i h| |i   (~ − ( −))

− h| |i h| |i   (~ − ( −))]  (11.80)

If we take the zero temperature limit,  →∞ we are left with  = −0 where
0 is the ground state energy and the above formula reduces to

lim
→∞

00 () =
X


[h0| |i h| |0i   (~ − ( −0))

− h0| |i h| |0i   (~ − (0 −))]  (11.81)

For = 0, 00 () vanishes. Then, only excited states contribute and −0 
0 For positive frequencies only the first term contributes and it contributes only

if ~ is equal to the energy of an excitation in the system, namely  − 0

and if the external probe through   and the measured operator , have a non-

vanishing matrix element that connects the excited and ground state. Clearly then,

00 () is related to absorption. The second term contributes only for negative

frequencies. External probes that are in cos () =
¡
 + −

¢
2 couple to

both positive and negative frequencies. It is not surprising that both positive

and negative frequencies enter 00 () At finite temperature, contributions to
positive frequencies can also come from the second term and contributions to

negative frequencies can also come from the first term. If  =  it is easy to

verify that at any temperature, 00() = −00(−)

Remark 18 In an infinite system, if 00 (
0) is a continuous function and then

the poles of  () are below the real axis, but not ncessarily close to it. The

passage from a series of poles to a continuous function is what introduces irre-

versibility in many-body systems.

Remark 19 In a system with time reversal symmetry, applying the time-reversal

operator to all states should leave 00 invariant. Then, using h|←−O−→ |i =
h| O†∗ |i found in Eq.(11.26) we see that show that 00 () is pure imaginary
if  and  are hermitian and have different signatures under time-reversal.

Otherwise it is real.
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11.7 Positivity of 00() and dissipation

Wewant to show that the key function of the previous discussion, namely 00 (),
contains all the information on the dissipation. Since stability of a thermodynamic

system implies that an external applied field of any frequency must do work the

dissipation must be positive, which in turns means, as we now demonstrate, that

00 () is a positive-definite matrix.
Since the change in the energy of the system due to the external perturbation

is given by the perturbation Hamiltonian Eq.(10.2), this means that the power

dissipated by the external world is




=

H()


= −
Z

3(r)
(r)


= −

()


 (11.82)

In the last equality, we have used our short-hand notation and included position

in the index . The integral over r then becomes a sum over  which is not written

explicitly since we take the convention that repeated indices are summed

over. Taking the expectation value in the presence of the external perturbation,

we find



= − [hi+ hi] ()


(11.83)

where hi is the equilibrium expectation value, and hi the linear response.
Taking the total energy absorbed over some long period of time  , the condition

for the dissipated energy to be positive is,

 = −
Z 2

−2
 h()i ()


 0 (11.84)

For hi we have written explicitly all the time dependence in the operator in-
stead. Taking  → ∞ and getting help from Parseval’s theorem, the last result

may be written,

−
Z



2
h()i (−) 0 (11.85)

Finally, linear response theory gives

−
Z



2
(−) ()()  0 (11.86)

Changing dummy indices as follows,  → −,  → ,  →  and adding the new

expression to the old one, we obtain the requirement,

 = −1
2

Z


2
(−)

h
 ()− (−)

i
()  0 (11.87)

Calling the spectral representation (11.70) to the rescue, we can writeh
 ()− (−)

i
=

Z
0



00 (
0)

0 − ( + )
−
Z

0



00(
0)

0 − (− + )


(11.88)

We know from the fact that 00 is a commutator that (11.47) 
00


() =

−00(−). Using this identity and the change of variables 0 → −0 in the last
integral, we immediately have thath

 ()− (−)
i
=

Z
0


00 (

0)
∙

1

0 −  − 
+

1

−0 +  − 

¸
(11.89)
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= 200 () (11.90)

Substituting all this back into the last equation for the dissipated energy, and

using the fact that since the applied field is real, then (−) =∗ (), we getZ


2
∗ ()

h
00 ()

i
()  0 (11.91)

This is true whatever the time-reversal signature of the operators   . Further-

more, since we can apply the external field at any frequency, we must have

∗ ()
h
00 ()

i
()  0 (11.92)

for all frequencies. This is the definition of a positive-definite matrix. Going to

the basis where 00 is diagonal, we see that this implies that all the eigenvalues
are positive. Also, when there is only one kind of external perturbation applied,

00()  0 (11.93)

We have seen that for Hermitian operators with the same signature under time

reversal, 00() is a real and odd function of frequency so the above equation is
satisfied. The positive definiteness of 00 () by itself however does not suffice
to prove that 00() is an odd function of frequency.
One can check explicitely that 00() contains spectral information about

excited states by doing backwards the steps that lead us from Fermi’s golden rule

to correlation functions.

Remark 20 For Hermitian operators    the matrix 
00


() is Hermitian,

hence its eigenvalues are real, even if off-diagonal matrix elements between opera-

tors that do not have the same signature under time reversal are purely imaginary.

11.8 Fluctuation-dissipation theorem

This very useful theorem relates linear response to equilibrium fluctuations mea-

sured in scattering experiments. It takes the form,

 () =
2~

1−−~
00


() = 2~(1 +  ())
00


() (11.94)

where  () = 1
¡
~ − 1¢ is the Bose factor while the “structure factor” or

correlation function is defined by,

 () ≡ h()i− hi hi = h(()− hi) ((0)− hi)i (11.95)

≡ h()i  (11.96)

We have already encountered the charge structure factor in the context of inelas-

tic neutron scattering. Clearly, the left-hand side of the fluctuation-dissipation

theorem Eq.(C.10) is a correlation function while the right-hand side contains the

dissipation function 00 just discussed. This is a key theorem of statistical physics.
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To prove the theorem, it suffices to trivially relate the definitions,

00 () =
1

2~
h[()  ]i = 1

2~
h[()  ]i (11.97)

=
1

2~
h() − ()i (11.98)

=
1

2~

¡
 ()− (−)

¢
(11.99)

then to use the key following identity that we set to prove,

(−) =  (− ~)  (11.100)

This kind of periodicity of equilibrium correlation functions will be used over and

over in the context of Green’s functions. It will allow to define Fourier expansions

in terms of so-called Matsubara frequencies. The proof of the identity simply uses

the definition of the time evolution operator and the cyclic property of the trace.

More specifically using the cyclic property of the trace, we havewe start with,

(−) = −1
£
−()

¤
= −1

£
()

−

¤
 (11.101)

Using − = 1 to recover the density matrix on the left, simple manipulations
and Heisenberg’s representation for the time-evolution of the operators gives,

(−) = −1
£
−()

−

¤
(11.102)

= −1
£
−(− ~)

¤
=  (− ~) (11.103)

This is precisely what we wanted to prove. The rest is an exercise in Fourier

transforms,Z
 (− ~) =

Z
(+~) () = −~ () (11.104)

To prove the last result, we had to move the integration contour from  to + ~,
in other words in the imaginary time direction. Because of the convergence factor

− in the traces, expectations of any number of operators of the type −

are analytic in the imaginary time direction for −~    ~, hence it is
permissible to displace the integration contour as we did. Fourier transforming

the relation between 00 () and susceptibility Eq.(11.97), one then recovers the
fluctuation-dissipation theorem (C.10).

A few remarks before concluding.

Remark 21 Alternate derivation: Formally, the Fourier transform gives the same

result as what we found above if we use the exponential representation of the Taylor

series,

 (− ~) = −~

 ()

Remark 22 Relation to detailed balance: The Fourier-space version of the peri-

odicity condition (11.100) is a statement of detailed balance:

(−) = −~ ()  (11.105)

Indeed, in one case the energy ~ is absorbed in the process, while in the other

case it has the opposite sign (is emitted). In Raman spectroscopy, when the photon

comes out with less energy than it had, we have Stokes scattering. In the reverse
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process, with a frequency transfer  of opposite sign, it comes out with more energy.

This is called anti-Stokes scattering. The cross section for Stokes scattering say,

will be proportional to  () as we saw with our golden rule calculation. The

ratio of the anti-Stokes and the Stokes cross sections will be given by the Boltzmann

factor −~ which is a statement of detailed balance. This is one way of seeing
the basic physical reason for the existence of the fluctuation-dissipation theorem:

Even though the response apparently had two different orders for the operators,

the order of the operators in thermal equilibrium can be reversed using the cyclic

property of the trace, or equivalently the principle of detailled balance.

Remark 23 Physical explanation of fluctuation-dissipation theorem: Physically,

the fluctuation-dissipation theorem is a statement that the return to equilibrium is

governed by the same laws, whether the perturbation was created by an external

field or by a spontaneous fluctuation.

11.9 Imaginary time and Matsubara frequencies, a

preview

Recall that all the information that we need is in the spectral function 00 To
do actual calculations of correlation functions at finite temperature, whether by

numerical or analytical means, it turns out that it is much easier to compute a

function that is different from the retarded response function. That function is

defined as follows

 () =
1

~
h ()i  () + 1

~
h ()i  (−) (11.106)

where  is the step function and by definition,

 () = ~
−~  (11.107)

In other words, if in this last equation we replace  , a real number, by the purely

imaginary number , we recover that the operator evolves with the Heisenberg

equations of motion. This definition is motivated by the fact that the operator

− in the density matrix really looks like evolution −~ in imaginary time.

It is also customary to define the time ordering operator  in such a way that

operators are ordered by from right to left by increasing order of time:

 () =
1

~
h ()i  (11.108)

That will be very useful in cunjunction with perturbation theory. As long as we

can extract the spectral function 00 from  () above, we are in good shape

to obtain all we need.

To see how to do this, we first note that we can define  () on the interval

−~ ≤  ≤ ~, and that if we do that, this function on this interval only has
some periodicity properties that can be put to use. More specifically, assume that
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−~    0then from the definition of the function, we have that

 () =
1

~
h ()i = 1

~
Tr
£
− ()

¤


=
1

~
Tr
£
 () 

−

¤


=
1

~
Tr
£
− () 

−

¤


=  ( + ~) (11.109)

since now  + ~  0We have a periodic function on a finite interval. Hence we

can represent it by a Fourier series

 () =
1
~

P∞
=−∞ − () (11.110)

where the so-called bosonic Matsubara frequencies are defined by

 =
2

~
=
2

~
;  integer (11.111)

The periodicity property will be automatically fulfilled because −~ = −2 =
1. The expansion coefficients are obtained as usual for Fourier series of periodic

functions from

 () =
R ~
0

 () (11.112)

By using the Lehman representation, we can find a spectral representation for

the latter function

 () =
1

~

Z ~

0

 h ()i

=
1

~

Z ~

0


1



X


− h| ~
−~ |i h| |i(11.113)

=
1



X


− h| |i h| |i
¡
~+− − 1¢

~ − ( −)
(11.114)

=
1



X


− − −

( −)− ~
h| |i h| |i (11.115)

where we used ~ = 1Using the Lehman representation for 00 (
0) Eq.(11.78)

that we recopy here,

00 () =
X


− − −


h| |i h| |i   (~ − ( −)) 

we can write

 () =

Z
0



00 (
0)

0 − 
(11.116)

which is clearly a special case of our general spectral representation Eq.(11.69).

This the response function in Matsubara frequency may be obtained from  () =

 ( → ) whereas for the retarded function 



() =  ( →  + ) 

Remark 24 Once we write the expansion in Matsubara frequencies, the function

 () in Eq.(11.110) is defined by its periodic extension outside the interval of

definition −~ ≤  ≤ ~ That follows the standard procedure for Fourier series.
Outside the interval of definition however, it does not coincide with the original

 () Eq.(11.106). Indeed, take  ( + 2~) = Tr
£
−2 () 

−2

¤
 (~) There

is no way this can become equal to  () 
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11.10 Sum rules

All the many-body Physics of the response or scattering experiments is in the cal-

culation of unequal-time commutators. These commutators in general involve the

time evolution of the systems and thus they are non-trivial to evaluate. However,

equal-time commutators are easy to evaluate in general using the usual commu-

tation relations. Equal-time corresponds to integral over frequency as seen from

Fourier space. Hence the name sum rules. We will not in general be able to

satisfy all possible sum-rules since this would mean basically an exact solution

to the problem, or computing infinite-order high-frequency expansion. In brief,

sum-rules are useful to

• Relate different experiments to each other.

• Establish high frequency limits of correlation functions.

• Provide constraints on phenomenological parameters or on approximate the-
ories.

11.10.1 Thermodynamic sum-rules.

Suppose we compute the linear response to a time-independent perturbation. For

example, compute the response of the magnetization to a time-independent mag-

netic field. This should give us the susceptibility. Naturally, we have to leave the

adiabatic switching-on, i.e. the infinitesimal . In general then,

 h( = 0)i =  ( = 0)( = 0) (11.117)

Returning to the notation where q is explicitly written,

 h(q = 0)i =  (q = 0)(q  = 0) (11.118)

Using the spectral representation (11.69) and the usual relation between  and

principal parts, Eq.(11.60), we also have,

 (q = 0) =

Z ∞
−∞





00 (q)

 − 
= P

Z ∞
−∞





00 (q)


 (11.119)

There is no contribution from the imaginary part on the grounds that there can

be no zero-frequency dissipation in a stable system. In fact, as long as the thermo-

dynamic derivatives involve operators that have the same symmetry under time

reversal, then 00 (q) is odd, as proven at the end of the section on symmetry
properties, so that 00 (q = 0) = 0. Note that in practice, the principal part
in the above equation is not necessary since 00 (q) usually vanishes linearly
in  for small  To be completly general however, it is preferable to keep the

principal part.

Recalling that the thermodynamic derivatives are in general for uniform (q =

0) applied probes, the above formula become,

lim
q→0

 (q = 0) =



≡   (11.120)
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 = limq→0
R∞
−∞




00 (q)


 (11.121)

This is called a thermodynamic sum-rule. As an example, consider the density 

response. It obeys the so-called compressibility sum rule,

lim
q→0

(q = 0) = lim
q→0

Z ∞
−∞





00(q)


=

µ




¶


 (11.122)

As usual, a few remarks are in order:

Remark 25 Thermodynamic sum-rule and moments: Thermodynamic sum-rules

are in a sense the inverse first moment over frequency of 00 (q) (the latter
being analogous to the weight). Other sum-rules are over positive moments, as we

now demonstrate.

Remark 26 Alternate derivation: Here is another way to derive the thermody-

namic sum rules. First note that thermodynamic variables involve conserved quan-

tities, namely quantities that commute with the Hamiltonian. Take for example

 the total number of particles. Since  commutes with the Hamiltonian, in the

grand-canonical ensemble where

hi = Tr
h
−(−)

i


we have the classical result

hi− hi2 = 1



µ




¶


By definition,

hi− hi2 = lim
q→0

Z ∞
−∞



2
(q ) (11.123)

Using the general fluctuation-dissipation theorem, we now relate this quantity to

00(q ) as follows. Because q for q = 0 is simply the total number of parti-

cles  and hence is conserved, hq=0 ()q=0i is time independent. In frequency
space then, this correlation function is a delta function in frequency. For such a

conserved quantity, at small q all the weight will be near zero frequency so the

fluctuation-dissipation theorem Eq.(C.10) becomes

(q ) = lim
→0

2~
1− −~

00(q ) =
2


00(q ) (11.124)

from which we obtain what is basically the thermodynamic sum-rule Eq.(11.122)

hi− hi2 = lim
q→0

Z ∞
−∞



2
(q ) (11.125)

= lim
q→0

Z ∞
−∞





00(q )


=
1



µ




¶


(11.126)

This is then the classical form of the fluctuation-dissipation theorem. In this form,

the density fluctuations are related to the response () (itself related to

the compressibility).

SUM RULES 87



11.10.2 Order of limits

It is extremely important to note that for thermodynamic sume rules, the  → 0

limit is taken first, before the q → 0 limit. The other limit describes transport

properties as we shall see. Take as an example of a q = 0 quantity the total

number of particles. Then

00 () =
1

2~
h[ ()   ]i = 0 (11.127)

This quantity vanishes for all times because  being a conserved quantity it is

independent of time, and it commutes with itself. Taking Fourier transforms,

00 () = 0 for all frequencies. Hence, we must take the q→ 0 limit after the

 = 0

Another important question is that of the principal part integral. If we take

the q→ 0 limit at the end, as suggested above, we do not run into problems.

As follows from a problem set, in the long wave length limit we have 00(q) =
22

2+(2)2
 where is the diffusion constant. One can check explicitly with that

form that at any finite , it does not matter whether we take or not the principal

part integral. We did not take it in Eq.(11.122). If we take the limit q→ 0

before doing the integral however, limq→0 00(q) is proportionnal to  () so
it is important NOT to take the principal part integral to get the correct result

(in other words, under the integral sign the  → 0 limit must be taken before

the q→ 0 limit). We also see this as follows. If we return to the original form

lim→0 1(− ) = lim→0 (2+2)+ (2+2) and then do the integral of

the first term (real part), we can check that we have to take the  → 0 limit under

the integral sign before the q→ 0 limit to recover the result obtained by doing the

integral at finite q and then taking the q→ 0 limit (the latter is unambiguous and

does not depend on the presence of the principal part in the integral). Physically,

this means that the adiabatic turning-on time must be longer than the diffusion

time to allow the conserved quantity to relax. This is summarized by the following

set of equations

lim
q→0

P
Z ∞
−∞





00(q)


= lim
q→0

Z ∞
−∞





00(q)


(11.128)

=

Z ∞
−∞




lim
q→0

00(q)


(11.129)

6= P
Z ∞
−∞




lim
q→0

00(q)


 (11.130)

11.10.3 Moments, sum rules, and high-frequency expansions.

The 0th moment of a probability distribution is defined as the average of the
random variable to the power . By analogy, we define the 0th moment of the
spectral function by

R∞
−∞



00 () For operators with the same signature

under time reversal, even moments vanish while odd moments of 00 are related
to equal-time commutators that are easy to compute:Z ∞

−∞




00 () =

∙Z ∞
−∞



2

µ





¶
−200 ()

¸
=0

(11.131)
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=
1

~

¿∙µ





¶
() (0)

¸À
=0

=
1

~

¿∙∙∙
()



~

¸



~

¸
 (0)

¸À
=0

(11.132)

which may all easily be computed through  equal-time commutations with the

Hamiltonian.

These moments determine the high frequency behavior of response functions.

One does expect that high frequencies are related to short times, and if time is

short enough it is natural that commutators be involved. Let us see this. Sup-

pose the spectrum of excitations is bounded, as usually happens when the input

momentum q is finite. Then, 00 (
0) = 0 for 0   where  is some large

frequency. Then, for   , we can expand the denominator since the condition

0 ¿ 1 will always be satisfied. This gives us a high-frequency expansion,

 (q) =
R∞
−∞

0


00 (q
0)

0−− (11.133)

in where we have explicitly taken into account the fact that only odd moments of

00 do not vanish because it is an odd function. Clearly, in the  → ∞ limit,

the susceptibilities in general scale as 12, a property we will use later in the

context of analytic continuations.

Suppose the spectrum of excitations is bounded, as usually happens when

the input momentum q is finite. Then, 00 (
0) = 0 for 0   where  is

some large frequency. Then, for   , we can expand the denominator since

the condition 0 ¿ 1 will always be satisfied. This gives us a high-frequency

expansion,

 (q) =
R∞
−∞

0


00 (q
0)

0−− (11.134)

≈P∞=1 −12

R∞
−∞

0

(0)2−1 00 (q

0) (11.135)

where we have explicitly taken into account the fact that only odd moments of

00 do not vanish because it is an odd function. Clearly, in the  → ∞ limit,

the susceptibilities in general scale as 12, a property we will use later in the

context of analytic continuations.

11.10.4 The f-sum rule as an example

The f -sum rule is one of the most widely used moment of a correlation function,

particularly in the context of optical conductivity experiments. It is quite remark-

able that this sum rule does not depend on interactions, so it should be valid

independently of many details of the system. The sum rule isR∞
−∞



00(q ) =

q2


(11.136)

If we return to our high-frequency expansion in terms of moments, Eq.(11.135),

we see that

(q) ≈
−1
2

Z ∞
−∞

0


000(q

0) +    = − q2

2
+     (11.137)

This is equivalent to saying that at very high frequency the system reacts as if it

was composed of free particles. It is the inertia that determines the response, like

for a harmonic oscilator well above the resonance frequency.
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Let us derive that sum rule, which is basically a consequence of particle con-

servation. When the potential-energy part of the Hamiltonian commutes with the

density operator, while the kinetic-energy part is that of free electrons (not true

for tight-binding electrons) we find thatR∞
−∞



00(q ) =

q2


 (11.138)

This is the f sum-rule. It is valid for an arbitrary value of the wave vector q It is a

direct consequence of the commutation-relation between momentum and position,

and has been first discussed in the context of electronic transitions in atoms. The

proof is as follows. We first use the above results for momentsZ ∞
−∞




00(q ) =



~V
¿∙

q()


 −q()

¸À
(11.139)

= − 1

~2V h[[q()]  −q()]i (11.140)

In the first equality, we have also used translational invariance to write,Z
 (r− r0) −q·(r−r0)(r− r0) = 1

V
Z

r−q·
Z

r0−q·
0
(r− r0) (11.141)

where V is the integration volume. The computation of the equal-time commutator
is self-explanatory,

q =

Z
r−q·r

X


(r− r) =
X


−q·r (11.142)

£
  q

¤
=
~


"




X


−q·r

#
= −~−q·r  (11.143)

Assuming that the interactions commute with the density operator, and using

[p · p ] = p [p ] + [p ]p we have

[q()] =
X


"
2

2
q

#
=

1

2

X


¡
p ·

¡−~q−q·r¢+ ¡−~q−q·r¢ · p¢
(11.144)

[[q()]  −q()] = − 1


X
=1

~2q2−q·rq·r = −~
2q2


(11.145)

which proves the result (C.9) when substituted in the expression in terms of com-

mutator (11.140) with  ≡ V. The result of the commutators is a number not
an operator, so the thermodynamic average is trivial in this case! (Things will be

different with tight-binding models.)

11.11 Exercice

11.11.1 Fonction de relaxation de Kubo.

Dans la limite classique, le théorème de fluctuation-dissipation devient:

”


(r r0;) =


2



(r r0;)
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Définissons une fonction 


telle que la relation précédente soit toujours vraie,

c’est-à-dire que même pour un système quantique on veut que:








(r r0; ) =
2


”


(r r0; )

Montrez que cette dernière relation est satisfaite par la définition suivante de 





(r r0; − 0) = −1
Z 

0

0[ (r )(r
0 0 + ~0)  −     ]

Ceci est une autre fonction de corrélation due a Kubo et qui décrit la relaxation.

11.11.2 Constante diélectrique et Kramers-Kronig.

Considérons la constante diélectrique d’un milieu isotrope () comme une fonction

de réponse, sans nous soucier de sa représentation en terme de commutateurs. En

utilisant le principe de causalité (() = 0 pour   0), demontrez que () est

analytique dans le plan complexe supérieur. Determinez aussi la parité de 1 et

2 (() = 1() + 2()) sous changement de signe de . En utilisant ensuite

le théorème de Cauchy sur les intégrales des fonctions analytiques, dérivez deux

relations de Kramers-Krönig entre les parties réelles et imaginaires de ():

1()− 1(∞) = 2


P
Z ∞
0


2()

2 − 2
(11.146)

2() = − 2

P

Z ∞
0


1()− 1(∞)

2 − 2
(11.147)

11.11.3 Lien entre fonctions de réponses, constante de diffusion et dérivées thermo-

dynamiques. Rôle des règles de somme.

Soit un système uniforme de spins 12, comme par exemple l’helium 3 Les

interactions dans le système de spin ne dépendent pas du spin. Donc, l’aimantation

totale dans la direction  que nous noterons  est conservée, c’est-à-dire que

 (r ) +∇ · j (r) = 0 (11.148)

où j est le courant d’aimantation. Sur une base purement phénoménologique,

ce courant dépend du gradient d’aimantation. En d’autres mots, comme  est

conservée, il obéit à une dynamique diffusive. Dans un processus hors d’équilibre,

(mais pas trop loin de l’équilibre!) et sur des échelles hydrodynamiques, (grand

temps et grandes longueurs d’ondes) nous aurons donc­
j (r)

®

= −∇ h (r)i (11.149)

où la moyenne fait référence à une moyenne hors d’équilibre.

Soit la fonction de corrélation aimantation-aimantation

 (r) = h (r) (00)i (11.150)
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Cette fonction de corrélation est accessible par exemple par diffusion neutronique.

a) Phénoménologie: En utilisant le fait que le couplage entre aimantation et

champ magnétique est donné par

 = −
Z

3r (r) (r)

et que l’Hamiltonien commute avec l’aimantation totale, montrez que

lim
k→0

 (k=0) =
1



µ




¶
≡ 1


 (11.151)

En supposant ensuite que la dynamique pour h (r) (00)i avec   0 est

la même que celle obtenue phénoménologiquement pour une perturbation hors

d’équilibre et en utilisant la réversibilité, soit

h (r) (00)i = h (00) (r−)i (11.152)

pour déduire le résultat lorsque   0, montrez qu’aux grandes longueurs d’onde

(c’est-à-dire dans la limite hydrodynamique)

 (k) =
22

2 + (2)
2
 (k = 0) ≈ 22

2 + (2)
2

1


 (11.153)

• Vous pouvez utiliser l’invariance sous la transformation de parité r→ −r.
• L’hypothèses menant à ce résultat est connue sous le nom d’hypothèse de ré-
gression d’Onsager: “Les fluctuations spontanées à l’équilibre régressent vers

l’équilibre de la même façon que les perturbations provoquées de l’extérieur,

en autant que ces perturbations ne soient pas trop fortes (réponse linéaire).”

b) Lien entre calcul phénoménologique et microscopique. En utilisant le théorème

de fluctuation-dissipation, obtenez une prédiction phénoménologique pour 
00
 (k)

à partir de  (k). Montrez ensuite que si un calcul microscopique nous donne


00
 (k) alors la constante de diffusion peut être obtenue de ce calcul micro-

scopique en de la façon suivante:

 = lim
→0

∙
lim
k→0



2

00
 (k)

¸
(11.154)

tandis que la susceptibilité magnétique uniforme elle, s’obtient de

 = lim
k→0

Z





00
 (k)


(11.155)

c) Règles de somme: La dernière équation ci-dessus est la règle de somme ther-

modynamique pour la susceptibilité 
00
 (k) Notre expression phénoménologique

pour 
00
 (k) satisfait cette règle de somme. Considérons maintenant la règle

de somme  L’expression microsopique pour l’aimantation est

 (r) =

X
=1

2 (r− r) (11.156)

où, dans ce système paramagnétique,  = ±1
2
et  est le moment magnétique,

alors que l’expression correspondante pour le courant d’aimantation est

j (r) =




X
=1



∙
}

∇r (r− r) +  (r− r) }


∇r

¸
(11.157)
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avec  la masse. Utilisant ces expressions, démontrez la règle de somme  pour

ce système de spins, soit Z





00
 (k) =




22 (11.158)

où  est la densité. Vérifiez ensuite que l’expression phénoménologique trouvée ci-

dessus pour 
00
 (k) à partir de considérations hydrodynamiques, ne satisfait

pas la règle de somme  . Laquelle de nos hypothèses phénoménologiques devrait

être raffinée pour arriver à satisfaire cette règle de somme?
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12. KUBO FORMULA FOR THE

CONDUCTIVITY

A very useful formula in practice is Kubo’s formula for the conductivity. The

general formula applies to frequency and momentum dependent probes so that

it is of more general applicability than only DC conductivity. It is used in prac-

tice to make predictions about light scattering experiments as well as microwave

measurements. At the end of this section we will see that conductivity is simply

related to dielectric constant by macroscopic electrodynamics. This explains the

wide applicability of the Kubo formula. We will see that the −sum rule can be

used to obtain a corresponding sum rule on the conductivity that is widely used in

practice, for example in infrared light scattering experiments on solids. On a more

formal basis, the general properties of the Kubo formula will allow us, following

Kohn, to better define what is meant by a superconductor, an insulator and a

metal.

After a general discussion of the coupling of light to matter, we discuss in turn

longitudinal and transverse response, exposing the consequences of gauge invari-

ance. After a brief application to the definition of superconductors, metals and

insulators, we make the connection between conductivity and dielectric constant.

12.1 Coupling between electromagnetic fields and

matter, and gauge invariance

Electric and magnetic fields are related to vector and scalar potential by

E = −A

−∇ (12.1)

B =∇×A (12.2)

The gauge transformation

A→ A+∇Λ (12.3)

→ − Λ


(12.4)

leaves the electric and magnetic fields invariant. We say that the theory is gauge

invariant. In other words, there are many equivalent ways of representing the

same physics. It is not a symmetry in the usual sense.[9] We will give a more

detailed derivation in the next subsection, but you only need to know the so-called

minimal-coupling prescription to couple matter and electromagnetic field,[5] one

of the most elegant results in physics

p =
~

∇ → ~


∇ − A(r ) (12.5)

~



→ ~




− (r ) (12.6)
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In this expression  is the charge of the particle, not the elementary charge. The

derivatives to the right are called covariant.

Given this, Schrödinger’s equation in the presence of an electromagnetic field

should readµ
~




− (r )

¶
 =

1

2

µ
~

∇ − A(r )

¶2
 +   (12.7)

where  is some potential energy. Suppose we write the equation in a different

gaugeµ
~




− (r ) + 

Λ



¶
0 =

1

2

µ
~

∇ − A(r )− ∇Λ

¶2
0 +  0

(12.8)

The solution is different since it is not the same equation. Assume however that

 and 0 correspond to an eigenstate with the same value of the eigenenergy. The
latter should be gauge invariant. Then, the solution 0 that we find is related to
 with the same eigenvalue in the following way

0 = Λ~ (12.9)

That is easy to check since if we substitute in the equation for 0 then we recover
the previous equation for 

Observables should be gauge invariant. That is clearly the case for the poten-

tial, Z
3r∗  =

Z
3r0∗ 0 (12.10)

since the phases cancel. The conjugate momentum operator however is not gauge

invariant Z
3r∗

~

∇ 6=

Z
3r0∗

~

∇0 (12.11)

since ∇Λ 6= 0 On the other hand, the following quantity
¡
~

∇− A(r )

¢
is

gauge invariant sinceZ
3r∗

µ
~

∇− A(r )

¶
 =

Z
3r0∗

µ
~

∇− A(r )− ∇Λ

¶
0

(12.12)

That quantity is the expectation of the mass times the velocity and is thus an

observable. It is necessary to establish the correct expression for the current.

12.1.1 Invariant action, Lagrangian and coupling of matter and electromagnetic

field[10]

This section is not necessary to understand any other section. It is just useful to

recall the fundamental ideas about coupling electromagnetic fields and matter.

Take a single particle of charge  in classical mechanics. The action that

couples that particle, or piece of charged matter, to the electromagnetic field

should be invariant under a Lorentz transformation and a gauge transformation.

The simplest candidate that satisfies this requirement is

− = 

Z


 (12.13)
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where we used the summation convention as usual and the four-vectors with 

the contravariant four-vector for position

 = (−) ; 
 =

µ




¶
 (12.14)

The action is clearly Lorentz invariant. It is also gauge invariant since, with

 =
¡
1


∇¢, the gauge transformation
− → 

Z
( + Λ) 

 = 

Z


 (12.15)

only adds a total time derivative to the Lagrangian



Z
(Λ) 

 = 

Z
(Λ)




 = 

Z
Λ


 (12.16)

and in the variational principle the Lagrangian does not vary at the limits of time

integration.

Speaking of the Lagrangian, it can be deduced from

− = 

Z





 =

Z µ
−+ A·r



¶
 =

Z
− (12.17)

The coupling of light to matter appears at two places in the equations of motion

obtained from the Euler-Lagrange equations. It appears in the Euler-Lagrange

equations for matter that involve particle coordinates, and in the Euler-Lagrange

equations for the electromagnetic field that involve electromagnetic potentials

playing the role of coordinates. The former give Newton’s equations with the

Lorentz force and the latter Maxwell’s equations.

The part of the Lagrangian that involve particle coordinates, neglecting po-

tential energy terms that do not play any role in this derivation, is given by

 = v22 + − namely

 =
1

2
v2 − 

µ
−A·r



¶
(12.18)

=
1

2
v2 −  (−A · v) (12.19)

It can be verified that the Euler-Lagrange equations give Newton’s equation with

the Lorentz force. The conjugate moment, is

 =

µ




¶
rA

=  +  → ~





 (12.20)

It is the conjugate moment p that obeys commutation relations with position in

quantum mechanics, in other words it is p that becomes ~

∇

The action of the electromagnetic field is written in terms of the Faraday tensor.

What is important for our discussion is that the current in Maxwell’s equation is

generated by the following term

 = =

µ
−


¶
rv

=



( − ) (12.21)

where in the last equation we have used the equation that relates the conjugate

moment to the velocity and vector potential Eq.(12.20). Physically this makes a

lot of sense. The current is simply charge times velocity.
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In condensed matter physics, we do not generally write down the part of the

Hamiltonian that involves only the pure electromagnetic field. But we are inter-

ested in coupling matter to the electromagnetic field and we would like to have the

expression for the current that follows from the Hamiltonian where the minimal-

coupling prescription has been used. It is indeed possible to satisfy this wish and

to obtain the current from the Hamiltonian. It proceeds as follows. Taking for

 the full Lagrangian, except for the part that contains only the electromagnetic

field, we obtain µ




¶
rv

=

µ
 ( −)



¶
rv

(12.22)

where p (rvA) is written in terms of rv and A using the equation for the

conjugate moment Eq.(12.21). With the chain rule, we thus find (components of

 that are not differentiated are also kept constant)µ
 ( −)



¶
rv

=

µ




¶
rv

 −
µ




¶
rA

µ




¶
rv

−
µ




¶
pr



(12.23)

Since Hamilton’s equations give
³



´
rA

=  we are left with

 = =

µ




¶
rv

= −
µ




¶
pA

 (12.24)

This result comes out because, as usual in a Legendre transform, the first derivative

with respect to the conjugate variable p vanishes. The above expression for the

current in terms of a derivative of the Hamiltonian is often used in practice. In

this expression,  does not contain the part that involves only electromagnetic

potentials.

Remark 27 In the four-vector notation of the present section, the prescription

for minimal coupling, is

 →  − ~ (12.25)

12.2 Response of the current to external vector and

scalar potentials

We need to find the terms H() = H() + H()A added to the Hamiltonian

by the presence of the electromagnetic field. Let us begin by the term H()A
coming from the vector potential. Under the minimal coupling prescription, we

find (recall that the gradient will also act on the wave function that will multiply

the operator)

− ~2

2
∇2 → −

~2

2
∇2 −

~
2

(A(r) ·∇ +∇ ·A(r)) +
2

2
A2(r) (12.26)

This means that to linear order in the vector potential, the change in the Hamil-

tonian is

H()A = −
X


~
2

(A(r) ·∇ +∇ ·A(r)) = −
Z

rA(r) · j(r) (12.27)
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where, continuing with our first-quantization point of view, we defined the para-

magnetic current for particles of charge 

j(r) =


2

X


((r− r)p + p(r− r))  (12.28)

Given the fact that [r p] = ~ there is an ambiguity in the position of the
 function with respect to the momentum operator: We can have p(r− r) or
(r− r)p. We see that the symmetrized form comes out naturally from the

coupling to the electromagnetic field. We have allowed the semi-classical external

field to depend on time.

The paramagnetic current that we found above is the same as that which

is found from Schrödinger’s equation in the absence of electromagnetic field by

requiring that probability density ∗ be conserved. Given the minimal coupling
prescription, Eq.(12.5) and the considerations of Sec.12.1 on gauge invariance of

observables, the observable current operator j(r) is obtained from the minimal

coupling prescription in the paramagnetic current operator Eq.(12.28)

j(r) = j(r)−
2



X


A(r)(r− r) = j(r)−



A(r)(r) (12.29)

where we have defined the charge density as before

(r) =(r) =
X


 (r− r)  (12.30)

The last term in the equation for the current is called the diamagnetic current.

Remark 28 Our definition of the current-density operator Eq.(12.28) automati-

cally takes care of the relative position of the vector potential and of the gradients

in the above equation. The current can also be obtained from −
³



´
pA
, as

explained in the previous section.

It is easier to add an ordinary scalar potential. From Schrödinger’s equation in

the presence of an electromagnetic field Eq.(12.7), the presence of a scalar potential

introduces a term

H() =
Z

r(r)(r) (12.31)

in the Hamiltonian.

Using the explicit expression for the current Eq.(12.29) and our linear-response

formulae in Chapter 10, we finally come to the general expression for the response,


­
 (q)

®
=
h
(q )− 2




i
(q )− (q )(q) (12.32)

There is a sum over the repeated indices  as usual. The term proportional to

−2


 in this expression, called the diamagnetic term, comes from the last term

in the expression for the gauge invariant current Eq.(12.29). Since the density

operator there is already multiplied by the vector potential, its average can be

taken for the equilibrium ensemble where the average density is independent of

position.

The above expression is not gauge invariant in an obvious way. The response

is not given in terms of gauge invariant fields. We will show below that there is

indeed gauge invariant. We begin with the case of the transverse response, which

is easier.
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12.3 Kubo formula for the transverse conductivity

The above relation between current and electromagnetic potential still does not

give us the conductivity. The conductivity relates current to electric field, not to

poetntial. Roughly, for the conductivity  we have  =  We thus need to go

back to the fields. In addition, the first thing to realize is that the conductivity

is a tensor since it relates current in one direction to field applied in any other

direction. Moreover, the electromagnetic fields can be transverse or longitudinal,

i.e. perpendicular or transverse to the direction of propagation. Let us begin by

discussing this point.

When we study the response to applied fields whose direction is perpendicular

to the direction of the wave vector q, we say that we are studying the transverse (or

selenoidal) response. In this case, q ·E(q )=0 The scalar potential contributes
only to the longitudinal component of the field (along with the longitudinal con-

tribution from the vector potential) since the gradient is always along q. We

can thus disregard for the moment the contribution from the scalar potential and

leave it for our study of the longitudinal response, where we will study in detail

the question of gauge invariance. The magnetic field is always transverse since

∇ ·B =∇ ·∇×A =0. Let us decompose the vector potential into a transverse

and a longitudinal part. This is easily done by using the unit vector bq = q |q|
A ≡ bqbq ·A ≡bq (bq ·A) (12.33)

A ≡
³←→
I −bqbq´ ·A (12.34)

In the last equation,
←→
I is the vector notation for . We introduced the following

notation for the multiplication of tensors with vectors,

(←→ ·A) =
X


 (12.35)

The transverse and longitudinal parts of a tensor are obtained as follows,

←→
 (q ) =

³←→
I −bqbq´ ·←→ (q ) · ³←→I −bqbq´ (12.36)

←→
(q ) = bqbq ·←→ (q ) · bqbq (12.37)

To simplify the notation, we take the current and applied electric field in the

 direction, and the spatial dependence in the  direction. This is what happens

usually in a wire made of homogeneous and isotropic material in the presence of

the skin effect. This is illustrated in Fig.(12-1).

Then the conductivity defined by


­
 ()

® ≡ ( )( ) (12.38)

follows from the relation between current and vector potential Eq.(12.32) and from

the relation between electric field and vector potential

( ) = ( + )( ) (12.39)

We used the trick explained in the context of Kramers-Kronig relations which

amounts to using  +  because the field is adiabatically switched on. We find

for the transverse conductivity

( ) =
1

(+)

h
( )− 2



i
(12.40)
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Figure 12-1 Application of a transverse electric field: skin effect.

12.4 Kubo formula for the longitudinal conductivity

and f-sum rule

When q is in the direction of the electric field, we say that we are considering the

longitudinal (or potential) response. Using the consequences of charge conserva-

tion on the response functions 00 it is possible to rewrite the expression which
involves both scalar and vector potential Eq.(12.32) in a way that makes the re-

sponse look explicitly invariant under gauge transformations. This is the plan for

this section.

As usual current conservation and gauge invariance are intimately related.

More specifically, Noether’s theorem states that to each continuous symmetry that

leaves the action invariant, correponds a conserved quantity. Using this theorem,

gauge invariance leads to current conservation, namely

(r )


= −∇ · j(r ) (12.41)

(q )


= −q · j(q ) (12.42)

We can use current conservation to replace the charge-density operator in the term

describing the response of the scalar potential by a current density, which will make

the response Eq.(12.32) look more gauge invariant. Take q in the  direction to

be specific. Some gymnastics on the susceptibility in terms of commutator gives,

( )


= ()



~V h[(0) (− 0)]i+()


~V (−) h[(0) (−−)]i 
(12.43)

The equal-time commutator is calculated from the  sum rule. First use the

definition of 00()



~V h[(0) (− 0)]i = 

Z



00() (12.44)

then current conservation

= 

Z







00() (12.45)
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and finally the  sum rule Eq.(C.9) to rewrite the last expression as

= 
2


(12.46)

Substituting back in the expression for the time derivative of the current-charge

susceptibility Eq.(12.43) and Fourier transforming in frequency, we have

−( + )( ) = 
2


− 




( ) (12.47)

Using this in the general formula for the response of the current Eq.(12.32) the

longitudinal linear response function can be written in terms of the gauge invariant

electric field in two different ways:


­
 ()

®
=

1

( + )

∙
( )−

2



¸
(( + )( )− ())

(12.48)

=

∙
1


( )

¸
(( + )( )− ())  (12.49)

Hence, replacing the gauge-invariant combination of potentials by the field,

( ) = ( + )( )− () (12.50)

we find the following Kubo formulae for the longitudinal conductivity 
­
 (

® ≡
( )( )

( ) =
1

(+)

h
( )− 2



i
=
h
1


( )
i
 (12.51)

Using gauge invariance and the −sum rule, the above result for the longitudinal

response will soon be rewritten in an even more convenient manner.

12.4.1 Further consequences of gauge invariance and relation to f sum-rule.

The electric and magnetic fields, as well as all observable quantities are invariant

under gauge transformations,

A→ A+∇Λ (12.52)

→ − Λ


(12.53)

Let  = 0. Then


­
 ()

®
=

∙
( )−

2



¸
( ) (12.54)

Doing a gauge transformation with Λ( ) independent of time ( = 0) does

not induce a new scalar potential ( = 0). The response to this pure gauge

field through the vector potential should be zero since it corresponds to zero

electric field. This will be the case ifh
( 0)− 2



i
= 0  (12.55)
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This can be proven explicitly by using the spectral representation and 00( 0) =
0,

( 0) =

Z
0



00( 
0)

0
(12.56)

as well as the conservation of charge,

=

Z
0



00( 
0)

0
=

Z
0



000( 
0)

2
(12.57)

and the  -sum rule (C.9)

=
1

2

Z
0


000( 

0) =
2


= ( 0) (12.58)

The form R
0


00(
0)

0 = 2


(12.59)

of the above result, obtained by combining Eqs.(12.55) and (12.56) will be

used quite often below.

Another possibility is to let A =0. Then, the general Kubo formula (12.32)

gives

 h (q)i = −(q )(q) (12.60)

If we let Λ( ) be independent of , (q =0) then the vector potential remains

zero (A =0). Again, the response to this pure gauge field through the scalar

potential must be zero, hence

(0 ) = 0  (12.61)

That this is true, again follows from current conservation since

(0 ) =

Z
0



00(0 
0)

0 −  − 
(12.62)

and

00(0 
0) =

Z


1

2~V
¿∙Z

r(r)

Z
r0(r0)

¸À
= 0 (12.63)

where the last equality follows from the fact that the total charge
R
r0(r0) =

 is a conserved quantity. In other words it commutes with the density

matrix, which allows, using the cyclic property of the trace, to show that the

commutator of  with any operator that conserves the number of particles,

vanishes.

Remark 29 Both results Eq.(12.55) and Eq.(12.61) are consistent with the gen-

eral relation found between both types of correlation functions Eq.(12.47). It suf-

fices to take the q → 0 limit assuming that ( ) is finite or diverges less

slowly than 1 to prove Eq.(12.61) and to take  → 0 assuming that ( )

is finite or diverges less slowly than 1 to prove Eq.(12.55).
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12.4.2 Longitudinal conductivity sum-rule and a useful expression for the longitudinal

conductivity.

The expression for the longitudinal conductivity

( ) =
1

( + )

∙
( )−

2



¸
(12.64)

can be written in an even more convenient manner by using our previous results

Eq.(12.59) obtained from the −sum rule and the spectral representation for the

current-current correlation function

( ) =
1

( + )

"Z
0




00


( 
0)

0 −  − 
−
Z

0




00


( 
0)

0

#
(12.65)

=
1

( + )

"Z
0




00


( 
0)( + )

0 (0 −  − )

#
(12.66)

( ) =
1


∙R
0



00


(
0)

0(0−−)

¸
(12.67)

From this formula, we easily obtain with the usual identity for principal parts,

Eq.(11.60)

Re( ) =

00


()


(12.68)

from which we obtain the conductivity sum rule valid for arbitrary 

R∞
−∞


2
Re [( )] =

R∞
−∞


2


00


()


= 2

2
=

0
2


2
(12.69)

directly from the −sum rule Eq.(12.59). In the above expression, 0 is the per-

mittivity of the vacuum and 2 is the plasma frequency, which we will discuss

later. Using the fact that the real part of the conductivity is an even function

of  as follows from the fact that 
00


( ) is odd, the above formula is often

written in the form of an integral from 0 to ∞ The case  = 0 needs a separate

discussion, presented in the following section.

Remark 30 Alternate expression: There is no principal part in the integrals ap-

pearing in the last expression. An equivalent but more cumbersome expression for

the longitudinal conductivity, namely,

( ) = P 1


h
( )− 2



i
− ()

h
( )− 2



i
(12.70)

is obtained from Eq.(12.64) by using the expression for principal parts. It is also

possible to prove the optical-conductivity sum-rule from this starting point. Indeed,

taking the real part and integrating both sides,Z ∞
−∞



2
Re [( )] = P

Z ∞
−∞



2

00( )


− Re




( 0)

2
+

2

2

=
2

2


Note that since the conductivity sum rule is satisfied for abitrary , it is also

satisfied at  = 0 a limit we will need when computing the conductivity in the

next section.
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Remark 31 Practical use of sum rule: The  that appears in the conductivity

sum rule is the full electronic density. In pratical calculations for experiment, one

stops integrating at a finite frequency, which is smaller than the binding energy

of core electrons. These electrons are then frozen, and the appropriate plasma

frequency is calculated with the free electronic density in the conduction band.

Remark 32 The case of interactions in lattice models: The −sum rule is par-

ticularly useful because it gives a result that is independent of interactions. We

will see later that for models on a lattice, this is not quite true anymore.

Remark 33 If we need to consider the  → 0 limit, it is clearly taken last since

we integrate over all frequencies, including  = 0 first. In addition, we are looking

at the longitudinal response, hence we need a small non-zero  at least to decide

that we are looking at the longitudinal response.

12.5 Exercices

12.5.1 Formule de Kubo pour la conductivité thermique

Dérivez les équations (1) à (19) de la section II de l’article “A Sum Rule for Ther-

mal Conductivity and Dynamical Thermal Transport Coefficients in Condensed

Matter -I” cond-mat/0508711 par Sriram Shastry (donnez les étapes manquantes

et trouvez les fautes de typographie s’il y en a.). Notez que la représentation de

Lehmann s’obtient facilement en utilisant un ensemble complet d’états intermé-

diaires et en utilisant l’évolution d’Heisenberg pour les opérateurs (il faut en un

certain sens refaire à l’envers certaine des étapes qui nous ont permis de trouver

la relation entre section efficace calculée par la règle d’or de Fermi et fonction de

corrélation).
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13. DRUDE WEIGHT, METALS,

INSULATORS AND SUPERCON-

DUCTORS

All the above considerations about conductivity, correlation functions and sum

rules may seem rather formal, and even useless. Let us put what we learned to

work. In the present Chapter, we will find some powerful and unexpected results.

For example, one can measure the penetration depth, i.e. the distance over which

a static magnetic field is expelled by a superconductor, by doing instead a finite

frequency conductivity measurement.

If we begin to talk about a superconductor, the first thing that comes to

mind is the DC conductivity. Even if in the end we will see that zero resistance or

infinite conductivity is not what characterizes a superconductor, this is a legitimate

starting point. Suppose we are interested in the DC conductivity. We then need

the response for a uniform, or very long wavelength field, i.e. the limit  → 0

of our earlier formulae. It is important to notice that this is the proper way to

compute the  conductivity: Take the q → 0 limit, before the  → 0 limit. In

the opposite limit the response vanishes as we saw from gauge invariance (12.55).

Physically, transport probes dynamical quantities. A DCmeasurement can be seen

as the zero frequency limit of a microwave experiment for example. By taking the

q→ 0 limit first, we ensure that we are looking at an infinite volume, where energy

levels can be arbitrarely close in energy. Then only can we take the zero frequency

limit and still get absorption when the state is metallic. Otherwise the discrete

nature of the energy states would not allow absorption in the zero frequency limit.

By asking questions about the DC conductivity, we are clearly beginning to ask

what is the difference between a perfect metal, a superconductor, and an insulator.

This is the question we will focus on in this chapter. The first step is to define the

Drude weight.

13.1 The Drude weight

In the correct limit, the above formulae (12.68) and (12.70) for conductivity give

us either the simple formula,

Re [(0 )] =
00(0 )


(13.1)

or the more complicated-looking formula

Re [(0 )] = P
00(0 )


− ()

∙
Re
£
(0 )

¤− 2



¸
(13.2)

The coefficient of the delta function at zero frequency () is called the Drude

weight :

 =  lim→0
h
2


−Re £(0 )¤i  (13.3)
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Remark 34 Alternate form: While the Drude weight is the strength of the delta

function response in the real part of the conductivity, one can see immediately

from the general expression for the longitudinal conductivity, Eq.(12.64), that it

can also be extracted from the imaginary part,

 =  lim
→0

 Im [(0 )] (13.4)

Remark 35 Alternate derivation: To be reassured that the Drude weight would

also come out from the first expression for the conductivity Eq.(13.1), it suffices

to show that both expressions are equal, namely that

00(0 )


− P 00(0 )


= −()

∙
Re
£
(0 )

¤− 2



¸
(13.5)

To show this, one first notes that given the definition of principal part, the differ-

ence on the left-hand side can only be proportional to a delta function. To prove

the equality of the coefficients of the delta functions on both sides, it then suffices

to integrate over frequency. One obtainsZ ∞
−∞





00(0 )


− P

Z ∞
−∞





00(0 )


(13.6)

= lim
→0

lim
→0

∙
2


−Re £( )¤¸ (13.7)

an expression that is clearly correct, as can be shown by using the spectral repre-

sentation (or Kramers-Kronig representation) of the current-current correlation

function and the −sum rule Eq.(12.59).

Remark 36 Contrary to what happened for conserved quantities in thermody-

namic sum rules, principal parts here are very relevant.

13.2 What is a metal

To understand what is a metal, let us first begin by asking what is the Drude weight

for free electrons. The answer is that for free electrons, the  → 0 conductivity

is a delta function at zero-frequency whose Drude weight is  = 2.

Proof: Let the current be v Then, using Newton’s equation of motion in an

electric field we find ,

j (q = 0)


=

2


E (q = 0) (13.8)

or with a single applied frequency,

j (q = 0) = − 1

 ( + )

2


E (q = 0)  (13.9)

From this we see that the conductivity has only a Drude contribution (free

acceleration).

Re
j (q = 0)

E (q = 0)
= Re (q = 0) = 

2


 () (13.10)
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For interacting electrons, the current of a single particle is no longer a conserved

quantity and there is a contribution from  lim→0
£
(0 )

¤
. The rest of

the weight is at finite frequency. Hence, the criterion given by Kohn [6] for a

system to be a metal is that it has a non-zero Drude weight Eq.(13.3) at zero

temperature, in other words infinite conductivity or zero resistance even in the

presence of interactions. At finite temperature or when there is inelastic scattering

with some other system, like the phonons, the delta function is broadened. It can

also be broadened at zero temperature by impurity scattering.

13.3 What is an insulator

Kohn’s criterion [6] for a material to be an insulator is that it has a vanishing 

conductivity (or equivalently  = 0). This is the case whenever

lim
→0

Re
£
(0 )

¤
= lim

→0
P
Z

0



00(0 
0)

0 − 
=

2


 (13.11)

Recalling the result obtained from the −sum rule (or equivalently from gauge

invariance), (12.59)

( 0) =

Z
0



00( 
0)

0
=

2


(13.12)

this means that when the order of limits can be inverted, the system is an insulator:

lim
→0

lim
→0

Re
£
( )

¤
= lim

→0
lim
→0

Re
£
( )

¤
 (13.13)

This occurs in particular when there is a gap ∆. In this case, then 
00


( ) = 0

for all  as long as   ∆. In particular, there can be no contribution from zero

frequency since 
00


( 0) = 0 so that the principal part integral and the full

integral are equal.

Remark 37 Gapless insulators: The condition of having a gap is sufficient but

not necessary to have an insulator. There are examples where there is no gap in

the two-particle excitations but there is a vanishing  conductivity. [7]

13.4 What is a superconductor

Finally, superconductors are an interesting case. While gauge invariance (or

−sum rule) implies (12.55) that∙
( 0)−

2



¸
= 0 (13.14)

there is no such principle that forces the transverse response to vanish. Indeed,

gauge transformations (12.3) are always longitudinal. Hence, it is possible to have,∙
( 0)−

2



¸
= − () 

2


(13.15)
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where  is any density less than . A superconductor will indeed have such a

non-vanishing “transverse Drude weight”. In general we will be interested in the

long wave length limit and the  dependence can be neglected. We will show in

Eq.(13.31) below that positivity of the dissipation implies that  cannot be larger

than 

Definition 7  is called the superfluid density.

Remark 38 The term “transverse Drude weight” is a very bad choice of termi-

nology since the order of limits for the Drude weight is very different than for this

transverse case.

To show why a non-vanishing value of  in Eq.(13.15) is related to supercon-

ductivity it suffices to show that in that case the system exhibits perfect screening

of magnetic fields (the Meissner effect). This is done by starting from the general

formula for the response to a transverse electromagnetic field (12.32)


­
 (q)


®
=

∙¡
(q )

¢ − 2




¸

 (q )

To simplify the discussion, we take a simple case where the q dependence of the

prefactor can be neglected in the zero-frequency limit, (we keep the zeroth order

term in the power series in q),


­
 (q0)


®
= −

2



 (q 0) (13.16)

We have written  to emphasize that this quantity is in general different from .

This quantity,  is called the superfluid density. The above equation is the so-

called London equation. We take the curl on both sides of the Fourier transformed

expression,

∇×  hj(r=0)i = −
2


B(r =0) (13.17)

and then multiply by 0, the permeability of the vacuum, and use Maxwell’s

equation ∇ × B(r =0) = 0j(r = 0) as well as ∇ × (∇×B) = ∇ (∇ ·B) −
∇2 (B) with ∇ ·B =0. The last equation takes the form,

∇2 (B) = 
2


0B (13.18)

whose solution in the half-plane geometry shown in figure (13-1) is,

() = (0)
−

with the London penetration depth

−2 =


2


0 (13.19)

The magnetic field is completely expelled from a superconductor. This is perfect

diamagnetism.

Remark 39 In the case where  = , which often occurs at zero temperature in

BCS-like superconductors, we find

2
2
 =

2

0



20
=

1

00
= 2 (13.20)
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Figure 13-1 Penetration depth in a superconductor.

Why are the transverse and longitudinal zero-frequency responses different in

a superconductor? By comparing the result of the f -sum rule Eq.(13.14) with the

definition of the transverse Drude weight Eq.(13.15) this can happen only if

lim
→0

( 0  = 0) 6= lim
→0

(0   = 0) (13.21)

or in other words

lim
→0

Z


Z
r−(r  = 0) 6= lim

→0

Z


Z
r−(r  = 0)

(13.22)

That is the true definition of a superconductor. The above two limits cannot be

inserted in a superconductor because long-range order leads to (r  = 0)

which does not decay fast enough for the integral to be uniformly convergent.

More on this in a later chapter. In an ordinary metal there is no such long-range

order and both limits are identical so that the London penetration depth is infinite.

13.5 Metal, insulator and superconductor

In all cases, gauge invariance Eq.(12.55), or equivalently particle conservation,

implies that ∙
( 0)−

2



¸
= 0 (13.23)

The difference between a metal, an insulator and a superconductor may be sum-

marized as follows. There are two limits which are relevant. The Drude weight

(13.3)

 =  lim
→0

lim
→0

∙
2


−Re £(0 )¤¸ (13.24)

and the transverse analog of the −sum rule,

 =  lim→0 lim→0
h
2


−  ( )

i
(13.25)

As we just saw, contrary to its longitudinal analog,  is not constrained to

vanish by gauge invariance. It is instead related to the inverse penetration depth
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 

Metal  0

Insulator 0 0

Superconductor  

Table 13.1 Difference between metal, insulator and superconductor, as seen from

the limiting value of correlation functions

in a superconductor. Since the London penetration depth is generally very long

compared with the lattice spacing, the  dependense of   or equivalently the

superfluid density, can be neglected. The table summarizes the results.

A superconductor can unambiguously be defined by the non-vanishing of  

Indeed, a superconductor has a gap to single-particle excitations, like an insulator,

and it has a delta response in the longitudinal direction at zero wave vector, like

a metal. On the other hand, neither metal nor insulators have a non-zero  

Remark 40 Non-standard superconductors: Note that superconductors can be

gapless in the presence of magnetic impurities, and they can also have resistance

in the so-called mixed-state.

13.6 Finding the London penetration depth from

optical conductivity

Let us first establish the transverse conductivity sum rule for finite wave vector

probes, such as microwaves, or electromagnetic radiation in general. In a metal,

we already know that

Re( ) = P 1


h
00 ( )

i
−  ()

∙
Re ( )−

2



¸
(13.26)

Let us imagine an experiment at finite temperature where the delta function is

broadened. It is easier to also use the fact that the  → 0 and  → 0 limits can

be interchanged and work with the equivalent formula Eq.(13.1)

Re [(0 )] =
00 (0 )


 (13.27)

When we integrate over frequency we find the same result as that predicted by

the f -sum rule, namelyZ ∞
−∞



2
Re [(0 )] =

Z ∞
−∞



2

1



h
00(0 )

i
=

2

2
(13.28)

The experiment can be performed above the superconducting transition temper-

ature for example and the integral over frequency done to find the value of the

right-hand side.

Now, assume the system becomes a superconductor, then as we just saw a

superconductor exhibits a true zero-frequency delta function response at finite

wave-vector in the transverse response. This means that Eq.(13.26) for the trans-

verse conductivity may be written

Re( ) = P
00 ( )


+ ()  ()  (13.29)
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In that case, a conductivity experiment with electromagnetic radiation will not

pick up the piece proportional to  () in the transverse response Eq.(13.29), so

doing the integral we will obtain

lim
→0

Z ∞
−∞



2
Re [( )] = lim

→0
P
Z ∞
−∞



2

1



h
00( )

i
= lim

→0
1

2
Re ( 0) (13.30)

=
(− ) 

2

2
(13.31)

where we used the result Eq.(13.15) for Re( 0). Note that there is no

difference here between Re( 0) and ( 0) since this is a thermody-

namic quantity at small . The delta function in frequency in front of  this

time forces us to take the  = 0 limit first. The missing weight for the transverse

response is in the delta function at the origin. The weight of that delta function

is  (2) = 
22 It is necessarily less than 2 (2) so that    as

we had promised to prove. This is called the Ferrell-Glover-Tinkham sum rule. It

is quite remarkable that the penetration depth can be obtained from an optical

conductivity experiment by looking at the missing weight in the f-sum rule.

As a recent example[11] of how this sum rule can be used is shown on Fig.

(13-2). The nice aspect is that we do not need the frequency integral up to in-

finity. Indeed, at sufficiently high frequency, the absorption in the normal and in

the superconducting state become identical, so the penetration depth is obtained

from the missing area by using our previous result Eq.(13.19), namely −2 =

0
22 to relate the two quantities. In a superconductor, many of the exci-

tations are gapped, in other words they do not contribute to absorption. Let us

call the typical gap energy ∆ For frequencies larger than a few times ∆, the re-

sults in the superconducting and in the normal state must become identical when

~ becomes larger than the largest gap. For the example given here, this occurs
around 6∆

In the cuprates, there is suggestion that there is missing weight when one tries

to relate c axis conductivity to penetration depth in the underdoped regime.[12]

The in-plane optical conductivity of YBa2Cu3O7− satisfies the sum-rule for the
penetration depth but, in the underdoped case, the missing area extends over an

unusually broad frequency range, suggesting that simple models based on Fermi

liquids do not apply. [13]

Remark 41 This is a very elegant result that relates two apparently very different

experiments. We can obtain the zero frequency penetration depth from a finite-

frequency conductivity experiment. This result does not depend on details of the

interaction.

Remark 42 Other manifestation of delta function response: Note that in the

imaginary part of the conductivity, the existence of a non-zero  has observable

consequences at finite frequency since the delta function in the real part gives a

long 1 tail in the imaginary part. More specifically,

Im( ) =
1



∙
2


−Re( )

¸
−  ()00( )(13.32)

lim
→0

 Im( ) =



(13.33)

since 00 ( 0) = 0That is another way to obtain the London penetration depth.
In that case we do not need to know the conductivity at all frequencies, but only

its high frequency tail.

FINDING THE LONDON PENETRATION DEPTH FROM OPTICAL CONDUCTIVITY113



Figure 13-2 A penetration depth of 2080̇ was obtained from the missing aread in

this infrared conductivity experiment on the pnictide Ba06K04Fe2As2 with a  of

37 
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14. RELATION BETWEEN CON-

DUCTIVITYANDDIELECTRICCON-

STANT

The relation between dielectric constant and conductivity is a matter of macro-

scopic electromagnetism. Hence, since we already know the relation beween con-

ductivity and correlation functions, we will be able to relate dielectric constant

and correlation functions that we can compute later. The dielectric constant is

basic to optical measurements. In infrared spectroscopy for example, one mea-

sures the reflectivity or the transmission coefficient, either of which is related to

the complex index of refraction which follows from the dielectric constant.

We start from Maxwell’s equations. We consider a translationally invariant

system, so that it suffices to consider the Fourier-space version

q ·E = 

0
(14.1)

q×E = ( + )B (14.2)

q ·B =0 (14.3)

q×B =0j−
 ( + )

2
E (14.4)

where 0 = 885 × 10−12 farad/meter is the permittivity of vacuum and 0 =

4 × 10−7 henry/meter its permeability. The speed of light is related to these
quantities by 00 = 1

2.

14.1 Transverse dielectric constant.

Using the definition of transverse conductivity, the last of Maxwell’s equations

reads,

q×B =0
←→
 ·E−  ( + )

2
E (14.5)

Using the second Maxwell equation on the left-hand side, as well as q ·E = 0 for
transverse response and q× (q×E) = q (q ·E)− 2E, we have

2E =0 ( + )
←→
 ·E+( + )

2

2
E ≡( + )

2

2

←→


0
E (14.6)

where the last equality is the definition of the dielectric tensor. If there was no

coupling to matter, the electric field would have the usual pole for light  = .

In general then,

←→
 (q ) = 0 +

200
( + )

←→
 = 0 +



( + )

←→
 (14.7)
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In the simple case where the dielectric tensor is diagonal, it is related to the

dielectric constant  and the attenuation constant  through
√
 = + . Using

the Kubo formula for the conductivity in terms of response function Eq.(12.40),

we have that

←→
 (q ) = 0

³
1− 2

(+)2

´←→
 + 1

(+)2

³←→
jj(q )

´
 (14.8)

Remark 43 Bound charges: When one can separate the charges into bound and

free in the calculation of
←→
jj(q ), the contribution of the bound charges to

1
(+)2

←→
jj(q )

is usually included with the 1 and called,
←→
 .

Remark 44 Transverse current and plasmons: The transverse current-current

correlation function does not contain the plasmon pole since transverse current

does not couple to charge. (One can check this explicitly in diagrammatic calcu-

lations: The correlation function between charge and transverse current vanishes

in a homogeneous system because the wave-vector for the charge and the vector

for the current direction are orthogonal, leaving no possibility of forming a scalar.

The equilibrium expectation value of a vector vanishes in a homogenous system.

In fact it vanishes even in less general situations which are not enumerated here.)

Remark 45 Electromagnetic field and plasmon: One can see from the equation

for the electric field (14.6) that in general the electromagnetic field does see the

plasmon (negative dielectric constant for    in Eq.(14.8) means no propaga-

tion below the plasma frequency).

14.2 Longitudinal dielectric constant.

Let the system be subjected to some external charge (q). The electric field

depends on the total charge, including the induced one

q ·E =( +  hi)
0

 (14.9)

The longitudinal dielectric constant is defined by

q·
←→
 ·E = (14.10)

←→
 depends on q and  it is a retarded response function. With a longitudinal

applied field, the previous two equations lead to¡

¢−1

=
 +  hi

0
 (14.11)

The linear response to an external charge can be computed from the response to

the scalar potential it induces

(q ) =
1

02
(q ) (14.12)

As above, linear response to

H() =
Z

r (r) (r) (14.13)
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is given by

 h(q )i = −(q )(q ) (14.14)

so that simple substitution in the equation for
¡

¢−1

gives,

1
(q)

= 1
0

³
1− 1

20
(q )

´
 (14.15)

Remark 46 Density response and plasmon: The density-density correlation func-

tion appearing there still contains the plasmon pole.

The longitudinal dielectric constant is simply related to the cross section for

inelastic electron scattering encountered at the beginning of this Chapter. Indeed,

the fluctuation-dissipation theorem gives us

(q ) =
2~

1− −~
Im
£
(q )

¤
= − 2~

1− −~
2 Im

∙
0

(q )

¸
 (14.16)

The following properties of the dielectric constants are worthy of interest

Remark 47 Kramers-Kronig:  (q ) and 1
(q)

− 1 obey Kramers-Krönig re-
lations since they are causal. Since they are expressed in terms of correlation func-

tions, they also obey sum rules which follow simply from those already derived, in

particular the −sum rule.

Remark 48 (q ) 6=  (q ) in general

Looking in what follows at the case   , we assume that∇×E = −B

≈ 0

Then there are simple things to say about the significance of the poles and zeros

of the dielectric constant.

Remark 49 Collective transverse excitations: The poles of  are at the collec-

tive transverse excitations. Indeed, let us look since ∇ ·D =0 (no free charge) is

garanteed by the fact the excitation is transverse, while ∇×E =0 implies zero elec-
tric field in a transverse mode. Nevertheless, D 6=0 can occur even if the electric
field is zero when  = ∞. The corresponding poles are those of the transverse
part of jj(q ).

Remark 50 Collective longitudinal excitations: The zeros of  locate the lon-

gitudinal collective modes since
¡

¢−1

=
+hi
0

= ∞ corresponds to internal

charge oscillations. Alternatively, D = 0 as required by the no-free-charge con-

straint ∇ · D =0 but nevertheless E 6= 0 is allowed if  = 0. (∇ × E =0 is
automatic in a longitudinal mode). The corresponding collective modes are also

the poles of (q ).
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Part III
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functions. One-body

Schrödinger equation
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We now know that correlation functions of charge, spin, current etc... al-

low us to predict the results of various experiments. In quantum mechanics, all

these quantities, such as charge, spin, current, are bilinear in the Schrödinger field

Ψ(r ), i.e  (r ) = Ψ∗(r )Ψ(r ) for example. What about correlation functions
of the field Ψ(r ) itself? They also are related to experiment, more specifically to

photoemission and tunneling experiments for example. We will come back to this

later. At this point, it suffices to say that if we do experiments where we actually

inject or extract a single electron, then we need to know the correlation function

for a single Ψ field. These correlation functions are called Green’s functions, or

propagators. They are absolutely necessary from a theoretical point of view to get

a full description of the system. They turn out to be easier to compute than corre-

lation functions for transport properties, such as charge-charge or current-current.

So we will finally compute this type of correlation function, Green’s functions,

in this Part. They share a lot of the general properties of correlation functions:

Kramers-Kronig relations, sum rules, high-frequency expansions... But there are

also important differences as will become clearer in later chapters.

One can read on this subject in several books[1][2] [3][4]. Here we introduce

Green’s functions in the simple context of the one-body Schrödinger equation.

This will help us, in particular, to develop an intuition for the meaning of Feynman

diagrams and of the self-energy in a familiar context. Impurity scattering will be

discussed in detail after we discuss definitions and general properties. Finally,

there is an alternate formulation of quantum mechanics, namely Feynman’s path

integral, that arises naturally when we think about the physical meaning of Green’s

functions.

From now on, we work in units where ~ = 1.
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15. DEFINITION OF THE PROPA-

GATOR, OR GREEN’S FUNCTION

Previously, we needed to know how an operator, such as charge for example, was

correlated with another one at another time. The generalization of this idea for a

one-body wave function is to know how it correlates with itself at different times.

That is also useful because the main idea of perturbation theory is to prepare a

state Ψ0(r
0 0) and to let it evolve adiabatically in the presence of the perturbation

into the new eigenstate Ψ(r ). Let us then show that the evolution of Ψ(r ) is

governed by a propagator, then, later in this chapter, we develop perturbation

theory for the propagator.

Let  = 0 be the time at which the Schrödinger and Heisenberg pictures coin-

cide. Then

Ψ(r ) = hr| − |Ψi  (15.1)

If instead of knowing the Heisenberg wave function |Ψi we known the initial
value of the Schrödinger wave function

|Ψ0(0)i = −0 |Ψi (15.2)

we can write the wave functionΨ(r ) in terms of the initial state in the Schrödinger

picture

Ψ(r ) = hr| −(−0) |Ψ0(0)i  (15.3)

To rewrite the same thing in terms of the initial wave function,

Ψ0(r
0 0) = hr0| Ψ0 (0)i (15.4)

it suffices to use a complete set of states

Ψ(r ) (− 0) =
Z

r0 hr| −(−0) |r0i hr0| Ψ0 (0)i  (− 0) (15.5)

where the  (− 0) is added to make causality explicit. This last equation may be
rewritten as

Ψ(r ) (− 0) = 

Z
r0 (r; r0 0)Ψ0(r0 0) (15.6)

if we introduce the following definition of the retarded Green’s function in the

position representation

 (r; r0 0) = − hr| −(−0) |r0i  (− 0)  (15.7)

This may look like a useless exercise in definitions, but in fact there are many

reasons to work with the retarded Green’s function  (r; r0 0). Suppose we
want to know the expectation value of two one-body operators at different times

•  (r; r0 0) does not depend on the initial condition Ψ0(r0 0).

•  (r; r0 0) contains for most purposes all the information that we need.
In other words, from it one can extract wave-functions, eigenenergies etc...

Obviously, the way we will want to proceed in general is to express all ob-

servables in terms of the Green’s function so that we do not need to explicitly

return to wave functions. These functions provide an alternate formulation

of quantum mechanics du to Feynman that we discuss in the last chapter of

this part.
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•  (r; r0 0) is the analog of the Green’s function used in the general context
of differential equations (electromagnetism for example).

• Perturbation theory for  (r; r0 0) can be developed in a natural manner.

•  (r; r0 0) is generalizable to the many-body context where it keeps the
same physical interpretation (but not exactly the same mathematical defin-

ition).

Definition 8  (r; r0 0) is called a propagator, (or Green’s function), since
it gives the wave function at any time, as long as the initial condition is given.

In other words, it propagates the initial wave function, like Huygens wavelets de-

scribe the propagation of a wave as a sum of individual contributions from point

scatterers.
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16. INFORMATION CONTAINED

IN THE ONE-BODY PROPAGA-

TOR

It is very useful to work with the Fourier transform in time of (r; r0 0) because
it contains information about the energy spectrum

 (r r0;) = −
Z ∞
0

 (− 0) (−
0) hr| −(−0) |r0i −(−0) (16.1)

In this expression, we have used the  (− 0) and the usual trick of adiabatic
turning on to be able to define the Fourier transform of the  function. Insert in

this equation a complete set of energy eigenstates

 |i =  |i (16.2)

h| −(−0) |i = −(−
0) (16.3)

to obtain for the Green’s function

 (r r0;) = −
X


hr| i
Z ∞
0

(+−) h |r0i (16.4)

or using Ψ (r) = hr| i

 (r r0;) =
P



hr|ih |r0i
+− =

P


Ψ(r)Ψ
∗
(r

0)
+− (16.5)

=
P

 hr| i h| 1
+− |i h |r0i = hr| 1

+− |r0i 

From this form, one can clearly see that

• The poles of  (r r0;) are at the eigenenergies.

• The residue at the pole is related to the corresponding energy eigenstate.
• This is the analog of a Lehmann representation.

16.1 Operator representation

The last equation may be seen as the position representation of the general oper-

ator b() = 1
+− (16.6)

which is also called the resolvent operator. In other words,

 (r r0;) = hr| b() |r0i 
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In real time, the corresponding expression is

b () = −− () (16.7)

The advanced propagator is

b () = − (−) (16.8)

b() = 1
−− (16.9)

Let us evaluate explicitly the Green’s function for a simple case. Let us take a

free particle. The eigenstates are momentum eigenstates,  |ki = k |ki Then,

hk| b() |k0i = hk| 1

 +  −
|k0i = hk| k0i

 +  − k
(16.10)

16.2 Relation to the density of states

The density of states is an observable which may be found directly from the Green’s

function. The one-particle density of states is defined by

() =
P

  ( −) =
X


Z
r h |ri hr| i  ( −) (16.11)

= − 1


R
r Im (r r;) (16.12)

which can be rewritten in a manner which does not refer to the explicit represen-

tation (such as |ri above)

() = − 1


h
Im b ()

i
 (16.13)

The quantity

(r) = − 1

Im (r r;) (16.14)

is called the local density of states, a quantity relevant in particular when there

is no translational invariance. This is what is measured by scanning tunnelin

microscopes.

16.3 Spectral representation, sum rules and high

frequency expansion

Green’s functions are response functions for the wave function, hence they have

many formal properties that are analogous to those of response functions that we

saw earlier. We discuss some of them here.
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16.3.1 Spectral representation and Kramers-Kronig relations.

Returning to the explicit representation in energy eigenstates, (16.5), it can be

written in a manner which reminds us of the spectral representation

 (r r0;) =
X


Ψ (r)Ψ
∗
 (r

0)
 +  −

=

Z
0

2

P
Ψ (r)Ψ

∗
 (r

0) 2 (0 −)

 +  − 0

(16.15)

=
R

0
2

(rr0;0)
+−0 =

R
0
2

−2 Im(rr0;0)
+−0 =

R
0 (rr

0;0)
+−0 (16.16)

which defines the spectral weight

 (r r0;0) =
X


Ψ (r)Ψ
∗
 (r

0) 2 (0 −) (16.17)

for the one-particle Green’s functions. Note that in momentum space we would

have, for a translationally invariant system,

 (k;) =
R

0
2

(k;0)
+−0 (16.18)

with

 (k;0) = −2 Im (k;0) (16.19)

 (k;0) =
X


Ψ (k)Ψ
∗
 (k) 2 (

0 −) (16.20)

=
X


hk| i h |ki 2 (0 −)  (16.21)

In the case of free particles, there is only a single eigenstate |i = |ki that
contributes to the sum and we have a single delta function for the spectral weight.

That occurs whenever we are in an eigenbasis.

Remark 51 Assumptions in relating  to Im : It is only in the presence of

a time-reversal invariant system that the Schrödinger wave functions Ψ (r) can

always be chosen real. In such a case, it is clear that we are allowed to write

 (r r0;0) = −2 Im (r r0;0) as we did in Eq.(16.16).

Remark 52 Analogies with ordinary correlation functions. Contrary to the spec-

tral representation for correlation functions introduced earlier, there is 0
2

in-

stead of 0

. That is why there is a factor of two in relating the imaginary

part of the Green’s function to the spectral weight. Furthermore, the denomi-

nator involves + −0 instead of 0−− , which explains the minus sign in

 (k;0) = −2 Im (k;0)  Eq.(16.19). Apart from these differences, it is clear

that  (k;0) here is analogous to 00 (k;0) for correlation functions.

Analyticity in the upper half-plane implies Kramers-Kronig relations as before.

In fact, the spectral representation itself leads immediately to

Re
£
 (r r0;)

¤
= P

Z
0



Im
£
 (r r0;0)

¤
0 − 

 (16.22)

The other reciprocal Kramers-Kronig relation follows as before.

Im
£
 (r r0;)

¤
= −P

Z
0



Re
£
 (r r0;0)

¤
0 − 

(16.23)
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16.3.2 Sum rules

As before, the imaginary part, here equal to the local density of states, obeys sum

rulesZ
0

2

¡−2 Im (r r0;0)
¢
=

Z
0

2

X


Ψ (r)Ψ
∗
 (r

0) 2 (0 −) (16.24)

=
X


Ψ (r)Ψ
∗
 (r

0) =  (r− r0) (16.25)

so that Z
 (r− r0)

Z
0

2

¡−2 Im (r r0;0)
¢
= 1 (16.26)

More sum rules are trivially derived. For example,

R
r
R

0
2

0
¡−2 Im (r r;0)

¢
=

Z
r

Z
00(r0) =

Z
r
X


Ψ (r)Ψ
∗
 (r)

(16.27)

=
R
r hr| |ri  (16.28)

In operator form, all of the above results are trivial

R

2
Tr

h
−2 Im

³ b
´i

=

Z


2
Tr

∙
−2 Im

µ
1

 +  −

¶¸
(16.29)

=
R
Tr ( −) =Tr()

Evaluating the trace in the position representation, we recover previous results.

Special cases includeZ
r

Z
0

2
(0)

¡−2 Im (r r;0)
¢
=

Z
r hr| |ri (16.30)

Z
k

(2)
3

Z
0

2
(0)

¡−2 Im (kk;0)
¢
=

Z
k

(2)
3
hk| |ki

You may be uneasy with the formal manipulations of operators we did in this

section. If so, you should to back to the derivations at the beginning of this

section which clearly explain what is meant by the formal manipulations.

Remark 53 Recall that in the case of sum rules for 00, there was also an implicit
trace since we were computing equilibrium expectation values.

16.3.3 High frequency expansion.

Once we have established sum rules, we can use them for high frequency expan-

sions. Consider the spectral representation in the form

 (kk;) =

Z
0

2

−2 Im (kk;0)
 +  − 0

 (16.31)
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Then for  sufficiently large that Im (kk;) = 0 (see remark below), the

Green’s function becomes purely real and one can expand the denominator so

that at asymptotically large frequencies,

 (kk;) ≈
∞X
=0

1

+1

Z
0

2
(0)

¡−2 Im (kk;0)
¢

(16.32)

Integrating on both sides and using sum rules, we obtain,Z
k

(2)
3
 (kk;) ≈

∞X
=0

1

+1

Z
k

(2)
3
hk| |ki (16.33)

or in more general terms,

Tr
h b ()

i
≈
∞X
=0

1

+1
Tr () (16.34)

which is an obvious consequence of the high-frequency expansion of (16.6)

b() =
1

 +  −
(16.35)

Remark 54 Im (kk;) = 0 at high frequency. Indeed consider the relation

of this quantity to the spectral weight Eq.(16.19) and the explicit representation of

the spectral weight Eq.(16.21). Only high energy eigenstates can contribute to the

high-frequency part of Im (kk;) = 0 The contribution of these high-energy

eigenstates is weighted by matrix elements h |ki. It is a general theorem that the

higher the energy, the larger the number of nodes in h|. Hence, for |ki fixed, the
overlap h |ki must vanish in the limit of infinite energy.
Remark 55 The leading high-frequency behavior is in 1, contrary to that of

correlation functions which was in 12.

16.4 Relation to transport and fluctuations

The true many-body case is much more complicated, but for the single-particle

Schrödinger equation, life is easy. We work schematically here to show that, in

this case, transport properties may be related to single-particle propagators in a

simple manner. This example is taken from Ref.[1].

Let  (k ) be the charge structure factor for example.

 (k ) =
1

V
Z


­
k()−k

®
=
1

V
Z


­
k

−−k
®
 (16.36)

The real-time retarded propagator wasb () = −− () (16.37)

while the advanced propagator wasb () = − (−) 
The charge structure factor is then expressed in terms of the propagators

 (k ) =
−1
V
Z


D³ b (−)− b (−)

´
k

³ b ()− b ()
´
−k

E


(16.38)

Because of the  functions, b (−) b () = 0.
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Remark 56 Alternate proof: We can also see this in the Fourier transform ver-

sion

 (k ) =
−1
V
Z

0

2

D³ b (0)− b (0)
´
k

³ b (0 + )− b (0 + )
´
−k

E


(16.39)

Integrals such as
R

0
2

 (0) (0 − ) vanish because poles are all in the same

half-plane.

The only terms left then are

 (k ) =
1
V
R

0
2

D b (0) k b (0 + ) −k + b (0) k b (0 + ) −k
E

(16.40)

In a specific case, to compute matrix elements in the energy representation, one

recalls that

( 0;) = h| 1

 − + 
|0i = 0

1

 − + 
(16.41)

( 0;) = h| 1

 − − 
|0i (16.42)

16.5 Green’s functions for differential equations

The expression for the propagator (15.6)

Ψ(r ) (− 0) = 

Z
r0 (r; r0 0)Ψ0(r0 0) (16.43)

clearly shows that it is the integral version of the differential equation which evolves

the wave function. In other words, it is the inverse of the differential operator for

Ψ(r ). That may be seen as follows





[Ψ(r ) (− 0)] =  (− 0)Ψ(r ) +  (− 0)




Ψ(r ) (16.44)

=  (− 0)Ψ(r ) + (r)  (− 0)Ψ(r ) (16.45)

where we have used the Schrödinger equation in position space (that is why  (r)

appears). Replacing Ψ(r ) (− 0) in by its expression in terms of propagator,
and using  (− 0)Ψ(r ) = Ψ0(r 0) we obtain






∙


Z
r0 (r; r0 0)Ψ0(r0 0)

¸
= (16.46)

 (− 0) 
Z

r03 (r− r0)Ψ0(r0 0) + (r)

∙


Z
r0 (r; r0 0)Ψ0(r0 0)

¸
(16.47)

and since the equation is valid for arbitrary initial condition Ψ0(r
0 0), then either

by inspection or by taking Ψ0(r
0 0) =  (r0 − r00) we find,£

 

− (r)

¤
 (r; r00 0) =  (− 0) 3 (r− r00)  (16.48)

This is indeed the definition of the Green’s function for the Schrödinger equation

seen as a differential equation.
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Remark 57 Historical remark: Green was born over two centuries ago. At age

35, George Green, the miller of Nottingham, published his first and most important

work: “An Essay on the Applications of Mathematical Analysis to the Theory of

Electricity and Magnetism” dedicated to the Duke of Newcastle. It is in trying

to solve the differential equations of electromagnetism that Green developed the

propagator idea. Ten years after his first paper, he had already moved from the

concept of the static three-dimensional Green’s function in electrostatics to the

dynamical concept. Green had no aristocratic background. His work was way

ahead of his time and it was noticed mainly because of the attention that Kelvin

gave it.

We can do the same manipulations in operator form. Recalling that

b () = −− () (16.49)

with  the Hamiltonian operator for the Hilbert space, then the differential equa-

tion which is obeyed is ∙




−

¸ b () =  () (16.50)

which takes exactly the form above, (16.48) if we write the equation in the position

representation and use the completeness relation
R
r |ri hr| = 1 a few times.

Formally, we can invert the last equation,

b () =
£
 

−

¤−1
 () (16.51)

which is meaningless unless we specify that the boundary condition is that (−∞) =
0. This should be compared with Eq.(16.6).

Remark 58 Boundary condition in time vs pole location in frequency space: From

the equation for the propagator (16.48) it appears that one can add to  (r; r0 0)
any solution of the homogeneous form of the differential equation (right-hand side

equal to zero). The boundary condition that  (r; r0 0) vanishes for all −0  0
(the ) and is equal to − at  = 0 makes the solution unique. For a first-order
differential equation, one boundary condition at  − 0 = 0+ suffices to know the

function at  − 0  0. We will not know then the value before  − 0 = 0 but

we specify that it is equal to zero as long as  − 0  0 In frequency space, this

latter assumption moves the poles away from the real axis. To be more explicit,

the general solution of the differential equation is b () = −− ()− −

where the constant  multiplies the solution of the homogeneous equation. Taking

into account the initial condition b (0) = −, which follows from the definition ofb (0), as well as the vanishing of b () for negative times, implies that  = 0 for

the retarded function. Correspondingly, for  (r; r0 0) we need to specify the
vanishing of the function at − 0  0 and we can find its value at all times prior
to  − 0 = 0− by stating that it is equal to + at that time. Indeed, in that case
 = −1 in b () = −− ()−− so that b () = −− ()+− =

− (−), as in the earlier definition Eq.(16.8).
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16.6 Exercices

16.6.1 Fonctions de Green retardées, avancées et causales.

Soit la fonction de Green pour des particules libres:∙




+

1

2
∇2
¸
 (r− r0; ) = 3 (r− r0)  ()

a) Calculez  (k ) en prenant la transformée de Fourier de cette équation

d’abord dans l’espace, puis dans le temps. Pour la transformée de Foureir spatiale,

on peut supposer que (r− r0; ) = 0 à r− r0 = ±∞Dans le cas de la transformée

de Fourier dans le temps, intégrez par parties et montrez que le choix ± est
déterminé par l’endroit où  s’annulle, soit à  = ∞ ou à  = −∞.Une de ces
fonctions de Green est la fonction dite avancée.

b) Rajoutez à la fonction retardée une solution de la version homogène de

l’équation différentielle pour obtenir une fonction de Green qui ne s’annule ni à

 = ∞ ni à  = −∞ et qui est le plus symétrique possible sous le changement

(→ −), plus spécifiquement ∗ (k ) =  (k−). C’est la fonction de Green
”Causale” (Time-ordered).

c) Calculez la fonction de Green retardée  (r− r0; ) pour une particule libre
en trois dimensions en prenant la transformée de Fourier de  (k ).
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17. A FIRST PHENOMENOLOG-

ICAL ENCOUNTER WITH SELF-

ENERGY

In this short Chapter, we want to devlop an intuition for the concept of self-energy.

The concept is simplest to understand if we start from a non-interacting system

and assume to add interactions with a potentail or whatever that change the

situation a little. We will be guided by simple ideas about the harmonic oscillator.

Let us start then from the Green function for a non-interacting particle in

Eq.(16.10)

hk| b
0 () |k0i = 

0 (k ) = hk|
1

 +  −
|k0i = hk| k0i

 +  − k
 (17.1)

Since the momentum states are orthogonal, it is convenient to define 
0 (k ) by


0 (k ) =

1

 +  − k


The corresponding spectral weight is particularly simple,

0 (k) = −2 Im
0 (k ) = 2 ( − k)  (17.2)

We should think of the frequency as the energy. It is only for a non-interacting

particle that specifying the energy specifies the wave vector, since it is only in that

case that  = k

In general, if momentum is not conserved, the spectral representation Eq.(16.18)

 (k;) =

Z
0

2

 (k;0)
 +  − 0

(17.3)

and the explicit expression for the spectral weight Eq.(16.21)

 (k;0) =
X


hk| i h |ki 2 (0 −) (17.4)

tells us that a momentum eigenstate has non-zero projection on several true eigen-

states and hence  (k;0) is not a delta function.
Intuitively, for weak perturbations, we simply expect that (k;0) will broaden

in frequency around  = ek where ek is close to kWe take this intuition from

the damped harmonic oscillator where the resonance is broadened and shifted by

damping. If we take a Lorentzian as a phenomenological form for the spectral

weight

 (k;0) =
2Γ

( − ek)2 + Γ2 (17.5)

then the Green’s function can be computed from the spectral representation Eq.(17.3)

by using Cauch’s residue theorem. The result is

 (k ) =
1

 − ek + Γ
 (17.6)
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We have neglected  in front of ΓIt is easy to verify that −2 Im (k ) gives

the spectral weight we started from.

With a jargon that we shall explain momentarily, we define the one-particle

irreducible self-energy by

 (k ) =
1

 +  − k −Σ (k ) =
1


0 (k )

−1 −Σ (k )
 (17.7)

Its physical meaning is clear. The imaginary part ImΣ (k ) = Γ corresponds to

the scattering rate, or inverse lifetime, whereas the real part, ReΣ (k ) = ek−k
leads to the shift in the position of the resonance in the spectral weight. In other

words, Σ (k ) contains all the information about the interactions.

With the simple approximation that we did for the self-energy,

Σ (k ) = ek − k − Γ (17.8)

one notices that the second moment  = 2 in Eq.(16.30) diverges because the sec-

ond moment of a Lorentzian does. Hence, the high-frequency expansion becomes

incorrect already at order 13We need to improve the approximation to recover

higher frequency moments. Nevertheless, in the form

 (k )
−1
= 

0 (k )
−1 −Σ (k ) (17.9)

equivalent to that given above, there is no loss in generality. The true self-energy

is defined as the difference between the inverse of the non-interacting propagator

and the inverse of the true propagator. Lifetimes and shifts must in general be

momentum and frequency dependent.
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18. PERTURBATION THEORY

FOR ONE-BODY PROPAGATOR

Feynman diagrams in their most elementary form appear naturally in perturbation

theory for a one-body potential. We will also be able to introduce more precisely

the notion of self-energy and point out that the definition given above for the self-

energy,  (k )
−1
= 

0 (k )
−1 − Σ (k ) is nothing but Dyson’s equation.

As an example, we will treat in more details the propagation of an electron in a

random potential.

18.1 General starting point for perturbation theory.

If we can diagonalize , then we know the propagator

b () = 1
−+ (18.1)

from the identities we developed above,

( 0;) = h| 1

 − + 
|0i = 0

1

 − + 
(18.2)

 (r r0;) =
X


Ψ (r)Ψ
∗
 (r

0)
 +  −

(18.3)

We want to develop perturbation methods to evaluate the propagator in the

case where one part of the Hamiltonian, say 0 can be diagonalized while the

other part, say  , cannot be diagonalized in the same basis. The easiest manner

to proceed (when  is independent of time) is using the operator methods that

follow. First, write

( +  −0 −  ) b () = 1 (18.4)

Putting the perturbation  on the right-hand side, and using

b
0 () =

1

 +  −0

(18.5)

we have ³ b
0 ()

´−1 b () = 1 +  b ()  (18.6)

Multiplying by b
0 () on both sides, we write the equation in the form

b () = b
0 () +

b
0 ()

b ()  (18.7)

In scattering theory, this is the propagator version of the Lippmann-Schwinger

equation. Perturbation theory is obtained by iterating the above equation.

b () = b
0 () +

b
0 ()

b
0 () +

b
0 ()

b
0 ()

b
0 () +    (18.8)
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At first sight we have done much progress. We cannot invert the large matrix  to

compute b () but we have expressed it in terms of quantities we know, namelyb
0 () and We know

b
0 () because by hypothesis 0 can be diagonalized. At

first sight, if we want to know the propagator to a given order, we just stop the

above expansion at some order. Stopping the iteration at an arbitrary point may

however lead to misleading results, as we shall discuss after discussing a simple

representation of the above series in terms of pictures, Feynmann diagrams.

But before this, we point out that perturbation theory here can be seen as

resulting from the following matrix identity,

1
+

= 1

− 1


 1

+
(18.9)

To prove this identity, multiply by  +  either from the left or from the right.

For example

1

 + 
( +  ) =

1


 +

1


 − 1




1

 + 
( +  ) = 1 (18.10)

18.2 Feynman diagrams for a one-body potential

and their physical interpretation.

The Lippmann Schwinger equation Eq.(18.7) may be represented by diagrams.

The thick line stands for b () while the thin line stands for b
0 () and the

dotted line with a cross represents the action of  .

Iterating the basic equation (18.7), one obtains the series

b () = b
0 () +

b
0 ()

b
0 () +

b
0 ()

b
0 ()

b
0 () +  (18.11)

which we represent diagrammatically by Fig.(18-1). Physically, one sees that

the full propagator is obtained by free propagation between scatterings off the

potential.

= +

Figure 18-1 Diagrammatic representation of the Lippmann-Schwinger equation for

scattering.

18.2.1 Diagrams in position space

To do an actual computation, we have to express the operators in some basis. This

is simply done by inserting complete sets of states. Using the fact that the potential

138 PERTURBATION THEORY FOR ONE-BODY PROPAGATOR



is diagonal in the position representation, hr1| |r2i =  (r1 − r2) hr1| |r1i, we
have that

hr| b() |r0i = hr| b
0 () |r0i+

Z
r1

Z
r2 hr| b

0 () |r1i hr1| |r2i hr2| b
0 () |r0i+
(18.12)

= hr| b
0 () |r0i+

Z
r1 hr| b

0 () |r1i hr1| |r1i hr1| b
0 () |r0i+  (18.13)

Remark 59 Physical interpretation and path integral: Given that hr| b() |r0i
is the amplitude to propagate from hr| to |r0i, the last result may be interpreted
as saying that the full propagator is obtained by adding up the amplitudes to go

with free propagation between hr| and |r0i, then with two free propagations and one
scattering at all possible intermediate points, then with three free propagations and

two scatterings at all possible intermediate points etc... The Physics is the same

as that seen in Feynman’s path integral formulation of quantum mechanics that we

discuss below.

One can read off the terms of the perturbation series from the diagrams above

by using the following simple diagrammatic rules which go with the following figure

(18-2).
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+

+ + ...

r r’

r

rr

r

r’

r’

r’

r
1
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1

r
1

V(   )

r’

Figure 18-2 Iteration of the progagator for scattering off impurities.

• Let each thin line with an arrow stand for hr| b
0 () |r0i  One end of the

arrow represents the original position r while the other represents the final

position r0 so that the line propagates from r to r0. Strictly speaking, from
the way we have defined the retarded propagator in terms of propagation of

wave functions, this should be the other way around. But the convention we

are using now is more common.

• The  at the end of a dotted line stands for a potential hr1| |r2i =
 (r1 − r2) (r1).
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• Diagrams are built by attaching each potential represented by an  to the

end of a propagator line and the beginning of another propagator line by a

dotted line.

• The intersection of a dotted line with the two propagator lines is called a
vertex.

• There is one dummy integration variable R r1 over coordinates for each
vertex inside the diagram.

• The beginning point of each continuous line is hr| and the last point is |r0i.
These coordinates are not integrated over.

• The propagator is obtained by summing all diagrams formed with free prop-
agators scattering off one or more potentials. All topologically distinct pos-

sibilities must be considered in the sum. One scattering is distinct from two

etc...

18.2.2 Diagrams in momentum space

Since the propagator for a free particle is diagonal in the momentum space rep-

resentation, this is often a convenient basis to write the perturbation expan-

sion in (18.11). Using complete sets of states again, as well as the definition

hk| b
0 () |k0i = 

0 (k ) hk| k0i = 
0 (k ) (2)

3
 (k− k0) we have that for a

particle with a quadratic dispersion law, or a Hamiltonian 0 = 22


0 (k ) =

1

 +  − 2

2

 (18.14)

In this basis, the perturbation series becomes

hk| b () |k0i = 
0 (k ) hk| k0i+

Z
k1

(2)
3

0 (k ) hk| |k1i hk1| b () |k0i 

(18.15)

Solving by iteration to second order, we obtain,

hk| b () |k0i = 
0 (k ) hk| k0i+

0 (k ) hk| |k0i
0 (k

0 ) (18.16)

+

Z
k1

(2)
3

0 (k ) hk| |k1i

0 (k1 ) hk1| |k0i
0 (k

0 ) +  (18.17)

The diagrams shown in the following figure Fig.(18-3) are now labeled differently.

The drawing is exactly the same as well as the rule of summing over all topologi-

cally distinct diagrams.

However,

• Each free propagator has a label k. One can think of momentum k flowing
along the arrow.

• Each dotted line now has two momentum indices associated with it. One

for the incoming propagator, say k, and one for the outgoing one, say k00.
The potential contributes a factor hk| |k00i. One can think of momentum
k− k00 flowing along the dotted line, and being lost into the .

• One must integrate R k00

(2)3
over momenta not determined by momentum

conservation. If there are  potential scatterings, there are − 1 momenta
to be integrated over.
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Figure 18-3 Feynman diagrams for scattering off impurities in momentum space

(before impurity averaging).

18.3 Dyson’s equation, irreducible self-energy

How do we rescue the power series idea. We need to rearrange the power series

so that it becomes a power series not for the Green’s function, but for the self-

energy that we introduced earlier. This idea will come back over and over again.

We discuss it here in the simple context of scattering off impurities. Even in this

simple context we would need in principle to introduce the impurity averaging

technique, but we can avoid this.

The Green’s function describes how a wave propagates through a medium. We

know from experience that even in a random potential, such as that which light

encounters when going through glass, the wave can be scattered forward, i.e. if

it comes in an eigenstate of momentum, a plane wave, it can come out in the

same eigenstate of momentum. So let us compute the amplitude for propagating

from hk| to |ki using perturbation theory. Suppose we truncate the perturbation
expansion to some finite order. For example, consider the truncated series for the

diagonal element hk| b () |ki

hk| b () |ki = 
0 (k ) hk| ki+

0 (k ) hk| |ki
0 (k ) hk| ki (18.18)

Stopping this series to any finite order does not make much sense for most calcu-

lations of interest. For example, the above series will give for hk| b () |ki simple
and double poles at frequencies strictly equal to the unperturbed energies, while we

know from the spectral representation that hk| b () |ki should have only simple
poles at the true one-particle eigenenergies. Even more disturbing, we know from

Eqs.(16.19) and (16.21) that the imaginary part of the retarded Green’s function

should be negative while these double poles lead to positive contributions. These
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positive contributions come from the fact that

Im
1¡

 +  − 2

2

¢2 = − 


Im

1

 +  − 2

2

(18.19)

= 





µ
 − 2

2

¶
(18.20)

This derivative of a delta function can be positive or negative depending from

which side it is approached, a property that is more easy to see with a Lorentzian or

Gaussian representation of the delta function. Clearly, the perturbation expansion

truncated to any finite order does not seem very physical. It looks as if we are

expanding in powers of

hk| |ki
0 (k ) =

hk| |ki
 +  − 2

2

(18.21)

a quantity which is not smal for  near the unperturbed energies 2

2
.

If instead we consider a subset of the terms appearing in the infinite series,

namely

hk| b () |ki = 
0 (k ) hk| ki+

0 (k ) hk| |ki
0 (k ) hk| ki (18.22)

+
0 (k ) hk| |ki

0 (k ) hk| |ki
0 (k ) hk| ki+  (18.23)

which may be generated by

hk| b () |ki = 
0 (k ) hk| ki+

0 (k ) hk| |ki hk| b () |ki (18.24)

then things start to make more sense since the solution

hk| b () |ki = hk| ki¡

0 (k )

¢−1 − hk| |ki (18.25)

has simple poles corresponding to eigenenergies shifted from 2

2
to 2

2
+ hk| |ki

as given by ordinary first-order perturbation theory for the energy. To get the

first-order energy shift, we needed an infinite-order expansion for the propagator.

However, the simple procedure above gave hk| b () |ki that even satisfies the
first sum rule

R

2

h
−2 Im

³ b ()
´i

= 
£
0
¤
= 1 as well as the secondR


2


h
−2 Im

³ b
´i
=  [].

Even though we summed an infinite set of terms, we definitely did not take into

account all terms of the series. We need to rearrange it in such a way that it can

be resummed as above, with increasingly accurate predictions for the positions of

the shifted poles.

This is done by defining the irreducible self-energy
P
(k ) by the equation

hk| b () |ki = 
0 (k ) hk| ki+

0 (k )Σ
 (k ) hk| b () |ki  (18.26)

This is the so-called Dyson equation whose diagrammatic representation is given

in Fig.(18-4) and whose solution can be found algebraically

hk| b () |ki = hk| ki¡

0 (k )

¢−1 −Σ (k )  (18.27)

The definition of the self-energy is found in principle by comparing with the

exact result Eq.(18.15) obtained from the Lippmann-Schwinger equation. The
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Figure 18-4 Dyson’s equation and irreducible self-energy.

algebraic derivation is discussed in the following section, but diagrammatically

one can see what to do. The self-energy
P
(k ) should contain all possible

diagrams that start with an interaction vertex with entering momentum k, and

end with an interaction vertex with outgoing momentum k and never have in the

intermediate states 
0 (k

0 ) with k0 equal to the value of k we are studying. The
entering vertex and outgoing vertex is the same to first order. One can convince

one-self that this is the correct definition by noting that iteration of the Dyson

equation (18.26) will give back all missing 
0 (k ) in intermediate states.P

(k ) is called irreducible because a diagram in the self-energy cannot be cut

in two separate pieces by cutting one 
0 (k ) with the same k. In the context of

self-energy, one usually drops the term irreducible since the reducible self-energyeΣ (), defined by b () = b
0 ()+

b
0 ()

eΣ () b
0 ()  does not have much

interest from the point of view of calculations. The last factor in that last equation

is b
0 () instead of the full

b () Hence eΣ contains diagrams that can be cut
in two pieces by cutting one 

0 (k ) 

To first order then,
P
(k ) is given by the diagram in Fig.(18-5) whose alge-

braic expression can be read off

Σ(1) (k ) = hk| |ki  (18.28)

V(0)

Figure 18-5 First-order irreducible self-energy.

This is the first-order shift to the energies we had found above. To second

order, the diagram is given in Fig.(18-6) and its algebraic expression is

Σ(2) (k ) =

Z
k1 6=k

k1

(2)
3
hk| |k1i

0 (k1 ) hk1| |ki  (18.29)

The result is now frequency dependent and less trivial than the previous one.

There will be a non-zero imaginary part, corresponding to the finite lifetime we

described previously in our introduction to the self-energy in Chap.17

What have we achieved? We have rearranged the series in such a way that

simple expansion in powers of  is possible, but for the irreducible self-energy.

Remark 60 Locator expansion: The choice of 0 is dictated by the problem. One

could take  as the unperturbed Hamiltonian and the hopping as a perturbation.

One then has the “locator expansion”.
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Figure 18-6 Second order irreducible self-energy (before impurity averaging).

Remark 61 Strictly speaking the irreducible self-energy starting at order three

will contain double poles, but at locations different from k and in addition these

will have negligible weight in integrals so they will not damage analyticity proper-

ties.

18.4 Exercices

18.4.1 Règles de somme dans les systèmes désordonnés.

La seconde quantification est prérequise à cet exercice. Soit l’Hamiltonien de

liaisons fortes pour une chaîne unidimensionnelle:

 =
X



+
  + 

X


¡
+ +1 + ++1

¢
où  est un opérateur de destruction sur le site . Les énergies  des sites ont

une valeur 0 avec une probabilité  et une valeur 1 avec une probabilité 1 − .

Il n’y a qu’une particule.

a) Utilisez les règles de somme pour calculer la valeur moyenne sur le désordre

du moment d’ordre 0 et du moment d’ordre 1 de la densité d’états totale  (),

i.e. calculez la valeur moyenne sur le désordre de
R
 () pour  = 0 1.

b) Calculez aussi  () lorsque la chaîne est ordonnée, i.e.  = 1.

18.4.2 Développement du locateur dans les systèmes désordonnés.

Soit une particule sur un réseau où l’énergie potentielle sur chaque site  est aléa-

toire (L’espace des positions est maintenant discret et les intégrales peuvent être

remplacées par des sommes).

a) Décrivez dans l’espace des positions les diagrammes pour la théorie des

perturbations permettant de calculer  lorsque le potentiel joue le rôle de 0

–diagonal dans l’espace des positions – et les éléments de matrice  de la

perturbation sont non-nuls seulement lorsque deux sites  et  sont premiers voisins.

Il n’est pas nécessaire de faire la moyenne sur le désordre.

b) Comment définirait-on la self-énergie de Dyson pour , toujours sans faire

la moyenne sur le désordre?
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18.4.3 Une impureté dans un réseau: état lié, résonnance, matrice  .

Considérons des électrons qui n’interagissent pas l’un avec l’autre mais qui sautent

d’un site à l’autre sur un réseau. Les intégrales sur la position deviennent des

sommes discrètes. On suppose ce réseau invariant sous translation et on note

les éléments de matrice de l’Hamiltonien h| |i =  sauf pour une impureté,

située à l’origine, caractérisée par un potentiel  local. À partir de l’équation de

Lippmann-Schwinger, on voit que l’équation du mouvement pour la fonction de

Green retardée dans ce cas estX


( ( + )− )
 ( ;) =  + 0 

 (0 ;) (18.30)

On suppose qu’on connaît la solution du problème lorsque l’impureté est absente,

i.e. qu’on connaît X


( ( + )− )

0 ( ;) =  (18.31)

a) Utilisant ce dernier résultat, montrez que

 ( ;) = 
0 ( ;) +

0 ( 0;) 
 (0 ;) (18.32)

b) Résolvez l’équation précédente pour  (0 ;) en posant  = 0 puis dé-

montrez que dans le cas général

 ( ;) = 
0 ( ;) +

0 ( 0;)
 (0 0;)

0 (0 ;) (18.33)

où la matrice  est définie par

 (0 0;) =


1−  
0 (0 0;)

(18.34)

La matrice  tient compte exactement de la diffusion provoquée par l’impureté.

Dans le cas de l’approximation de Born, il n’y aurait eu que le numérateur pour

la matrice  .

Nous allons calculer maintenant la densité d’états locale sur l’impureté.

c) Démontrez d’abord que les pôles 
0 (0 0;) du problème sans impureté

n’apparaissent plus directement dans ceux du nouveau propagateur  (0 0;) et

que les pôles de ce dernier sont plutôt situés là où

1−  
0 (0 0;) = 0 (18.35)

d) Posons (~ = 1)


0 (0 0;) =

1



X
k=1

1

 +  − k
(18.36)

où les k sont les énergies propres du système sans impureté. En ne dessinant qu’un

petit nombre des valeurs de k possibles et en notant que celles-ci sont très près

l’une de l’autres (distantes de O (1)), montrez graphiquement que les nouveaux

pôles donnés par la solution de 1 −  Re
0 (0 0;) = 0 ne sont que légèrement

déplacés par rapport à la position des anciens pôles, sauf pour un nouvel état lié

(ou anti-lié) qui peut se situer loin de l’un ou de l’autre des bords de l’ancienne

bande à condition que  ≥ 0 ou  ≤  0
0  Pour ce dernier calcul, on utilise la

limite  =∞

1



X
k=1

→
Z

 ()  (18.37)
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et les définitions

1

0
≡
Z

 () 

 − 
;

1

 0
0

≡
Z

 () 

0 − 
(18.38)

 et 0 étant respectivement définies comme les fréquences supérieures et in-

férieures des bords de la bande 

e) Montrez que la densité d’états locale sur l’impureté est donnée par

 ()h
1−  P R ()

−
i2
+  22 ()

2
(18.39)

Par rapport à la densité d’états  () de la bande originale, cette densité d’états

est donc augmentée ou réduite, selon que le dénominateur est plus petit ou plus

grand que l’unité. En particulier, même lorsqu’il n’y a pas d’état lié ou anti-lié, il

est quand même possible qu’il y ait une forte augmentation de la densité d’états

pour une énergie située à l’intérieur de la bande. La position de la résonnance 
est donnée par

1−  P
Z

 () 

 − 
= 0 (18.40)

et sa largeur est approximativement donnée par   ().

f) À partir du résultat précédent, montrez qu’en dehors de l’ancienne bande,

c’est-à-dire là où  () → 0 une fonction delta apparaît dans la densité d’états

lorsqu’il y a un état lié ou anti-lié et calculez le poids de cette fonction delta.

Laissez les résultats sous forme d’intégrale sans les évaluer explicitement.
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19. FORMAL PROPERTIES OF

THE SELF-ENERGY

We will come back in the next chapter on the properties of the self-energy and of

the Green function but we give a preview. Given the place where the self-energy

occurs in the denominator of the full Green function Eq.(18.27), we see that its

imaginary part has to be negative if we want the poles of b () to be in the lower

half-plane. Also, from the Dyson equation (18.26), the self-energy is analytic in

the upper half-plane since hk| b () |ki itself is. Analyticity in the upper half-
plane means that Σ (k ) obeys Kramers-Kronig equations analogous to those

found before for response functions,

Re
£
Σ (r r0;)−Σ (r r0;∞)¤ = P Z 0



Im
£
Σ (r r0;0)

¤
0 − 

 (19.1)

Im
£
Σ (r r0;)

¤
= −P

Z
0



Re
£
Σ (r r0;0)−Σ (r r0;∞)¤

0 − 
(19.2)

One motivation for the definition of the self-energy is that to compute the shift

in the energy associated with k, we have to treat exactly the free propagation with


0 (k ).

The self-energy itself has a spectral representation, and obeys sum rules. To

find its formal expression, let us first define projection operators:

P = |ki hk| ; Q = 1− P =
Z

k0

(2)
3
|k0i hk0|− |ki hk| (19.3)

with the usual properties for projection operators

P2 = P ; Q2 = Q ; P +Q = 1 (19.4)

The following manipulations will illustrate methods widely used in projection op-

erator techniques.[5]

Since 0 is diagonal in this representation, we have that

P
0 (k )Q = Q

0 (k )P = 0 (19.5)

We will use the above two equations freely in the following calculations.

We want to evaluate the full propagator in the subspace |ki. Let us thus

project the Lippmann-Schwinger equation

P bP = P b
0 P+P b

0 
bP = P b

0 P+P b
0  P bP+P b

0 Q bP (19.6)

To close the equation, we need Q bP, which can also be evaluated,
Q bP = Q b

0 
bP = Q b

0  P bP +Q b
0 Q bP (19.7)

Q bP = 1

1−Q b
0 Q

Q b
0  P bP (19.8)

Substituting in the previous result, we find

P bP = P b
0 P + P b

0 

"
1 +

1

1−Q b
0 Q

Q b
0 

#
P bP (19.9)
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P bP = P b
0 P + P b

0 P
"
1 +

1

1−Q b
0 Q

Q b
0  P

#
P bP (19.10)

This means that the self-energy operator is defined algebraically by

bΣ = P P + PQ 1

1−Q 
0 QQ

Q b
0 Q P  (19.11)

This is precisely the algebraic version of the diagrammatic definition which we gave

before. The state k corresponding to the projection P never occurs in intermediate
states, but the initial and final states are in P.

Remark 62 Self-energy as a response function: Spectral representation, sum

rules and high frequency expansions could be worked out from here. In partic-

ular, the first-order expression for the self-energy suffices to have a propagator

which satisfies the first two sum rules. Note that we could continue the process

started here and decide that for the self-energy we will take into account exactly

the propagation in a given state and project out everything else. This eventually

generates a continued fraction expansion.[5]

Remark 63 High-frequency behavior of self-energy and sum rules: Given the 1

high-frequency behavior of b
0 , one can see that the infinite frequency limit of the

self-energy is a constant given by P P = |ki hk| |ki hk| and that the next term
in the high-frequency expansion is PQ 1


Q P as follows from the high-frequency

behavior of b
0 . We will see in the interacting electrons case that the Hartree-Fock

result is the infinite-frequency limit of the self-energy.

Remark 64 Projection vs frequency dependence: By projecting out in the sub-

space |ki hk|, we have obtained instead of the time-independent potential  , a
self-energy Σ which plays the role of an effective potential which is diagonal in

the appropriate subspace, but at the price of being frequency dependent. This is

a very general phenomenon. In the many-body context, we will want to remove

instantaneous two-body potentials to work only in the one-body subspace. When

this is done, a frequency dependent self-energy appears: it behaves like an effec-

tive frequency dependent one-body potential. This kind of Physics is beyond band

structure calculations which always work with a frequency independent one-body

potential.
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20. ELECTRONS IN A RANDOM

POTENTIAL: IMPURITY AVERAG-

ING TECHNIQUE.

We treat in detail the important special case of an electron being scattered by a

random distribution of impurities. This serves as a model of the residual resistivity

of metals. It is the Green’s function version of the Drude model for elastic impurity

scattering. One must however add the presence of the Fermi sea. When this is

done in the many-body context, very little changes compared with the derivation

that follows. The many-body calculation will also allow us to take into account

inelastic scattering. We start by discussing how to average over impurities, and

then we apply these results to the averaging of the perturbation series for the

Green’s function.

20.1 Impurity averaging

Assume that electrons scatter from the potential produced by uniformly distrib-

uted impurities

 (r) =

X
=1

 (r−R) (20.1)

where each of the  impurities produces the same potential  but centered at a

different positionR. We have added the index  to emphasize the fact that at this

point the potential depends on the actual configuration of impurities. We want

to work in momentum space since after averaging over impurities translational

invariance will be recovered. This means that the momentum representation will

be the most convenient one for the Green’s functions.

 (q) =

Z
r−q·r

X
=1

 (r−R) =

X
=1

−q·R

Z
r−q·(r−R) (r−R)

(20.2)

=  (q)

X
=1

−q·R (20.3)

We assume that the impurities are distributed in a uniform and statistically

independent manner (The joint probability distribution is a product of a factor 1V
for each impurity). Denoting the average over impurity positions by an overbar,

we have for this distribution of impurities,

 (q) =  (q)

X
=1

³
−q·R

´
=  (q)

X
=1

1

V
Z

R
−q·R =  (q)



V (2)
3
 (q)

(20.4)

=  (0) (2)
3
 (q) (20.5)
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where  is the impurity concentration. We will also need to consider averages of

products of impurity potentials,

 (q) (q0) =  (q)  (q0)
X
=1

−q·R

X
=1

−q0·R  (20.6)

To compute the average, we need to know the joint probability distribution for

having an impurity at site  and an impurity at site . The most simple-minded

model takes no correlations, in other words, the probability is the product of prob-

abilities for a single impurity, which in the present case were uniform probability

distributions. (This is not such a bad approximation in the dilute-impurity case).

So for  6= , we write

X
=1

X
 6=

−q·R−q0·R =

X
=1

X
 6=

³
−q·R −q0·R

´
=

¡
2
 −

¢
V2 (2)

3
 (q) (2)

3
 (q0) 

(20.7)

When  =  however, we are considering only one impurity so that

X
=1

−q·R−q0·R = (2)
3
 (q+ q0)  (20.8)

Gathering the results, and using the result that for a real potential | (q)|2 =
 (q)  (−q) we find

 (q) (q0) =

¡
2
 −

¢
V2

³
 (0) (2)

3
 (q)

´³
 (0) (2)

3
 (q0)

´
+ | (q)|2 (2)3  (q+ q0) 

(20.9)

20.2 Averaging of the perturbation expansion for

the propagator

Let us return to the perturbation expansion in momentum space to second order

Eq.(18.17).Using

hk| |k0i =
Z

r hk|ri (r) hr|k0i = 
¡
k− k0¢ (20.10)

and hk| k0i = (2)3  ¡k− k0¢, we rewrite the perturbation expansion and average
it,

hk| b () |k0i = 
0 (k ) (2)

3

¡
k− k0¢+

0 (k )
¡
k− k0¢

0 (k
0 )
(20.11)

+

Z
k1

(2)
3

0 (k ) (k− k1)

0 (k1 )
¡
k1−k0

¢

0 (k

0 ) +  (20.12)

Using what we have learned about impurity averaging, this is rewritten as,

hk| b () |k0i = ©

0 (k ) +

0 (k ) [ (0)]

0 (k )

+
0 (k ) [ (0)]


0 (k ) [ (0)]


0 (k )
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−
0 (k )

∙
 | (0)|2 1V

¸

0 (k )


0 (k )

+
0 (k )

Z
k1

(2)
3

0 (k1 )

h
 | (k− k1)|2

i

0 (k ) +} (2)3 

¡
k− k0¢
(20.13)

Recalling the relation between discrete sums and integrals,Z
k1

(2)
3
=
1

V
X
k1

(20.14)

we see that the term with a negative sign above removes the k = k1 term from

the integral. We are thus left with the series

hk| b () |k0i = ©

0 (k ) +

0 (k ) [ (0)]

0 (k)

+
0 (k ) [ (0)]


0 (k ) [ (0)]


0 (k )

+
0 (k )

ÃZ
k1 6=k

k1

(2)
3

0 (k1 )

h
 | (k− k1)|2

i!

0 (k ) +} (2)3 

¡
k− k0¢

(20.15)

The diagrams corresponding to this expansion are illustrated in Fig.(20-1)

= +

+

k k

n v(0)

k k

k

k

kk

k kk =k

n

+
/

+ ...

i

n v(0)i n v(0)i

1

i |v(k-k )| 2
1

Figure 20-1 Direct iterated solution to the Lippmann-Schwinger equation after

impurity averaging.

The diagrammatic rules have changed a little bit. Momentum is still conserved

at every vertex, but this time,

• No momentum can flow through an isolated  (in other words, at the vertex

the momentum continues only along the line.)

• A factor [ (0)] is associated with every isolated .
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• Various  can be joined together, accounting for the fact that in different

 the impurity can be the same.

• When various  are joined together, some momentum can flow along the

dotted lines. Each dotted line has a factor  (k− k1) associated with it,
with the momentum determined by the momentum conservation rule (which

comes from the fact that if in
R
r1 (r) 2 (r) 3 (r) we replace each function

by its Fourier representation, the integral
R
r will lead to a delta function

of the Fourier variables, i.e. k1 + k2 + k3 = 0.)

• The overall impurity concentration factor associated with a single  linking

many dotted lines, is , however many dotted lines are associated with it.

• There is an integral over all momentum variables that are not purely deter-

mined by the momentum conservation.

Once again, one cannot truncate the series to any finite order since this leads

to double poles, triple poles and the other pathologies discussed above. One must

resum infinite subsets of diagrams. Clearly, one possibility is to write a self-energy

so that

hk| b () |k0i = hk| k0i¡

0 (k )

¢−1 −Σ (k )  (20.16)

If we take the diagrams in Fig.(20-2) for the self-energy, expansion of the last

equation for the Green’s function, or iteration of Dyson’s equation in diagrammatic

Fig.(18-4), regive the terms discussed above in the straightforward expansion since

the algebraic expression for the self-energy we just defined is

Σ (k ) = [ (0)] +
R
k1 6=k

k1
(2)3

h
 | (k− k1)|2

i

0 (k1 )  (20.17)

+

n v(0)i ni |v(k-k )|1
2

k =k/1

Figure 20-2 Second-order irreducible self-energy in the impurity averaging technique.

Remark 65 Energy shift: This self-energy gives us the displacements of the poles

to linear order in the impurity concentration and to second order in the impurity

potential. The displacement of the poles is found by solving the equation

 =
2

2
+Re

£
Σ (k )

¤
 (20.18)

Remark 66 Lifetime: Taking the Fourier transform to return to real time, it

is easy to see that a constant imaginary self-energy corresponds to a life-time,

in other words to the fact that the amplitude for being in state k “leaks out” as

other states become populated. Indeed, take Σ (k ) = −  for example, as an
approximation for the self-energy. The corresponding spectral weight is a Lorenzian

and the corresponding propagator in time is  (k ) = −−(22−)− 
We see that the probability of being in state k decreases exponentially. One can

152 ELECTRONS IN A RANDOM POTENTIAL: IMPURITY AVERAGING TECHNIQUE.



also check explicitly that the formula found for the lifetime by taking the imaginary

part of the self-energy corresponds to what would be obtained from Fermi’s Golden

rule. For example, the second order contribution from the self-energy expression

Eq.(20.17) is

ImΣ (k ) = −
Z
k1 6=k

k1

(2)
3

h
 | (k− k1)|2

i


µ
 − 21

2

¶
(20.19)

= −
Z

 ()
Ω

4

h
 | (k− k1)|2

i
 ( − ) (20.20)

where in the last expression,  () is the density of states, and Ω the solid angle.

One recognizes the density of states at the frequency of interest  that will come

in and the square of the matrix element. We have an overall factor of  instead

of 2 because − ImΣ (k ) is the scattering rate for the amplitude instead of the
probability. In the continuum, we do not need to worry about k1 6= k for this

calculation.

Remark 67 Self-energy and sum rules: One can check that this self-energy is

explicitly analytic in the upper half-plane and that the corresponding Green’s func-

tion satisfies the first sum rule
R


2

h
−2 Im

³ b ()
´i
= 

£
0
¤
= 1 as well

as the second
R


2


h
−2 Im

³ b
´i
=  []. However, at this level of approx-

imation, none of the other sum rules are satisfied because the second and higher

moments of a Lorentzian are not defined.

Remark 68 Average self-energy and self-averaging: We could have obtained pre-

cisely the same result by directly averaging the self-energies (18.28)(18.29) de-

fined in the previous subsection (18.26). Indeed, since the rule there was that


0 (k ) could not occur in the intermediate states, impurity averaging of the

second-order diagram (18.29) would have given only the correlated contributionR
k1 6=k

k1
(2)3

h
 | (k− k1)|2

i

0 (k1 ). A 

0 (k ) in the intermediate state

would be necessary to obtain a contribution [ (0)]
2
. It is possible to average

directly the self-energy in the Dyson equation Eq.(18.26) only if hk| b () |ki is
itself not a random variable. What the present demonstration shows is that indeed,

forward scattering, i.e. hk| b () |k0i with k = k0, is a self-averaging quantity, in
other words, its fluctuations from one realization of the disorder to another may

be neglected. Forward scattering remains coherent.

Remark 69 Correlations in the impurity distribution: If we had taken into ac-

count impurity-impurity correlations in the joint average (20.7),

X
=1

X
 6=

−q·R−q0·R  (20.21)

then we would have found that instead of two delta functions leading eventu-

ally to forward scattering only, (2)
3

¡
k− k0¢, off-diagonal matrix elements of

hk| b () |k0i would have been generated to order 2 by the Fourier transform of

the impurity-impurity correlation function. In other words, correlations in the im-

purity distribution lead to coherent scattering off the forward direction. In optics,

this effect is observed as laser speckle pattern.

Remark 70 Strong impurity potential: It is easy to take into account the scat-

tering by a single impurity more carefully in the self-energy. The set of diagrams
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in Fig.(20-3) are all first-order in impurity concentration. Their summation cor-

responds to summing the full Born series. In other words, the summation would

correspond to replacing the Born cross section entering the expression for the

imaginary part of the Green’s function by the full T-matrix expression. The cross

section for the impurity is then evaluated beyond the Born approximation. This is

important when the phase shifts associated with scattering from the impurity are

important.

+ + + ...

Figure 20-3 Taking into account multiple scattering from a single impurity.

Remark 71 Irreversibility and infinite volume limit: We have proven that the

poles of the Green’s function are infinitesimally close to the real axis. In particular,

suppose that |i labels the true eigenstates of our one-body Schrödinger equation
in the presence of the impurity potential. Then, our momentum space Green’s

function will be given by Eq.(16.5)

 (kk;) =
X


hk| i h |ki
 +  −

(20.22)

− 1

Im
£
 (kk;)

¤
=
X


hk| i h |ki  ( −)  (20.23)

In the case we are considering here, k is no longer a good quantum number. Hence,

instead of a single delta function, the spectral weight − 1

Im
£
 (kk;)

¤
contains

a sum of delta functions whose weight is determined by the projection of the true

eigenstate on k states. However, if we go to the infinite volume limit, or equiva-

lently assume that the level separation is smaller than , the discrete sum over 

can be replaced by an integral, and we obtain a continuous function for the spectral

weight. As long as the Green’s function has discrete poles, the Fourier transform

in time of  is an oscillatory function and we have reversibility (apart from the

damping ) Going to the infinite volume limit, (level spacing goes to zero before

), we obtained instead a continuous function of frequency instead of a sum over

discrete poles. The Fourier transform of this continuous function will in general

decay in time. In other words, we have obtained irreversibility by taking the infinite

volume limit before the  → 0 limit.

Remark 72 Origin of poles far from the real axis: We come back to the phenom-

enological considerations on the self-energy in Chap.17. In the case of a continuous

spectral weight, when we start to do approximations there may appear poles that

are not infinitesimally close to the real axis. Indeed, return to our calculation of

the imaginary part of the self-energy above. If we write

− 1

Im
£
 (kk;)

¤
=
1



− Im £Σ (k )¤¡
 − 2

2
−Re [Σ (k )]¢2 + (Im [Σ (k )])2

(20.24)

then there are many cases, such as the one of degenerate electrons scattering off

impurities, where for small  we can approximate Im
¡
Σ (k )

¢
by a constant and

Re
£
Σ (k )

¤
by a constant plus a linear function of frequency. Then  (kk;)
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has a single pole, far from the real axis. In reality, we see from the spectral repre-

sentation Eq.(16.18) that this single pole is the result of the contribution of a series

of poles near the real axis, each of which gives a different residue contribution to

the spectral weight. (In the impurity problem, k is not a good quantum number

anymore so that several of the true eigenstates  entering the spectral weight

Eq.(16.21) have a non-zero projection hk| i on momentum eigenstates hk| ) It is
because the spectral weight here is approximated by a Lorentzian that the resulting

retarded Green’s function looks as if it has a single pole. It is often the case that

the true Green’s function is approximated by functions with a few poles that are not

close to the real axis. This can be done not only for the Green’s function, but also

for general response functions. Poles far from the real axis will arise in general

when the spectral weight, or equivalently the self-energy, is taken as a continuous

function of frequency, in other words when the infinite size limit is taken before

the limit  → 0.

20.3 Exercices

20.3.1 Diffusion sur des impuretés. Résistance résiduelle des métaux.

Continuons le problème de la diffusion d’une particule sur des impuretés abordé

précédemment. Supposez qu’on s’intéresse à des quantités de mouvement et des

énergies près de la surface de Fermi d’un métal. ( = 3) Mesurant l’énergie par

rapport à la surface de Fermi, on a alors comme propagateur non-perturbé


0 (k ) =

1

 +  −  (k)

où  (k) ≡ ( (k)− ) avec  (k) = 22 et  le potentiel chimique.

Dans tous les calculs qui suivent vous pouvez faire l’approximation que les

contributions principales viennent des énergies près du niveau de Fermi. Cela

veut dire que vous pouvez partout faire la substitutionZ
k

(2)
3
≈  (0)

Z ∞
−∞



où  (0) est la densité d’états au niveau de Fermi, que l’on prend constante. Dans

le cas où l’intégrale sur  ne converge pas, on régularise de la façon suivante

 (0)

Z 0

−0



où 0 est une coupure de l’ordre de l’énergie de Fermi.

a) Calculez explicitement la valeur de la règle de somme  [] pour ce prob-

lème de diffusion sur un potentiel aléatoire.

b) Calculez les parties réelle et imaginaire de
P

(k ) dans l’approximation

illustrée sur la figure 20-4

en prenant une fonction delta ((r) =δ (r)) pour le potentiel diffuseur. Ex-

primez le résultat en fonction de la densité d’états.

c) En négligeant toute dépendance en k et  de
P
(k ), vérifiez que dans cette

approximation, les deux règles de somme sur  (k,) correspondant à 
£
0
¤
=

 [1] et à  [] sont satisfaites, mais qu’aucune autre ne l’est.
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Figure 20-4 Second-order irreducible self-energy in the impurity averaging technique.

d) En approximant encore la self-énergie par une constante indépendante de

k et , prenez la transformée de Fourier du résultat que vous avez trouvé pour

 (k,) et calculez (k ). (N.B. Il est utile de définir un temps de relaxation

pour votre résultat en vous basant sur des considérations dimensionnelles.) Donnez

une interprétation physique de votre résultat pour (k ) .

e) Supposons que dans le diagramme de ci-haut qui contient une fonction de

Green, on fait une approximation auto-cohérente, i.e. on utilise la fonction de

Green ”habillée” plutôt que la fonction de Green des particules libres. Montrez

que, moyennant des hypothèse raisonnables, les résultats précédents ne sont pas

vraiment modifiés.

f) Dessinez quelques-uns des diagrammes de la série de perturbation originale

pour la self-énergie que l’approximation auto-cohérente décrite ci-dessus resomme

automatiquement.
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21. OTHER PERTURBATION RE-

SUMMATION TECHNIQUES: A

PREVIEW

The ground state energy may be obtained by the first sum rule. But in the more

general case, one can develop a perturbation expansion for it. The corresponding

diagrams are a sum of connected diagrams. The so-called “linked cluster theorem”

is a key theorem that will come back over and over again.

Given the expression we found above for the density-density correlation, the

reader will not be surprised to learn that the diagrams to be considered are, before

impurity averaging, of the type illustrated in Fig.(21-1). The density operators

act at the far left and far right of these diagrams.

+ ...

Figure 21-1 Some diagrams contributing to the density-density correlation function

before impurity averaging.

After impurity averaging, we obtain for example diagrams of the form illus-

trated in Fig.(21-2)

Subset of diagrams corresponding to dressing internal lines with the self-energy

can be easily resummed. The corresponding diagrams are so-called skeleton dia-

grams. The first two diagrams in Fig.(21-2) could be generated simply by using

lines that contain the full self-energy. The diagrams that do not correspond to

self-energy insertions, such as the last on in Fig.(21-2), are so-called vertex cor-

rections.

Subsets of vertex corrections that can be resummed correspond to ladders or

bubbles. Ladder diagrams, illustrated in Fig.(21-3) correspond to the so-called

Bethe-Salpeter equation, or T-matrix equation. They occur in the problem of

superconductivity and of localization.

The bubbles illustrated in Fig.(21-4) are useful especially for long-range forces.

They account for dielectric screening, and either renormalize particle-hole excita-

tions or give new collective modes: excitons, plasmons, spin wave, zero sound and

the like.

Finally, self-consistent Hartree-Fock theory can be formulated using skeleton

diagrams, as illustrated in Fig.(21-5). The self-consistency contained in Hartree-

Fock diagrams is crucial for any mean-field type of approximation, such as the

BCS theory for superconductivity and Stoner theory for magnetism.
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+ ...

Figure 21-2 Some of the density-density diagrams after impurity averaging.

...= + +

= +

Figure 21-3 Ladder diagrams for T-matrix or Bethe-Salpeter equation.

= +

=

+

+

+  ...

Figure 21-4 Bubble diagrams for particle-hole exitations.
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Figure 21-5 Diagrammatic representation of the Hartree-Fock approximation.

Parquet diagrams sum bubble and ladder simultaneously. They are essential if

one wants to formulate a theory at the two-particle level which satisfies fully the

antisymmetry of the many-body wave-function. In diagrammatic language, this

is known as crossing symmetry.

We come back on all these notions as in the context of the “real” many-body

problem that we now begin to discuss.
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22. FEYNMAN PATH INTEGRAL

FOR THE PROPAGATOR, AND

ALTERNATE FORMULATION OF

QUANTUM MECHANICS

We have seen that all the information is in the one-particle propagator. It is thus

possible to postulate how the propagator is calculated in quantum mechanics and

obtain a new formulation that is different from Schrödinger’s, but that can be

proven equivalent. This formulation is Feynman’s path integral, that was stimu-

lated by ideas of Dirac. The final outcome will be that the amplitude to go from

one point to another is equal to the sum over all possible ways of going between the

points, each path being weighted by a term proportional to (̇) where  is the

action. To understand that all intermediate paths are explored, it suffices to think

of Young’s interference through two slits. If we add more and more slits, we see

that the wave must go everywhere. In quantum mechanics there is no trajectory,

one of the most surprising results of that theory. However, if the action is large, as

in the classical limit, the most likely path will be that which minimizes the action,

just as we know from the least action principle in classical mechanics. Instead

of postulating it, here we derive the path integral formulation from Schrödinger’s

quantum mechanics. In practice, this method is now used mostly for numerical

calculations and for deriving semi-classical approximations.

We take a single particle in one dimension to simplify the discussion. The rele-

vant object is the amplitude for a particle to go from position  to position  in a

time Feynman calls that the probability amplitude or the kernel  (  ; 0) 

We will use the notation  (  ; 0) for reasons that will be come clear when

we discuss propagators in second quantized notation Mathematically then,

 (  ; 0) ≡ h | −~ |i  (22.1)

It is the basic object of this section.

22.1 Physical interpretation

There are several ways to physically understand the quantity defined above. From

the basic postulates of quantum mechanics, squaring  (  ; 0) gives the

probability
¯̄
h | −~ |i

¯̄2
that we are in eigenstate of position  at time 

if the starting state is a position eigenstate  Also, if we know  (  ; 0)

we know the amplitude to go from any state to any other one. Indeed, inserting

complete sets of position eigenstates we find that

­

¯̄
−~ |i =

Z


∗
 ( ) () h | − |i (22.2)
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Another way to see how to use  (  ; 0) is to relate it to the retarded

propagator,

 (  ; 0) ≡ − h | − |i  () = − (  ; 0)  () (22.3)

where  () is the heaviside step function. Inserting a complete set of energy

eigenstates, we find

 (  ; 0) ≡ −
X


h | i − h |i  ()

= −
X


 ( )
∗
 () 

− () (22.4)

As we saw before, the Fourier transform of this quantity with  a positive real

number is Z ∞
−∞

(+) (  ; 0) =
X


 ( )
∗
 ()

 +  −

 (22.5)

The poles of this function, as we already know, give the eigenenergies and the

residues are related to the wave functions. In the many-body context, a general-

ization of the propagator occurs very naturally in perturbation theory.

Remark 73 In statistical physics, h |  |i is a quantity of interest. Using the
known form of the density matrix, we have h |  |i = h | − |i  Hence,
computing these matrix elements is like computing the propagator in imaginary

time  with the substitution  → −  This analogy holds also in the many-body
context. The density matrix is much better behaved in numerical evaluations of the

path integral than the equivalent in real time because it does not have unpleasant

oscillations as a function of time.

22.2 Computing the propagator with the path inte-

gral

In general,  contains non-commuting pieces. The potential energy  is diagonal

in position space, but the kinetic energy is diagonal in momentum space. Hence,

computing the action of − on |i is non-trivial since we need to diagonalize
the Hamiltonian to compute the value of the exponential of an operator and that

Hamiltonian contains two non-commuting pieces that are diagonal in different

basis. The key observation is that if the time interval  is very small, say  then

the error that we do in writing the exponential as a product of exponentials is of

order 2 since it depends on the commutator of  with  

− ∼ −−  +
¡
2
¢
 (22.6)

In fact the error of order 2 is in the argument of the exponential, as one can see

from the Baker-Campbell-Hausdorff formula  =  with

 = + +
1

2
[] + 2 [ []] +    (22.7)

In numerical calculations it is important to keep the exponential form since this

garantees unitarity.
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Other factorizations give errors of even higher order. For example,

− ∼ − 2−− 2 (22.8)

gives an error of order 3 In practice, for numerical simulations it is quite useful

to use factorizations that lead to higher order errors. To continue analytically

however, the simplest factorization suffices.

In the factorized form, we can take advantage of the fact that we can introduce

complete sets of states where the various pieces of the Hamiltonian are diagonal

to compute the propagator for an infinitesimal time

h | −−  |i =

Z


2
h | − |i h| −  |i (22.9)

=

Z


2



− 2

2
+(−)− ()


(22.10)

where we used h| i =  The last formula can be rewrittenZ


2
(̇−) (22.11)

where

̇ ≡  − 


 (22.12)

The argument of the exponential is the Lagrangian times the time interval. It thus

has the units of action and is made dimensionless by dividing by the quantum of

action ~ that we have set to unity.
For a finite time interval, we simply split the time evolution operator into

evolution pieces that involve over an infinitesimal time interval

− =

Y
=1

− (22.13)

where  =  There is no approximation here. Inserting  − 1 complete sets of
states, we have

h | − |i =

Z −1Y
=1

 h | − |−1i h−1| − |−2i h2|   

|1i h1| − |i  (22.14)

Each of the  matrix elements can be evaluated now using the previous trick so

that the propagator is given by the formally exact expression

h | − |i = lim
→∞

Z −1Y
=1



Z Y
=1

 exp

∙


µ


 − −1


− 2
2
− 

¡

−1

¢¶


+

µ
−1

−1 − −2


− 2−1
2

− 
¡

−2

¢¶


+   

+ 

µ
1
1 − 


− 21
2
−  (


)

¶


¸
(22.15)

To do the calculation, this is what one has to do. Formally however, the final

expression is quite nice. It can be written as a path integral in phase space

h | − |i =

Z
[DD] exp

½


Z
 [̇− ( )]

¾
(22.16)

=

Z
[DD] exp  ( ) (22.17)
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where the definition of the measure [DD] is clear by comparison and where  is

the action.

It is more natural to work in configuration space where the Lagrangian is

normally defined. This comes out automatically by doing the integral over all

the intermediate momenta. They can be done exactly since they are all Gaussian

integrals that are easily obtained by completing the squareZ


2
exp 

µ
−1

−1 − −2


− 2−1
2

¶
 =

r


2
exp

"


2

µ
−1 − −2



¶2


#

=

r


2
exp

∙


2
̇2−1

¸
 (22.18)

Remark 74 The above is the propagator for a free particle. In that case, the time

interval could be arbitrary and the result could also be obtained using our earlier

decomposition on energy eigenstates sinceX


 ( )
∗
 () 

− =
Z



2
(−)−

2

2  (22.19)

Once the integrals over momenta have been done, we are left with

h | − |i = lim
→∞

Z −1Y
=1



Ãr


2

!

exp

"


Ã


2

µ
 − −1



¶2
− 

¡

−1

¢!

+

Ã


2

µ
−1 − −2



¶2
− 

¡

−2

¢!
+   

+ 

Ã


2

µ
1 − 



¶2
−  (


)

!#
(22.20)

=

Z 



D exp

µ


Z 

0

0
µ
1

2
̇2 −  ()

¶¶
=

Z 



D(̇) (22.21)

where the formal expression makes clear only that it is the integral of the La-

grangian, hence the action, that comes in the argument of the exponential. The

integration measure here is different from the one we had before. This form is

particularly useful for statistical physics where all the integrals are clearly con-

vergent, as opposed to the present case where they oscillate rapidly and do not

always have a clear meaning.

The physical interpretation of this result is quite interesting. It says that the

amplitude for going from one point to another in a given time is given by the sum

amplitydes for all possible ways of going between these two points in the given

time, each path, or trajectory, being weighted by an exponential whose phase is

the classical action measured in units of the action quantum ~.

Remark 75 Classical limit: The classical limit is obtained when the action is

large compared with the quantum of action. Indeed, in that case the integral can

be evaluated in the stationary phase approximation. In that approximation, one

expands the action to quadratic order around the trajectory that minimizes the ac-

tion. That trajectory, given by the Euler-Lagrange equation, is the classical trajec-

tory according to the principle of least action. By including gaussian fluctuations

around the classical trajectory, one includes a first set of quantum corrections.

Remark 76 The exponentials in the path integral are time-ordered, i.e. the ones

corresponding to later times are always to the left of those with earlier times. This

time-ordering feature will be very relevant later for Green functions.
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In the many-body context we need to find a generalization of the Green’s

function that will reduce to that found for the one-body Schrödinger equation in

the appropriate limit. This object comes in naturally from two perspectives. From

the experimental point a view, a photoemission experiment probes the Green’s

function in the same way that our scattering experiment at the very beginning

probed the density-density correlation function. Just from an experimental point

of view then, it is important to define that quantity. From the theoretical point of

view, any quantum mechanical calculation of a correlation function involves the

Green’s function as an intermediate step. That is one more reason to want to

know more about it.

We will begin with a brief recall of second quantization and then move on to

show that to predict the results of a photoemission experiment, we need a Green’s

function. We will establish the correspondance with the Green’s function we al-

ready know. When there are interactions, one needs perturbation theory to treat

the problem. Time-ordered products will come in naturally in that context. Such

time-ordered products motivate the definition of the Matsubara Green’s function

at finite temperature. The finite temperature formalism is more general and not

more difficult than the zero-temperature one. We will once more spend some time

on the interpretation of the spectral weight, develop some formulas for working

with the Fourier series representation of the imaginary time functions (Matsubara

frequencies). This should put us in a good position to start doing perturbation

theory, which is all based on Wick’s theorem. Hence, we will spend some time

proving this theorem as well as the very general linked-cluster theorem that is very

useful in practice.
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23. MAIN RESULTS FROM SEC-

OND QUANTIZATION

When there is more than one particle and they are identical, the wave function

say  (1 2 3) is not arbitrary. If we want particles to be indistinguishable, all

coordinates should be equivalent. This means in particular that if 1 takes any

particular value, say  and 2 takes another value, say , then we expect that

 (  3) =  (  3)  But that is not the only possibility since the only thing

we know for sure is that if we exchange twice the coordinates of two particles

then we should return to the same wave function. This means that under one

permutation of two coordinates (exchange), the wave function can not only stay

invariant, or have an eigenvalue of +1 as in the example we just gave, it can also

have an eigenvalue of −1. These two cases are clearly the only possibilities and
they correspond respectively to bosons and fermions. There are more possibilities

in two dimensions, but that is beyond the scope of this chapter.

When dealing with many identical particles, a basis of single-particle states is

most convenient. Given what we just said however, it is clear that a simple direct

product such as |1i ⊗ |2i cannot be used without further care because many-
particle states must be symmetrized or antisymmetrized depending on whether we

deal with Bosons or Fermions. For example, for two fermions an acceptable wave

function would have the form
√
2
−1 hr1|⊗ hr2| [|1i⊗ |2i− |2i⊗ |1i]  Second

quantization allows us to take into account these symmetry or antisymmetry prop-

erties in a straightforward fashion. To take matrix elements directly between wave

functions would be very cumbersome.

The single-particle basis state is a complete basis that is used most often. Note

however that a simple wave-function such as

 ( ) = (− )−|−| (23.1)

for two electrons in one dimension, with  and  constants, is a perfectly ac-

ceptable antisymmetric wave function. To expand it in a single-particle basis

state however requires a sum over many (in general an infinite number of) anti-

symmetrized one-particle states. There are cases, such as the quantum Hall effect,

where working directly with wave functions is desirable, but for our purposes this

is not so.

23.1 Fock space, creation and annihilation opera-

tors

As is often the case in mathematics, working in a space that is larger than the

one we are interested in may simplify matters. Think of the use of functions of

a complex variable to do integrals on the real axis. Here we are interested most

of the time in Hamiltonians that conserve the number of particles. Nevertheless,

it is easier to work in a space that contains an arbitrary number of particles.

That is Fock space. Annihilation and creation operators allow us to change the
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number of particles while preservin indistinguishability and antisymmetry. In this

representation, a three electron state comes out as three excitations of the same

vacuum state |0i  a rather satisfactory state of affairs
It will be very helpful if you review creation-annihilation operators, also called

ladder operators, in the context of the harmonic oscillator.

23.1.1 Creation-annihilation operators for fermion wave functions

For the time being our fermions are spinless, it will be easy to add spin later on.

We assume that the one-particle states |i form an orthonormal basis for one

particle, namely h| i =   The state |12i has particle 1 in state 1 and
particle 2 in state 2 If we write |21i then particle 1 is in state 2 and particle
2 in state 1 Antisymmetry means that |12i = − |21i 
We define a vaccum |0i that contains no particle. Then, we define †1 that

creates a particle from the vacuum to put it in state |1i and for fermions it
antisymmetrizes that state will all others. In other words, †1 |0i = |1i  Up
to now, there is nothing to antisymmetrize with, but if we add another particle,

†2 |1i = |21i = †2
†
1
|0i  then that state has to be antisymmetric. In other

words, we need to have |21i = − |12i  Clearly this will automatically be the
case if we impose that the creation operators anticommute, i.e. †

†

= −††

or n
†  

†


o
≡ †

†

+ †

†

= 0 (23.2)

This property is a property of the operators, independently of the specific state

they act on. The anticommutation property garantees the Pauli principle as we

know it since if  =  then the above leads to

†
†

= −††  (23.3)

The only operator that is equal to minus itself is zero. Hence we cannot create

two particles in the same state.

That same anticommutation property will automatically be satisfied by the

adjoint operators ©
  

ª ≡  +  = 0 (23.4)

These adjoint operators are defined as follows

h1| = h0| 1  (23.5)

The create and antisymmetrize in bras instead of kets. When the destruction

operators act on kets instead of bras, they remove a particle instead of adding it.

In particular,

1 |0i = 0 (23.6)

This is consistent with h1| 0i = 0 = h0| 1 |0i.
Since we also want states to be normalized, we need

h| i = h0| † |0i =   (23.7)

Since we already know that 1 |0i = 0 that will automatically be satisfied if we
write the following anticommutation realtion between creation and annihilation

operators n
  

†


o
≡ 

†

+ † = 

 (23.8)
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because then h0| † |0i = − h0| † |0i + h0|  |0i = 0 +   The above

thress sets of anticommutation relations are called canonical.

At this point one may ask why anticommutation instead of commutation. Well,

two reasons. The first one is that given the previous anticommutation rules, this

one seems elegant. The second one is that with this rule, we can define the very

useful operator, the number operator

b = †  (23.9)

That operator just counts the number of particles in state . To see that this is

so and that anticommutation is needed for this to work, we look at a few simple

cases. First note that if b acts on a state where  is not occupied, thenb |i = b† |0i = †
†

|0i = −†† |0i = 0 (23.10)

If I build an arbitrary many-particle state |     i  if the state  does not
appear in the list, then when I compute b |     i  I will be able to anticom-
mute the destruction operator all the way to the vacuum and obtain zero. On the

other hand, if  appears in the list then

b ³††    †    † |0i´ = †
†


   b†    † |0i  (23.11)

I have been able to move the operator all the way to the indicated position with-

out any additional minus sign because both the destruction and the annihilation

operators anticommute with the creation operators that do not have the same

labels. The minus signs from the creation and from the annihilation operators in

† cancel each other. Now, let us focus on b† in the last equation. Using
our anticommutation properties, one can check that

b† = †
†

= †

¡
1− †

¢
 (23.12)

Since there are never two fermions in the same state, now the destruction operator

in the above equation is free to move and annihilate the vacuum state, and

b ³††    †    † |0i´ = ³††    †    † |0i´  (23.13)

This means that b does simply count the number of particles. It gives one or
zero depending on whether the state is occupied or not.

One last thing with fermions. If we want the whole formalism to make sense,

we want to have a change sign to occur whenever we interchange two fermions,

wherever they are in the list. In other words, we want |            i =
− |            i  To see that our formalism works, you can write the

state to the left in terms of creation operators on the vacuum and convince yourself

by a series of pairwise interchange of operators that you will recover the state to

the right with the proper sign, wherever  and  are in the list of operators.

With fermions we need to determine an initial order of operators. That is totally

arbitrary because of the phase arbitrariness of quantum mechanics. But then,

during the calculations we need to keep track of the minus signs.

23.1.2 Creation-annihilation operators for boson wave functions

In the case of bosons, the state must be symmetric. Following Negele and Orland[1]

we introduce the symmetrized many-body state

|12}  (23.14)
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The state is not normalized at this point, which explains the unusual notation.

The state is symmetric means that |12} = |21} = †2
†
1
|0i  Hence in this

case, the creation operators and their corresponding annihilation operators must

commute: h
†  

†


i
≡ †

†

− †

†

= 0 (23.15)£

  
¤ ≡  −  = 0 (23.16)

This time there is no Pauli principle. Several particles can occupy the same

state. So what happens when we exchange creation and annihilation operators.

By analogy with the fermions, it is natural to expect that they must commute,

namely h
  

†


i
≡ 

†

− † =  (23.17)

The above set of commutation relations is called canonical. The same considera-

tions as before tell us that annihilation operators destroy the vacuum.

And again the number operator is defined by

b = †  (23.18)

Why is that true? If the state  is unoccupied or occupied only once, one can

check the effect of the operator b the same way we did it for fermions. And note
that when there are many other particles around, one must take commutation and

not anticommutation between creation and annihilation operators to make sure

that the many-particle state is an eigenstate of b with eigenvalue unity when a
single state is occupied.

What happens if the same state is occupied multiple times? Then,

b† = †
†

= †

¡
1 + †

¢
(23.19)

= † + †b  (23.20)

The destruction operator in b will not be able to complete its jurney to the
vacuum to annihilate it. Every time it encounters an operator † it leaves it
behind and adds a new term †b just like above. Once we have done that
repeatedly, the desturction operator accomplishes its task and we are left with 
times the original state, where  is the number of times the label  appeared

in the list. So b really has the meaning of a number operator, i.e. an operator
that counts the number of times a given label appears in a many-body state. All

that we are left to do is normalize the symmetrized state.

23.1.3 Number operator and normalization

To fix the normalization in the case of bosons, it suffices to consider a single state

that can be multiply occupied and then to generalize. Let us drop then all indices

and ask how the state
¡
†
¢ |0i can be normalized. First, notice that Eq.(23.12)

above can be written as £b †¤ = † (23.21)

By the way, using the fact that
¡
†
¢2
= 0 on the right-hand side of Eq.(23.12) we

see that the latter equation is true for fermions as well. Taking the adjoint of the

above equation we find

[b ] = − (23.22)

We can now use a very useful theorem that is trivial to prove. We will call it the

theorem on commutators of ladder operators.
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Theorem 9 Let |i be an eigenstate of b with eigenvalue  If
£b †¤ = †

with  a real or complex number, then † |i is an eigenstate of b with eigenvalue
+

Proof:
£b †¤ |i = b ¡† |i¢−† |i = † |i, so that b ¡† |i¢ = (+)

¡
† |i¢

Q.E.D.

Using this theorem with our result for the commutator of the number operator

with the creation operator Eq.(23.21) we have that b ¡† |i¢ = (+ 1)
¡
† |i¢

hence † |i =  |+ 1i  Assuming that |i and |+ 1i are normalized we can
find the normalization constant as follows

h| † |i = ||2 h+ 1 |+ 1i = ||2
= h| 1 + † |i = (+ 1) h |i = (+ 1)  (23.23)

We are free to choose the phase real so that  =
√
+ 1We thus have recursively

† |0i = |1i¡
†
¢2 |0i =

√
2 |2i¡

†
¢3 |0i =

√
3
√
2 |3i (23.24)

and

|i = 1√
!

¡
†
¢ |0i  (23.25)

From this we conclude that for a general many-body state,

| i = 1pQ
  !

| } = 1pQ
  !

†
†


   † |0i (23.26)

where the product in the denominator is over the indices that label the occupied

one-particle states and  counts the number of times a given one-particle state

appears.

Remark 77 Since with fermions a state is occupied only once, we did not need

to worry about the  !.

Remark 78 By recalling the theorem proven in this section, it is also easy to

remember that
£b †¤ = † and [b ] = −

23.1.4 Wave function

With  -particles, the wave function

hr1r2r | 12 i (23.27)

is proportional to a Slater determinant if we have fermions, and to a permanent

if we have bosons.
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23.2 Change of basis

Creation-annihilation operators change basis in a way that is completely deter-

mined by the way one changes basis in single-particle states. Suppose one wants

to change from the  basis to the  basis, namely

|i =
X


|i h| i (23.28)

which is found by inserting the completeness relation. Let creation operator †
create single particle state |i and antisymmetrize while creation operator †
creates single particle state |i and antisymmetrize. Then the correspondance
between both sets of operators is clearly

† =
X


† h| i (23.29)

with the adjoint

 =
X


h| i  (23.30)

given as usual that h| i = h| i∗  Physically then, creating a particle in a
state |i is like creating it in a linear combination of states |i  We can do the
change of basis in the other direction as well.

Since we have defined new creation annihilation operators, it is quite natural

to ask what are their commutation or anticommutation relations. It is easy to

find using the change of basis formula and the completeness relation. Assuming

that the cration-annihilation operators are for fermions, we findn
  

†


o
=

X


X


h| i
n
  

†


o
h | i (23.31)

=
X


X


h| i  h | i (23.32)

=
X


h| i h| i = h| i  (23.33)

Hence, if the transformation between basis is unitary, the new operators, obey

canonical anticommutation relations, namelyn
  

†


o
=  (23.34)

When the change of basis is unitary, we say that we have made a canonical trans-

formation. The same steps show that a unitary basis change also preserves the

canonical commutation relations for bosons.

23.2.1 The position and momentum space basis

We use this strange, but commonly used, basis where we take continuum notation

for space and discrete notation for momentum. Then, we have the conventionsX
k

|ki hk| = 1 =
Z

r |ri hr|
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hr |ki = 1√
V 

k·r (23.35)

hk |ri = 1√
V 
−k·r (23.36)

From these definitions, we have that hr |r0i is normalized in the continuum while

hk |k0i is normalized as a discrete set of states

hr |r0i =
X
k

hr |ki hk |r0i = 1

V
X
k

k·(r−r
0) =

Z
k

(2)
3
k·(r−r

0) =  (r− r0)

(23.37)

hk |k0i =
Z

r hk |ri hr |k0i = 1

V
Z

r−r·(k−k
0) = kk0 (23.38)

Creation operators in eigenstates of position are usually denoted, † (r), while
creation operators in eigenstates of momentum are denoted 

†
k. The basis change

between them leads to

† (r) =
X
k


†
k hk |ri =

1√
V
X
k


†
k
−k·r (23.39)

 (r) =
X
k

hr |ki k = 1√
V
X
k

k·rk (23.40)

Given our above convention, the momentum operators obey the algebra of a dis-

crete set of creation operators. Taking fermions as an example, then we haven
k 

†
k0

o
= kk0 ; {k k0} =

n

†
k 

†
k0

o
= 0 (23.41)

while the position space creation-annihilation operators obeyn
 (r)  † (r0)

o
=
P

k

P
k0 hr |ki

n
k 

†
k0

o
hk0 |r0i =Pk hr |ki hk |r0i = hr |r0i =  (r− r0)

(23.42)

{ (r)   (r0)} =
n
† (r)  † (r0)

o
= 0 (23.43a)

23.3 One-body operators

The matrix elements of an arbitrary one-body operator b (in the −particle
case) may be computed in the many-body basis made of one-body states whereb is diagonal. As an example of one-body operator, the operator b could be an

external potential so that the diagonal basis is position space. In the diagonal

basis, b |i =  |i = h| b |i |i (23.44)

where  is the eigenvalue. In this basis, one sees that the effect of the one-body

operator is to produce the same eigenvalue, whatever the particular order of the

states on which the first-quantized operator acts. For example, suppose we have

three particles in an external potential, then the potential energy operator is

 (R1) +  (R2) +  (R3) (23.45)
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where R acts on the  position of the many body state. If this state is not

symmetrized or antisymmetrized, then for example

( (R1) +  (R2) +  (R3)) |r0i⊗|ri⊗|r00i = ( (r0) +  (r) +  (r00)) |r0i⊗|ri⊗|r00i 
(23.46)

If that operator  (R1)+ (R2)+ (R3) had acted on onother ordering such as

|ri⊗ |r00i⊗ |r0i  the eigenvalue would have been identical,  (r)+ (r00)+ (r0) 
This means that if we act on a symmetrized or antisymmetrized version of that

state, then

( (R1) +  (R2) +  (R3)) |r0 r r00i = ( (r0) +  (r) +  (r00)) |r0 r r00i
(23.47)

In general then when we have  particles in a many-body state, the action of the

one-body operator is

X
=1

b |      i = ¡ +  +  +   
¢ |      i (23.48)

Knowing the action of the number operator, we can write the same result differ-

ently
X
=1

b |      i =X


b |      i (23.49)

in other words, there will be a contribution as long as  appears in the state.

And if  occurs more than once, the corresponding eigenvalue  will appear

more than once.

We hold a very elegant result. The one-body operator
P

 b in second
quantized notation makes no reference to the total number of particles nor to

whether we are dealing with bosons of fermions. Note that in first quantization

the sum extends over all particle coordinates whereas in second quantization the

sum over  extends over all states.

Using the change of basis formula explained above, we have thatX


h| |i † =
X


X


X


† h |i h| |i h |i   (23.50)

Since  is diagonal, we can add a sum over  and use the closure relation to

arrive at the final resultP
 b =P

P
 

†

h| |i   (23.51)

Let us give examples in the position and momentum representation. A one-

body scattering potential in the continuum would be represented by

b = R r (r)† (r) (r) (23.52)

which looks similar to the usual Schrödinger average. Similarly, the kinetic energy

operator in the momentum representation becomes

b =X
k

hk| 
2

2
|ki †kk =

X
k

Z
r

Z
r0† (r) hr |ki hk| 

2

2
|ki hk |r0i (r0)

(23.53)

=
1

V
X
k

Z
r

Z
r0† (r) k·(r−r

0) 
2

2
 (r0) (23.54)

=
1

V
X
k

Z
r

Z
r0† (r)

µ
− 1

2
∇2
¶
k·(r−r

0) (r0)  (23.55)
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Performing the k summation and using partial integration assuming that every-

thing vanishes at infinity or is periodic, we obtain,

b = ¡− 1
2

¢ R
r† (r)

¡∇2 (r)¢ = 1
2

R
r∇† (r) ·∇ (r)  (23.56)

Again notice that second-quantized operators look like simple Schrödinger av-

erages over wave functions.

23.4 Two-body operators.

A two-body operator involves the coordinates of two particles. An example is

the Coulomb potential. If we let the indices in b12 refer to the potential energy
between the first and second particles in the direct product, and if we are in the

diagonal basis, we have thatb12 |i⊗ |i =  |i⊗ |i  (23.57)

In this basis, one sees that again the eigenvalue does not depend on the order in

which the states are when the first-quantized operator acts. This means that

1

2

X
=1

X
=1
 6=

b |      i = 1

2

¡
 +  +  +   

¢ |     i
(23.58)

If |i 6= |i, then the number of times that  occurs in the double sum is

equal to  . However, when |i = |i, then the number of times that 
occurs is equal to ( − 1) because we are not counting the case  =  in the

sum. In general then,

1

2

X
=1

X
=1
 6=

b |      i = 1

2

X


X



¡bb − b¢ |      i 

(23.59)

Again the expression to the right is independent of the state it acts on. It is valid

in general.

We can simplify the expression further. Defining

 = −1 for fermions (23.60)

 = 1 for bosons (23.61)

we can rewrite bb − b in terms of creation and annihilation operators in
such a way that the form is valid for both fermions and bosons

bb − b = †
†

 − 

†

 = †

†

 = †

†

 

(23.62)

Second quantized operators are thus written in the simple form

1
2

P


P
 

¡bb − b¢ ≡ 1
2

P


P
 ( | |) ††

(23.63)

where

|) ≡ |i⊗ |i  (23.64)
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Under unitary transformation to an arbitrary basis we have

b = 1
2

P


P


P


P
 (|

¯̄


¢
†

†

  (23.65)

Definition 10 When a series of creation and annihilation operators are placed

in such an order where all destruction operators are to the right, one calls this

“normal order”.

Remark 79 Note the inversion in the order of  and  in the annihilation

operators compared with the order in the matrix elements (This could have been

for the creation operator instead).

Remark 80 The notation (|
¯̄


¢
for the two-body matrix element means,

in the coordinate representation for example,Z
r1r2

∗

(r1)

∗

(r2) (r1 − r2) (r1) (r2)  (23.66)

Exemple 11 In the case of a potential, such as the Coulomb potential, which acts

on the densities, we have

b = 1
2

R
x
R
y (x− y)† (x)† (y) (y) (x)  (23.67)

23.5 Second quantized operators in the Heisenberg

picture

In the previous section, we showed how to translate one- and two-body operators in

the Schrödinger picture into the language of second quantization. The Heisenberg

picture is defined as usual. In this section, we derive a few useful identities and

study the case of quadratic Hamiltonians as an example.

In the Heisenberg picture

k () = 
k

−  ; 
†
k () = 


†
k
−  (23.68)

It is easy to compute the time evolution in the case where the Hamiltonian is

quadratic in creation and annihilation operators. Take for example

b =
X
k

k
†
kk (23.69)

The time evolution may be found from the Heisenberg equation of motion, which

follows from differentiating the definition of the Heisenberg operators


k ()


=
h
k ()  bi  (23.70)

To evaluate the commutator, we note that since b commutes with itself is is time

independent and X
k

k
†
kk =

X
k

k
†
k () k () 
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To compute the commutator, we only need the equal-time commutator of the

number operator 
†
k () k () with k (), which is given by Eq.(23.22) and leads,

for both fermions and bosons, to


k ()


=
h
k ()  bi =X

k0
k0
h
k ()  

†
k0 () k0 ()

i
= kk () (23.71)

whose solution is

k () = −kk (23.72)

Taking the adjoint,


†
k () = 

†
k

k  (23.73)

If we had been working in a basis where b was not diagonal, then repeating

the steps above,


 ()


=
h
 ()  bi =X



h| b |i h ()  † ()  ()i =X


h| b |i  ()
(23.74)

Commutator identities: The following are very useful identities to get equa-

tions of motions, and in general equal-time commutators.

[] =  − =  − + − (23.75)

[] = [] + [] (23.76)

[] = {} − {} (23.77)

The first commutator identity is familiar from elementary quantum mechan-

ics. The last one can be memorized by noting that it behaves as if the  had

anticommuted with the It is always easier to remember the commutator of

the number operator with creation or annihilation operators, but if you need

to prove it again for yourself, the above identities can be used to evaluate

the needed commutator either for fermionsh
k ()  

†
k0 () k0 ()

i
=
n
k ()  

†
k0 ()

o
k0 () + 0 = kk0k () (23.78)

or for bosonsh
k ()  

†
k0 () k0 ()

i
=
h
k ()  

†
k0 ()

i
k0 () + 0 = kk0k () (23.79)
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24. MOTIVATION FOR THE DEFI-

NITION OF THE SECOND QUAN-

TIZED GREEN’S FUNCTION 

Just as we showed that scattering and transport experiments measure correlation

functions such as the density-density or current-current correlation function, we

begin this chapter by showing that photoemission directly probes a one-particle

correlation function. The last section will introduce and motivate further the

definition of the second quantized Green’s function.

24.1 Measuring a two-point correlation function (ARPES)

In a photoemission experiment, a photon ejects an electron from a solid. This is

nothing but the old familiar photoelectric effect. In the angle resolved version of

this experiment (ARPES), the energy and the direction of the outgoing electron

are measured. This is illustrated in Fig.(24-1). The outgoing electron energy can

be measured. Because it is a free electron, this measurement gives the value of the

wave vector through 22 Using energy conservation, the energy of the outgoing

electron is equal to the energy of the incident photon  minus the work function

 plus the energy of the electron in the system,  measured relative to the Fermi

level.

e
Photon

= E   + - W k
2m

2

k

ph

Figure 24-1 Schematic representation of an angle-resolved photoemission experi-

ment.  is the work function.

The energy of the electron in the system  will be mostly negative. The value

of k|| may be extracted by simple geometric considerations from the value of 

Since in this experiment there is translational invariance only in the direction

parallel to the plane, this means that in fact it is only the value of k|| that is
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conserved. Hence, it is only for layered systems that we really have access to both

energy  and total momentum k|| of the electron when it was in the system.
We can give a sketchy derivation of the calculation of the cross-section as

follows. The cross-section the we will find below neglects. amongst other things,

processes where energy is transferred from the outgoing electron to phonons or

other excitations before it is detected (multiple scattering of outgoing electron).

Such processes are referred to as “inelastic background”. We start from Fermi’s

Golden rule. The initial state is a direct product |i ⊗ |0i ⊗ |1qi of the state

of the system |i  the state |0i with no electron far away from the detector and

of the state of the elctromagnetic field that has one incoming photon |1qi  The

final state |i ⊗ |ki ⊗ |0i has the system in state |i with one less electron,
the detector with one electron in state |ki and the electromagnetic field in state
|0i with no photon. Strictly speaking, the electrons in the system should be

antisymmetrized with the electrons in the detector, but when they are far enough

apart and one electron is detected, we can assume that it is distinguishible from

electrons in the piece of material. The coupling of matter with electromagnetic

field that produces this transition from initial to final state is j ·A as we saw

previously. Hence, the transition rate will be proportional to the square of the

following matrix element

− 1V
X
k0
h|⊗ hk|⊗ h0| jk0 ·A−k0 |i⊗ |0i⊗ |1qi  (24.1)

= − 1V
X
k0
h|⊗ hk| jk0 |i⊗ |0i · h0|A−k0 |1qi (24.2)

The vector potential is the analog of the position operator for harmonic vibration

of the electromagnetic field. Hence, it is proportionnal to 
†
−k0 + k0 and k

0 = q
with the destruction operator will lead to a non-zero value of h0|A−k0 |1qi  For
the range of energies of interest, the wave vector of the photon k0 = q can be

considered in the center of the Brillouin zone. The current operator is a one-body

operator. In the continuum, it is then given by

jk0=0 =


V
X
p

p


†pp (24.3)

The value p = k|| will lead to a non-zero matrix element. Overall then, the matrix
element is

− h| k|| |i
µ
hk| †k|| |0i



V2
k||

· h0|Ak0=q∼0 |1qi

¶
 (24.4)

The term in large parenthesis is a matrix element that does not depend on the

state of the system. Without going into more details of the assumptions going

into the derivation then, Fermi’s golden rule suggests, (see first section of Chapter

2) that the cross section for ejecting an electron of momentum k|| and energy 

(measured with respect to ) is proportional to

2

Ω
∝

X


−
¯̄
h| k|| |i

¯̄2
 ( + − ( −)) (24.5)

∝
X


−
¯̄
h| k|| |i

¯̄2
 ( − ( −)) (24.6)

∝
Z


D

†
k||
k|| ()

E
 (24.7)

In the above equations, we have measured energies with respect to the chemical

potential, defining  =  −  Since there is one more particle in state
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|i than in state |i  that explains the extra chemical potential. For the last
line, we have followed van Hove and used the same steps as in the corresponding

derivation for the cross section for electron scattering.8 In the latter case, there

was a relation between the correlation function and the spectral weight that could

be established with the fluctuation dissipation theorem. We will be able to achieve

the same thing below in Sec. 28.4. More specifically, we will be able to rewrite

this result in terms of the spectral weight 
¡
k|| 

¢
as follows,

2

Ω
∝  ()

¡
k|| 

¢
(24.8)

where  () is the Fermi function.

24.2 Definition of the many-body  and link with

the previous one

When the Hamiltonian is quadratic in creation-annihilation operators, in other

words when we have a one-body problem, the retarded single-particle Green’s

function we are about to define does reduce to the Green’s function we studied in

the one-body Schrödinger equation. Its actual definition is however better suited

for many-body problems as we shall see in the present section.

Consider the definition we had before

 (r; r0 0) = − hr| −(−0) |r0i  (− 0)  (24.9)

Since in second-quantization the operator † (r) creates a particle at point r, the
following definition seems natural

 (r; r0 0) = − h| (r) −(−0)† (r0) |i  (− 0) (24.10)

In this expression, |i is a many-body vacuum (ground-state). Choosing ap-

propriately the zero of energy,  |i = 0 |i = 0 the above result could be

written

 (r; r0 0) = − h| (r)† (r0 0) |i  (− 0)  (24.11)

This is not quite what we want except in the case where there is a single parti-

cle propagating. Indeed, to keep the physical definition of the propagator, it is

convenient to have at time  = 0 + 0+


¡
r+ 0+; r0 

¢
= − (r− r0) (24.12)

reflecting the fact that the wave-function does not have the time to evolve in an

infinitesimal time. However, in the present case, the many-body vacuum |i is a
linear combination of Slater determinants. This means that h| (r)† (r0 ) |i
is not in general a delta function. This is a manifestation of the fact that we have

a many-body problem and that particles are indistinguishable.

Nevertheless, we can recover the desired simple initial condition Eq.(24.12)

even in the Many-Body case by adopting the following definition, which in a

way takes into account the fact that not only electrons, but also holes can now

propagate:

 (r; r0 0) = − h|
n
 (r)  † (r0 0)

o
|i  (− 0) ; for fermions

(24.13)
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 (r; r0 0) = − h|
h
 (r)  † (r0 0)

i
|i  (− 0) ; for bosons

(24.14)

This is the zero-temperature definition. At finite temperature, the ground-state

expectation value is replaced by a thermodynamic average. Hence we shall in

general work with

Definition 12

 (r; r0 0) = −
Dn

 (r)  † (r0 0)
oE

 (− 0) ; for fermions (24.15)

 (r; r0 0) = −
Dh
 (r)  † (r0 0)

iE
 (− 0) ; for bosons (24.16)

These definitions have the desired property that at  = 0 + 0+, we have that
 (r+ 0+; r0 ) = − (r− r0) as follows from commutation or anti-commutation
relations

Remark 81 Analogies: This definition is now analogous to  = 2” (− 0)
which we had in linear response. The imaginary part of the Green’s function will

again be a commutator or an anticommutator and hence will obey sum-rules.

Remark 82 Green’s function as a response function: Physically, this definition

makes obvious that the Green’s function is the response to an external probe which

couples linearly to creation-annihilation operators. In the case of fermions, the

external probe has to be an anticommuting number (a Grassmann variable, as we

shall discuss later).

24.3 Examples with quadratic Hamiltonians:

When the Hamiltonian is quadratic in creation-annihilation operators, the equa-

tion of motion obeyed by this Green’s function is the same as in the one-body

case. An example of quadratic Hamiltonian is that for free particles

hr| |r1i = −∇
2

2
hr |r1i = −∇

2

2
 (r− r1)  (24.17)

In the general second quantized case, we write

b =

Z
r1

Z
r2

† (r2) hr2| |r1i (r1) (24.18)

We give two calculations of the Green’s function, one directly from the definition

and one from the equations of motion (Schrödinger’s equation).

Calculation from the definition. For a quadratic Hamiltonian, one can also

compute directly the Green’s function from its definition since, if |i is an
eigenbasis,  (r) = hr |i, h0| |i = 0

 (r) =
X


hr |i  () =
X


− hr |i  =
X


− (r) 

(24.19)
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n
 (r)  † (r0 0)

o
=
X


X


− (r)
©
 

†


ª
∗ (r

0) =
X


− (r)
∗
 (r

0)

(24.20)

 (r; r0 0) = −
Dn

 (r)  † (r0 0)
oE

 () = −
X


− (r)
∗
 (r

0)  ()

(24.21)

 (r r0;) =
Z

(+) (−)
X


− (r)
∗
 (r

0)  () =
X


 (r)
∗
 (r

0)
 +  − 

(24.22)

Calculation from the equations of motion In general, the equation of mo-

tion can be obtained as follows





 (r; r0 0) = 





h
−
Dn

 (r)  † (r0 0)
oE

 (− 0)
i

(24.23)

=
Dn

 (r)  † (r0 0)
oE

 (− 0) + 
Dnh b (r)

i
 † (r0 0)

oE
 (− 0)

(24.24)

Following the steps analogous to those in Eq.(23.78) above, using the an-

ticommutation relations Eqs.(23.42)(23.43a), or more directly recalling the

commutator of the number operator with a creation or an annihilation op-

erator, it is clear thath b (r)
i
= −

Z
r1 hr| |r1i (r1) (24.25)

so that





 (r; r0 0) (24.26)

=  (r− r0)  (− 0)− 

Z
r1 hr| |r1i

Dn
 (r1)  

† (r0 0)
oE

 (− 0)

=  (r− r0)  (− 0) +
Z

r1 hr| |r1i (r1; r
0 0) (24.27)

This last expression may be rewritten asZ
r1 hr|  


− b |r1i (r1; r

0 0) =  (r− r0)  (− 0) (24.28)

= hr |r0i  (− 0) (24.29)

where we recognize the equation (16.48) found in the previous Chapter.

Formally then

hr|
µ




− b¶ (−0) |r0i = hr |r0i  (− 0) (24.30)

so that the operator form of the Green’s function is the same as that found

before, namely b (−0) =
µ




− b¶−1  (− 0) (24.31)

It is convenient to rewrite the result for the equation of motion Eq.(24.28)

in the following form that is more symmetrical in space and time.Z
r1

Z
1 hr|  


− b |r1i  (− 1)

 (r11; r
0 0) =  (r− r0)  (− 0)

(24.32)
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We may as well let time play a more important role since in the many-body

case it will be essential, as we have already argued in the context of the

frequency dependence of the self-energy. The inverse of the Green’s function

in this notation is just like above,

 (r; r1 1)
−1
= hr|  


− b |r1i  (− 1)  (24.33)

Seen from this point of view, the integrals over time and space are the

continuum generalization of matrix multiplication. The delta function is

like the identity matrix.

Definition 13 The following short-hand notation is often used

 (1 10) ≡  (r; r0 0) (24.34)


¡
1 1
¢−1


¡
1 10

¢
=  (1− 10) (24.35)

where the index with the overbar stands for an integral.
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25. INTERACTION REPRESENTA-

TION, WHEN TIME ORDER MAT-

TERS

Perturbation theory in the many-body case is less trivial than in the one-body

case. Whereas the Lippmann-Schwinger equation was written down for a single

frequency, in the many-body case time and frequency dependence are unavoidable.

To construct perturbation theory we will follow the same steps as those used in

the derivation of linear response theory in Chapter 10. The only difference is that

we will write a formally exact solution for the evolution operator in the interaction

representation instead of using only the first order result. The important concept

of time-ordered product comes out naturally from this exercise.

The plan is to recall the Heisenberg and Schrödinger pictures, and then to

introduce the interaction representation in the case where the Hamiltonian can be

written in the form

 = 0 +  (25.1)

where

[0  ] 6= 0 (25.2)

Let us begin. We assume that  is time independent. Typical matrix elements

we want to compute at finite temperature are of the form

h| − ()† (0) |i (25.3)

We do not write explicitly indices other than time to keep the notation simple.

Recall the Heisenberg and Schrödinger picture

 () = 
− (25.4)

We define the time evolution operator

 ( 0) = − (25.5)

so that

 () =  (0 ) ( 0) (25.6)

Because from now on we assume time-reversal symmetry, we will always make the

replacement

† ( 0) =  (0 ) (25.7)

as we just did. The differential equation for the time-evolution operator is


 ( 0)


=  ( 0) (25.8)

With the initial condition  (0 0) = 1 it has  ( 0) = − as its solution. It

obeys the semi-group property

 ( 0) =  ( 0) (0 0) = −(−
0) (25.9)
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−1 ( 0) =  (0 ) (25.10)

 (0 0) = 1 (25.11)

for arbitrary 0
We are now ready to introduce the interaction representation. In this repre-

sentation, the fields evolve with the unperturbed Hamiltonian

b () = 0
−0 (25.12)

Note that we now use the caret (hat) to mean “interaction picture”. We hope this

change of notation causes no confusion. To introduce these interaction represen-

tation fields in a general matrix element,

h| − ()† (0) |i = h| − (0 ) ( 0) (0 0)† (0 0) |i
(25.13)

it suffices to notice that it is easy to remove the extra 0 coming from the

replacement of  by 
−0b () 0 simply by including them in the definition

of the evolution operator in the interaction representationb ( 0) = 0 ( 0) (25.14)

b (0 ) =  (0 ) −0 (25.15)b ( 0) b (0 ) = b (0 ) b ( 0) = 1 (25.16)

With these definitions, we have that our general matrix element takes the form

h| − ()† (0) |i = h| − b (0 ) b () b ( 0) b (0 0) b† (0) b (0 0) |i
(25.17)

The purpose of the exercise is evidently to find a perturbation expansion for the

evolution operator in the interaction representation. It will be built starting from

its equation of motion


 b ( 0)


= 0 (−0 +) ( 0) = 0

¡
−00

¢
 ( 0)

(25.18)

Since a general operator is a product of  fields, it will also evolve with time in

the same way so it is natural to define the interaction representation for  as well.

Our final result for the equation of motion for b ( 0) is then

 b ( 0)


= b () b ( 0)

Multiplying on the right by b (0 0) we have a more general equation

 (0)


= b () b ( 0) (25.19)

Remark 83 Difficulties associated with the fact that we have non-commuting op-

erators: The solution of this equation is not −
  () We will see momentarily

how the real solution looks formally like an exponential while at the same time

being very different from it. To write the solution as a simple exponential is wrong

because it assumes that we can manipulate b ( 0) as if it was a number. In re-
ality it is an operator so that

 (0)


b ( 0)−1 6= 

ln b ( 0)  Indeed, note the

ambiguity in writing the definition of this derivative: Should we write




ln b ( 0) = lim

∆→0
b ( 0)−1 hb (+∆ 0)− b ( 0)i ∆
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or

lim
∆→0

hb (+∆ 0)− b ( 0)i b ( 0)−1 ∆ ? (25.20)

The two limits cannot be identical since in general

lim
∆→0

hb (+∆ 0)  b ( 0)−1i 6= 0 (25.21)

because b ( 0) is made up of operators such as  and −0 that do not commute

with each other.

To solve the equation for the evolution operator Eq.(25.19), it is more con-

venient to write the equivalent integral equation that is then solved by iteration.

Integration on both sides of the equation and use of the initial condition Eq.(25.11)

gives immediately Z 

0

 b (0 0)
0

0 = −
Z 

0

0 b (0) b (0 0) (25.22)

b ( 0) = 1− 

Z 

0

0 b (0) b (0 0) (25.23)

Solving by iteration, we find

b ( 0) = 1− 

Z 

0

0 b (0) b (0 0) = (25.24)

= 1− 

Z 

0

0 b (0) + (−)2 Z 

0

0 b (0)Z 0

0

00 b (00) (25.25)

+(−)3
Z 

0

0 b (0) Z 0

0

00 b (00)Z ”

0

000 b (000) +  (25.26)

Suppose   0 and consider a typical term in this series. By suitably defining a

contour  and time-ordering operator along this contour , it can be rearranged

as follows

(−)3
Z 

0

0 b (0)Z 0

0

00 b (00) Z ”

0

000 b (000) (25.27)

= (−)3 1
3!


∙Z


1 b (1)Z


2 b (2) Z


3 b (3)¸ (25.28)

where

•  is a contour that is here just a real line segment going from 0 to .

•  is the “time-ordering operator”. Assuming   0 it places the operator

which appear later on the contour  to the left. For the time being,  orders

operators that are bosonic in nature. A generalization will appear soon with

fermionic Green’s functions.

• The integral on the lef-hand side of the last equation covers all possible times
such that the operators with the time that is largest (latest) are to the left.

The 1
3!
comes from the fact that for a general b (1) b (2) b (3) there are

3! ways of ordering the operators. All these possible orders appear in the

integrals on the right-hand side of the last equation. The operator  always

orders them in the order corresponding to the left-hand side, but this means

that the integral on the left-hand side appears 3! times on the right-hand

side, hence the overall factor of 1
3!
.
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• A product of operators on which  acts is called a time-ordered product.

One also needs b (0 ). In this case, with   0 the operators at the earliest

time are on the left. This means that the contour on which the  is defined is

ordered along the opposite direction.

A general term of the series may thus be written as

b ( 0) = ∞X
=0

(−) 1
!


"µZ


1 b (1)¶# (25.29)

which we can in turn write in the convenient notation

b ( 0) = 

h
exp

³
− R


1 b (1)´i (25.30)

where the contour is as defined above. In other words, operators are ordered right

to left from 0 to  whether , as a real number, is larger or smaller than 0.

We can check the limiting case [0  ] = 0 Then b is independent of time and
we recover the expected exponential expression for the time evolution operator.

The definition of the time-ordering operator is extremely useful in practice not

only as a formal device that allows the time evolution to still look like an expo-

nential operator (which is explicitly unitary) but also because in many instances it

will allow us to treat operators on which it acts as if they were ordinary numbers.

In the zero-temperature formalism, the analog of b ( 0) is the so-called 

matrix. The time-ordering concept is due to Feynman and Dyson.

Remark 84 Non-quadratic unperturbed Hamiltonians: It is important to notice

that in everything above, 0 does not need to be quadratic in creation-annihilation

operators. With very few exceptions however,[2] it is quadratic since we want the

“unperturbed” Hamiltonian to be easily solvable. Note that the case where 0 is

time dependent can also be treated but in this case we would have an evolution

operator 0 ( 0) instead of 
−0. The only property of the exponential that we

really use in the above derivation is the composition law obeyed by time-evolution

operators in general, namely 0 ( 
0)0 (0 00) = 0 ( 

00) 

Remark 85 The general case of time-dependent Hamiltonians: The problem we

just solved for the time evolution in the interaction picture Eq.(25.19) is a much

more general problem that poses itself whenever the Hamiltonian is time-dependent.

192 INTERACTION REPRESENTATION, WHEN TIME ORDER MATTERS



26. KADANOFF-BAYMANDKELDYSH-

SCHWINGER CONTOURS

While we have discussed only the time evolution of the operators in the interaction

representation, it is clear that we should also take into account the fact that the

density matrix − should also be calculated with perturbative methods. The

results of the previous section can trivially be extended to the density matrix by

a simple analytic continuation → −  In doing so in the present section, we will
discover the many advantages of imaginary time for statistical mechanics.

Let us define evolution operators and the interaction representation for the

density matrix in basically the same way as before

− =  (− 0) = −0(−) b (− 0) = −0 b (− 0) (26.1)

The solution of the imaginary time evolution equation


 b (00 0)
 (00)

= b (00) b (00 0)
is then b (− 0) = 

∙
exp

µ
−
Z


 (00) b (00)¶¸ (26.2)

where

00 ≡ Im () (26.3)

b (00) = −
000 

000 (26.4)

and the contour  now proceeds from 00 = 0 to 00 = −.
Overall now, the matrix elements that we need to evaluate can be expressed in

such a way that the trace will be performed over the unperturbed density matrix.

Indeed, using our above results, we find

h| − ()+ (0) |i = h| −0 b (− 0) b (0 ) b () b ( 0) b (0 0) b+ (0) b (0 0) |i
(26.5)

We want to take initial states at a time 0 so that in practical calculations where

the system is out of equilibrium we can choose 0 = −∞ where we can assume that

the system is in equilibrium at this initial time. Hence, we are here considering

a more general case than we really need but that is not more difficult so let us

continue. Since we are evaluating a trace, we are free to take

|i = b (0 0) | (0)i (26.6)

then we have

h| − = h (0)| b (0 0) − = h (0)| ¡−00
¢ ¡
00−0

¢
−

(26.7)

= h (0)| −00(0−)−(0−) = h (0)| −0 b (0 −  0) (26.8)

This allows us to write an arbitrary matrix element entering the thermodynamic

trace as the evolution along a contour in complex time

h| − ()† (0) |i = h (0)| −0 b (0 −  0) b (0 ) b () b ( 0) b (0 0) b† (0) b (0 0) |i
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= h (0)| −0 b (0 −  0) b (0 ) b () b ( 0) b† (0) b (0 0) | (0)i (26.9)
How would we evaluate the retarded Green’s function in practice using this

approach? Take the case of fermions. It is convenient to define  (− 0) and
 (− 0) by

 (− 0) = −
D
 ()

†
 (

0)
E

(26.10)

 (− 0) = 
D

†
 (

0) ()
E

(26.11)

in such a way that

 (− 0) = −
Dn

 ()  
†
 (

0)
oE

 (− 0) ≡ £ (− 0)− (− 0)
¤
 (− 0)

(26.12)

To evaluate  (− 0) for example, we would expand the evolution operators
such as b (0 0) as a power series in b , each power of b being associated with an

integral of a time ordered product that would start from 0 to go to the creation

operator b† (0)  then go to the destruction operator b () until it returns to 0−
This contour is illustrated in Fig.(26-1). It is this contour that determines the

order of the operators, so that even if 0 is a larger number than  as illustrated on

the right panel of this figure, the operator b () always occur after b† (0) on the
contour, i.e. b () is on the left of b† (0) in the algebraic expression. The parts
of the contour that follow the real axis are displaced slightly along the imaginary

direction for clarity.

Im(t)

Re(t)
t (t’)

(t)








t  i

Im(t)

Re(t)
t

(t’)(t)





t  i

^

^ ^
^

Figure 26-1 Kadanoff-Baym contour to compute  (− 0) 

We will see momentarily that it is possible to avoid this complicated con-

tour to make calculations of equilibrium quantities. However, in non-equilibrium

situations, such contours are unavoidable. In practice however, what is used

by most authors is the Keldysh-Schwinger contour that is obtained by insertingb (0∞) b (∞ 0) = 1 to the left of b† (0) in the algebraic expression Eq.(26.9).
In practice this greatly simplifies the calculations since the contour, illustrated in

Fig.(26-2), is such that integrals always go from −∞ to ∞ To specify if a given

creation or annihilation operator is on the upper or the lower contour, a simple

2× 2 matrix suffices since there are only four possibilities..
In equilibrium, the analog of the fluctuation dissipation theorem in the form

of Eq.(11.100) for correlation functions, allows us to relate  and  which
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


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^

^

Figure 26-2 Keldysh-Schwinger contour.

means that we can simplify matters greatly and work with a single Green function.

Fundamentally, this is what allows us to introduce in the next section a simpler

contour that is extremely more convenient for systems in equilibrium, and hence

for linear response.
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27. MATSUBARAGREEN’S FUNC-

TION AND ITS RELATION TO

USUALGREEN’S FUNCTIONS. (THE

CASE OF FERMIONS)

In thermodynamic equilibrium the time evolution operator as well as the density

matrix are exponentials of times a complex number. To evaluate these operators

perturbatively, one needs to calculate time-ordered products along a contour in

the complex time domain that is relatively complicated, as we saw in the previous

section. In the present section, we introduce a Green’s function that is itself a time-

ordered product but along the imaginary time axis only, as illustrated in Fig.(27-1)

below. This slight generalization of the Green’s function is a mathematical device

that is simple, elegant and extremely convenient since the integration contour is

now simple. In a sense, we take advantage of the fact that we are free to define

Green functions as we wish, as long as we connect them to observable quantities

in at the end of the calculation. This is similar to what we did for correlation

function. All the information about the system was in 00 (k )  now it is all in
the spectral weight  (k ) so that as long as we can extract the single-particle

spectral weight we do not loose information.

What makes this Green function extremely useful for calculations is the fact

that in evaluating time-ordered products that occur in the perturbation series, a

theorem (Wick’s theorem) tells us that all correlations functions are related to

producs of time-ordered Green’s functions. So we might as well focus on this

quantity from the start. For thermodynamic quantities, since only equal-time

correlation functions are needed, it is clear that evaluation in imaginary time or

in real time should be equivalent since only  = 0 is relevant. More generally,

for time-dependent correlation functions we will see that in frequency space the

analytic continuation to the physically relevant object, namely the retarded func-

tion, is trivial. We have already seen this with the Matsubara representation for

correlation functions.11.9 The same tricks apply not only to Green’s functions but

also to these correlation function.

After introducing the so-called Matsubara Green’s function itself, we will study

its properties. First, using essentially the same trick as for the fluctuation-dissipation

theorem for correlation functions, we prove that these functions are antiperiodic

in imaginary time. This allows us to expand these functions in a Fourier series.

The spectral representation and the so-called Lehman representation then allow

us to make a clear connection between the Matsubara Green’s function and the

retarded function through analytic continuation. As usual, the spectral represen-

tation also allows us to do high-frequency expansions. We give specific examples

of Matsubara Green’s functions for non-interacting particles and show in general

how to treat their Fourier series expansions, i.e. how to do sums over Matsubara

frequencies.
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27.1 Definition

The Matsubara Green’s function is defined by

G (r r0;  −  0) = −
D
 (r)

† (r0  0)
E

(27.1)

= −
D
 (r)† (r0  0)

E
 ( −  0) +

D
† (r0  0) (r)

E
 ( 0 − ) (27.2)

The definition of Ref.([3]) has an overall minus sign difference with the definition

given here.

Definition 14 The last equation above defines the time ordering operator for

fermions. It is very important to notice the minus sign associated with interchang-

ing two fermion operators. This time-ordering operator is thus a slight generaliza-

tion of the time-ordering operator we encountered before. There was no minus sign

in this case associated with the interchange of operators. The time-ordering oper-

ator for bosonic quantities, such as  that appeared in the perturbation expansion,

will never have a minus sign associated with the exchange of bosonic operators.

We still need to specify a few things. First, the thermodynamic average is in

the grand-canonical ensemble

hOi ≡ 
£
−(−)O¤


£
−(−)

¤ (27.3)

with  the chemical potential and  is the total number of particle operator, while

the time evolution of the operators is defined by

 (r) ≡ (−) (r) 
−(−) (27.4)

† (r) ≡ (−)+ (r) 
−(−) (27.5)

For convenience, it is useful to define

 ≡  −  (27.6)

Several points should attract our attention:

• The correspondence with the real time evolution operators − is done by

noting that

 = − Im () (27.7)

or, in general for complex time

 = 

• Strictly speaking, we should use  (r−) if we want the symbol  (r) for
 complex to mean the same thing as before. That is why several authors

write b (r) for the Matsubara field operator. We will stick with  (r)

since this lack of rigor does not usually lead to confusion. We have already

given enough different meanings tob in previous sections! Furthermore, this
type of change of “confusion” in the notation is very common in Physics.

For example, we should never write  (k) to denote the Fourier transform of

 (r) 
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• † (r) is not the adjoint of  (r). However, its analytic continuation
 →  is the adjoint of  (r).

• Using as usual the cyclic property of the trace, it is clear that G depends
only on  −  0 and not on  or  0 separately.

• It suffices to define the Matsubara Green’s function G (r r0; ) in the interval
− ≤  ≤ . We do not need it outside of this interval. The perturbation

expansion of b (− 0) = 

h
exp

³
− R


 b ()´i evidently necessitates

that we study at least the interval 0 ≤  ≤  but the other part of the

interval, namely − ≤  ≤ 0 is also necessary if we want the time ordering
operator to lead to both of the possible orders of  and †: namely † to
the left of  and † to the right of  Both possibilities appear in  If

we had only   0 only one possibility would appear in the Matsubara

Green’s function. We will see however in the next section that, in practice,

antiperiodicity allows us to trivially take into account what happens in the

interval − ≤  ≤ 0 if we know what happens in the interval 0 ≤  ≤ .

• The last contour considered in the previous section for b (− 0) = 

h
exp

³
− R


 b ()´i

tells us that the time-ordering operator  orders along the contour (Im () = −) 
(Im (0) = ) which corresponds to ( = )  ( 0 = −). The present con-
tour is illustrated in Fig.(27-1).

Im(t)

Re(t)
()

()





̂

^





Figure 27-1 Contour for time ordering in imaginary time. Only the time difference

is important. The contour is translated slightly along the real-time axis for clarity.

Remark 86 Role of extra chemical potential in time evolution: The extra chem-

ical potential in the evolution operator (−) is convenient to make all oper-
ators, including the density matrix, evolve in the same way. It corresponds to

measuring energies with respect to the chemical potential as we will see with the

Lehman representation below. The extra − disappears for equal-time quanti-

ties (thermodynamics) and in the calculation of expectation values hO+()O (0)i
for operators O which are bilinear in fermions of the form (+) at equal time.
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Indeed in that case one has O+() = O+− = (−)O+−(−).
When Wick’s theorem is used to compute expectation values, the creation and an-

nihilation operators evolve then as above. In any case, as we just said, the addition

of the chemical potential in the evolution operator just amounts to measuring the

single-particle energies with respect to the chemical potential.

27.2 Time ordered product in practice

Suppose I want to computeD
 (1)

† (3) (2)
† (4)

E
 (27.8)

We drop space indices to unclutter the equations. The time ordered product for

fermions keeps tract of permutations, so if I exchange the first two operators for

example, I findD
 (1)

† (3) (2)
† (4)

E
= −

D


† (3) (1) (2)
† (4)

E
(27.9)

I need not worry about delta functions at equal time or anything but the number

of fermion exchanges. Indeed, whichever of the above two expressions I start with,

if 1  2  3  4 I will find at the end thatD
 (1)

† (3) (2)
† (4)

E
= −

D
† (4)

† (3) (2) (1)
E
 (27.10)

We cannot, however, have two of the times equal. We have to specify that one

is infinitesimally larger or smaller than the other to know in which order to place

the operators.

27.3 Antiperiodicity and Fourier expansion (Mat-

subara frequencies)

Suppose   0. Then

G (r r0; ) = ­+ (r0 0) (r)® (27.11)

Using the cyclic property of the trace twice, as in the demonstration of the

fluctuation-dissipation theorem it is easy to show that

G (r r0; ) = −G (r r0;  + ) ;   0 (27.12)

This boundary condition is sometimes known as the Kubo-Martin-Schwinger (KMS)

boundary condition.

Proof: Let

−Ω ≡ Tr £−¤ (27.13)

then

G (r r0; ) = ΩTr
£
−+ (r0) (r)

¤
(27.14)
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The cyclic property of the trace then tells us that

G (r r0; ) = ΩTr
£
 (r) −+ (r0)

¤
(27.15)

= ΩTr
£¡
−

¢ ¡
 (r) −

¢
−+ (r0)

¤
(27.16)

=
­
 (r + )+ (r0 0)

®
(27.17)

= −G (r r0;  + ) (27.18)

The last line follows because given that−   we necessarily have +  0

so that the other  function must be used in the definition of the Matsubara

Green’s function.

If   0 the above arguments can be repeated to yield

G (r r0;  − ) = −G (r r0; ) ;   0 (27.19)

However, for   0 note that

G (r r0; ) 6= −G (r r0;  + ) ;   0 (27.20)

While G (r r0;  + ) for   0 is well defined, we never need this function. So we

restrict ourselves to the interval − ≤  ≤  described in the previous section.

One can take advantage of the antiperiodicity property of the Green’s function

in the interval − ≤  ≤  to expand it in a Fourier series that will automatically

guaranty that the crucial antiperiodicity property is satisfied. More specifically,

we write

G (r r0; ) = 1


P∞
=−∞ −G (r r0; ) (27.21)

where the so-called Matsubara frequencies for fermions are odd, namely

 = (2+ 1) =
(2+1)


;  integer (27.22)

The antiperiodicity property will be automatically fulfilled because − =

−(2+1) = −1.
The expansion coefficients are obtained as usual for Fourier series of antiperi-

odic functions from

G (r r0; ) =
R 
0
G (r r0; ) (27.23)

Note that only the   0 region of the domain of definition is needed, as promised.

Remark 87 Domain of definition of the Matsubara Green’s function: The value

of G (r r0; ) given by the Fourier series (27.21) for  outside the interval − 

  , is in general different from the actual value of Eq.(27.1) G (r r0;  −  0) =
− ­ (r)+ (r0  0)®. Indeed, to define a Fourier series one extends the func-
tion defined in the interval −     so that it is periodic in  outside this inter-

val with a period 2 The true function G (r r0;  −  0) = − ­ (r)+ (r0  0)®
has an envelope that is, instead, exponential outside the original interval. We

will see an explicit example in the case of the free particles. In perturbation ex-

pansions, we never need G (r r0; ) outside the interval where the series and the
true definition give different answers. To avoid mathematical inconsistencies, it is

nevertheless preferable in calculations to do Matsubara frequency sums before any

other integral! It is possible to invert the order of integration and of summation

but we must beware.
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27.4 Spectral representation, relation between 

and G and analytic continuation

By analogy with what we have done previously for response functions  it is

useful to introduce the spectral representation for the retarded Green’s function.

We obtain explicitly G (r r0; ) by integration in the complex plane and find that
is trivially related to  (r r0;) 
As before, we have

 (r r0; ) = −
Dn

 (r)  † (r0 0)
oE

 () (27.24)

but this time, the evolution operator is defined to take into account the fact that

we will work in the grand-canonical ensemble. By analogy with the definition of

the Matsubara operators, we now have

 =  − 

 (r) ≡  (r) 
− (27.25)

† (r) ≡ + (r) 
− (27.26)

We now proceed by analogy with the response functions. On the left we show

the definitions for response functions, and on the right the analogous definitions

for response functions. Let

 (r r0; ) = − (r r0; )  () ;  () = 2
00
 ()  () (27.27)

where the spectral weight is defined by

 (r r0; ) ≡ ­© (r)  + (r0 0)ª® ; 00 () =
1

2
h[ (r)   (r

0 0)]i
(27.28)

Then taking the Fourier transform, one obtains the spectral representation

 (r r0;) =
R∞
−∞

0
2

(rr0;0)
+−0 ;  () =

Z ∞
−∞

0



00 (
0)

0 − ( + )


(27.29)

The spectral weight will obey sum-rules, like 00 did. For exampleR∞
−∞

0
2

 (r r0;0) =
­©
 (r0)  + (r0 0)

ª®
=  (r− r0) (27.30)

From such sum rules, a high-frequency expansion can easily be found as usual.

But that is not our subject for now.

To establish the relation between the Matsubara Green’s function and the

retarded one, and by the same token establish the spectral representation for G,
consider

G (r r0; ) = − ­ (r)+ (r0 0)®  () + ­+ (r0 0) (r)®  (−) (27.31)

G (r r0; ) =
Z 

0

G (r r0; ) (27.32)

=

Z 

0


£− ­ (r)+ (r0 0)®¤ (27.33)
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Assume that   0. Then, as illustrated in Fig.(27-2), we can deform the contour

of integration within the domain of analyticity along Re () = Im ()  0. (The

analyticity of
­
 (r)+ (r0 0)

®
in that domain comes from − in the trace.

You will be able to prove this later by calculating G (r r0; ) with the help of the
spectral representation Eq.(27.40) and tricks for evaluating sums on Matsubara

frequencies. For Im () =∞ there will be no contribution from the small segment

since  becomes a decaying exponential. The integral becomes

Im(t) = - Re(

Re(t) = Im()

Re(



Re(

= it

Figure 27-2 Deformed contour used to relate the Matsubara and the retarded

Green’s functions.

G (r r0; ) = (27.34)Z =∞

=0

 ()
£− ­ (r)+ (r0)®¤ ()

+

Z =0

=∞
 ()

£− ­ (r− )+ (r0)
®¤
()(−)

In the last integral, we then use the results

()(−) = () = −1 (27.35)Z 0

∞
= −

Z ∞
0

(27.36)

− ­ (r− )+ (r0)
®
= (27.37)h

−
D
(−) (r) 

−(−)† (r
0)
Ei

=
h
−
D
 (r) 

−−† (r
0)
Ei

It then suffices to cancel the left most  with the density matrix and to use the

cyclic property of the trace to obtain for the integrand of the last integral,

=
h
−
D
† (r0 0) (r)

Ei
 (27.38)

Overall then, the integral in Eq.(27.34) is equal to

G (r r0; ) = −
Z ∞
0


Dn

 (r)  † (r0 0)
oE

() (27.39)

G (r r0; ) =
R∞
−∞

0
2

(rr0;0)
−0 (27.40)
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All that we assumed to deform the contour was that   0. Thus,  →
 +  with   0 is consistent with the hypothesis and allows us to deform

the contour as advertized. Comparing the formula for G (r r0; ) for   0

with the expression for the retarded Green’s function(27.29), we see that analytic

continuation is possible.

 (r r0;) = lim→+ G (r r0; ) (27.41)

If we had started with   0, analytic continuation  → −  to the advanced
Green’s function would have been possible.

Remark 88 Connectedness: For a general bosonic correlation function, similar

spectral representations can also be defined for connected functions (see below).

As an example of connected function, h ()i − h ()i hi is connected. The
subtracted term allows the combination of correlation functions to behave as a

response function and appears naturally in the functional derivative approach. If

h ()i has a piece that is independent of   the subtraction allows the integral
on the contour at infinity on the above figure to vanish even at zero Matsubara

frequency. Otherwise, that would not be the case.

27.5 Spectral weight and rules for analytical contin-

uation

In this section, we summarize what we have learned for the analytic properties of

the Matsubara Green’s function and we clarify the rules for analytic continuation.[4]

The key result for understanding the analytical properties of G is the spectral
representation Eq.(27.40)

G (r r0; ) =
Z ∞
−∞

0

2

 (r r0;0)
 − 0

(27.42)

The spectral weight  (r r0;0) was discussed just in the previous subsection (See
also Eq.(28.6) for the Lehman representation).

The Matsubara Green’s function and the retarded functions are special case of

a more general function defined in the complex frequency plane by

 (r r0; ) =
R∞
−∞

0
2

(rr0;0)
−0 (27.43)

This function is analytic everywhere except on the real axis. Physically interesting

special cases are

G (r r0; ) =  (r r0; )

 (r r0;) = lim
→0

 (r r0; + ) (27.44)

 (r r0;) = lim
→0

 (r r0; − ) (27.45)

The function  (r r0; ) has a jump on the real axis given by

 (r r0;) =  lim→0 [ (r r0; + )− (r r0; − )] (27.46)

 (r r0;) = 
£
 (r r0;)− (r r0;)

¤
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In the special case where  (r r0;) is real (which is almost always the case in
practice since we consider r = r0 or k = k0), we have

 (r r0;) = −2 Im (r r0;) (27.47)

like we have often used in the one-body case.

The previous results are summarized in Fig.(27-3) which displays the analytic

structure of  (r r0; )  This function is analytical everywhere except on the real
axis where it has a branch cut leading to a jump Eq.(27.46) in the value of the

function as we approach the real axis from either the upper or lower complex half-

plane. The limit as we come from the upper half-plane is equal to  (r r0;)
whereas from the lower half-plane it is equal to  (r r0;)  The Matsubara
Green’s function is defined only on a discrete but infinite set of points along the

imaginary frequency axis.

Im(z)

Re(z)

G(z) = G ()
R

G(z) = G ()
A

G(z) = (i)n

Figure 27-3 Analytical structure of () in the complex frequency plane. ()

reduces to either  ()   () or G () depending on the value of the complex
frequency  There is a branch cut along the real axis.

The problem of finding  (r r0;) along the real-time axis from the knowl-

edge of the Matsubara Green’s function is a problem of analytical continuation.

Unfortunately,  ( = ) does not have a unique analytical continuation be-

cause there is an infinite number of analytical functions that have the same value

along this discrete set of points. For example, suppose we know  ( = )  then

 ()
¡
1 +

¡
 + 1

¢¢
has the same value as  () for all points  =  because

 + 1 = 0 Baym and Mermin[5], using results from the theory of complex

functions, have obtained the following result.

Theorem 15 If

1.  () is analytical in the upper half-plane

2.  () = G () for all Matsubara frequencies
3. lim→∞  () = 

then the analytical continuation is unique and

 (r r0;) = lim
→+

G (r r0; ) (27.48)

The key point is the third one on the asymptotic behavior at high frequency.

That this is the correct asymptotic behavior at high frequency follows trivially from

the spectral representation Eq.(27.43) as long as we remember that the spectral
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weight is bounded in frequency. The non-trivial statement is that this asymptotic

behavior suffices to make the analytical continuation unique. In practice this rarely

poses a problem. The simple replacement  → +  suffices. Nevertheless, the

asymptotic behavior reflects a very fundamental property of the physical system,

namely the anticommutation relations! It is thus crucial to check that it is satisfied.

More on the meaning of the asymptotic behavior in subsection (29.1).

27.6 Matsubara Green’s function in the non-interacting

case

We first present the definition of the Matsubara Green’s function in momentum

space since this is where, in translationally invariant systems, it will be diagonal.

Let us first show explicitly what we mean by Green’s function in momentum space.

We expect G (k;  −  0) = −
D
k () 

†
k (

0)
E
but let us see this in detail.

With our definition of momentum and real space second quantized operators,

and our normalization for momentum eigenstates Eq.(23.35) we have

G (r r0;  −  0) = −
D
 (r)

† (r0  0)
E
= −

*

X
k

hr |ki k ()
X
k0


†
k0 (

0) hk0 |r0i
+

(27.49)

hr |ki hk0 |r0i = 1

V 
k·r−k0·r0 =

1

V 
(k−k0)·


r0+r
2


+

k+k0
2


·(r−r0)

 (27.50)

Assuming space translation invariance, we can integrate over the center of mass

coordinate 1
V
R

³
r0+r
2

´
= 1. Since

1

V
Z



µ
r0 + r
2

¶

(k−k0)·


r0+r
2


=
1

V (2)
3

¡
k− k0¢ = kk0 (27.51)

we are left with

G (r r0;  −  0) = −
*

1

V
X
k0

k0 () 
†
k0 (

0) k
0·(r−r0)

+
(27.52)

G (k;  −  0) =
Z

 (r− r0) −k·(r−r0)
"
−
*

1

V
X
k0

k0 () 
†
k0 (

0) k
0·(r−r0)

+#
(27.53)

G (k;  −  0) = −
D
k () 

†
k (

0)
E

(27.54)

which could have been guessed from the start! Our definitions of Fourier trans-

forms just make this work.

Remark 89 Momentum indices and translational invariance: Note that the con-

servation of total momentum corresponding to translational invariance corresponds

to the sum of the momentum indices of the creation-annihilation operators being

equal to zero. The sign of momentum is counted as negative when it appears on a

creation operator.
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The above is a general result for a translationally invariant system. Let us

specialize to non-interacting particles, namely to quadratic diagonal Hamiltonian

0 =
X
k

(k − ) +k k ≡
X
k

k
+
k k (27.55)

The result for the Green’s function may be obtained either directly by calculating

the spectral weight and integrating, or from the definition or by integrating the

equations of motion. The three ways of obtaining the simple result

G0 (k; ) = 1
−k (27.56)

are instructive, so we will do all of them below. Assuming for one moment that

the above result is correct, our rules for analytic continuation then immediately

give us the retarded function

 (k;) = 1
+−k (27.57)

that has precisely the form we expect from our experience with the one-body case.

The only difference with the one-body case is in the presence of the chemical

potential in k.

27.6.1 G0 (k; ) and G0 (k; ) from the definition

To evaluate the Green’s function from its definition, we need k ()  That quantity

may be obtained by solving the Heisenberg equations of motion,

k


= [0 k] = −kk (27.58)

The anticommutator was easy to evaluate using our standard trick Eq.(23.77).

The resulting differential equation is easy to integrate given the initial condition

on Heisenberg operators. We obtain,

k () = −kk (27.59)

so that substituting in the definition,

G0 (k; ) = −
­
k () 

+
k

®
= −−k £­k+k ®  ()− ­+k k®  (−)¤ (27.60)

using the standard result from elementary statistical mechanics,­
+k k

®
=  (k) =

1

k + 1
(27.61)

and
­
k

+
k

®
= 1− ­+k k® we obtain
G0 (k; ) = −−k [(1−  (k))  ()−  (k)  (−)]  (27.62)

Remark 90 Inadequacy of Matsubara representation outside the domain of defi-

nition: We see here clearly that if   0 the equality

G0 (k;  + ) = −G0 (k; ) (27.63)
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Figure 27-4 G0 (p τ ) for a value of momentum above the Fermi surface.

is satisfied because −k (1−  (k)) =  (k)  On the other hand,

G0 (k;  + 3) 6= G0 (k;  + ) (27.64)

as we might have believed if we had trusted the expansion

G0 (k; ) = 1



∞X
=−∞

−G0 (k; )

outside its domain of validity! The conclusion is that as long as the Matsubara

frequency representation is used to compute functions inside the domain −   

, it is correct. The perturbation expansion of the interaction picture does not force

us to use Green’s functions outside this domain, so the Matsubara representation

is safe!

Remark 91 Alternate evaluation of time evolution: We could have obtained the

time evolution also by using the identity

 =  + [] +
1

2!
[ []] +

1

3!
[ [ []]] +    (27.65)

that follows from expanding the exponential operators. This is less direct.

Remark 92 Appearance of G0 (k; ) : It is instructive to plot G0 (k; ) as a func-
tion of imaginary time. In some energy units, let us take  = 5 and then consider

three possible values of k First k = 02 i.e. for a value of momentum above the

Fermi surface, then a value right at the Fermi surface, k = 0 and finally a value

k = −02 corresponding to a momentum right below the Fermi surface. These

cases are illustrated respectively in Figs.(27-4) to (27-6). Note that the jump at

 = 0 is always unity, reflecting the anticommutation relations. What is meant

by antiperiodicity also becomes clear. The extremal values near ± and ±0 are
simply related to the occupation number, independently of interactions.

Let us continue with the derivation of the Matsubara frequency result G0 (k; ).

G0 (k; ) =
Z 

0

G0 (k; ) = − (1−  (k))

Z 

0

−k (27.66)
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Figure 27-5 G0 (p τ ) for a value of momentum at the Fermi surface.
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Figure 27-6 G0 (p τ ) for a value of momentum below the Fermi surface.
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= − (1−  (k))
−k − 1

 − k
(27.67)

= − (1−  (k))
−−k − 1
 − k

=
1

 − k
(27.68)

The last equality follows because

(1−  (k)) =
k

k + 1
=

1

−k + 1
(27.69)

We thus have our final result Eq.(27.56) for non-interacting particles.

27.6.2 G0 (k; ) and G0 (k; ) from the equations of motion

In complete analogy with the derivation in subsection (24.3) we can obtain the

equations of motion in the quadratic case.




G0 (k; ) = − 



D
k () 

†
k

E
(27.70)

= − ()
Dn

k ()  
†
k

oE
−
¿


µ



k ()

¶

†
k

À
(27.71)

Using the equal-time anticommutation relations as well as the Heisenberg equa-

tions of motion for free particles Eq.(27.58) the above equation becomes,




G0 (k; ) = − () + k

D
k () 

†
k

E
(27.72)

so that the equation of motion for the Matsubara propagator is¡


+ k

¢G0 (k; ) = − () (27.73)

To obtain the Matsubara-frequency result, we only need to integrate on both sides

using the general expression to obtain Fourier coefficients Eq.(27.23)

Z −

0−

∙µ



+ k

¶
G0 (k; )

¸
 = −1 (27.74)

so that integrating by parts,

 G0 (k; )|
−

0− − G0 (k; ) + kG0 (k; ) = −1 (27.75)

Note that we had to specify that the domain of integration includes 0 The inte-

grated term disappears because of the KMS boundary conditions (antiperiodicity)

 G0 (k; )|
−

0− Eq.(27.12). Indeed, antiperiodicity implies that

 G0 (k; )|
−

0− = −G0
¡
k;−

¢− G0 ¡k; 0−¢ = 0 (27.76)

Eq.(27.75) for the Matsubara Green’s function then immediately gives us the de-

sired result Eq.(27.56).

210 MATSUBARA GREEN’S FUNCTION

AND ITS RELATION TO USUAL GREEN’S FUNCTIONS. (THE CASE OF FERMIONS)



27.7 Sums over Matsubara frequencies

In doing practical calculations, we will have to become familiar with sums over

Matsubara frequencies. When we have products of Green’s functions, we will use

partial fractions in such a way that we will basically always have to evaluate sums

such as


X


1

 − k
(27.77)

where  = −1 We have however to be careful since the result of this sum is

ambiguous. Indeed, returning back to the motivation for these sums, recall that

G (k;) = 
X


−

 − k
(27.78)

We already know that the Green’s function has a jump at  = 0. In other words,∙
lim
→0+

G (k;) = − ­k+k ®¸ 6= ∙ lim
→0−

G (k;) = ­+k k®¸ (27.79)

This inequality in turn means that


X


−0
−

 − k
6= 

X


−0
+

 − k
6= 

X


1

 − k
(27.80)

The sum does not converge uniformly in the interval including  = 0 because the

1 decrease for  → ∞ is too slow. Even if we can obtain a finite limit for the

last sum by combining positive and negative Matsubara frequencies, what makes

physical sense is only one or the other of the two limits  → 0±

Remark 93 Remark 94 The jump, lim→0− G (k;)−lim→0+ G (k;) is always
equal to unity because of the anticommutation relations. The slow convergence in

1 is thus a reflection of the anticommutation relations and will remain true

even in the interacting case. If the ()
−1
has a coefficient different from unity,

the spectral weight is not normalized and the jump is not unity. This will be

discussed shortly.

Let us evaluate the Matsubara frequency sums. Considering again the case of

fermions we will show as special cases that


P


−0

−

−k =
1

k+1
=  (k) = G0 (k;0−) (27.81)


P


−0

+

−k =
−1

−k+1 = −1 +  (k) = G0 (k;0+) (27.82)

Obviously, the non-interacting Green’s function has the correct jump G0 (k;0−)−
G0 (k;0+) = 1In addition, since G0 (k;0−) =

D

†
kk

E
and G0 (k;0+) = −

D
k

†
k

E
the above results just tell us that

D

†
kk

E
=  (k) that we know from ele-

mentary statistical mechanics. The anticommutation relations immediately give

−
D
k

†
k

E
= −1+  (k) So these sums over Matsubara frequencies better behave

as advertized.
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Proof: [6]To perform the sum over Matsubara frequencies, the standard trick is

to go to the complex plane. The following function

− 
1

 + 1
(27.83)

has poles for  equal to any fermionic Matsubara frequency:  = . Its

residue at these poles is unity since for

 =  +  (27.84)

we have

− 
1

 + 1
= − 1

+ + 1
= − 1

−1 + 1 (27.85)

lim
−→0



∙
− 1

 + 1

¸
= 1 (27.86)

Similarly the following function has the same poles and residues:

lim
−→0



∙


1

− + 1

¸
= 1 (27.87)

To evaluate the   0 case by contour integration, we use Cauchy’s theorem on

the contour 1, which is a sum of circles going counterclockwise around the

points where  is equal to the Matsubara frequencies. Using Eq.(27.86) this

allows us to establish the equality

1



X


−

 − k
= − 1

2

Z
1



 + 1

−

 − k
(27.88)

This contour can be deformed, as illustrated in Fig.(27-7), into 2+3 (going

through  01) with no contribution from the semi-circles at Re () = ±∞
because 1

+1
insures convergence when Re ()  0 despite − in the

numerator, and − insures convergence when Re ()  0   0. With

the deformed contour 2 + 3, only the contribution from the pole in the

clockwise direction is left so that we have

1


P


−
−k =

−k

k+1
= −k (k) (27.89)

which agrees with the value of G0 (k; ) in Eq.(27.62) when   0 In partic-

ular, when  = 0− we have proven the identity (27.82) . To evaluate the

  0 case we use the same contour but with the other form of auxiliary

function Eq.(27.87). We then obtain,

1



X


−

 − k
= lim

→0+
1

2

Z
1



− + 1
−

 − k
(27.90)

This contour can be deformed into 2 + 3 with no contribution from the

semi-circles at Re () = ±∞ because this time − insures convergence
when Re ()  0,   0 and 1

−+1 ensures convergence when Re ()  0

despite − in the numerator. Again, from 2 + 3, only the contribution

from the pole in the clockwise direction survives so that we have

1


P


−
−k = −

−k

−k+1 = − −kk
k+1

= −−k (1−  (k)) (27.91)

which agrees with the value of G0 (k; ) in Eq.(27.62) when   0 In partic-

ular, when  = 0+ we have proven the identity (27.81).

212 MATSUBARA GREEN’S FUNCTION

AND ITS RELATION TO USUAL GREEN’S FUNCTIONS. (THE CASE OF FERMIONS)



Im(z)

Re(z)

C’1

X

C2
C3

Figure 27-7 Evaluation of fermionic Matsubara frequency sums in the complex

plane.

27.8 Exercices

27.8.1 G0 (k; ) from the spectral weight and analytical continuation

Find G0 (k; ) starting from the spectral weight for non-interacting particles and
analytical continuation.

27.8.2 Représentation de Lehman et prolongement analytique

Soit la définition habituelle à l’aide d’un commutateur pour la susceptibilité de

charge retardée

 (q;− 0) =  (− 0) h[ (q )   (−q 0)]i (27.92)

Soit aussi la susceptibilité de charge correspondante de Matsubara

 (q; −  0) = h (q )  (−q 0)i (27.93)

=  () h (q )  (−q 0)i+  (−) h (−q 0)  (q )i(27.94)

Les moyennes sont prises dans l’ensemble grand-canonique.

a) Trouvez les conditions de périodicité en temps imaginaire pour la fonction

de Matsubara et déduisez-en un développement en fréquences discrètes.

b) Trouvez la représentation de Lehman pour chacune de ces deux fonctions

de réponse et déduisez-en la règle permettant de faire le prolongement analytique

d’une fonction à l’autre.

c) Vérifiez à partir de la représentation de Lehman que le poids spectral satisfait

à la condition 00 (q)  0
d) Pourquoi n’a-t-on pas besoin d’un facteur de convergence pour calculerP∞
=−∞  (q;)
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27.8.3 Fonction de Green pour les bosons

Soient  et 
+
 les opérateurs de destruction et de création pour des phonons

(statistiques de Bose) de polarisation  et de nombre d’onde . L’amplitude

quantifiée correspondante est

 =
1√
2

³
 + +−

´
(~ = 1). Definissons le propagateur de phonon de Matsubara par:

0( 
0;  −  0) = −2√00  

£
 ()0−0 ( 0)

¤
 

Notez que pour les quantités bosoniques il n’y a pas de changement de signe

lorsqu’on réordonne les opérateurs avec le produit chronologique.

a)

-Prouvez que 0( 
0;  −  0) ne dépend que de  −  0

- Dérivez la condition de périodicité en temps imaginaire.

- Donnez le développement de 0( 
0;  −  0) en fréquences discrètes.

b) Soit

 =
X


[
+
 +

1

2
]

- Calculez le ( ) ≡  ( ; ) correspondant.

- Trouvez le poids spectral.

- Montrez que le poids spectral s’annule à fréquence nulle. (Ceci est le cas

général pour les bosons. Ceci permet de faire le prolongement analytique de la

représentation spectrale sans rencontrer de problèmes avec la fréquence de Mat-

subara nulle.)

- Faites le prolongement analytique pour obtenir la fonction de Green retardée

correspondante.

- Utilisez un contour dans le plan complexe et la formule de Cauchy pour

évaluer ∞X
=−∞

 ( ; ) 
0

±
(27.95)

Pourquoi le résultat ne dépend-t-il pas du facteur de convergence choisi, 0
+

ou 0
−
?

27.8.4 Oscillateur harmonique en contact avec un réservoir

Un oscillateur harmonique de fréquence Ω interagissant avec un réservoir d’oscillateurs

de fréquences  est décrit par l’hamiltonien

 = Ω++
X



+
  +

X



¡
+ + +

¢
Définissons les propagateurs de Matsubara suivants:

 () = −   [ () 
+(0)] 

 () = −   [ () 
+(0)] 
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a) Ecrivez les equations du mouvement pour ces propagateurs.

b) Prenez la transformée de Fourier pour obtenir les équations du mouvement

pour  () et  () et résolvez ces équations.

c) Faites le prolongement analytique pour obtenir les propagateurs retardés.

d) Décrivez la structure analytique de  () dans le plan complexe, en mon-

trant où sont les pôles et autres singularités. Vous pouvez aussi supposer que 

peut prendre les valeurs de 1 à  et montrer que  () s’écrit comme le rap-

port de deux polynômes, un de degré  au numérateur et un de degré  + 1 au

dénominateur.

e) Tracez un shéma du dénominateur de () pour montrer comment obtenir

graphiquement comment le réservoir donne de nouveaux pôles. Pour simplifier la

discussion, supposez qu’il n’y a que deux oscillateurs dans le réservoir et trouvez

ce qui arrive si Ω est plus petit, plus grand, ou entre les deux fréquences des

oscillateurs du réservoir.

27.8.5 Limite du continuum pour le réservoir, et irréversibilité

Continuons le problème précédent. Supposons que le nombre d’oscillateurs du

réservoir augmente sans limite de telle sorte que la fonction

Γ () ≡
X


2  ( − )

devienne continue

a) Montrez que si Γ et ses dérivées sont petites, la partie imaginaire du pôle

de  () est à −Γ (Ω). Donnez une expression intégrale pour le déplacement
de la fréquence (encore une fois à l’ordre dominant en Γ).

b) Montrez que  () décroît exponentiellement dans le temps. La fréquence

d’oscillation est-elle déplacée? Dans cette limite nous avons un oscillateur quan-

tique amorti! Pourquoi ce résultat est-il si différent de celui du problème précé-

dent? Que se passe-t-il si le nombre d’oscillateurs est grand mais pas infini?

Discutez la façon dont l’irréversibilité est apparue dans le problème, en particulier

notez que la limite du volume infini (nombre d’oscillateurs infini) est prise avant

 → 0.

c) Si Γ () est donné par

Γ () =


1 + 22

trouvez, à l’ordre dominant en , la fréquence renormalisée et l’amortissement.
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28. PHYSICAL MEANING OF THE

SPECTRAL WEIGHT: QUASIPAR-

TICLES, EFFECTIVEMASS, WAVE

FUNCTION RENORMALIZATION,

MOMENTUM DISTRIBUTION.

To discuss the Physical meaning of the spectral weight, we first find it in the

non-interacting case, then write a formal general expression, the Lehman repre-

sentation, that allows us to see its more general meaning. After our discussion

of a photoemission experiment, we will be in a good position to understand the

concepts of quasiparticles, wave-function renormalization, effective mass and mo-

mentum distribution. We will even have a first look at Fermi liquid theory, and

see how it helps us to understand photoemission experiments.

28.1 Spectral weight for non-interacting particles

The general result for the spectral weight in terms of the Green’s function Eq.(27.46)

gives us for non-interacting particles

0 (k ) = 

∙
1

 +  − k
− 1

 −  − k

¸
(28.1)

= 2 ( − k) (28.2)

In physical terms, this tells us that for non-interacting particles in a translationally

invariant system, a single excited particle or hole of momentum k added to an

eigenstate is an true excited eigenstate located an energy  = k above or below

the Fermi level. In the interacting case, the Lehman representation will show us

clearly that what we just said is the correct interpretation

28.2 Lehman representation

For a general correlation function, not necessarily a Green’s function, one estab-

lishes the connection between Matsubara functions and retarded functions by using

the Lehman representation. This representation is also extremely useful to extract

the physical significance of the poles of correlation functions so this is why we in-

troduce it at this point. We have already seen examples of Lehman representation
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in the one-body case when we wrote in Eq.(24.22),

 (r r0;) =
X


 (r)
∗
 (r

0)
 +  −

and also in Sec. 11.6 on correlation functions.

Let us consider the more general many-body case, starting from the Matsubara

Green’s function. It suffices to insert a complete set of energy eigenstates between

each field operator in the expression for the spectral weight

 (r r0; ) ≡ ­©
 (r)  + (r0 0)

ª®
(28.3)

= Ω
X


h
h| − (r) 

− |i h|† (r0) |i

+ h| −† (r0) |i h|  (r) 
− |i

i
We now use − |i = − |i with  =  −  if there are  par-

ticles in the initial state |i  In the first term above, h| has one less parti-
cle than |i while the reverse is true in the second term so that  −  =

( −  ( + 1)−  + ) in the first term and− = ( −  − +  ( − 1))
in the second. Taking the Fourier transform

R


0 we have

 (r r0;0) = Ω × (28.4)X


h
− h| (r) |i h|† (r0) |i 2 (0 − ( − −))

+ − h|† (r0) |i h| (r) |i 2 (0 − ( − −))
i

One can interpret physically the spectral weight as follows. It has two pieces,

the first one for excited states with one more particle, and the second one for

excited states with one more hole. Photoemission experiments (See Einstein’s

Nobel prize) access this last piece of the spectral weight, while Bremsstrahlung

inverse spectroscopy (BIS) experiments measure the first piece.1 Excited particle

states contribute to positive frequencies 0 if their excitation energy is larger than
the chemical potential,  −   and to negative frequencies otherwise. Zero

frequency means that the excitation energy is equal to the chemical potential.

In other words, every excited single-particle or single-hole state corresponds to a

delta function in the spectral weight whose weight depends on the overlap between

initial states with one more particle at r0 or one more hole at r, and the true excited
states.

Remark 95 At zero temperature, we have

 (r r0;0) =
X


h
h0| (r) |i h|† (r0) |0i 2 (0 + − ( −0))

+ h0|† (r0) |i h| (r) |0i 2 (0 + − (0 − ))
i
(28.5)

In the first term,  is the energy of an eigenstate with one more particle than

the ground state. The minimal energy to add a particle is , hence,  −0 ≥ 

and the delta function contributes to positive frequencies. In the second term

however,  is the energy with one less particle so 0 ≤ 0 −  ≤  since we

can remove a particle, or create a hole, below the Fermi surface. Hence the second

term contributes to negative frequencies.

1To be more specific, these experiments add or remove particles in momentum, not position

eigenstates. The only change that this implies in the discussion above is that 
(†)

(r) should be

replaced by 
(†)
p 
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Remark 96 By using  =  −  instead of  as time evolution operator, we

have adopted a convention where the frequency  represents the energy of single-

particle excitations above or below the chemical potential. If we had used  as

evolution operator, only  instead of the combination  +  would have appeared

in the delta functions above.

The spectral representation Eq.(27.40) immediately tells us that the poles of

the single-particle Green’s functions are at the same position as delta functions

in the spectral weight, in other words they are at the excited single-particle or

single-hole states. Doing changes of dummy summation indices we can arrange so

that it is always h| that has one less particle. Then,

 (r r0;0) = Ω
P



¡
− + −

¢ h| (r) |i h|† (r0) |i 2 (0 − ( −))

(28.6)

Substituting in the spectral representation Eq.(27.40) we have,

G (r r0; ) = Ω
P



¡
− + −

¢ h|(r)|ih|†(r0)|i
−(−−) (28.7)

This is the Lehman representation. It tells us how to interpret the poles of the

analytically continued G (r r0; ) 

Remark 97 Standard way of proving analytical continuation formula: The stan-

dard way of proving that  () = lim→+ G () is to first find the Lehman
representation for both quantities.

28.3 Probabilistic interpretation of the spectral weight

For a different representation, for example for momentum, we have [7] in the

translationally invariant case, by analogy with the above result for the spectral

weight Eq.(28.6)

 (k 0) = Ω
P



¡
− + −

¢ |h| k |i|2 2 (0 − ( −)) 

(28.8)

The overlap matrix element |h| k |i|2 that gives the magnitude of the delta
function contribution to the spectral weight represents the overlap between the

initial state with one more particle or hole in a momentum eigenstate and the

true excited one-particle or one-hole state. The last equation clearly shows that

 (k0)  (2) is positive and we already know that it is normalized to unity,Z
0

2
 (k0) =

Dn
k 

†
k

oE
= 1 (28.9)

Hence it can be interpreted as the probability that a state formed from a true eigen-

state |i either by adding a particle in a single-particle state k namely †k |i (or
adding a hole k |i in a single-particle state k) is a true eigenstate whose energy
is  above or below the chemical potential. Clearly, adding a particle or a hole

in a momentum eigenstate will lead to a true many-body eigenstate only if the

momentum of each particle is individually conserved. This occurs only in the non-

interacting case, so this is why the spectral weight is then a single delta function.

In the more general case, many energy eigenstates will have a non-zero overlap
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with the state formed by simply adding a particle or a hole in a momentum eigen-

state. While particle-like excitations will overlap mostly with eigenstates that are

reached by adding positive , they can also overlap eigenstates that are reached

by adding negative . In an analogous manner, hole-like eigenstates will be mostly

at negative  Let us see how this manifests itself in a specific experiment.

Remark 98 Energy vs momentum in an interacting system: It is clear that in an

interacting system one must distinguish the momentum and the energy variables.

The energy variable is  Knowing the momentum of a single added electron or

hole is not enough to know the added energy. This added energy would be 22

only in the case of non-interacting electrons.

Remark 99 Physical reason for high-frequency fall-off: The explicit expression

for the spectral weight Eq.(28.8) suggests why the spectral weight falls off fast

at large frequencies for a given kas we have discussed in Subsection (29.1). A

state formed by adding one particle (or one hole) of momentum k should have

exponentially small overlap with the true eigenstates of the system that have one

more particle (or hole) but an arbitrarily large energy difference  with the initial

state.

28.4 Analog of the fluctuation dissipation theorem

We have seen in Eq.(C.10) the fluctuation dissipation theorem for correlation

functions, (with ~ = 1)

 () = 2(1 +  ())
00


() (28.10)

where  () is the Bose function. That can also be written in the formZ
 h ()i = (1 +  ())

Z
 h[ ()   ]i  (28.11)

It would be nice to find the analog for the Green’s function because we saw,

when we discussed ARPES in Sec. 24.1, that the cross section for angle-resolved

photoemission measures
R


D

†
k||
k|| ()

E
which looks like one piece of the

anticommutator.

The key is the real time version of the antiperiodicity that we discussed for

Matsubara Green’s functions in Sec. 27.4. We will demonstrate that

2

Ω
∝
Z


D

†
k||
k|| ()

E
=  ()

¡
k|| 

¢
 (28.12)

Proof: The most direct and simple proof is from the Lehman representation

Eq.(28.8). To get a few more general results about
¡
k|| 

¢
= 

R


D

†
k||
k|| ()

E
and 

¡
k|| 

¢
= − R  Dk|| () †k||E we present the following alter-

nate proof. The cross section is proportional to the Fourier transform of


¡
k|| 

¢
as defined in Eq.(26.11).

2

Ω
∝
Z


D

†
k||
k|| ()

E
≡ −

¡
k|| 

¢
(28.13)
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One can relate  and  to the spectral weight in a very general way

through the Fermi function. This is done using the usual cyclic property of

the trace (fluctuation-dissipation theorem). FromD
k|| () 

†
k||

E
= −1Tr

h
−

¡
k||

−
¢

†
k||

i
(28.14)

= −1Tr
h¡
−

¢

†
k||
−

¡
k||

−
¢i
(28.15)

=
D

†
k||
k|| (+ )

E
(28.16)

one finds by simple use of definitions and change of integration variables,


¡
k|| 

¢
=

Z


D

†
k||
k|| () + k|| () 

†
k||

E
(28.17)

=

Z


D

†
k||
k|| ()

E
+

Z
(+−)

D

†
k||
k|| (+ )

E
=

¡
1 + 

¢ Z


D

†
k||
k|| ()

E
(28.18)

=  ()
−1 ¡−

¡
k|| 

¢¢
(28.19)

Substituting in Eq.(28.13) proves Eq.(28.12). Note that since from the defi-

nitions in Eqs.(26.10) and (26.11) the spectral weight is obtained from


¡
k|| 

¢
= − £

¡
k|| 

¢−
¡
k|| 

¢¤
(28.20)

we also have the result


¡
k|| 

¢
= (1−  ())

¡
k|| 

¢
(28.21)

28.5 Some experimental results from ARPES

The state of technology and historical coincidences have conspired so that the

first class of layered (quasi-two-dimensional) compounds that became available

for ARPES study around 1990 were high temperature superconductors. These

materials have properties that make them non-conventional materials that are not

yet understood using standard approaches of solid-state Physics. Hence, people

started to look for two-dimensional materials that would behave as expected from

standard models. Such a material, semimetallic 2 was finally found around

1992. For our purposes, quasi-to-dimensional just means here that the Fermi

velocity perpendicular to the planes is much smaller than the Fermi velocity in

the planes. The results of this experiment[11] appear in Fig.(28-1).

We have to remember that the incident photon energy is 212 while the

variation of  is on a scale of 200 so that, for all practical purposes, the

momentum vector in Fig.(24-1) is a fixed length vector. Hence, the angle with

respect to the incident photon suffices to define the value of k|| Each curve in
Fig.(28-1) is for a given k|| in other words for a given angle measured from the

direction of incidence of the photon. The intensity is plotted as a function of the

energy of the outgoing electron. The zero corresponds to an electron extracted

from the Fermi level. Electrons with a smaller kinetic energy come from states

with larger binding energy. In other words, each of the curves above is basically a

plot of the hole-like part of 
¡
k|| 

¢
or if you want  ()

¡
k|| 

¢
. From band
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Figure 28-1 ARPES spectrum of 1−  −  2 after R. Claessen, R.O. Anderson,

J.W. Allen, C.G. Olson, C. Janowitz, W.P. Ellis, S. Harm, M. Kalning, R. Manzke,

and M. Skibowski, Phys. Rev. Lett 69, 808 (1992).
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structure calculations, one knows that the angle  = 14750 corresponds to the

Fermi level (marked  on the plot) of a  − 3 derived band. It is for this
scattering angle that the agreement between experiment and Fermi liquid theory

is best (see Sec.(28.7) below). The plots for angles   14750 corresponds to

wave vectors above the Fermi level. There, the intensity is much smaller than

for the other peaks. For  = 130 the experimental results are scaled up by a

factor 16 The intensity observed for wave-vectors above  = 0 comes from the

Fermi function and also from the non-zero projection of the state with a given k

on several values of  in the spectral weight.

The energy resolution is 35 Nevertheless, it is clear that the line shapes

are larger than the energy resolution: Clearly the spectral weight is not a delta

function and the electrons in the system are not free particles. Nevertheless,

there is a definite maximum in the spectra whose position changes with k|| It
is tempting to associate the width of the line to a lifetime. In other words, a

natural explanation of these spectra is that the electrons inside the system are

“quasiparticles” whose energy disperses with wave vector and that have a lifetime.

We try to make these concepts more precise below.

28.6 Quasiparticles[9]

The intuitive notions we may have about lifetime and effective mass of an electron

caused by interactions in a solid can all be extracted from the self-energy, as we

will see. For a general interacting system, the one-particle Green’s function takes

the form,

 (k) =
1

 +  − k −
P

(k )
(28.22)

The corresponding spectral weight is,

 (k) = −2 Im (k) (28.23)

=
−2 ImP

(k )³
 − k −Re

P
(k )

´2
+
³
Im
P

(k )
´2 (28.24)

If the imaginary part of the self-energy, the scattering rate, is not too large and

varies smoothly with frequency, the spectral weight will have a maximum when-

ever, at fixed kthere is a value of  that satisfies

 − k −ReΣ (k ) = 0 (28.25)

We assume the solution of this equation exists. Let k −  be the value of 

for which this equation is satisfied. k is the so-called quasiparticle energy. This

energy is clearly in general different from the results of band structure calculations

that are usually obtained by neglecting the frequency dependence of the self-

energy. Expanding  − k − ReΣ (k ) around  = k −  where  (k) is a

maximum, we find

 − k −ReΣ (k ) ≈ 0 +




£
 − k −ReΣ (k )

¤
=k− ( −k + ) +   

≈
Ã
1− ReΣ (k )



¯̄̄̄
k−

!
( −k + ) +    (28.26)
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If we define the “quasiparticle weight” or square of the wave function renormal-

ization by

k =
1

1− 


ReΣ(k)|
=k−

(28.27)

then in the vicinity of the maximum, the spectral weight takes the following simple

form in the vicinity of the Fermi level, where the peak is sharpest

 (k) ≈ 2k
1



−k Im
P

(k )

( −k + )
2
+
³
k Im

P
(k )

´2 +  (28.28)

= 2k

"
1



Γk ()

( −k + )
2
+ (Γk ())

2

#
+  (28.29)

The last equation needs some explanation. First, it is clear that we have defined

the scattering rate

Γk () = −k ImΣ (k ) (28.30)

Second, the quantity in square brackets looks, as a function of frequency, like a

Lorentzian. At least if we can neglect the frequency dependence of the scattering

rate. The integral over frequency of the square bracket is unity. Since  (k) 2

is normalized to unity, this means both that

k ≤ 1 (28.31)

and that there are additional contributions to the spectral weight that we have

denoted  in accord with the usual terminology of “incoherent background”.

The equality in the last equation holds only if the real part of the self-energy is

frequency independent.

It is also natural to ask how the quasiparticle disperses, in other words, what is

its effective Fermi velocity compared with that of the bare particle. Let us define

the bare velocity by

k = ∇kk (28.32)

and the renormalized velocity by

∗k = ∇kk (28.33)

Then the relation between both quantities is easily obtained by taking the gradient

of the quasiparticle equation Eq.(28.25)

∇k
£
k − − k −ReΣ (k k − ) = 0

¤
(28.34)

∗k − k −∇kReΣ (k k − )− ReΣ (k )



¯̄̄̄
k−

∗k = 0 (28.35)

where∇k in the last equation acts only on the first argument of ReΣ (k k − ).

The last equation is easily solved if we can write that k dependence of Σ as

a function of k instead, something that is always possible for spherical Fermi

surfaces. In such a case, we have

∗k = k
1+ 

k
ReΣ(kk−)

1− 


ReΣ(k)|
=k−

(28.36)

In cases where the band structure has correctly treated the k dependence of the

self-energy, or when the latter is negligible, then the renormalized Fermi velocity

differs from the bare one only through the famous quasiparticle renormalization

224 PHYSICAL MEANING OF THE SPECTRAL WEIGHT: QUASIPARTICLES, EFFEC-

TIVE MASS, WAVE FUNCTION RENORMALIZATION, MOMENTUM DISTRIBUTION.



factor. In other words, ∗k = kk The equation for the renormalized velocity

is also often written in terms of a mass renormalization instead. Indeed, we will

discuss later the fact that the Fermi wave vector  is unmodified by interactions

for spherical Fermi surfaces (Luttinger’s theorem). Defining then ∗∗ =  =

 means that our equation for the renormalized velocity gives us


∗ = limk→k

1+ 
k

ReΣ(kk−)
1− 


ReΣ(k)|

=k−
(28.37)

28.7 Fermi liquid interpretation of ARPES

Let us see how to interpret the experiments of the previous subsection in light

of the quasiparticle model just described. First of all, the wave vectors studied

are all close to the Fermi surface as measured on the scale of   Hence, every

quantity appearing in the quasiparticle spectral weight Eq.(28.29) is evaluated

for  =  so that only the frequency dependence of the remaining quantities is

important. The experiments were carried out at  = 20 where the resistivity has

a  2 temperature dependence. This is the regime dominated by electron-electron

interactions, where so-called Fermi liquid theory applies. What is Fermi liquid

theory? It would require more than the few lines that we have to explain it, but

roughly speaking, for our purposes, let us say that it uses the fact that phase space

for electron-electron scattering vanishes at zero temperature and at the Fermi

surface, to argue that the quasiparticle model applies to interacting electrons.

Originally the model was developed by Landau for liquid 3 which has fermionic

properties hence the name Fermi Liquid theory. It is a very deep theory that in

a sense justifies all the successes of the almost-free electron picture of electrons in

solids. We cannot do it justice here. A simple way to make its main ingredients

plausible, [10] is to assume that near the Fermi surface, at frequencies much less

than temperature, the self-energy is i) analytic and ii) has an imaginary part that

vanishes at zero frequency. The latter result follows from general considerations

on the Pauli principle and available phase space that we do not discuss here.

Let us define real and imaginary parts of the retarded self-energy by

Σ = Σ0 + Σ00 (28.38)

Our two hypothesis imply that Σ00 has the Taylor expansion

Σ00 (k ;) =  − 2 +    (28.39)

The imaginary part of the retarded self-energy must be negative to insure that the

retarded Green’s function has poles in the lower half-plane, as is clear from the

general relation between Green function and self-energy Eq.(28.22). This means

that we must have  = 0 and   0 Fermi liquid theory keeps only the leading

term

Σ00 = −2

We will verify for simple models that this quadratic frequency dependence is es-

sentially correct in  ≥ 3 The real part is then obtained from the Kramers-Kronig
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relation Eq.(19.1), (Sec.29.2) or from the spectral representation,

lim
→

[Σ0 (k ;)−Σ0 (k ;∞)] = lim
→

P
Z

0



Σ00 (k ;0)
0 − 

(28.40)

= P
Z

0



−
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
02 − 2 + 2

´
0 − 

(28.41)

= P
Z

0



− ( 0 − ) ( 0 + )

0 − 
+O

¡
2
¢

(28.42)

= −P
Z

0


 0 − P

Z
0


+O

¡
2
¢

(28.43)

We assume cutoffs in the integrals that can be different at low and high frequency.

The first term is the value of the real-part of the self-energy at zero-frequency. This

constant contributes directly to the numerical value of the chemical potential (the

Hartree-Fock shift Σ0 (k ;∞) does not suffice to evaluate the chemical potential).
The second term in the last equation tells us that




Σ0 (k  )

¯̄̄̄
=0

= −P
Z

0


=

"
P
Z

0



Σ00 (k ;0)

(0)2

#
(28.44)

Since Σ00 = −2 the integral exists and is negative (if we assume a frequency
cutoff as discussed below), hence




Σ0 (k )

¯̄̄̄
=0

 0 (28.45)

This in turn means that the corresponding value of  is less than unity, as we

had concluded in Eqs.(28.27) and (28.31) above. In summary, the analyticity hy-

pothesis along with the vanishing of Σ00 (0) implies the existence of quasiparticles.

Remark 100 Warning: there are subtleties. The above results assume that there

is a cutoff to Σ00 (k ;0)  The argument just mentioned in Eq.(28.44) fails when
the integral diverges. Then, the low frequency expansion for the self-energy in

Eq.(28.41) cannot be done. Expanding under the integral sign is no longer valid.

One must do the principal part integral first. In fact, even for a Fermi liquid at

finite temperature, Σ00 (k ;) ∼ 2 + ( )
2
so that the ( )

2
appears to lead

to a divergent integral in Eq.(28.44). Returning to the original Kramers-Krönig

expression fo Σ0 however, the principal part integral shows that the constant term
( )

2
for Σ00 (k ;) does not contribute at all to Σ0 if the cutoff in Σ00 is symmetric

at positive and negative frequencies. In practice one can encounter situations

where Σ  0 In that case, we do not have a Fermi liquid since   1 is

inconsistent with the normalization of the spectral weight. One can work out an

explicit example in the renormalized classical regime of spin fluctuations in two

dimensions. (Appendix D of [20]).

The solid lines in Fig.(28-1) are two-parameter fits that also take into account

the wave vector and energy resolution of the experiment [11]. One parameter is

 −  while the other one is 0 a quantity defined by substituting the Fermi
liquid approximation in the equation for damping Eq.(28.30)

Γ () =  
2 = 02 (28.46)

Contrary to , the damping parameter 
0 is the same for all curves. The solid-line

fits are obtained with 0 = 40 −1 (0 on the figure) The fits become increasingly
worse as one moves away from the Fermi surface, as expected. It is important to
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Figure 28-2 Figure 1 from Ref.[19] for the ARPES spectrum of 1T-TiTe2 measured

near the Fermi surface crossing along the high-symmetry ΓM direction ( = 0 is

normal emission). The lines are results of Fermi liquid fits and the inset shows a

portion of the Brillouin zone with the relevant ellipsoidal electron pocket.

notice, however, that even the small left-over weight for wave-vectors above the

Fermi surface
¡
  14750

¢
can be fitted with the same value of . This weight is

the tail of a quasiparticle that could be observed at positive frequencies in inverse

photoemission experiments (so-called BIS). The authors compared the results of

their fits to the theoretical estimate,[12]  = 0067
2
  Using  = 182

 = 03 and the extrapolated value of  obtained by putting
2  = 10 in

electron gas results,[13] they find 0  5 ( )
−1
while their experimental results

are consistent with 0 = 40 ± 5 ( )−1  The theoretical estimate is almost one
order of magnitude smaller than the experimental result. This is not so bad given

the crudeness of the theoretical model (electron gas with no lattice effect). In

particular, this system is a semimetal so that there are other decay channels than

just the one estimated from a single circular Fermi surface. Furthermore, electron

gas calculations are formally correct only for small  while there we have  = 10

More recent experiments have been performed by Grioni’s group [19]. Results

are shown in Fig. (28-2). In this work, authors allow for a constant damping

Γ0 = 17  coming from the temperature and from disorder and then they

fit the rest with a Fermi velocity ~ = 073 ± 01 ̇ close to band structure

calculations, ~ = 068  ̇ and 0 that varies between 05  −1 (160) and
09  −1 (1450). The Fermi liquid fit is just as good, but the interpretation of
the origin of the broadening terms is different. This shows that there is much

uncertainty still in the interpretation of ARPES data, even for Fermi liquids.

Theoretical estimates for high-temperature superconductors are two orders of

magnitude smaller than the observed result [11].

2 is the average electron spacing expressed in terms of the Bohr radius.

FERMI LIQUID INTERPRETATION OF ARPES 227



Remark 101 Asymmetry of the lineshape: The line shapes are asymmetrical,

with a tail at energies far from the Fermi surface (large binding energies). This

is consistent with the fact that the “inverse lifetime” Γ () =  
2 is not a

constant, but is instead larger at larger binding energies.

Remark 102 Failure of Fermi liquid at high-frequency: Clearly the Fermi liquid

expression for the self-energy fails at large frequencies since we know from its

spectral representation that the real-part of the self-energy goes to a frequency-

independent constant at large frequency, the first correction being proportional to

1 as discussed below in subsection (29.1). Conversely, there is always a cutoff

in the imaginary part of the self-energy. This is not apparent in the Fermi liquid

form above but we had to assume its existence for convergence. The cutoff on

the imaginary part is analogous to the cutoff in 00 Absorption cannot occur at
arbitrary high frequency.

Remark 103 Destruction of quasiparticles by critical fluctuations in two dimen-

sions: Note that it is only if Σ00 vanishes fast enough with frequency that it is
correct to expand the Kramers-Kronig expression in powers of the frequency to

obtain Eq.(28.44). When Σ00 () vanishes slower than 2, then Eq.(28.44) for the

slope of the real part is not valid. The integral does not converge uniformly and it

is not possible to interchange the order of differentiation and integration. In such

a case it is possible to have the opposite inequality for the slope of the real part


Σ0 (k )

¯̄
=0

 0 This does not lead to any contradiction, such as   1

because there is no quasiparticle solution at  = 0 in this case. This situation

occurs for example in two dimensions when classical thermal fluctuations create a

pseudogap in the normal state before a zero-temperature phase transition is reached

[14].

28.8 Momentum distribution in an interacting sys-

tem

In an interacting system, momentum is not a good quantum number so
D

†
kk

E
is not equal to the Fermi distribution. On the other hand,

D

†
kk

E
can be computed

from the spectral weight. By taking the Fourier transform of Eq.(28.12)
R


D

†
k||
k|| ()

E
=

 ()
¡
k|| 

¢
one finds

D

†
kk

E
= lim→0− G (k) =

R∞
−∞

0
2

 (0) (k0)  (28.47)

Alternate derivation D

†
kk

E
= lim

→0−

h
−
D
k () 

†
k

Ei
= lim

→0−
G (k) (28.48)
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To compute the latter quantity from the spectral weight, it suffices to use

the spectral representation Eq.(27.40)

lim
→0−

G (k) =  lim
→0−

∞X
=−∞

−G (r r0; )

=  lim
→0−

∞X
=−∞

−
Z ∞
−∞

0

2

 (k0)
 − 0

(28.49)

Using the result Eq.(27.81) found above for the sum over Matsubara fre-

quencies, we are left with the desired result.

Our result means that the momentum distribution is a Fermi-Dirac distribution

only if the spectral weight is a delta function. This occurs for free particles or,

more generally if the real-part of the self-energy is frequency independent since,

in this case, the Kramers-Kronig relations imply that the imaginary part of the

self-energy vanishes so that Eq.(28.24) for the spectral weight gives us a delta

function.

Remark 104 Jump of the momentum distribution at the Fermi level: Even ifD

†
kk

E
is no-longer a Fermi-Dirac distribution in an interacting system, never-

theless at zero-temperature in a system subject only to electron-electron interaction,

there is a jump in
D

†
kk

E
at the Fermi level. The existence of this jump can be

seen as follows. At zero temperature, our last result gives usD

†
kk

E
=

Z 0

−∞

0

2
 (k0) (28.50)

Let us take the quasiparticle form Eq.(28.29) of the spectral weight with the Fermi

liquid expression Eq.(28.46) for the scattering rate. The incoherent background

varies smoothly with k and hence cannot lead to any jump in occupation number.

The quasiparticle piece on the other hand behaves when →   or in other words

when k−→ 0 as   (). At least crudely speaking. When k−→ 0− this
delta function is inside the integration domain hence it contributes to the integral,

while when k −  → 0+ the delta function is outside and does not contribute to

the integral. This means that there is a big difference between these two nearby

wave vectors, namely

lim
k→k−



D

†
kk

E
− lim
k→k+



D

†
kk

E
= 


(28.51)

In the above argument, we have done as if Γk () was frequency independent and

infinitesimally small in Eq.(28.29). This is not the case so our argument is rather

crude. Nevertheless, if one uses the actual frequency-dependent forms and does

the frequency integral explicitly, one can check that the above conclusion about the

jump is true (although less trivial).

Remark 105 Fermi surface and interactions: The conclusion of the previous re-

mark is that even in an interacting system, there is a sharp Fermi surface as in

the free electron model. For simplicity we have discussed the spinless case. A

qualitative sketch of the zero-temperature momentum distribution in an interact-

ing system appears in Fig.(28-3). Since momentum of a single particle is not

a good quantum number anymore, some states above the Fermi momentum are

now occupied while others below are empty. Nevertheless, the Fermi surface is

unaffected.
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Figure 28-3 Qualitative sketch of the zero-temperature momentum distribution in

an interacting system.

Remark 106 Luttinger’s theorem: More generally, in a Fermi liquid the volume

of reciprocal space contained within the Fermi surface defined by the jump, is inde-

pendent of interactions. This is Luttinger’s theorem. In the case where the Fermi

surface is spherical, this means that  is unaffected.

230 PHYSICAL MEANING OF THE SPECTRAL WEIGHT: QUASIPARTICLES, EFFEC-

TIVE MASS, WAVE FUNCTION RENORMALIZATION, MOMENTUM DISTRIBUTION.



29. A FEW MORE FORMAL MAT-

TERS : ASYMPTOTIC BEHAVIOR

AND CAUSALITY

In designing approximations, we have to try to preserve as many as possible of the

exact properties. Sum rules are such properties. They determine the structure

of the high-frequency expansion and hence one can also check whether a given

approximation preserves the sum rules by looking at its high-frequency expansion.

This is the first topic we will discuss. The second topic concerns restrictions

imposed by causality. This has become a very important topic in the context of

Dynamical Mean-field theory or other approaches that describe the physics that

occurs at strong coupling, such as the Mott transition. We will come back on this

in later chapters.

29.1 Asymptotic behavior of G (k;) andΣ (k;)

As usual, the high-frequency asymptotic properties of the Green’s function are

determined by sum rules. From the spectral representation(27.40), we obtain, for

the general interacting case

lim
→∞

G (k; ) = lim
→∞

Z ∞
−∞

0

2

 (k;0)
 − 0

(29.1)

= lim
→∞

1



Z ∞
−∞

0

2
 (k;0) = lim

→∞
1



­©
k 

+
k

ª®
= lim

→∞
1


(29.2)

Defining the self-energy as usual

G (k; ) = 1

 − k −Σ (k )
(29.3)

the correct asymptotic behavior for the Green’s function implies that the self-

energy at high frequency cannot diverge: It must go to a constant independent of

frequency

lim
→∞

Σ (k ) =  (29.4)

We will see later that the value of this constant is in fact given correctly by the

Hartree-Fock approximation.

The converse of the above result [10] for the Green’s function, is that if

lim
→∞

G (k; ) = lim
→∞

1



then that is all that is needed to obtain an approximation for the Green’s function

which obeys the anticommutation relation:

G ¡k;0−¢− G ¡k;0+¢ = ­+k k®+ ­k+k ® = 1 (29.5)
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Proof :It suffices to notice that

G ¡k;0−¢− G ¡k;0+¢ = 1



X


h
−0

− − −0
+
i
G (k;) (29.6)

We can add and subtract the asymptotic behavior to obtain,

1



X


∙³
−0

− − −0
+
´µ
G (k;)− 1



¶¸
+
1



X


³
−0

− − −
´ 1



(29.7)

In the first sum, G (k;)− 1


decays faster than 1


so that the convergence

factors are not needed for the sum to converge. This means that this first

sum vanishes. The last sum gives unity, as we easily see from the previous

section. This proves our assertion.

Remark 107 High-frequency expansion for the Green’s function and sum-rules:

The coefficients of the high-frequency expansion of G (k; ) in powers of 1 are
obtained from sum rules on the spectral weight, in complete analogy with what we

have found in previous chapters. The fact that  (k) falls fast enough to allow us

to expand under the integral sign follows from the fact that all frequency moments

of  (k)  namely
R
 (k)  exist and are given by equal-time commutators.

Explicit expressions for  (k) in terms of matrix elements, as given in Subsec-

tion(28.3) above, show physically why  (k) falls so fast at large frequencies. As

an example, to show that the coefficient of the 1 term in the high frequency

expansion is equal to
R∞
−∞

0
2

 (k;0) it is sufficient that
R∞
−∞

0
2
|0 (k;0)|

exists.[8] This can be seen as follows,

G (k; )−
Z ∞
−∞

0

2
 (k;0) =

Z ∞
−∞

0

2
 (k;0)

µ


 − 0
− 1
¶
(29.8)

=

Z ∞
−∞

0

2
 (k;0)

0

 − 0
(29.9)

≤
Z ∞
−∞

0

2

¯̄̄̄
 (k;0)

0

 − 0

¯̄̄̄
(29.10)

≤
¯̄̄̄
1



¯̄̄̄ Z ∞
−∞

0

2
| (k;0)0| (29.11)

If the integral exists then, it is a rigorous result that

lim
→∞

G (k; ) =
Z ∞
−∞

0

2
 (k;0) (29.12)

This is an important result. It suggests that approximate theories that give 1 as the

coefficient of ()
−1
in the high frequency expansion have a normalized spectral

weight. However[8] the above proof assumes that there is indeed a spectral repre-

sentation for G (k; )  A Green’s function for a theory that is not causal fails to
have a spectral representation. If a spectral representation is possible, the analyti-

cally continued approximate  (k) is necessarily causal. Approximate theories

may not be causal. This failure of causality may reflect a phase transition, as we

will see later, or may simply be a sign that the approximation is bad. As an exam-

ple, suppose that we obtain G (k; ) = ( − )
−1

 This has the correct high-

frequency behavior but its analytical continuation does not satisfy causality. It has

no spectral representation. On the other hand, G (k; ) = ( + ( ||) )−1
has a Lorentzian as a spectral weight and is causal. It may also occur that the

approximate theory may have
R∞
−∞

0
2

 (k;0) = 1 but  (k;0)  0 for some

range of 0. This unphysical result may again signal that the approximate theory
fails because of a phase transition or because it is a bad approximation.
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29.2 Implications of causality for  and Σ

Consider the retarded Green function as a matrix in r r0. We will show that

the real and imaginary parts of  and of Σ are each Hermitian matrices. in

addition, Im and ImΣ are both negative definite (except in the special case

of non-interacting particles where ImΣ = 0).

In analogy with the Matsubara Green function Eq.(28.7)  has the Lehman

representation

 (r r0;) = Ω
X


¡
− + −

¢ h| (r) |i h|† (r0) |i
 +  − ( − − )

 (29.13)

In a basis where the matrix Im (r r0;) is diagonal, say for quantum number

 then

Im (α;) = −
X


¡
− + −

¢ h|  |i h| † |i  ( − ( − − ))

= −
X


¡
− + −

¢ |h|  |i|2  ( − ( − − )) (29.14)

which proves that the matrix for the imaginary part is negative definite. The neg-

ative sign comes from the + in the original formula and is clearly a consequence

of causality. In that same diagonal basis,

Re (α;) = Ω
X


¡
− + −

¢ |h|  |i|2
 − ( − − )

 (29.15)

When we change to an arbitrary basis with the unitary transformation  , we

find, using also Im (α;) = Im (α;)
∗
and Re (α;) = Re (α;)

∗

that

 (r r0;) =  (rα) (α;)† (α r0) (29.16)

=  (rα)Re (α;)† (α r0) +  (rα) Im (α;)† (α r0)

≡  (r r0;) +  (r r0;) (29.17)

 (r r0;)∗ =  (r r0;)∗ −  (r r0;)∗ (29.18)

= ∗ (rα)Re (α;) (r0α)− ∗ (rα) Im (α;) (r0α)

=  (r0α)Re (α;)† (α r)−  (r0α) Im (α;)† (α r)

=  (r0 r;)−  (r0 r;) (29.19)

where there is an implicit sum over α. This means that in arbitrary canonical

basis, we can write  =  −  and  =  +  where both  and  are

hermitian matrices.

Following Potthoff [18] we show that the retarded self-energy as a matrix has

the same properties as . First, we need to prove that

1

± 
=  ∓  (29.20)

with  and  both Hermitian and  positive definite if  and  are both Her-

mitian with  positive definite. This is true because

1

± 
= −12

1

−12−12 ± 
−12 (29.21)
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Since −12−12 is Hermitian as well, we can diagonalize it by a unitary trans-
formation −12−12 = † where  is a diagonal matrix. Thus,

1

± 
= −12

1

± 
†−12 = −12

∓ 

2 + 1
†−12 =  ∓  (29.22)

with  and  Hermitians since
¡
†−12

¢†
= −12 . In addition,  is positive

definite since in the diagonal basis  → ¡
2 + 1

¢−1
. Now, define

¡

¢−1

=

(− )
−1
=  +  and

¡

0

¢−1
= (0 − 0)

−1
= 0 + 0 so that¡


¢−1

=  +  =
¡

0

¢−1 −Σ = 0 + 0 − ReΣ −  ImΣ (29.23)

Then, given that  and 0 0 are Hermitians, we have that ReΣ
 and ImΣ

are Hermitians. In addition, ImΣ is negative definite since 0 is infinitesimal

which implies that  − 0 can only be positive (or vanish in the non-interacting

case).
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30. THREEGENERALTHEOREMS

Risking to wear your patience out, we still have to go through three general the-

orems used repeatedly in Many-Body theory. Wick’s theorem forms the basis ot

the diagram technique in many-body theory. The linked-cluster theorems, or cu-

mulant expansions, are much more general theorems that are also necessary to set

up the machinery of diagrams. Finally, we prove a variational principle for the free

energy that allows us to give a physical meaning to Hartree-Fock theory as the

best one-body Hamiltonian for any given problem. This variational principle is

useful for ordinary system, but also becomes indispensable when there is a broken

symmetry.

30.1 Wick’s theorem

Wick’s theorem allows us to compute arbitrary correlation functions of any Hamil-

tonian that is quadratic in Fermion or Boson operators. That is clearly what we

need to do perturbation theory, but let us look in a bit more details at how this

comes about. We will need to compute in the interaction picture

G () = −

h
−0

³b ( ) b () b (  0) b† (0)´i

h
−0 b ( 0)i (30.1)

Because b (  0) always contains an even number of fermions, it can be commuted
with creation-annihilation operators without paying the price of minus signs so

that

G () = −

−0

(0)()†(0)
[−0 (0)] (30.2)

More specifically the evolution operator is,

b ( 0) = 

h
exp

³
− R 

0
1 b (1)´i (30.3)

Expanding this evolution operator to first order in the numerator of the Green’s

function one obtains

− 
h
−0

³b () b† (0)´i+ Z 

0

1
h
−0

³b (1) b () b† (0)´i
(30.4)

where in the case of a two-body interaction (Coulomb for example), b (1) contains
four field operators.

Wick’s theorem allows us to evaluate expectation values such as those above.

More generally, it allows us to compute expectation values of creation-annihilation

operators such as, D
 ( )  ( ) 

†
 () 

†
 ( )

E
0

(30.5)

as long as the density matrix −0 is that of a quadratic Hamiltonian.
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Note that since quadratic Hamiltonians conserve the number of particles, ex-

pectation values vanish when the number of creation operators does not match

the number of destruction operators.

Lemma 16 If 0 = 1
†
11 + 2

†
22 then

D
1

†
12

†
2

E
=
D
1

†
1

ED
2

†
2

E


Proof: To understand what is going on, it is instructive to study first the problem

where a single fermion state can be occupied. Then

D
1

†
1

E
=


h
−01

†
1

i
 [−0 ]

(30.6)

=
h0| 1†1 |0i+ −1 (h0| 1) 1†1

³

†
1 |0i

´
h0| |0i+ −1 (h0| 1)

³

†
1 |0i

´ =
1

1 + −1
(30.7)

For two fermion states 1 2, then the complete set used to evaluate the trace

is

|0i |0i  
†
1 |0i |0i  |0i †2 |0i  

†
1 |0i †2 |0i (30.8)

so that D
1

†
1

E
=

1

1 + −1
1 + −2

1 + −2
=

1

1 + −1
 (30.9)

The easiest way to understand the last result is to recall that
³
1 + 

†
1

´³
1 + 

†
2

´
|0i

will generate the trace so that we can factor each subspace. The last result

will remain true for an arbitrary number of fermion states, in other wordsD
1

†
1

E
=

1

1 + −1

Q
6=1 1 + −Q
6=1 1 + −

=
1

1 + −1
 (30.10)

Furthermore,D
1

†
12

†
2

E
=

1

1 + −1
1

1 + −2

Q
6=12 1 + −Q
6=12 1 + −

(30.11)

=
1

1 + −1
1

1 + −2
(30.12)

=
D
1

†
1

ED
2

†
2

E
(30.13)

Theorem 17 Any expectation value such as
D
 ( )  ( ) 

†
 () 

†
 ( )

E
0
cal-

culated with a density matrix −0 that is quadratic in field operators can be com-

puted as the sum of all possible products of the type
D
 ( ) 

†
 ()

E
0

D
 ( ) 

†
 ( )

E
0

that can be formed by pairing creation an annihilation operators. For a given term

on the right-hand side, there is a minus sign if the order of the operators is an odd

permutation of the order of operators on the left-hand side.

Proof: It is somewhat pretentious to call a proof the plausibility argument that we

give below, but let us go ahead anyway. The trick to prove the theorem([15])

is to transform the operators to the basis where 0 is diagonal, to evaluate

the expectation values, then to transform back to the original basis. Let

Greek letters stand for the basis where 0 is diagonal. Using the formula

for basis changes, we have, (with an implicit sum over Greek indices)D
 ( )  ( ) 

†
 () 

†
 ( )

E
0
= (30.14)
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h| i h| i
D
 ( )  ( ) 

†
 () 

†
 ( )

E
0
h| i h| i (30.15)

We already know from Eq.(27.59) that

 ( ) = − ; † ( ) = †
 (30.16)

so that D
 ( )  ( ) 

†
 () 

†
 ( )

E
0

(30.17)

= h| i − h| i −
D


†

†


E
0
 h| i   h| i (30.18)

What we need to evaluate then are expectation values of the typeD


†

†


E
0
 (30.19)

Evaluating the trace in the diagonal basis, we see that we will obtain a non-

zero value only if indices of creation and annihilation operators match two

by two or are all equal. Suppose  = ,  =  and  6= . Then, as in the

lemma D


†


†


E
0
=
­


†


®
0

D


†


E
0

(30.20)

If instead,  = ,  =  and  6= , thenD


†


†


E
0
= −

D


†


†


E
0
= − ­†®0 D†E0  (30.21)

The last case to consider is  = ,  = ,  = ­


†


†


®
0
= 0. (30.22)

All these results, Eqs.(30.20)(30.21) and the last equation can be combined

into one formulaD


†

†


E
0
=

­


†


®
0

D


†


E
0
( − ) (30.23)

=
D


†


E
0

­


†


®
0
− ­†®0 D†E0 (30.24)

which is easiest to remember as follows,

D


†

†


E
=

*
↓

↑
†
↑

↓

†


+
+

*
↓

↑

↓
†

†

↑

+
(30.25)

in other words, all possible pairs of creation and annihilation operators must

be paired (“contracted”) in all possible ways. There is a minus sign if an

odd number of operator exchanges (transpositions) is necessary to bring the

contracted operators next to each other on the right-hand side (In practice,

just count one minus sign every time two operators are permuted). Substi-

tuting Eq.(30.24) back into the expression for the original average expressed

in the diagonal basis Eq.(30.18) we haveD
 ( )  ( ) 

†
 () 

†
 ( )

E
0

(30.26)

=
D
 ( ) 

†
 ( )

E
0

D
 ( ) 

†
 ()

E
0
−
D
 ( ) 

†
 ()

E
0

D
 ( ) 

†
 ( )

E
0

By induction (not done here) one can show that this result generalizes to the

expectation value of an arbitrary number of creation-annihilation operators.

WICK’S THEOREM 237



Definition 18 Contraction: In the context of Wick’s theorem, we call each factorD
 ( ) 

†
 ()

E
0
on the right-hand side, a “contraction”.

Since Wick’s theorem is valid for an arbitrary time ordering, it is also valid for

time-ordered products so that, for exampleD


h
 ( )  ( ) 

†
 () 

†
 ( )

iE
0
= (30.27)

D


h
 ( ) 

†
 ( )

iE
0

D


h
 ( ) 

†
 ()

iE
0
−
D


h
 ( ) 

†
 ()

iE
0

D


h
 ( ) 

†
 ( )

iE
0


(30.28)

The only simplification that occurs with time-ordered products is the following.

Note that, given the definition of time-ordered product, we haveD


h
 ( ) 

†
 ()

iE
0
= −

D


h

†
 ()  ( )

iE
0

(30.29)

Indeed, the left-hand side and right-hand side of the above equation are, respec-

tively D


h
 ( ) 

†
 ()

iE
0
=

D
 ( ) 

†
 ()

E
0
 (  − ) (30.30)

−
D

†
 ()  ( )

E
0
 ( −  ) (30.31)

−
D


h

†
 ()  ( )

iE
0
= −

D

†
 ()  ( )

E
0
 ( −  ) (30.32)

+
D
 ( ) 

†
 ()

E
0
 (  − ) (30.33)

In other words, operators can be permuted at will inside a time-ordered product, in

particular inside a contraction, as long as we take care of the minus-signs associated

with permutations. This is true for time-ordered products of an arbitrary number

of operators and for an arbitrary density matrix.

On the other hand, if we apply Wick’s theorem to a product that is not time

ordered, then we have to remember thatD
 ( ) 

†
 ()

E
0
6= −

D

†
 ()  ( )

E
0

(30.34)

as we can easily verify by looking at the special case  =   or by going to a

diagonal basis We can anticommute operators at will to do the “contractions”

but they cannot be permuted inside a contraction
D
 ( ) 

†
 ()

E
0


In practice, we will apply Wick’s theorem to time-ordered products. In nu-

merical calculations it is sometimes necessary to apply it to objects that are not

time-ordered.

Exemple 19 To make the example of Wick’s theorem Eq.(30.28) more plausible,

we give a few examples, Suppose first that the time order to the left of Eq.(30.28)

is such that the destruction operators are inverted. Then,D


h
 ( )  ( ) 

†
 () 

†
 ( )

iE
0
= −

D
 ( )  ( ) 

†
 () 

†
 ( )

E
0

(30.35)

which means that since  and  have exchanged roles, in doing the contractions

as above there is one more permutation to do, which gets rid of the extra minus

sign and reproduces the right-hand side of Eq.(30.28). More explicitly, to do the
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contractions as above, we have to change  for  on both the right- and the left-hand

side of Eq.(30.26). Doing this and substituting above, we obtainD
 ( )  ( ) 

†
 () 

†
 ( )

E
0
=
D
 ( ) 

†
 ( )

E
0

D
 ( ) 

†
 ()

E
0
−
D
 ( ) 

†
 ()

E
0

D
 ( ) 

†
 ( )

(30.36)

which we substitute in the previous equation to obtain exactly what the right-hand

side of Eq.(30.28) would have predicted. To take another example, suppose that

the time orders are such thatD


h
 ( )  ( ) 

†
 () 

†
 ( )

iE
0
= −

D
 ( ) 

†
 ()  ( ) 

†
 ( )

E
0


(30.37)

Then, to do the contractions we proceed as above, being careful not to permute

creation and annihilation operators within an expectation value

−
D
 ( ) 

†
 ()  ( ) 

†
 ( )

E
0

= −
D
 ( ) 

†
 ( )

E
0

D

†
 ()  ( )

E
0
−
D
 ( ) 

†
 ()

E
0

D
 ( ) 

†
 ( )

E
0
(30.38)

The right-hand side of Eq.(30.28) gives usD


h
 ( ) 

†
 ( )

iE
0

D


h
 ( ) 

†
 ()

iE
0
−
D


h
 ( ) 

†
 ()

iE
0

D


h
 ( ) 

†
 ( )

iE
0

(30.39)

= −
D
 ( ) 

†
 ( )

E
0

D

†
 ()  ( )

E
0
−
D
 ( ) 

†
 ()

E
0

D
 ( ) 

†
 ( )

E
0

(30.40)

with the minus sign in the first term because we had to exchange the order in one

of the time-ordered products.

30.2 Linked cluster theorems

Suppose we want to evaluate the Green’s function by expanding the time-ordered

product in the evolution operator Eq.(30.3). The expansion has to be done both

in the numerator and in the denominator of the general expression for the average

Eq.(30.1). This is a very general problem that forces us to introduce the notion

of connected graphs. A generalization of this problem also occurs if we want to

compute the free-energy from

ln = ln
³

h
−0 b ( 0)i´ = ln³0 Db ( 0)E

0

´
(30.41)

= ln

Ã*


"
exp

Ã
−
Z 

0

1 b (1)!#+
0

!
+ ln0 (30.42)

In probability theory this is like computing the cumulant expansion of the char-

acteristic function. Welcome to linked cluster theorems.

These problems are special cases of much more general problems in the theory

of random variables which do not even refer to specific Feynman diagrams or to

quantum mechanics. The theorems, and their corollary that we prove below, are

amongst the most important theorems used in many-body Physics or Statistical

Mechanics in general.
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30.2.1 Linked cluster theorem for normalized averages

Consider the calculation of ­
−(x) (x)

®­
−(x)

® (30.43)

where the expectation hi is computed over a multivariate probability distribution
function for the variables collectively represented by x. The function  (x) is

arbitrary, as is the function  (x). Expanding the exponential, we may write­
−(x) (x)

®­
−(x)

® =

P∞
=0

1
!
h(− (x)) (x)iP∞

=0
1
!
h(− (x))i (30.44)

When computing a term of a given order , such as 1
!
h(− (x)) (x)i, we may

always write

1

!
h(− (x)) (x)i =

∞X
=0

∞X
=0

+
1

!

!

!!

D
(− (x)) (x)

E

h(− (x))i

(30.45)

where the subscript  on the average means that none of the terms in
D
(− (x)) (x)

E


can be factored into lower order correlation functions, such as for example
D
(− (x))

E
h (x)i

or
D
(− (x))−1

E
h(− (x)) (x)i etc... The combinatorial factor corresponds to

the number of ways the (− (x)) can be grouped into a group of  terms and a
group of  −  terms, the + Kronecker delta function ensuring that indeed

 =  − . Using the last equation in the previous one, the sum over  is now

trivially performed with the help of + and one is left with

­
−(x) (x)

®­
−(x)

® =

P∞
=0

P∞
=0

1
!!

D
(− (x)) (x)

E

h(− (x))iP∞

=0
1
!
h(− (x))i (30.46)

The numerator can now be factored so as to cancel the denominator which proves

the theorem

Theorem 20 Linked cluster theorem for normalized averages:

h−(x)(x)i
h−(x)i =

P∞
=0

1
!

D
(− (x)) (x)

E

=
­
−(x) (x)

®


(30.47)

This result can be applied to our calculation of the Green’s function since

within the time-ordered product, the exponential may be expanded just as an ordi-

nary exponential, and the quantity which plays the role of (− (x)), namely
³
− R 

0
 b ()´

can be moved within the  product without costing any additional minus sign.

30.2.2 Linked cluster theorem for characteristic functions or free energy

We now wish to show the following general theorem for a multivariate probability

distribution.
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Theorem 21 Linked cluster theorem (cumulant expansion).

ln
­
−(x)

®
=
P∞

=1
1
!
h(− (x))i =

­
−(x)

®

− 1 (30.48)

The proof is inspired by Enz[16]. When  (x) = k · x, the quantity ­−k·x®
is called the characteristic function of the probability distribution. It is the gener-

ating function for the moments. The quantities on the right-hand side, which as

above are connected averages, are usually called cumulants in ordinary probability

theory and ln
­
−k·x

®
is the generating function for the cumulant averages.

Proof: To prove the theorem, we introduce first an auxiliary variable 





D
−(x)

E
=
D
−(x) [− (x)]

E
(30.49)

We can apply to the right-hand side the theorem we just provedD
−(x) [− (x)]

E
=
D
−(x) [− (x)]

E


D
−(x)

E
(30.50)

so that
1­

−(x)
® 



D
−(x)

E
=

¿



−(x)

À


 (30.51)

Integrating both sides from 0 to 1, we obtain

ln
D
−(x)

E
|10 =

D
−(x)

E

− 1 (30.52)

QED

Exemple 22 It is instructive to check the meaning of the above result explicitly

to second order

ln
D
−()

E
≈ ln

¿
1−  () +

1

2
( ())

2

À
≈
µ
− h ()i+ 1

2

D
( ())

2
E¶
−1
2
h ()i2

(30.53)D
−()

E

− 1 ≈ − h ()i +

1

2

D
( ())

2
E


(30.54)

so that equating powers of  we find as expected,D
( (x))

2
E

=
D
( (x))

2
E
− h (x)i2  (30.55)

The above results will help us in the calculation of the free energy since we

find, as in the first equations of the section on linked cluster theorems,

 = − ln
h
0

D


h
−



0
  ()iE

0

i
= −

∞X
=1

1

!

*


"
−
Z 

0

 b ()#+
0

− ln0
(30.56)

 = − ln = −
hD


h
−




0
  ()iE

0
− 1
i
−  ln0. (30.57)

the subscript 0 stands for averages with the non-interacting density matrix. The

above proof applies to our case because the time-ordered product of an exponential

behaves exactly like an ordinary exponential when differentiated, as we know from

the differential equation that leads to its definition.
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30.3 Variational principle and application to Hartree-

Fock theory

It is legitimate to ask if there is a one-body Hamiltonian, in other words an

effective Hamiltonian with a time-independent potential, whose solution is as close

as possible to the true solution. To address this question, we also need to define

what we mean by “as close as possible”. The answer to both of these queries

is provided by the variational principle for thermodynamic systems. We discuss

below how Hartree-Fock theory comes out naturally from the variational principle.

Also, it is an unavoidable starting point when there is a broken symmetry, as we

will discuss more fully in a later chapter.

30.3.1 Thermodynamic variational principle for classical systems

One can base the thermodynamic variational principle for classical systems on the

inequality

 ≥ 1 +  (30.58)

which is valid for all , whether   0, or   0. This inequality is a convexity

inequality which appears obvious when the two functions are plotted. We give two

proofs.

Proof 1:  is a convex function, i.e. 22 ≥ 0 for all values of  At  = 0
the functions  and 1+ as well as their first derivatives are equal. Since a

straight line tangent to a convex curve at a point cannot intersect it anywhere

else, the theorem is proven.QED

Algebraically, the proof goes as follows.

Proof 2: The equality occurs when  = 0. For  ≤ −1,  ≥ 0 while 1 +   0,

hence the inequality is satisfied. For the remaining two intervals, notice that

 ≥ 1 +  is equivalent to

∞X
=2

1

!
 ≥ 0 (30.59)

For  ≥ 0, all terms in the sum are positive so the inequality is trivially

satisfied. In the only remaining interval, −1    0, the odd powers of  in

the infinite-sum version of the inequality are less than zero but the magnitude

of each odd power of  is less than the magnitude of the preceding positive

power of , so the inequality (30.59) survives. QED

Moving back to our initial purpose, let e0 be a trial Hamiltonian. Then take

−(
0−)0 as the trial density matrix corresponding to averages hi0. We will

use the above inequality Eq.(30.58) to prove that

− ln ≤ − ln0 +
D
 − e0

E
0 (30.60)

This inequality is a variational principle because e0 is arbitrary, meaning that

we are free to parametrize it and then to minimize with respect to the set of

all parameters to find the best one-particle Hamiltonian in our Physically chosen

space of Hamiltonians.
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Proof Our general result for the free energy in terms of connected terms, Eq.(30.57),

is obviously applicable to classical systems. The simplification that occurs

there is that since all operators commute, we do not need to worry about

the time-ordered product, thus with

e =  − e0 (30.61)

we have

 = − ln = −
∙D

−
 E0 − 1

¸
−  ln0 (30.62)

Using our basic inequality Eq.(30.58) for − we immediately obtain the

desired result

 ≤ −
D
− e E0 + 0 (30.63)

which is just another way of rewriting Eq.(30.60).

It is useful to note that in the language of density matrices, 0 = −(
0−)0

the variational principle Eq.(30.60) reads,

− ln ≤ Tr [0 ( − )] + Tr [0 ln 0] (30.64)

which looks as if we had the function ( − )−  to minimize, quite a satis-

factory state of affairs.

30.3.2 Thermodynamic variational principle for quantum systems

The quantum proof is easiest if we start from the following inequality for the

entropy[21]

 = −Tr [ ln ] ≤ −Tr [ ln 0]  (30.65)

Proof Let |i and |0i be the basis that diagonalize respectively  and 0. Then
by inserting the closure relation, and defining  = h|  |i with the anal-
ogous definition for 0, we find

Tr [− ln +  ln 0] = −
X


 ln  +
X
0

 h |0i log 00 h0 |i

=
X
0

h |0i h0 |i  log 
0
0


 (30.66)

In this sum, h |0i h0 |i  is positive or zero. We can now use ln  ≤
 − 1. (This inequality follows from the fact that the first derivative of

ln  −  vanishes at  = 1 and that the second derivative, −12 is negative
everywhere. Hence, ln  −  has a minimum at  = 1 and the value there is

−1) Using this inequality above, we find

Tr [− ln +  ln 0] ≤
X
0

h |0i h0 |i (0 − ) = Tr [
0]−Tr [] = 0

(30.67)

The last equality follows from the fact that the trace of a density matrix

is unity. The equality occurs only if h |0i = 0 or if 00 = 1 for all

possible choices of |i and |0i 
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To prove Feynmann’s variational principle Eq.(30.64) it suffices to take 0 =
−(−) and  = 0Then, the inequality for the entropy, Eq.(30.65) be-

comes −Tr [0 ln 0] ≤ Tr [0 ( − )] +  ln which is the variational princi-

ple Eq.(30.64) found above, namely that the true free energy smaller than the free

energy computed with a trial density matrix.

30.3.3 Application of the variational principle to Hartree-Fock theory

Writing down the most general one-body Hamiltonian with orthonormal eigen-

functions left as variational parameters, the above variational principle leads to

the usual Hartree-Fock eigenvalue equation. Such a general one-body Hamiltonian

would look like

e0 =
X


Z
x∗ (x)

µ
−∇

2

2

¶
 (x) 

+
  (30.68)

with  (x) as variational wave-functions. In the minimization problem, one must

add Lagrange multipliers to enforce the constraint that the wave-functions are not

only orthogonal but also normalized.

In a translationally invariant system, the one-body wave functions will be plane

waves usually, so only the eigenenergies need to be found. This will be done in

the following chapter.

It does happen however that symmetry is spontaneously broken. For example,

in an anti-ferromagnet the periodicity is halved so that the Hartree-Fock equa-

tions will correspond to solving a 2× 2 matrix, even when Fourier transforms are
used. The matrix becomes larger and larger as we allow more and more general

non-translationally invariant states. In the extreme case, the wave functions are

different on every site! This is certainly the case in ordinary Chemistry with small

molecules or atoms!
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Part V
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The electron gas with long-range forces and a neutralizing background, also

known as the jellium model, is probably the first challenge that was met by many-

body theory in the context of Solid State physics. It is extremely important con-

ceptually since it is crucial to understand how, in a solid, the long-range Coulomb

force becomes effectively short-range, or screened, at low energy. Other models,

such as the Hubbard model that we will discussed later on, have their foundation

rooted in the physics of screening.

In this part, we assume that the uniform neutralizing background has infinite

inertia. In a subsequent part of this book we will allow it to move, in other words to

support sound waves, or phonons. We will consider electron-phonon interactions

and see how these eventually lead to superconductivity.

The main physical phenomena to account for here in the immobile background,

are screening and plasma oscillations, at least as far as collective modes are con-

cerned. The surprises come in when one tries to understand single-particle prop-

erties. Hartree-Fock theory is a disaster since it predicts that the effective mass of

the electron at the Fermi level vanishes. The way out of this paradox will indicate

to us how important it is to take screening into account.

We will start by describing the source formalism due to the Schwinger-Martin

school[1, 2] and then start to do calculations. The advantage of this approach is

that it allows more easily to devise non-perturbative approximations and to derive

general theorems. It gives a systematic algebraic way to formulate perturbation

theory when necessary, without explicit use of Wick’s theorem. With this formal-

ism, so-called conserving approximations can also be formulated naturally. The

source, or functional derivative formalism, is however less appealing than Feynman

rules for the Feynmann diagram approach to perturbation theory. When these two

competing approaches were invented, it was forbidden to the practitioners of the

source approach to draw Feynamnn diagrams, but nothing really forbids it. The

students, anyway, drew the forbidden pictures hidden in the basement. The two

formalism are strictly equivalent.

After we introduce the formalism, we discuss first the density oscillations,

where we will encounter screening and plasma oscillations. This will allow us

to discuss the famous Random Phase Approximation (RPA). Then we move on

to single particle properties and end with a general discussion of what would be

needed to go beyond RPA. The electron gas is discussed in detail in a very large

number of textbooks. The discussion here is brief and incomplete, its main purpose

being to illustrate the physics involved.
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31. THE FUNCTIONAL DERIVA-

TIVE APPROACH

We basically want to compute correlation functions. In the first section below, we

show, in the very simple context of classical statistical mechanics, how introducing

artificial external fields (source fields) allows one to compute correlation functions

of arbitrary order for the problem without external fields. This is one more exam-

ple where enlarging the space of parameters of interest actually simplifies matters

in the end. In the other section, we show how to obtain Green’s functions with

source fields and then give an impressionist’s view of how we plan to use this idea

for our problem.

31.1 External fields to compute correlation func-

tions

In elementary statistical mechanics, we can obtain the magnetization by differen-

tiating the free energy with respect to the magnetic field. To be more specific,

let

 = Tr
h
−(−)

i
(31.1)

then
 ln


=

1


Tr
h
−(−)

i
= hi  (31.2)

The indice  on hi and  reminds us that the magnetic field is non zero. We

can obtain correlation fucntions of higher order by continuing the process

2 ln

22
= hi −Tr

h
−(−)

i 1
2

Tr
£
−(−)

¤


(31.3)

= hi − hi hi  (31.4)

The second term clearly comes from the fact that  in the denominator of the

equation for hi depends on One can clearly continue this process to find

higher and higher order correlation functions. At the end, we can set  = 0 Clearly

then, if one can compute hi or one can obtain higher order correlation

functions just by differentiating.

Suppose now that we want for example h (x1) (x2)i−h (x1)i h (x2)i That
can still be achieved if we impose a position dependent-external field:

 [] = Tr
h
−(−


3x(x)(x))

i
 (31.5)

It is as if at each position x there is an independent variable  (x)  The position

is now just a label. The notation  [] means that  is a functional of  (x) It

takes a function and maps it into a scalar. To obtain the magnetization at a single

point, we intorduce the notion of functional derivative, which is just a simple
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generalization to the continuum of the idea of partial derivative. To be more

specific,



 (x1)

Z
3x (x) (x) =

Z
3x

 (x)

 (x1)
 (x) (31.6)

=

Z
3x (x1 − x) (x) = (x1)  (31.7)

In other words, the partial derivative for two independent variables 1 and 2

1

2
= 12 (31.8)

where 12 is the Kroenecker delta, is replaced by

 (x)

 (x1)
=  (x1 − x)  (31.9)

Very simple.

Armed with this notion of functional derivative, one finds that

 ln []

 (x1)
= h (x1)i (31.10)

and the quantity we want is obtained from one more funcitonal derivative

2 ln []

2 (x1)  (x2)
= h (x1) (x2)i − h (x1)i h (x2)i  (31.11)

31.2 Green’s functions and higher order correlations

from functional derivatives

In our case, we are interested in correlation functions that depend not only on

space but also on real or imaginary time. In addition, we know that time-ordered

products are relevant. Hence, you will not be surprized to learn that we use as

our partition function with source fields

 [] = Tr
h
− exp

³
−† ¡1¢ ¡1 2¢ ¡2¢´i (31.12)

where we used the short-hand

(1) = (x1 1;1) (31.13)

with the overbar indicating integrals over space-time coordinates and spin sums.

More specifically,

†
¡
1
¢

¡
1 2
¢

¡
2
¢
=X

12

Z
3x1

Z 

0

1

Z
3x2

Z 

0

2
†
1
(x1 1)12 (x1 1x2 2)2 (x2 2) 

With the definition,

S [] = exp
³
−† ¡1¢ ¡1 2¢ ¡2¢´ (31.14)
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we can write the Matsubara Green’s function as a functional derivative of the

generating function ln [] 

−  ln []

 (2 1)
= −

D
S [] (1)† (2)

E
hS []i

= −
D
 (1)

† (2)
E

= G (1 2)  (31.15)

The functional derivative with respect to  does not influence at all the time order

so one can differentiate the exponential inside the time-ordered product. The

thermal average on the first line is with respect to − and in
D
 (1)

† (2)
E


one does not write S [] explicitly. Note the reversal in the order of indices in G
and in We have also used the fact that in a time ordered product we can displace

operators as we wish, as long as we keep track of fermionic minus signs.

Higher order correlation functions can be obtained by taking further functional

derivatives

G (1 2)
 (3 4)

= − 

 (3 4)

D
S [] (1)† (2)

E
hS []i

=

D
S [] (1)† (2)† (3) (4)

E
hS []i −

D
S [] (1)† (2)

ED
S []† (3) (4)

E
hS []i2

=
D
 (1)

† (2)† (3) (4)
E

+ G (1 2) G (4 3)  (31.16)

The first term is called a four-point correlation function. The last term comes

from differentiating hS []i in the denominator. To figure out the minus signs in
that last term note that there is one from −12, one from the derivative of the

argument of the exponential and one from ordering the field operators in the order

corresponding to the definition of G The latter is absorbed in the definition of
G

31.3 Source fields for Green’s functions, an impres-

sionist view

How can that formalism possibly be helpful. The reason is that the self-energy

will be expressed in terms of a four point correlation function which in turn can

be found from a functional derivative of G ( ). It will be possible to find this
functional derivative if we know G ( ) We do have an expression for that quan-
tity so that, in a sense, it closes the loop. We will see things are not so simple in

practice, but at least that is a start.

How do we find G ( )? It suffices to write the equations of motion. What
is different from the non-interacting case is the presence of  and of interactions.

When we compute
(1)

1
= [ (1)]  there will be a term coming from the com-

mutator of the interaction term with  (1)  That will be a term proportional to

 † with  the potential energy. Using this result in the definition of G,
which has an extra †tagged on the right, the equation of motion for G will read
something like ¡G−10 − 

¢G = 1− 
D


††
E
 (31.17)
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Using our notion of irreducible self-energy, we define

ΣG = −
D


††
E

Σ = −
D


††
E
G−1 (31.18)

so that

G−1 = G−10 − −Σ (31.19)

which is equivalent to Dyson’s equation

G = G0 + G0ΣG (31.20)

with G0 =
¡G−10 − 

¢−1
The four-point correlation function entering the defini-

tion of Σ is then obtained from a functional derivative of G sinceD


††
E
=

G

− GG (31.21)

as we saw in the previous section.

To find that functional derivative we start from the equation of motion Eq.(31.17)

which gave us Dyson’s equation Eq.(31.19) which is easy to differentiate with re-

spect to  Then, we can take advantage of this and G−1G = 1 to find the functional
derivative of G Indeed,


¡G−1G¢


=
G−1


G + G−1 G

= 0 (31.22)

or, left multiplying by G
G

= −G G

−1


G (31.23)

which can be evaluated with the help of Dyson’s equation Eq.(31.19)

G

= G 


G + G Σ


G (31.24)

We will see that we can write Σ as a functional of G, at least in perturbation
theory, and that there is no explicit dependence of Σ on  Hence, using the chain

rule
Σ


=

Σ

G
G


(31.25)

we have an integral equation for G


G

= G 


G + G

³
Σ
G

G


´
G (31.26)

If we can solve this, we can find G Eq.(31.17)¡G−10 − 
¢G = 1 +ΣG (31.27)

with the self-energy Eq.(31.18) written in terms of the four-point function Eq.(31.21)

Σ = −
³
G

− GG

´
G−1 (31.28)

Since the integral equation for G

requires that we know both G and Σ

G there

will be some iteration process involved. The last three equations can be solved for

 = 0 since  has played its role and is no longer necessary at that point.
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One physical point that will become clearer when we put all indices back,

is that the self-energy contains information about the fact that the medium is

polarizable, i.e. it depends on the four-point correlation function G

and hence on

the density-density correlation function, or equivalently the longitudinal dielectric

constant, as we shall verify.

We can also write an equation that looks as a closed functional equation for Σ

by using the expression Eq.(31.24) relating G

and Σ


:

Σ = −
µ
G 

G + G Σ


G − GG

¶
G−1

= −
µ
G 

+G Σ


− G

¶
(31.29)

An alternate useful form that uses the fact that all the functional dependence of

Σ on  is implicit through its dependence on G is

Σ = −
³
G 

− G + G Σ

G
G


´
(31.30)

Since Σ is already linear in  it is tempting to use Σ = −
³
G 

− G

´
as a

first approximation. This is the Hartree-Fock approximation.

Remark 108 ±
G in the equation for the functional derivative Eq.(31.26) is called

the irreducible vertex in the particle-hole channel. The reason for this will become

clear later. The term that contains this irreducible vertex is called a vertex correc-

tion. Note that G ¡ ±
G
¢G plays the role of a self-energy for the four-point function

G

 For the same reason that it was profitable to resum infinite series for G by

using the concept of a self-energy, it will be preferable to do the same here and use

G ¡ ±
G
¢G as a self-energy instead of iterating the equation for G


at some finite

order.

Remark 109 If we had written an equation of motion for the four-point function,

we would have seen that it depends on a six point function, and so on, so that is not

the way to go. This would have been the analog of the so-called BBGKY hierarchy

in classical transport theory.
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32. EQUATIONS OF MOTION TO

FIND G IN THE PRESENCE OF
SOURCE FIELDS

Here we try to do everything more rigorously with all the bells and whistles. It

is clear that the first step is to derive the equations of motion for the Green’s

function. That begins with the Hamiltonian and equations for motion for  (1)

which will enter the equation of motion for G

32.1 Hamiltonian and equations of motion for  (1)

The Hamiltonian we consider is the following. Note that we now introduce spin

indices denoted by Greek indices:

 =  −  = 0 +  +  −  (32.1)

0 =
1

2

X
1

Z
x1∇†1 (x1) ·∇1 (x1) (32.2)

 =
1

2

X
12

Z
x1

Z
x2 (x1−x2)†1 (x1)†2 (x2)2 (x2)1 (x1)

 = −
X
1

Z
x1

Z
x2 (x1−x2)†1 (x2)1 (x2)0 (32.3)

The last piece,  represents the interaction between a “neutralizing background”

of the same uniform density 0 as the electrons. The potential is the Coulomb

potential

 (x1−x2) = 2

|x1−x2| (32.4)

To derive the equations of motion for the Green’s function, we first need those

for the field operators.

 (x)


= [ (x)] (32.5)

Using [] = {} − {} and Eq.(32.1) for  we have

 (x)


=
∇2
2

 (x ) +  (x ) (32.6)

−
X
2

Z
x2 (x− x2)†2 (x2 )2 (x2 ) (x )

The last term does not have the 12 factor that appeared in the Hamiltonian
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becauseh
†1 (x1)

†
2
(x2)2 (x2)1 (x1)   (x)

i
=

h
†1 (x1)

†
2
(x2)   (x)

i
2 (x2)1 (x1)

= −1 (x− x1)†2 (x2)2 (x2)1 (x1)
+2 (x− x2)†1 (x1)2 (x2)1 (x1) 

Anticommuting the destruction operators in the last term, substituting and chang-

ing dummy indices, the two contributions are identical.

The equation of motion can be rewritten in the more matrix-like form

 (1)

1
=
∇21
2

 (1) +  (1)− †
¡
2
¢

¡
2
¢
V
¡
2− 1¢ (1) (32.7)

if we define a time and spin dependent potential

V (1 2) = V12 (x1 1;x2 2) ≡ 2

|x1−x2| (1 − 2)  (32.8)

In reality the potential is independent of spin and is instantaneous but introducing

these dependencies simplifies the notation.

Remark 110 We assume that the potential has no  = 0 component because of the

compensating effect of the positive background. The argument for the neutralizing

background is as follows. If we had kept it, the above equation would have had an

extra term

+ 0

∙Z
x2 (x− x2)

¸
 (x ) (32.9)

The q = 0 contribution of the potential in the above equation of motion gives on

the other hand a contribution

−
∙Z

x2 (x− x2)
¸"
1

V
Z

x2
X
2

†2 (x2 2)2 (x2 2)

#
 (x ) (32.10)

While the quantity in bracket is an operator and not a number, its deviations from

0 vanish like V−12 in the thermodynamic limit, even in the grand-canonical
ensemble. Hence, to an excellent degree of approximation we may say that the

only effect of the neutralizing background is to remove the  = 0 component of

the Coulomb potential. The result that we are about to derive would be different

in other models, such as the Hubbard model, where the  = 0 component of the

interaction potential is far from negligible.

32.2 Equations of motion for G and definition of
Σ

The equation of motion for G (1 2)

G (1 2) = −

D
S [] (1)† (2)

E
hS []i

is obtained by taking the time derivative. There will be three contributions. One

from
(1)

1
 that we found above, one from the time derivative of the  (1 − 2)
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and  (2 − 1) entering the definition of the time-ordered product that gives the

usual delta function, and one from the fact that terms in S [] have to be orderd
with respect to 1 The only unfamiliar contribution is the latter one. To under-

stand how to compute it, we write explicitely the time integral associated with

the creation operator in the exponential and order it properly:D
S [] (1)† (2)

E
=

*
 exp

Ã
−
Z 

1

1
† ¡1¢ ¡1 2¢ ¡2¢!

 (1) exp

µ
−
Z 1

0

1
† ¡1¢ ¡1 2¢ ¡2¢¶† (2)

À
Since we moved an even number of fermion operators, we do not need to worry

about sign. We do not need to worry about the destruction operator in the ex-

ponential either since it anticommutes with  (1) : The time-ordered product will

eventually take care of the proper order. So, in the end, we have a contribution

to the time derivative with respect to 1 that reads*
 exp

Ã
−
Z 

1

1
† ¡1¢ ¡1 2¢ ¡2¢! Z 3x10

h
† (x10  1)

¡
x10  1 2

¢

¡
2
¢
  (x1 1)

i
exp

µ
−
Z 1

0

1
† ¡1¢ ¡1 2¢ ¡2¢¶† (2)

À
= − ¡1 2¢DS [] ¡2¢† (2)E

Collecting the three contributions, we can writeµ


1
− ∇

2
1

2
− 

¶
G (1 2) = − (1− 2) +

D


h
†
³
2+
´
V
¡
1− 2¢ ¡2¢ (1)† (2)iE



− ¡1 2¢G ¡2 2¢

 (32.11)

Note that we had to specify†
³
2+
´
in the term with the potential energy. The

superscrpt + specifies that the time in that field operator is later than the time

in  (10)  In other words
2+ ≡ ¡x2 2 + 0+;2¢

Equal time does not mean anything in a time ordered product. The choice to take

†
³
2+
´
keeps the field in the order it was in to begin with.

The equations of motion can be written in a compact form if we define

G−10
¡
1 2
¢
= −

³

1
− ∇21

2
− 

´

¡
1− 2¢  (32.12)

With this definition, the equation of motion Eq.(32.11) takes the form¡G−10 ¡
1 2
¢− 

¡
1 2
¢¢G ¡2 2¢


=  (1− 2)−V ¡1− 2¢ D h† ³2+´ ¡2¢ (1)† (2)iE




Comparing with Dyson’s equation, we have an explicit form for the self-energy,

Σ
¡
1 2
¢

G ¡2 2¢


= −V ¡1− 2¢ D h† ³2+´ ¡2¢ (1)† (2)iE


. (32.13)

The equation of motion can then also be written as³
G−10

¡
1 2
¢− 

¡
1 2
¢−Σ ¡1 2¢



´
G ¡2 2¢


=  (1− 2)
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which also reads

G−1 (1 2) = G−10 (1 2)−  (1 2)−Σ (1 2)  (32.14)

Remark 111 The self-energy is related to a four-point function and we note in

passing that the trace of defining equation 32.13 is related to the potential energy.

That can be seen as follows. In the limit 2→ 1+ the right-hand side becomesD


h
†
¡
1+
¢
†
³
10+
´
V
¡
10 − 1¢ ¡10¢ (1)iE 

Recalling the definition of the average potential energy

2 h i =
X
1

Z
3x1

D


h
†
¡
1+
¢
†
³
10+
´
V
¡
10 − 1¢ ¡10¢ (1)iE (32.15)

this special case of our general formula givesX
1

Z
3x1

Z
10
Σ (1 10)G ¡10 1+¢ = 2 h i  (32.16)

We have the freedom to drop the time-ordered product when we recall that the oper-

ators are all at the same time and in the indicated order. Using time-translational

invariance the last result may also be written

Σ
¡
1 10

¢G ³10 1+´ = 2 h i = D h† ³1+´† ³10+´V ¡10 − 1¢ ¡10¢ ¡1¢iE
(32.17)

Remark 112 The 1+ on the left-hand side is absolutely necessary for this expres-

sion to make sense. Indeed, taken from the point of view of Matsubara frequencies,

one knows that the self-energy goes to a constant at infinite frequency while the

Green’s function does not decay fast enough to converge without ambiguity. On

the right-hand side of the above equation, all operators are at the same time, in

the order explicitly given.

32.3 Four-point function from functional derivatives

Since we need a four-point function to compute the self-energy and we know G
if we know the self-energy, let us find an equation for the four-point function in

terms of functional derivatives as we saw at length in Eq.(31.16)

G (1 2)
 (3 4)

=
D
 (1)

† (2)† (3) (4)
E

+ G (1 2) G (4 3)  (32.18)

The equation for the functional derivative is then easy to find using GG−1 = 1 and
our matrix notation,


¡GG−1¢


= 0 (32.19)

G

G−1 + G G

−1


= 0 (32.20)

G


= −G G
−1


G (32.21)
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Figure 32-1 Diagrammatic representation of the integral equation for the four point

function. The two lines on the right of the equal sign and on top of the last block

are Green’s function. The filled box is the functional derivative of the self-energy. It

is called the particle-hole irreducible vertex. It plays, for the four-point function the

role of the self-energy for the Green’s function.

With Dyson’s equation Eq. (32.14) for G−1 we find the right-hand side of that
equation

G

= G 


G + G Σ


G (32.22)

Just to make sure what we mean, let us restore indices. This then takes the form

G (1 2)
 (3 4)

= G ¡1 1¢



¡
1 2
¢

 (3 4)
G ¡2 2¢


+ G ¡1 5¢



Σ
¡
5 6
¢


 (3 4)
G ¡6 2¢



= G (1 3) G (4 2) + G
¡
1 5
¢


Σ
¡
5 6
¢


 (3 4)
G ¡6 2¢


 (32.23)

We will see that Σ depends on  only through its dependence on G so that this
last equation can also be written in the form

G (1 2)
 (3 4)

= G (1 3) G (4 2)

+G ¡1 5¢


Ã
Σ
¡
5 6
¢


G ¡7 8¢


G ¡7 8¢


 (3 4)

!
G ¡6 2¢


 (32.24)

This general equation can also be written in short-hand notation

G

= GˆG+ G

Σ
G
G


G  (32.25)

where the caret ˆ reminds us that the indices adjacent to it are the same as those

of  and where the two terms on top of one another are matrix multiplied top

down as well. Fig. 32-1 illustrates the equation with the indices.
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32.4 Self-energy from functional derivatives

To compute the self-energy, according to Eq.(32.13), what we need is to obtain

the self-energy is

Σ (1 3) = −V
¡
1− 2¢ D h† ³2+´ ¡2¢ (1)† ¡4¢iE


G−1

¡
4 3
¢
 (32.26)

We write the four-point function with the help of the functional derivative Eq.(??)

by replacing in the latter equation 3→ 10+ 4→ 10 1→ 1 2→ 2 so that

Σ (1 3) = −V ¡1− 2¢
⎡⎣ G ¡1 4¢




³
2+ 2

´ − G ³2 2+´

G ¡1 4¢



⎤⎦G−1 ¡4 3¢


= −V ¡1− 2¢
⎡⎣−G ¡1 4¢



G−1 ¡4 3¢



³
2+ 2

´ − G ³2 2+´

 (1− 3)

⎤⎦ 
where we used Eq.(32.20) G


G−1 = −G G−1


This is the general expression that

we need for Σ Note that in 
³
2+ 2

´
the spins are identical, in other words, in

spin space that matrix is diagonal. This is not the only possibility but that is the

only one that we need here as we can see from the four point correlation function

that we need. This is the so-called longitudinal particle-hole channel. We will see

why with diagrams later on.

Remark 113 Mnemotechnic: The first index of the V
¡
1− 2¢ is the same as the

first index of the upper line and is the same as the first indes on the left-hand side

of the equation. The second index is summed over and is the same as the index on

the second line. The two Green’s function in G
³
2 2+

´

G ¡1 4¢


can be arranged

on top of one another so that this rule is preserved.

To begin to do approximations, we use the equation relating G−1


Eq.(32.22) to
Σ

to obtain a closed set of equation for Σ that will lend itself to approximations

in power series of the potential

Σ (1 3) = −V ¡1− 2¢
⎡⎣G ¡1 4¢




¡
4 3
¢



³
2+ 2

´ + G ¡1 4¢


Σ
¡
4 3
¢



³
2+ 2

´
−G

³
2 2+

´

 (1− 3)

¸
(32.27)

= −V (1− 3)G (1 3) +V
¡
1− 2¢G ³2 2+´


 (1− 3)

−V ¡1− 2¢G ¡1 4¢


Σ
¡
4 3
¢



³
2+ 2

´  (32.28)

The first two terms are the Hartree-Fock contribution, that we will discuss in the

next section and at length later on. The last term is the only one that will give a

frequency dependence, and hence an imaginary part, to the self-energy.

In general, the functional dependence of Σ on  will be through the dependence

on G, at least in weak coupling. Hence, using the chain rule, the above equation
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Figure 32-2 Diagrams for the self-energy. The dashed line represent the interaction.

The first two terms are, respectively, the Hatree and the Fock contributions. The

textured square appearing in the previous figure for the our-point function has been

squeezed to a triangle to illustrate the fact that two of the indices (coordinates) are

identical.

may be rewritten

Σ (1 3) = −V (1− 3)G (1 3) +V
¡
1− 2¢G ³2 2+´


 (1− 3)

−V ¡1− 2¢G ¡1 4¢


Σ
¡
4 3
¢


G ¡5 6¢


G ¡5 6¢



³
2+ 2

´  (32.29)

The equation for the self-energy is represented schematically in Fig. 32-2. Note

that the diagrams are one-particle irreducible, i.e. they cannot be cut in two

seperate pieces by cutting a single propagator.
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33. FIRST STEP WITH FUNC-

TIONALDERIVATIVES: HARTREE-

FOCK AND RPA

These are the two most famous approximations: Hartree-Fock for the self-energy

and RPA for the density-density correlation function. We will see later on why

these come out naturally from simple considerations, including the variational

principle.

33.1 Equations in real space

Since Σ is already linear in external potential, it is tempting to drop the last term

of the last equation of the previous section since that will be of second order at

least. If we do this, we obtain

Σ (1 3) = −V (1− 3)G (1 3) +V
¡
1− 2¢G ³2 2+´


 (1− 3)  (33.1)

This is the Hartree-Fock approximation, on which we will comment much more

later on. This can be used to compute Σ
G that appears both in the in the exact

expression for the self-energy Eq.(32.29) and in the exact expression for the four-

point function Eq.(32.24) that also appears in the self-energy. A look at the last

two figures that we drew is helpful.

Refering to the exact expression for the four-point function Eq.(32.24), what

we need is
Σ(56)
G(78) which we evaluate from the the Hartree-Fock approximation

Eq.(33.1),

Σ (5 6)

G (7 8)
= V

¡
5− 9¢  ¡9− 7¢  ¡9− 8¢  (5− 6)−V (5− 6)  (7− 5)  (8− 6)

= V (5− 7)  (7− 8)  (5− 6)−V (5− 6)  (7− 5)  (8− 6) 

It is easier to imagine the result by looking back at the illustration of the Hartree-

Fock term in Fig. 32-1. The result of the functional derivative is illustrated in

Fig. 33-1. When two coordinates are written on one end of the interaction line,

it is because there is a delta function. For example, there is a  (5− 6) for the
vertical line.

Substituting back in the equation for the exact found-point function G

Eq.(32.24)

we find
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5 6

87

=

5 6

87

‐ 5 6

7 8

Figure 33-1 Expression for the irreducible vertex in the Hartree-Fock approximation.

The labels on either side of the bare interaction represented by a dashed line are at

the same point, in other words there is a delta function.

1 2

3 4

=

1 2

3 4

1 2

3 4

‐
5 6

1 2

3 4

5

7+

Figure 33-2 Integral equation for G in the Hartree-Fock approximation.

G (1 2)
 (3 4)

= G (1 3) G (4 2)

+G ¡1 5¢


Ã
V
¡
5− 7¢ G ¡7 7¢

 (3 4)

!
G ¡5 2¢


(33.2)

−G ¡1 5¢


Ã
V
¡
5− 6¢ G ¡5 6¢

 (3 4)

!
G ¡6 2¢


 (33.3)

This expression is easy to deduce from the general diagrammatic representation of

the general integral equation Fig. 32-1 by replacing the irreducible vertex by that

in Fig. 33-1 that follows from the Hartree-Fock approximation. This is illustrated

in Fig. 33-2.

To compute a better approximation for the self-energy we will need  (2+ 2)

instead of  (3 4)  as can be seen from our exact result Eq.(32.29). Although

one might guess it from symmetry, we will also see that all that we will need is,

G (1 1+), although it is not obvious at this point. It is quite natural however that
the density-density correlation function plays an important role since it is related

to the dielectric constant. From the previous equation, that special case can be
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written

G (1 1+)
 (2+ 2)

= G (1 2) G (2 1) (33.4)

+G ¡1 5¢


Ã
V
¡
5− 7¢ G ¡7 7¢

 (2+ 2)

!
G ¡5 1¢


(33.5)

−G ¡1 5¢


Ã
V
¡
5− 6¢ G ¡5 6¢

 (2+ 2)

!
G ¡6 1¢


 (33.6)

33.2 Equations in momentum space with  = 0

We are ready to set  = 0. Once this is done, we can use translational invariance

so that Σ (1 3) = Σ (1− 3) and G (1 3) = G (1− 3)  In addition, spin rotational
invariance implies that these objects are diagonal in spin space. We then Fourier

transform to take advantage of the translational invariance. In that case, restoring

spin indices we can define

G () =
Z

 (x1 − x2)
Z 

0

 (1 − 2) 
−k·(x1−x2)(1−2)G (1− 2) (33.7)

In this expression,  is a fermionic Matsubara frequency and the Green’s function

is diagonal in spin indices 1 and 2. For clarity then, we have explicitly written

a single spin label. For the potential we define

V0 () =

Z
 (x1 − x2)

Z 

0

 (1 − 2) 
−q·(x1−x2)(1−2)V0 (1− 2)

(33.8)

where  is, this time, a bosonic Matsubara frequency, in other words

 = 2 (33.9)

with  and integer. Again we have explicitly written the spin indices even if

V0 (1− 2) is independent of spin. The spin  is the same as the spin of the two
propagators attaching to the vertex 1 while 0 is the same as the spin of the two
propagators attaching to the vertex 2

Remark 114 General spin-dependent interaction: In more general theories, there

are four spin labels attached to interaction vertices. These labels correspond to

those of the four fermion fields. Here the situation is simpler because the interac-

tion not only conserves spin at each vertex but is also spin independent.

To find expressions to evaluate in momentum space, we start from the above

position space expressions, and their diagrammatic equivalent, and now write

G (1− 2) and V (1− 2) in terms of their Fourier-Matsubara transforms, namely

G (1− 2) =
Z

3k

(2)
3


∞X
=−∞

k·(x1−x2)−(1−2)G () (33.10)

V0 (1− 2) =
Z

3q

(2)
3


∞X
=−∞

q·(x1−x2)−(1−2)V0 () (33.11)
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q

k

k

1

2

Figure 33-3 A typical interaction vertex and momentum conservation at the vertex.

Then we consider an internal vertex, as illustrated in Fig.(33-3), where one has to

do the integral over the space-time position of the vertex, say 10 Note that because
V (1− 2) = V (2− 1)  we are free to choose the direction of q on the dotted line
at will. Leaving aside the spin coordinates, that behave just as in position space,

the integral to perform isZ
x01

Z 

0

 01
−(k1−k2+q)·x01(1−2+)

0
1 (33.12)

= (2)
3
 (k1 − k2 + q)(1−2) (33.13)

The last delta is a Kronecker delta. Indeed, the sum of two fermionic Matsubara

frequencies is a bosonic Matsubara frequency since the sum of two odd numbers is

necessarily even. This means that the integral over  01 is equal to  if 1−2+
 = 0 while it is equal to zero otherwise because exp ( (1 − 2 + ) 

0
1)is

periodic in the interval 0 to  The conclusion of this is that momentum and

Matsubara frequencies are conserved at each interaction vertex. In other words,

the sum of all wave vectors entering an interaction vertex vanishes. And similarly

for Matsubara frequencies. This means that a lot of the momentum integrals

and Matsubara frequency sums that occur in the replacements Eqs.(34.31) and

(34.32) can be done by simply using conservation of momentum and of Matsubara

frequencies at each vertex. One must integrate over the momenta and Matsubara

frequencies that are not determined by conservation. In general, there are as many

integrals to perform as there are closed loops in a diagram.

Writing

 = (k )  (33.14)

the Hartree-Fock approximation for the self-energy Eq.(33.1) is

Σ () = − ()G ( + ) +  ( = 0)G
³
2 2+

´
(33.15)

The sign of the wave vector  or direction of the arrow in the diagram, must

be decided once for each diagram but this choice is arbitrary since the potential

is invariant under the interchange of coordinates, as mentioned above. This is

illustrated in Fig. 33-4

For the four-point function, there are four outside coordinates so we would

need three independent outside momenta. However, all that we will need, as we

shall see, are the density-density fluctuations. In other words, as we can see from

the general expression for the self-energy in Fig. 32-2, we can identify two of

the space-time points at the bottom of the graph. We have already written the

expression in coordinates in Eq.(33.4). Writing the diagrams for that expression

and using our rules for momentum conservation with a four-momentum  flowing

top down, the four-point function in Fig. 33-2 becomes as illustrated in Fig. 33-5.

You can skp the next chapter is you are satisfied with the functional derivative

(source, or Schwinger) approach.
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= ‐

k’

q=0

q

k+q

Figure 33-4 Diagram for the self-energy in momentum space in the Hartree-Fock

approximation. There is an integral over all momenta and spins not determined by

spin and momentum conservation.

= k+q k

k+q k

‐ +

k+q k

k‐k’
q

Figure 33-5 Diagrams for the density-density correlation function. We imagine a

momentum q flowing from the top of the diagram and conserve momentum at every

vertex.
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34. FEYNMAN RULES FOR TWO-

BODY INTERACTIONS

We have already encountered Feynman diagrams in the discussion of the impurity

problem in the one-particle context. As we will see, perturbation theory is obtained

simply by using Wick’s theorem. This generates an infinite set of terms. Diagrams

are a simple way to represent and remember the various terms that are generated.

Furthermore, associating specific algebraic quantities and integration rules with

the various pieces of the diagrams, allows one to write the explicit expression for a

given term without returning to Wick’s theorem. In case of doubt though, Wick’s

theorem is what should be used. The specific rules will depend on the type of

interaction considered. This is described in a number of books [3],[4].

34.1 Hamiltonian and notation

The Hamiltonian we consider is the following. Note that we now introduce spin

indices denoted by Greek indices:

 =  −  = 0 +  +  − 

0 =
1

2

X
1

Z
x1∇†1 (x1) ·∇1 (x1) (34.1)

 =
1

2

X
12

Z
x1

Z
x2 (x1−x2)†1 (x1)†2 (x2)2 (x2)1 (x1)

 = −
X
1

Z
x1

Z
x2 (x1−x2)†1 (x2)1 (x2)0 (34.2)

The last piece,  represents the interaction between a “neutralizing background”

of the same uniform density 0 as the electrons. The potential is the Coulomb

potential

 (x1−x2) = 2

|x1−x2| (34.3)

Let us say we want to compute the one-body Green’s function in the interaction

representation

G12 (x1 1;x2 2) = −

h
−0

³b ( 1) b1 (x1 1) b (1 2) b†2 (x2 2) b (2 0)´i

h
−0 b ( 0)i

= −

h
−0

³b ( 0) b1 (x1 1) b†2 (x2 2)´i

h
−0 b ( 0)i (34.4)

We do not write explicitly the interaction with the neutralizing background since
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it will be obvious later when it comes in. Then, the evolution operator is

b ( 0) = 

"
exp

Ã
−
Z 

0

1 b (1)!#

Note that by definition of the interaction representation,

b (1) = 01

"
1

2

X
12

Z
x1

Z
x2 (x1−x2)†1 (x1)†2 (x2)2 (x2)1 (x1)

#
−01

(34.5)

Inserting everywhere the identity operator −0101 this can be made to have

a more symmetrical form

b ( 0) = 

"
exp

Ã
−1
2

X
12

Z 

0

1

Z
x1

Z
x2 ×

 (x1−x2) b†1 (x11) b†2 (x21) b2 (x21) b1 (x11)´i(34.6)
This can be made even more symmetrical by defining the potential,

V12 (x1 1;x2 2) =
2

|x1−x2| (1 − 2) (34.7)

The right-hand side is independent of spin. In addition to being more symmetrical,

this definition has the advantage that we can introduce the short-hand notation

V (1 2) (34.8)

where

(1) = (x1 1;1) (34.9)

The evolution operator now systematically involves integrals over time space and

a sum over spin indices, so it is possible to further simplify the notation by intro-

ducing Z
1

=

Z 

0

1

Z
x1

X
1=±1

(34.10)

and

 (1) = b1 (x1 1) (34.11)

Note that we have taken this opportunity to remove hats on field operators. It

should be clear that we are talking about the interaction representation all the

time when we derive Feynman’s rules.

With all these simplifications in notation, the above expressions for the Green’s

function Eq.(34.4) and the time evolution operator Eq.(34.6) take the simpler

looking form

G (1 2) = −[−0((0)(1)†(2))]
[−0(0)]

(34.12)

 ( 0) = 

h
exp

³
−1
2

R
1

R
2
V (1 2)† (1)† (2) (2) (1)

´i
(34.13)
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34.2 In position space

We now proceed to derive Feynman’s rules in position space. Multiplying nu-

merator and denominator of the starting expression for the Green’s function by

1
£
−0

¤
we can use the linked cluster theorem in Subsection (30.2.1) to argue

that we can forget about the power series expansion of the evolution operator in

the denominator, as long as in the numerator of the starting expression Eq.(34.12)

only connected terms are kept. The perturbation expansion for the Green’s func-

tion thus takes the form

G (1 2) = −
D


³
 ( 0) (1)† (2)

´E
0

(34.14)

The average is over the unperturbed density matrix and only connected terms are

kept. A typical term of the power series expansion thus has the form

− 1

!

¿


∙µ
−1
2

Z
10

Z
20
V (10 20)† (10)† (20) (20) (10)

¶
 (1)† (2)

¸À
0

(34.15)

To evaluate averages of this sort, it suffices to apply Wick’s theorem. Since this

process becomes tedious and repetitive, it is advisable to do it once in such a way

that simple systematic rules can be extracted that will allow us to write from the

outset the simplest expression for a term of any given order. The trick is to write

down diagrams and rules both to build them and to associate with them algebraic

expressions. These are the Feynman rules.

Wick’s theorem tells us that a typical average such as Eq.(34.15) is decom-

posed into a sum of products of single particle Green’s function. Let us represent

a Green’s function by a straight line, as in Fig.(34-1). Following the convention

of Ref. [6] the arrow goes from the left most to the right most label of the corre-

sponding Green’s function. Going from the creation to the annihilation operator

might have been more natural and would have lead us to the opposite direction

of the arrow, as for example in Ref. [7]. Nevertheless it is clear that it suffices to

stick to one convention. In any case, contrary to older diagrammatic perturbation

techniques, with Feynman diagrams the arrow represents the propagation of either

and electron or a hole and the direction is irrelevant. The other building block

for diagrams is the interaction potential which is represented by a dotted line. To

either end of the dotted line, we have a Green’s function that leaves and one that

comes in, corresponding to the fact that there is one  and one † attached to
any given end of a dotted line. The arrow heads in Fig.(34-1) just reminds us of

this. They are not really part of the dotted line. Also, it does not matter whether

the arrows come in from the top or from the bottom, or from left or right. It is

only important that each end of the dotted line is attached to one incoming and

one outgoing line.

1 2

G (1,2) V (1’,2’)

1’ 2’

Figure 34-1 Basic building blocks of Feynman diagrams for the electron gas.

Let us give an example of how we can associate contractions and diagrams.
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For a term with  = 1 a typical term would be

−
¿


∙
−1
2

Z
10

Z
20
V (10 20)

1

† (10)
2

† (20)
3

(20)
2

(10)
1

(1)
3

† (2)
¸À

0

(34.16)

We have marked by a the same number every operator that belongs to the same

contraction. The corresponding algebraic expression is

− 1
2

Z
10

Z
20
V (10 20)G (1 10)G (10 20)G (20 2) (34.17)

and we can represent it by a diagram, as in Fig.(34-2) Clearly, exactly the same

1 2

G (1,1’) V (1’,2’)

1’ 2’

G (2’,2)

Figure 34-2 A typical contraction for the first-order expansion of the Green’s

function. THe Fock term.

contribution is obtained if the roles of the fields at the points 10 and 20 above are
interchanged. More specifically, the set of contractions

−
¿


∙
−1
2

Z
10

Z
20
V (10 20)

2

† (10)
1

† (20)
2

(20)
3

(10)
1

(1)
3

† (2)
¸À

0

(34.18)

gives the algebraic expression

− 1
2

Z
10

Z
20
V (10 20)G (20 10)G (1 20)G (10 2) (34.19)

which, by a change of dummy integration variable, 10 ↔ 20 gives precisely the
same contribution as the previous term.

We need to start to be more systematic and do some serious bookkeeping.

Let us draw a diagram for each and every one of the possible contractions of this

first order term. This is illustrated in Fig.(34-3). A creation operator is attached

to point 2 while a destruction operator is attached to point 1 At either end of

the interaction line, say at point 10 is attached one creation and one annihilation
operators. We must link every destruction operator with a creation operator in

all possible ways, as illustrated in the figure. The diagrams marked  and  are

disconnected diagrams, so they do not contribute. On the other hand, by changing

dummy integration variables, it is clear that diagrams  and  are equal to each

other, as diagrams  and  are. The algebraic expressions for diagrams  and

 are those given above, in Eqs.(34.17)(34.19). In other words, if we had given

the rule that only connected and topologically distinct diagrams contribute and

that there is no factor of 12 we would have written down only diagram  and

diagram  and obtained correctly all the first order contributions. Two diagrams

are topologically distinct if they cannot be transformed one into the other by

“elastic” changes that do not cut Green’s functions lines.

For a general diagram of order  in the interaction, there are  interaction

lines and 2 + 1 Green’s functions. To prove the last statement, it suffices to

notice that the four fermion fields attached to each interaction line correspond to

four “half lines” and that the creation and annihilation operators corresponding
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1

2

1’ 2’
A

B

C D

E F

Figure 34-3 All possible contractions for the first-order contribution to the Green’s

function. A line must start at point 1 illustrated in the box on the left, and one line

must end at 2 Lines must also come in and go out on either side of the dotted line.

to the “external” points 1 and 2 that are not integrated over yield one additional

line. Consider two connected diagram of order three say, as in Fig.(34-4). The

two diagrams there are clearly topologically equivalent, and they also correspond

precisely to the same algebraic expression as we can see by doing the change of

dummy integration variables 30 ↔ 50 and 40 ↔ 60 In fact, for any given topology,
we can find 3! × 23 contractions that lead to diagrams with the same topology.
The 3! corresponds to the number of ways of choosing the interaction lines to

which four fermion lines attach, and the 23 corresponds to the fact that for every

line there are two ends that one can interchange. For a diagram of order  there

are thus 2! contractions that all have the same topology and that cancel the

1 (2!) coming from the expansion of the exponential and the 12 in front of

each interaction V (10 20) .

1’
2’

3’

5’

4’

6’

1’
2’

3’

5’

4’

6’

Figure 34-4 Two topologically equaivalent diagrams of order 3

From what precedes then, it is clear that we can find all contributions for

G (1 2) to order  by the following procedure that gives rules for drawing diagrams

IN POSITION SPACE 275



and for associating an algebraic expression to them.

1. Draw two “external” points, labeled 1 and 2 and  dotted lines with two

ends (vertices). Join all external points and vertices with lines, so that each

internal vertex has a line that comes in and a line that comes out while

one line comes in external point 2 and one line comes out of point 1 The

resulting diagrams must be i) Connected, ii) Topologically distinct (cannot

be deformed one into the other).

2. Label all the vertices of interaction lines with dummy variables representing

space, imaginary time and spin.

3. Associate a factor G (1 2) to every line going from a vertex or external point
labeled 1 to a vertex or external point labeled 2

4. Associate a factor V (10 20) to every dotted line between a vertex labeled 10

and a vertex labeled 20

5. Integrate on all internal space, imaginary time and spin indices associated

with interaction vertices. Notice that spin is conserved at each interaction

vertex, as we can explicitly see from the original form of the interaction

potential appearing in, say, Eq.(34.6). (And now the last two rules that we

have not proven yet)

6. Associate a factor (−1) (−1) to every diagram. The parameter  is the
order of the diagram while  is the number of closed fermion loops.

7. Associate to every fermion line joining two of the vertices of the same inter-

action line (Fig.(34-5)) the factor

G ¡1 2+¢ ≡ lim
→0

G12 (x1 1;x2 1 + ) (34.20)

This last rule must be added because otherwise the rules given before are

ambiguous since the Coulomb potential is instantaneous (at equal time) and

Green’s functions have two possible values at equal time. So it is necessary to

specify which of these values it takes. The chosen order is discussed further

in the following subsection.

Figure 34-5 Pieces of diagrams for which lead to equal-time Green’s functions and

for which it is necessary to specify how the  → 0 limit is taken.

34.2.1 Proof of the overall sign of a Feynman diagram

To prove the rule concerning the overall sign of a Feynman diagram, consider the

expression for a 0 order contribution before the contractions. We leave out the
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factors of V and other factors to concentrate on field operators, their permutations

and the overall sign.

− (−1)
¿


∙Z
10

Z
20
  

Z
2−1

Z
2

† (10)† (20) (20) (10)   (34.21)

   † (2− 1)† (2) (2) (2− 1) (1)† (2)
iE

0
(34.22)

This expression can be rearranged as follows without change of sign by permuting

one destruction operator across two fermions in each group of four fermion fields

appearing in interactions

− (−1)
¿


∙Z
10

Z
20
  

Z
2−1

Z
2

³
†
¡
10+
¢
 (10)

´³
†
¡
20+
¢
 (20)

´
  

  
³
†
³
(2− 1)+

´
 (2− 1)

´³
†
³
(2)

+
´
 (2)

´
 (1)† (2)

iE
0
(34.23)

We have grouped operators with parenthesis to illustrate the appearance of density

operators, and we have added plus signs as superscripts to remind ourselves of the

original order when we have two fields at equal time. By the way, this already

justifies the equal-time rule Eq.(34.20) mentioned above. To clear up the sign

question, let us now do contractions, that we will identify as usual by numbers

under each creation-annihilation operator pair. We just make contractions in series

so that there is a continuous fermion line running from point 1 to point 2 without

fermion loops. More specifically, consider the following contractions

− (−1)
¿


∙Z
10

Z
20
  

Z
2−1

Z
2


2

† ¡10+¢
1

(10)
1

† ¡20+¢
2

(20)   
2

(34.24)

  
2−2


2−2

†
³
(2− 1)+

´


2−1
(2− 1) 

2−1
†
³
(2)

+
´


2+1

(2) 
2

(1) 
2+1

† (2)
¸À

0

Not taking into account the − (−1) already in front of the average, the contrac-
tions labeled 1 to 2− 1 give a contribution

(−1)2−1 G (10 20)G (2030)   G (2− 1 2) (34.25)

where the overall sign comes from the fact that the definition of G has the cre-
ation and annihilation operators in the same order as they appear in the above

contractions, but an overall minus sign in the definition. For the contraction la-

beled 2 one must do an even number of permutations to bring the operators in

the order  (1)† (10+) so one obtains a factor −G (1 10+)  Similarly, accounting
for the new position of † (10+)  an even number of permutations is necessary to
bring to operators in the order  (2)† (2) so that an overall factor −G (2 2) is
generated. The overall sign is thus

− (−1) (−1)2−1 (−1)2 = (−1) (34.26)

In the contractions we have just done there is no closed fermion loop, as illustrated

in Fig.(34-6) for the special case where 2 = 4.

Now all we need to show is that whenever we interchange two fermion operators

we both introduce a minus sign and either form or destroy a closed fermion loop.

The first part of the statement is easy to see. Consider,D


h
† (10)

³
†    

´
† (2)

iE
0

(34.27)

Suppose we want to compare two sets of contractions that differ only by the fact

that two creation operators (or two annihilation operators) interchange their re-

spective role. In the time-ordered product above, bringing † (10) to the left of
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1 1’ 2’ 3’ 4’ 2

Figure 34-6 Example of a contraction without closed fermion loop.

† (2) produces a sign (−1) where  is the number of necessary permutations.
Then, when we take † (2) where † (10) was, we create an additional factor of
(−1)+1 because † (2) has to be permuted not only with the operators that were
originally there but also with † (10) that has been brought to its left. The overall
sign is thus (−1)2+1 = −1 which is independent of the number of operators orig-
inally separating the fields. That result was clear from the beginning given that

what determines the sign of a permuation is the parity of the number of trans-

positions (interchange of two objects) necessary to obtain the given permutation.

Hence, interchanging any pair of fermions gives an extra minus sign. Clearly there

would have been something wrong with the formalism if we had not obtained this

result.

Diagrammatically, if we start from the situation in Fig.(34-6) and interchange

the role of two creation operators, as in Fig.(34-7), then we go from a situation

with no fermion loops to one with one fermion loop. Fig.(34-8) illustrates the

case where we interchange another pair of creation operators and clearly there

also a fermion loop is introduced. In other words, by interchanging two creation

operators (or two annihilation operators) we break the single fermion line, and

the only way to do this is by creating a loop since internal lines cannot end at

an interaction vertex. This completes the proof concerning the overall sign of a

diagram.

1 1’ 2’ 3’ 4’ 2

1 1’ 2’ 3’ 4’ 2

1 1’ 3’ 4’ 2

2’

Figure 34-7 Creation of loops in diagrams by interchange of operators: The role of

the two creation operators indicated by ligth arrows is interchanged, leading from a

diagram with no loop, as on top, to a diagram with one loop. The diagram on the

bottom is the same as the one in the middle. It is simply redrawn for clarity.
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1 1’ 2’ 3’ 4’ 2

1 1’

2’ 3’

4’ 2

Figure 34-8 Interchange of two fermion operators creating a fermion loop.

Spin sums

A remark is in order concerning spin. In a diagram without loops, as in Fig.(34-

6), there is a single spin label running from one end of the diagram to the other.

Every time we introduce a loop, there is now a sum over the spin of the fermion

in the loop. In the special case where V (1 2) is independent of the spins at the

vertices 1 and 2, as is the case for Coulomb interactions, then it is possible to

simply disregard spin and add the rule that there is a factor of 2 associated with

every fermion loop.

34.3 In momentum space

Starting from our results for Feynman’s rule in position space, we can derive

the rules in momentum space.[10] First introduce, for a translationally and spin

rotationally invariant system, the definition

G () =
Z

 (x1 − x2)
Z 

0

 (1 − 2) 
−k·(x1−x2)(1−2)G (1− 2) (34.28)

In this expression,  is a fermionic Matsubara frequency and the Green’s function

is diagonal in spin indices 1 and 2. For clarity then, we have explicitly written

a single spin label. For the potential we define

V0 () =

Z
 (x1 − x2)

Z 

0

 (1 − 2) 
−q·(x1−x2)(1−2)V0 (1− 2)

(34.29)

where  is, this time, a bosonic Matsubara frequency, in other words

 = 2 (34.30)

with  and integer. Again we have explicitly written the spin indices even if

V0 (1− 2) is independent of spin. The spin  is the same as the spin of the two
propagators attaching to the vertex 1 while 0 is the same as the spin of the two
propagators attaching to the vertex 2

Remark 115 General spin-dependent interaction: In more general theories, there

are four spin labels attached to interaction vertices. These labels correspond to
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those of the four fermion fields. Here the situation is simpler because the interac-

tion not only conserves spin at each vertex but is also spin independent.

To find the Feynman rules in momentum space, we start from the above po-

sition space diagrams and we now write G (1− 2) and V (1− 2) in terms of their
Fourier-Matsubara transforms, namely

G (1− 2) =
Z

3k

(2)
3


∞X
=−∞

k·(x1−x2)−(1−2)G () (34.31)

V0 (1− 2) =
Z

3q

(2)
3


∞X
=−∞

q·(x1−x2)−(1−2)V0 () (34.32)

Then we consider an internal vertex, as illustrated in Fig.(34-9), where one has to

q

k

k

1

2

Figure 34-9 A typical interaction vertex and momentum conservation at the vertex.

do the integral over the space-time position of the vertex, 10 Note that because
V (1− 2) = V (2− 1)  we are free to choose the direction of q on the dotted line
at will. Leaving aside the spin coordinates, that behave just as in position space,

the integral to perform isZ
x01

Z 

0

 01
−(k1−k2+q)·x01(1−2+)

0
1 (34.33)

= (2)
3
 (k1 − k2 + q)(1−2) (34.34)

The last delta is a Kronecker delta. Indeed, the sum of two fermionic Matsubara

frequencies is a bosonic Matsubara frequency since the sum of two odd numbers is

necessarily even. This means that the integral over  01 is equal to  if 1−2+
 = 0 while it is equal to zero otherwise because exp ( (1 − 2 + ) 

0
1)is

periodic in the interval 0 to  The conclusion of this is that momentum and

Matsubara frequencies are conserved at each interaction vertex. In other words,

the sum of all wave vectors entering an interaction vertex vanishes. And similarly

for Matsubara frequencies. This means that a lot of the momentum integrals

and Matsubara frequency sums that occur in the replacements Eqs.(34.31) and

(34.32) can be done by simply using conservation of momentum and of Matsubara

frequencies at each vertex.

The Feynman rules for the perturbation expansion of the Green’s function in

momentum space thus read as follows.

1. For a term of order  draw all connected, topologically distinct diagrams

with  interaction lines and 2 + 1 oriented propagator lines, taking into

account that at every interaction vertex one line comes in and one line comes

out.

2. Assign a direction to the interaction lines. Assign also a wave number and

a discrete frequency to each propagator and interaction line, conserving mo-

mentum and Matsubara frequency at each vertex.
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3. To each propagator line, assign

G0 () = 1
−(k−) (34.35)

(We have to remember that the propagator is independent of spin but still

carries a spin label that is summed over.)

4. To each interaction line, associate a factor V0 ()  with  a bosonic

Matsubara frequency. Note that each of the spin labels is associated with

one of the vertices and that it is the same as the spin of the fermion lines

attached to it.

5. Perform an integral over wave vector and a sum over Matsubara frequency,

namely
R

3k
(2)3


P∞

=−∞ for each momentum and frequency that is not fixed
by conservation at the vertex.

6. Sum over all spin indices that are not fixed by conservation of spin.

7. Associate a factor (−1) (−1) where  is the number of closed Fermion

loops to every diagram of order 

8. For Green’s functions whose two ends are on the same interaction line, as

in Fig.(34-5), associate a convergence factor  before doing the sum over

Matsubara frequency  (This corresponds to the choice G (1 2+) in the
position-space rules above).

The remark done at the end of the previous section concerning spin sums also

applies here.

34.4 Feynman rules for the irreducible self-energy

As in the one-body case that we studied in a preceding chapter, straight pertur-

bation theory for the Green’s function is meaningless because

• It involves powers of G0 () and hence the analytically continued function
has high order poles at the same location as the unperturbed system whereas

the Lehman representation tells us that the interacting Green’s function has

simple poles.

• High order poles can lead to negative spectral weight.[9] For example, the
first order contribution to the spectral weight  () = −2 Im would be

given by a term proportional to

− 2 Im
Ã

1

( +  − (k − ))
2

!
= 2 Im





µ
1

 +  − (k − )

¶
= −2 


 ( − (k − )) (34.36)

The derivative of the delta function can be infinitely positive or negative.

As before, the way out of this difficulty is to resum infinite subsets of diagrams

and to rewrite the power series as

G () = G0 () + G0 ()Σ ()G () (34.37)
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or

G () = 1

(G0 ())−1 −Σ ()
(34.38)

This is the so-called Dyson equation. The iterative solution of this equation

G () = G0 () + G0 ()Σ ()G0 () + G0 ()Σ ()G0 ()Σ ()G0 () +   

clearly shows that all diagrams that can be cut in two pieces by cutting one fermion

line G0 () will automatically be generated by Dyson’s equation. In other words,
we define the one-particle irreducible self-energy by the set of diagrams that are

generated by Feynman’s rules for the propagator but that, after truncating the

two external fermion lines, cannot be cut in two disjoint pieces by cutting a G0 ()
line. As an example, the diagram on the left of Fig.(34-10) is one-particle reducible

and hence does not belong to the one-particle irreducible self-energy, but the two

diagrams on the right of this figure do.

k k-q

k’+q

q q

k’

q q’

k-q

k-q-q’

k-q’


’’






Figure 34-10 Diagram on the left is one-particle reducible, and hence is not an

acceptable contribution to the self-energy. The two diagrams on the right however are

acceptable contributions to the one-particle irreducible self-energy. In these diagrams,

 is the external momentum and Matsubara frequency label while  is the external

spin label. There is a sum over the variables 0  and 0 and over the spin 0.

Remark 116 Terminology: To be shorter, one sometimes refers to the one-particle

irreducible self-energy using the term “proper self-energy”. In almost everything

that follows, we will be even more concise and refer simply to the self-energy. We

will mean one-particle irreducible self-energy. The other definitions that one can

give for the self-energy do not have much interest in practice.

34.5 Feynman diagrams and the Pauli principle

Since operators can be anticommuted at will in a time-ordered product at the

price of a simple sign change, it is clear that whenever there are two destruction

operators or two creation operators for the same state, the contraction should

vanish. This is just the Pauli principle. On the other hand, if we look at a self-

energy diagram like the middle one in Fig.(34-10) there are contributions that

violate the Pauli principle. Indeed, suppose we return to imaginary time but stay

in momentum space. When we perform the sum over wave vectors and over spins

in the closed loop, the right-going line with label k0+q in the loop will eventually
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have a value of k0 and of spin such that it represents the same state as the bottom
fermion line. Indeed, when k0+q = k− q and spins are also identical, we have two
fermion lines in the same state attached to the same interaction line (and hence

hitting it at the same time) with two identical creation operators. Similarly we

have two identical destruction operators at the same time attached to the other

interaction line. This means that this contribution should be absent if the Pauli

principle is satisfied. What happens in diagrams is that this contribution is exactly

canceled by the diagram where we have exchanged the two right-going lines, in

other words the last diagram on this figure. Indeed, this diagram has opposite sign,

since it has one less fermion loop, and the special case q = q0 precisely cancels the
unwanted contribution from the middle graph in Fig.(34-10). That this should

happen like this is no surprise if we return to our derivation of Wick’s theorem.

We considered separately the case where two fermions were in the same state and

we noticed that if we applied Wick’s theorem blindly, the Pauli violating terms

would indeed add up to zero when we add up all terms.

The important lesson of this is that unless we include all the exchange graphs,

there is no guarantee in diagrammatic techniques that the Pauli principle will be

satisfied. We are tempted to say that this does not matter so much because it is

a set of measure zero but in fact we will see practical cases in short-range models

where certain approximate methods do unacceptable harm to the Pauli principle.

34.6 Exercices

34.6.1 Théorie des perturbations au deuxième ordre pour la self-énergie

a) En utilisant les règles de Feynman dans l’espace des quantités de mouvement,

écrivez les expressions correspondant aux deux diagrammes apparaissant à droite

de la figure 34-10 des notes de cours. Ces diagrammes représentent la self-énergie

irréductible au deuxième ordre en théorie des perturbations. Effectuez la somme

sur les fréquences de Matsubara mais ne faites pas les intégrales.

b) Montrez, avant même de faire la somme sur les fréquences de Matsubara,

que lorsque q est indépendant de q, le diagramme du milieu est égal à moins deux

fois le dernier (troisième sur la figure). Le résultat net est qu’on pourrait considérer

seulement le diagramme du milieu en supposant qu’un électron n’interagit qu’avec

les autres électrons de spin opposé. Montrez, en remontant à l’Hamiltonien, que

ce dernier résultat est général dans le cas où q est indépendant de q(modèle de

Hubbard).

c) Écrivez une expression pour la partie imaginaire de la self-énergie obtenue

en (a), encore une fois sans faire les intégrales.

34.6.2 Théorie des perturbations au deuxième ordre pour la self-énergie à la Schwinger

a) Utilisez la méthode des dérivées fonctionnelles pour trouver tous les diagrammes

au deuxième ordre en interaction q pour la self-énergie irréductible. N’oubliez

pas que les fonctions de Green dans la méthode décrite en classe sont des fonctions

de Green habillées, c’est-à-dire qu’elles contiennent la self-énergie et doivent donc

aussi être développées en puissances de l’interaction.
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b) Montrez, avant même de faire la somme sur les fréquences de Matsubara,

que lorsque q est indépendant de q, le diagramme du milieu de la figure 34-10 est

égal à moins deux fois le dernier (troisième sur la figure). Le résultat net est qu’on

pourrait considérer seulement le diagramme du milieu en supposant qu’un électron

n’interagit qu’avec les autres électrons de spin opposé. Montrez, en remontant à

l’Hamiltonien, que ce dernier résultat est général dans le cas où q est indépendant

de q(modèle de Hubbard).

34.6.3 Cas particulier du théorème de Wick avec la méthode de Schwinger

Pour le cas sans interaction, calculez

G (1 2)
 (3 4)  (5 6)

(34.39)

et montrez que la fonction de corrélation à six points

−
D


h
† (3) (4)† (5) (6) (1)† (2)

iE


(34.40)

s’écrit comme une somme de six termes, chacun étant un produit de trois fonc-

tions de Green. Montrez ensuite que le signe de chaque terme peut se déduire

des permutations. Ceci est un cas particulier du théorème de Wick qui dit que

dans le cas sans interaction les fonction de corrélation d’ordre plus élevé peuvent

s’obtenir de toutes les “contractions” posssibles, une contraction correspondant à

un appariement d’un † avec un  pour en faire une fonction de Green.
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35. COLLECTIVEMODES INNON-

INTERACTING LIMIT

We will come back later to the calculation of the self-energy for the electron gas.

It is preferable to look first at collective modes. Since single-particle excitations

scatter off these collective modes, it is important to know those first. It is true that

collective modes are also influenced by the actual properties of single-particles, but

conservation laws, long-range forces and/or the presence of broken symmetries

strongly influence the behavior of collective modes, while the details of single-

particle excitations that lead to them are less relevant.

The main physical quantity we want to compute and understand for collec-

tive modes of the electron gas is the longitudinal dielectric constant. Indeed, we

have seen in the chapter on correlation functions that inelastic electron scattering

Eq.(14.16) measures

(q ) =
2

1− −
Im
£
(q )

¤
= − 2

1− −
2

4
Im

∙
1

(q )

¸
 (35.1)

The longitudinal dielectric constant itself is given by Eq.(14.15)

0
(q)

= 1− 1
02

(q )  (35.2)

The physical phenomenon of screening will manifest itself in the zero-frequency

limit of the longitudinal dielectric constant,  (q0)  Interactions between elec-

trons will be screened, hence it is important to know the dielectric constant.

Plasma oscillations should come out from the finite frequency zeros of this same

function  (q) = 0 as we expect from our general discussion of collective modes.

We will start this section by a discussion of the Lindhard function, namely

(q ) = (q )
2 for the free electron gas. We will interpret the poles of

this function. Then we introduce interactions with a simple physical discussion

of screening and plasma oscillations. A diagrammatic calculation in the so-called

Random phase approximation (RPA) will then allow us to recover in the appro-

priate limiting cases the phenomena of screening and of plasma oscillations.

35.1 Definitions and analytic continuation

We want the Fourier transform of the density-density response function. First

note that

q ≡
Z

3re−q·r (r) =
X
=±1

Z
3re−q·r† (r) (r) (35.3)

=
1³√
V
´2 X



Z
3re−q·r

X
k

X
k0
ek

0·re−k·r†kk0 (35.4)

=
X


X
k


†
kk+q (35.5)
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As before, V is the quantization volume of the system. We can obtain the retarded
density-density response function from

(q ) = lim→+ (q ) (35.6)

with  a bosonic Matsubara frequency, as required by the periodic boundary

condition obeyed by the Matsubara density response in imaginary time. The

above two functions are defined by

(q ) =

Z
3re−q·(r−r

0)
Z 

0

 h [ (r)  (r0 0)]i (35.7)

=
1

V
Z 

0

 h [q () −q (0)]i  (35.8)

(q ) =
1

V
Z ∞
−∞

  h[q ()  −q (0)]i  ()  (35.9)

Analytic continuation for density response To prove the analytic continu-

ation formula for the density response Eq.(35.6), one can simply use the

Lehman representation or deform the integration contour in the Matsubara

representation, as we did for propagators in Sec.(27.4). (See Eqs.(27.39) and

(27.35) in particular). The fact that we have bosonic Matsubara frequencies

means that we will have a commutator in real frequency instead of and anti-

commutator because this time  = 1 instead of −1 Furthermore, notice
that whether the retarded density response is defined with  (q) or with

 (q) =  (q)− h (q)i =  (q)− 0 (2)
3
 (q)

is irrelevant since a constant commutes with any operator.

Remark 117 The density response function is also called charge susceptibility.

35.2 Density response in the non-interacting limit

in terms of G0
The density response can be expressed in terms of Green’s function starting either

from the Feynman or from the functional derivative approach. In this section we

arrive at the same result both ways.

35.2.1 The Feynman way

If you have followed the route of Fenynann, to do the calculation in the non-

interacting case, it suffices to use Wick’s theorem.

0(q ) =
1

V
Z 

0


X


X
k

X
0

X
k0

(35.10)"*


"

†
k
1

() k+q ()
2


†
k00
2

k0−q0
1

#+
0

−
D

†
kk

E
0

D

†
k00k00

E
0
q0

#
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Only the contractions indicated survive. The other possible set of contractions is

canceled by the disconnected piece
D

†
kk

E
0

D

†
k00k00

E
0
. Using momentum

conservation, all that is left is

0(q ) = −
1

V
Z 

0


X


X
k

G0 (k+ q)G0 (k−) (35.11)

Going to the Matsubara frequency representation for the Green’s functions, and

using again the Kronecker delta that will arise from the  integration, we are

left with something that looks like what could be obtained from the theorem for

Fourier transform of convolutions

0(q ) = −
1

V
X


X
k


X


G0 (k+ q + )G0 (k) (35.12)

where as usual we will do the replacement in the infinite volume limit

1

V
X
k

→
Z

3k

(2)
3

(35.13)

Remark 118 Although we have not derived Feynman rules for  it is clear

that the last expression could have been written down directly from the diagram in

Fig.(35-1) if we had followed trivial generalizations of our old rules. There is even

an overall minus sign for the closed loop and a sum over wave vectors, Matsubara

frequency and spin inside the loop since these are not determined by momentum

conservation. However, we needed to perform the contractions explicitly to see this.

In particular, it was impossible to guess the overall sign and numerical factors since

Feynman’s rules that we have developed were for the Green’s function, not for the

susceptibility. Now that we have obtained the zeroth order term it is clear how

to apply Feynman rules for the terms of the perturbation series. But this is the

subject of another subsection below.

k+q

q

k

q

Figure 35-1 Diagram for non-interacting charge susceptibility. Note that the dotted

lines just indicate the flow of momentum. No algebraic expression is associated with

them.

35.2.2 The Schwinger way (source fields)

Start from the expression for the four-point function Eq.(32.18) for  = 0 and

point 2 = 1+ and 3 = 2+ and 4 = 2Then we find

G (1 1+)
 (2+ 2)

= −
D


† ¡1+¢ (1)† ¡2+¢ (2)E+ G ¡1 1+¢G ¡2 2+¢  (35.14)
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If we sum over the spins associated with point 1 and the spins associated with

point 2 and recall that once we sum over spins, we have G (1 1+) = G (2 2+) = 

where  is the average density, then

−
X
12

G (1 1+)
 (2+ 2)

=
X
12

D


† ¡1+¢ (1)† ¡2+¢ (2)E− 2 (35.15)

= h (1) (2)i− 2 (35.16)

= h ( (1)− ) ( (2)− )i
= (1− 2) (35.17)

The last expression is from the definition of the density-density correlation function

in Eq.(35.7). The non-interacting contribution is given by the first term in Fig.

33-5. Alternatively, one can start from the first term in Eq.(33.4) for the functional

derivative and take the Fourier transform. One obtains,

0(q ) = −
1

V
X


X
k


X


G0 (k+ q + )G0 (k)  (35.18)

One of the sums over spins has disappeared because we should think of G0 as a
matrix that is diagonal in spin indices. This is the so-called Lindhard function.

35.3 Density response in the non-interacting limit:

Lindhard function

To compute

0(q ) = −
1

V
X


X
k


X


G0 (k+ q + )G0 (k) (35.19)

the sums over Matsubara frequency should be performed first and they are easy

to do. The technique is standard. First introduce the notation

k ≡ k −  (35.20)

then use partial fractions


X


G0 (k+ q + )G0 (k) = 
X


1

 +  − k+q

1

 − k
(35.21)

0(q ) = −2
Z

3k

(2)
3

X


∙
1

 − k
− 1

 +  − k+q

¸
1

 − k+q + k


(35.22)

The factor of two comes from the sum over spins. Before the partial fractions,

the terms in the  series decreased like ()
−2

so no convergence factor is

needed. After the decomposition in partial fractions, it seems that now we need

a convergence factor to do each sum individually. Using the general results of the

preceding chapter for Matsubara sums, Eqs.(27.81) and (27.82), it is clear that as

long as we take the same convergence factor for both terms, the result is

0(q ) = −2
Z

3k

(2)
3

 (k)− 
¡
k+q

¢
 + k − k+q

(35.23)
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independently of the choice of convergence factor.

The retarded function is easy to obtain by analytic continuation. It is the

so-called Lindhard function

0(q ) = −2
R

3k
(2)3

(k)−(k+q)
++k−k+q (35.24)

This form is very close to the Lehman representation for this response function.

Clearly at zero temperature poles will be located at  = k+q − k as long as the

states k and k+ q are not on the same side of the Fermi surface. These poles are

particle-hole excitations instead of single-particle excitations as in the case of the

Green’s function. The sign difference between k+q and k comes from the fact

that one of them plays the role of a particle while the other plays the role of a

hole.

Remark 119 Diagrammatic form of particle-hole excitations: If we return to the

diagram in Fig.(35-1), we should notice the following general feature. If we cut

the diagram in two by a vertical line, we see that it is crossed by lines that go in

opposite directions. Hence, we have a particle-hole excitation. In particle-particle

or hole-hole excitations, the lines go in the same direction and the two single-

particle energies k+q and k add up instead of subtract.

Remark 120 Absorptive vs reactive part of the response, real vs virtual excita-

tions: There is a contribution to the imaginary part, in other words absorption,

if for a given k and q energy is conserved in the intermediate state, i.e. if the

condition  = k+q − k is realized. If this condition is not realized, the corre-

sponding contribution is reactive, not dissipative, and it goes to the real part of

the response only. The intermediate state then is only virtual. To understand the

type of excitations involved in the imaginary part, rewrite  (k) − 
¡
k+q

¢
=¡

1− 
¡
k+q

¢¢
 (k) − (1−  (k)) 

¡
k+q

¢
. We see that either k can corre-

spond to a hole and k+q to a particle or the other way around. In other words a

single Green function line contains both the hole and the particle propagation.

35.3.1 Zero-temperature value of the Lindhard function: the particle-hole continuum

To evaluate the integral appearing in the Lindhard function, which is what Lind-

hard did, it is easier to evaluate the imaginary part first and then to obtain the

real part using Kramers-Kronig. Let us begin

Im0(q ) = 2

Z
3k

(2)
3

£
 (k)− 

¡
k+q

¢¤

¡
 + k − k+q

¢
(35.25)

= 2

Z
3k

(2)
3
 (k)

£

¡
 + k − k+q

¢− 
¡
 + k−q − k

¢¤


Doing the replacement  (k) =  ( − ), going to polar coordinates with q

along the polar axis and doing the replacement k = 22 we have

Im0(q ) =
1

2

Z 

0

2

Z 1

−1
 (cos )





∙


µ
 − q


− cos 

¶
− 

µ
 + q


− cos 

¶¸
(35.26)

It is clear that this strategy in fact allows one to do the integrals in any spatial

dimension. One finds, for an arbitrary ellipsoidal dispersion [12]

k =

X
=1

2
2

(35.27)

DENSITY RESPONSE IN THE NON-INTERACTING LIMIT: LINDHARD FUNCTION 289



Im0(q ) =

Q
=1

¡√
2

¢
2(−1)2Γ

¡
+1
2

¢√
q
×

⎧⎨⎩

Ã
− ( − q)

2

4q

!"
− ( − q)

2

4q

#−1
2

− 

Ã
− ( + q)

2

4q

!"
− ( + q)

2

4q

# −1
2

⎫⎬⎭
The real part is also calculable [12] but we do not quote it here.

The functional form of this function in low dimension is quite interesting.

Figures (35-2)(35-3) and (35-4) show the imaginary part of the Lindhard function

in, respectively,  = 1 2 3 The small plots on the right show a cut in wave vector

at fixed frequency while the plots on the left show Im0(q ) on the vertical

axis, frequency going from left to right and wave vector going from back to front.

In all cases, at finite frequency it takes a finite wave vector q to have absorption.

If the wave vector is too large however the delta function cannot be satisfied and

there is no absorption either. The one dimensional case is quite special since at

low frequency there is absorption only in a narrow wave vector band. This has a

profound influence on the interacting case since it will allow room for collective

modes to propagate without absorption. In fact, in the interacting one-dimensional

case the collective modes become eigenstates. This will lead to the famous spin-

charge separation as we will see in later chapters. In two dimensions, there is a

peak at  = 2 that becomes sharper and sharper as the frequency decreases

as we can more clearly see from the small plot on the right.[12] By contrast, the

three-dimensional function is much smoother, despite a discontinuity in slope at

 = 2  The region in q and  space where there is absorption is referred to as

the particle-hole continuum.

0.595

0

M

0 2 4 6 8
0

0.2

0.4

 ,ki 0.8

6.15.15

ki

Figure 35-2 Imaginary part of the Lindhard function in  = 1 on the vertical axis.

Frequency increases from left to right and wave vector from back to front.

To understand the existence of the particle-hole continuum and its shape, it is

preferable to return to the original expression Eq.(35.25). In Fig.(35-5) we draw

the geometry for the three-dimensional case.[13] The two “spheres” represent the

domain where each of the Fermi functions is non-vanishing. We have to integrate

over the wave vector k while q is fixed. The energy conservation tells us that all

wave vectors k located in the plane

 − 2

2
=




cos  (35.28)
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Figure 35-3 Imaginary part of the Lindhard function in  = 2 Axes like in the  = 1

case.

0.017

0

M

0 1 2 3 4
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qi

Figure 35-4 Imaginary part of the Lindhard function in  = 3 Axes like in the  = 1

case.
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are allowed. This plane must be inside the left most sphere and outside the right

most one or vice versa (not shown). It cannot however be inside both or outside

both. That is why when the plane intersects the region where both spheres overlap,

the domain of integration is an annulus instead of a filled circle. When this occurs,

there is a discontinuous change in slope of Im0(q ) This occurs when the

vectors k+ q and k are antiparallel to each other and when k is on the Fermi

surface. The corresponding energy is

 =
2
2
− ( − )

2

2
=   − q (35.29)

This line,  ()  is shown in Fig.(35-6). Clearly the cases   2 and

  2 are also different. The figure (35-5) illustrates the case   2  In the

latter case, the maximum value of  is found by letting k+ q and k be parallel

to each other while k sits right on the Fermi surface. This gives

max =
( + )

2

2
− 2
2

(35.30)

= q +   ;   2 (35.31)

The minimum allowed value of  vanishes since both arrows can be right at the

Fermi surface in the annulus region.

min = 0 ;   2 (35.32)

For the other case, namely   2 the two spheres do not overlap anymore.

The maximum allowed value of  is exactly the same as above, but since the two

spheres do not overlap there is now a minimum value, given by the case where

k+ q and k are antiparallel and k is on the Fermi surface

min =
( − )

2

2
− 2
2

= q −  ;   2 (35.33)

The region in  and  space where Im0(q ) is non-vanishing, the particle-

hole continuum, is illustrated schematically in Fig.(35-6) for positive frequency.

Since Im0(q ) is odd in frequency, there is a symmetrical region at   0.

35.4 Exercices

35.4.1 Fonction de Lindhard et susceptibilité magnétique:

On applique un champ magnétique extérieur  (x ) produisant sur un système de

fermions de spin 12 la perturbation

 = −0
Z

3x
X
=±1

† (x) (x) (x ) (35.34)

où 0 est le moment magnétique.

a) Utilisez la théorie de la réponse linéaire pour exprimer le coefficient de

proportionalité entre le moment magnétique induit

 (k) = 0

*Z
3x

Z
e−q·r+

X
=±1

† (x) (x )

+
 ́

(35.35)
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k k+q

q

Figure 35-5 Geometry for the integral giving the imaginary part of the  = 3

Lindhard function. The wave vectors in the plane satisfy energy conservation as well

as the restrictions imposed by the Pauli principle. The plane located symmetrically

with respect to the miror plane of the spheres corresponds to energies of opposite

sign.

q



v  q v  qF
F

q q

0 2k
F

v  q
F q

Figure 35-6 Schematic representation of the domain of frequency and wave vector

where there is a particle-hole continuum.
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et le champ magnétique extérieur comme une fonction de réponse. Ce coefficient

de proportionalité est la susceptibilité magnétique

 (k ) = (k)  (k) (35.36)

b) Supposez qu’il n’y a pas d’interactions dans le système et montrez, en util-

isant le théorème de Wick dans le formalisme de Matsubara, que la susceptibilité

magnétique est alors proportionnelle à la fonction de Lindhard.

c) Montrez que

lim
k→0

 (k  = 0) =

(
320

2
 = 0 (Susceptibilité de Pauli)

20


 →∞ (Loi de Curie)

(35.37)
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36. INTERACTIONS AND COL-

LECTIVE MODES IN A SIMPLE

WAY

Before we start the whole machinery to take into account interactions, it is helpful

to recall some of the simple Physics that we should obtain. We begin by identifying

the expansion parameter.

36.1 Expansion parameter in the presence of inter-

actions: 

In the presence of interactions, it is convenient to define a dimensionless constant

that measures the strength of interactions relative to the kinetic energy. If the

kinetic energy is very large compared with the interaction strength, perturbative

methods may have a chance. Let us begin by recalling some well known results. In

the hydrogen atom, potential and kinetic energy are comparable. That defines a

natural distance for interacting electrons, namely the Bohr radius. Let us remind

ourselves of what this number is. Using the uncertainty principle, we have ∆ ∼
−10 so that the kinetic energy can be estimated as 1

¡
2

¢
and the value of 0

itself is obtained by equating this to the potential energy

1

2
=

2

400
(36.1)

giving us for the Bohr radius, in standard units,

0 =
40~2

2
= 0529× 10−10 ∼ 05

0

 (36.2)

It is standard practice to define the dimensionless parameter  by setting the

density of electrons 0 equal to 1(volume of the sphere of radius 0 occupied

by a single electron). In other words, we have

0 ≡ 1
4
3
3

3
0

(36.3)

where

0 =
3
32

(36.4)

is the density of electrons. Another way to write  is then

 ≡
¡
9
4

¢13 1
 0

(36.5)

In a way,  is the average distance between electrons measured in units of the Bohr

radius. Large  means that the electrons are far apart, hence that the kinetic
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energy is small. Using the same uncertainty relation as in the hydrogen atom, this

means that interactions are more important than kinetic energy. Conversely, at

small  kinetic energy is large compared with interactions and the interactions

are much less important than the kinetic energy. It is natural then to expect that

 is a measure of the relative strength of the interactions or, if you want, an

expansion parameter. A way to confirm this role of  is to show that




∼

2

40


2 2
∼  2

40


∼ 1

0
∼
µ

1

0
3
0

¶13
∼  (36.6)

These estimates are obtained as follows. The average momentum exchanged in

interactions is of order  so that
2

40
∼ 2

40
 should be a sensible value for

the average potential energy while the kinetic energy as usual is estimated from

 .

It may be counterintuitive at first to think that interactions are less important

at large densities but that is a consequence of the uncertainty principle, not a

concept of classical mechanics.

36.2 Thomas-Fermi screening

The elementary theory of screening is the Thomas-Fermi theory.[11] In this ap-

proach, Poisson’s equation is solved simultaneously with the electrochemical equi-

librium equation to obtain an expression for the potential. The screening will not

occur over arbitrarily short distance because localizing the electron’s wave func-

tions costs kinetic energy. In fact, at very short distance the potential will be

basically unscreened..

Consider Poisson’s equation for our electron gas in the presence of an impurity

charge 

−∇2 (r) = 1

0
[ (r) +  (r)] (36.7)

The quantity  (r) is the change in charge density of the background produced

by the charged impurity

 (r) =  (r)− 0 = − [ (r)− 0] (36.8)

We need to find  (r)  Since density and Fermi wave vector are related, kinetic

energy will come in. Assuming that the Fermi energy and the potential both vary

slowly in space, the relation

 (r)

0
=

3 (r)

3
(36.9)

and electrochemical equilibrium

2 (r)

2
+ (− (r)) =  =

2
2

(36.10)

where  is the value of the Fermi energy infinitely far from the impurity potential,

lead immediately to the relation between density and electrostatic potential

 (r)

0
=

3 (r)

3
=

∙
2 (r) 2

2 2

¸32
=

∙
1− (− (r))



¸32
(36.11)
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Substituting this back into Poisson’s equation, we have a closed equation for po-

tential

−∇2 (r) = 4 (r)− 1
0
0

∙³
1− (−(r))



´32
− 1
¸

(36.12)

In general it is important to solve this full non-linear equation because otherwise

at short distances the impurity potential is unscreened  (r) ∼ 1 which leads
to unphysical negative values of the density in the linearized expression for the

density,
 (r)

0
≈
∙
1− 3

2

(− (r))


¸
(36.13)

Nevertheless, if we are interested only in long-distance properties, the linear

approximation turns out to be excellent. In this approximation, Poisson’s equation

Eq.(36.12) becomes

−∇2 (r) = 1

0
 (r) +

1

0

3

2

0



(− (r)) (36.14)

We could have arrived directly at this equation by posing

−∇2 (r) = 1

0

∙
 (r)− 




(+ (r))

¸
(36.15)

We now proceed to solve this equation, but first let us define

2 =
3
2
0

2

0
= 2

0




(36.16)

Then we can write ¡−∇2 + 2
¢
 (r) =

1

0
 (r) (36.17)

whose solution, by Fourier transforms, is

 (q) = 1
0

(q)

2+2


(36.18)

The Thomas-Fermi dielectric constant follows immediately since the definition,

 (q) =
1

 (q0)

 (q)

2
(36.19)

immediately yields, the value of the zero-frequency dielectric constant

 (q0) = 0
2+2

2
= 0

³
1 +

2
2

´
 (36.20)

Let us pause to give a physical interpretation of this result. At small distances

(large ) the charge is unscreened since  → 1 On the contrary, at large distance

(small ) the sreening is very effective. In real space, one finds an exponential

decrease of the potential over a length scale −1  the Thomas-Fermi screening
length. Let us write this length in terms of  using the definition Eq.(36.3) or

(36.5) with 0 =
40~

2

2

2 ≡ −2 =
20

302
=
20

2
 2

302
=

20

120
(36.21)

=
2

4
0

12

µ
4

3
3

¶
= 20

Ã
1

9

µ
9

4

¶23!
 (36.22)
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Roughly speaking then, for  ¿ 1 we have that the screening length

 ∼
³
0
√
 =

0√


´
(36.23)

is larger than the interelectronic distance 0. In this limit our long wavelength

Thomas-Fermi reasoning makes sense. On the other hand, for  À 1 the screening

length is much smaller than the interelectronic distance. It makes less sense to

think that the free electron Hamiltonian is a good perturbative starting point.

Electrons start to localize. For sodium,  ∼ 4 while for aluminum,  ∼ 2 but
still, these should be considered good metals.

Remark 121 Two dimensional case: As an exercise, note that if the material is

two dimensional, then the density is confined to a surface so that 0 →  ()

and  →  () where  and  are surface density and charge surface density.

Then, Eq.(36.15) in Fourier space becomes³
2 + 2||

´
 (q) =

1

0

∙
(q||)− 





¡
+(q||  = 0)

¢¸
(36.24)

Dividing by 2 + 2|| we obtainZ
 (q)



2
= (q||  = 0)

=
1

0

∙
(q||)− 





¡
(q||  = 0)

¢¸ Z 1

2 + 2||



2
(36.25)

The last integral is equal to (2||)−1 so that∙
1 +

2

20||





¸
(q||  = 0) =

(q||)
20||

(36.26)

and

(q||  = 0) =
(q||)

2

(q||)||

=
1

20

(q||)

|| + 2

20




(36.27)



(q||)
0

= 1 +
2

20||




 (36.28)

This result was obtained by Stern in Phys. Rev. Lett. 1967.

36.3 Plasma oscillations

Plasma oscillations are the density oscillations of a free electron gas. The physics

of this is that because the system wants to stay neutral everywhere, electrostatic

forces will want to bring back spontaneous electronic density fluctuations towards

the uniform state but, because of the electron inertia, there is overshooting. Hence

oscillations arise at a particular natural frequency, the so-called plasma frequency.

In other words, it suffices to add inertia to our previous considerations to see the

result come out.

We give a very simple minded macroscopic description valid only in the limit

of very long wave length oscillations. Suppose there is a drift current

j = −0v (36.29)
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Taking the time derivative and using Newton’s equations,

j


= −0 v


= −0


(−E) (36.30)

Note that in Newton’s equation we should use the total time derivative instead of

the partial, but since we assume a uniform density (q = 0) the total and partial

derivative are identical. We are in a position where one more time derivative

2j

2
=

0
2



E


(36.31)

and an appeal to the longitudinal part of Maxwell’s fourth equation

0 = 0j+00
E


(36.32)

should give us the desired result, namely

2j

2
= −0

2

0
j (36.33)

This equation has an oscillatory solution at a frequency 

2 ≡ 0
2

0
(36.34)

the so-called plasma frequency. Since we know that the longitudinal dielectric

constant vanishes at a collective mode, this gives us another expected limit of this

function

lim→ 
 (q = 0) =  ( − ) (36.35)

where  is an unknown, for the time being, positive constant. The sign is deter-

mined from the fact that the dielectric constant must return to a positive value

equal to unity at very large frequency.

An alternate derivation that is more easily extended to films or wires takes the

divergence of Eq.(36.30) and then uses current conservation with Maxwell’s first

equation to obtain

∇ · j


= −0

(−∇ ·E) (36.36)

−
2

2
=

20

0
 (36.37)

which immediately leads to the desired expression for the plasma frequency. Note

that writing ∇ ·E =−∇2 = 0 is equivalent to using the unscreened potential.

This is correct at large frequency where screening cannot occur. This will come

out automatically from the q and  dependence of dielectric constant.

Remark 122 Two dimensional case: Screening being different in for two dimen-

sional films, as we have just seen, plasma oscillations will be different. In fact,

the plasma frequency vanishes at zero wave vector. Indeed, current conservation

for the surface quantities reads,




+∇ · j = 0 (36.38)

Taking the two-dimensional divergence of Newton’s equation Eq.(36.30) on both

sides, we obtain
∇ · j


 () =

2


 ()∇ ·E (36.39)
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so that Fourier transforming and using charge conservation, we obtain

− 2(||)
2

=
2


q|| ·E(q||  = 0) (36.40)

We can express the electric field in terms of the surface density to close the system

of equations,

E(q||  = 0) = −iq||(q||  = 0) = −iq||

20||

(36.41)

where we used the unscreened Poisson equation for a film (two-dimensional mateiral).

This leads to
2(||)

2
= − 2

20
|| (36.42)

which means that the plasma frequency is

2 =
2

20
|| (36.43)

that vanishes as || does. It is important to note again that in the derivation we
used the unscreened potential. The order of limits is important. We have assumed

that the frequency is too large for the other electrons to screen the charge displace-

ment. In the end that frequency, , vanishes so we have to be careful. A full

treatment of the momentum and frequency dependence of the dielectric function,

as we will do in the next section, is necessary. In closing, note that the appeal to

the longitudinal part of Maxwell’s fourth equation, done in the very first derivation,

is not so trivial in less than three dimension.
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37. DENSITY RESPONSE IN THE

PRESENCE OF INTERACTIONS

Since we begin real perturbation theory soon, it is helpful to identify first what

is the expansion parameter. Then, we compute the density response and corre-

sponding dielectric function using the RPA.

37.1 Density-density correlations, RPA

As before we derive the relevant equation the Feynman way and the Schwinger

way.

37.1.1 The Feynman way

We are now ready to start our diagrammatic analysis. Fig.(37-1) shows all charge

susceptibility diagrams to first order in the interaction. The four diagrams on the

second line take into account self-energy effects on the single-particle properties.

We will worry about this later. Of the two diagrams on the first line, the first

one clearly dominates. Indeed, the dotted line leads to a factor 2
¡
0

2
¢
that

diverges at small wave vectors. On the other hand, the contribution from the

other diagram is proportional to

−2
Z

3

(2)
3

X


Z
30

(2)
3

X
0

G0 (k+ q + )G0 (k)×

2

0
¯̄
k− k0

¯̄2G0 (k0+q0 + )G0 (k00) (37.1)

which is a convergent integral with no singularity at  = 0

Remark 123 For a very short range potential, namely a wave-vector independent

potential, the situation would have been completely different since the contribution

of the last diagram would have been simply minus half of the contribution of the

first one, the only differences being the additional fermion loop in the first one that

leads to a sign difference and a factor of two for spin. We will come back on this

in our study of the Hubbard model.

Let us thus concentrate on the most important contribution at long wave

lengths namely the first diagram. In addition to being divergent as  → 0 it

has additional pathologies. Indeed, it has double poles at the particle-hole exci-

tations of the non-interacting problem while the Lehman representation shows us

that it should not. This problem sounds familiar. We have encountered it with

the single-particle Green’s function. The problem is thus solved in an analogous

manner, by summing an infinite subset of diagrams. This subset of diagrams is
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Figure 37-1 Charge susceptibility diagrams to first order in the interaction

illustrated in Fig.(37-2). It is the famous random phase approximation (RPA).

One also meets the terminology ring diagrams (in the context of free energy cal-

culations) or, more often, one also meets the name bubble diagrams. The full

susceptibility is represented by adding a triangle to one of the external vertices.

That triangle represents the so-called dressed three point vertex. The reason for

this name will come out more clearly later. The full series, represented schemat-

ically on the first two lines of the figure, may be summed to infinity by writing

down the equation on the last line. This equation looks like a particle-hole ver-

sion of the Dyson equation. The undressed bubble plays the role of an irreducible

susceptibility. It is irreducible with respect to cutting one interaction line.
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Figure 37-2 Bubble diagrams. Random phase approximation.

From our calculation of the susceptibility for non-interacting electrons we know

that Feynman’s rules apply for the diagrams on Fig.(37-2). Each bubble is asso-

ciated with a factor 0(q ) a quantity defined in such a way that it contains

the minus sign associated with the fermion loop. The dashed interaction lines each
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lead to a factor −q = −2
¡
0

2
¢
 the minus sign being associated with the fact

that one more q means one higher order in perturbation theory (remember the

(−1) rule). The sum over bubbles, represented by the last line on Fig.(37-2) is

easy to do since it is just a geometric series. The result is.

(q ) =
0(q)

1+q0(q)
; q =

2

02
(37.2)

The corresponding result for the dielectric constant Eq.(35.2) is

1

(q )
=
1

0

µ
1− 2

02
(q )

¶
=

1

0 (1 + q0(q ))
(37.3)

or,

(q ) = 0
¡
1 + q

0
(q )

¢
 (37.4)

Remark 124 Irreducible polarization: It is customary to call −0(q ) the first
order irreducible polarization

Q(1)
(q ) (Irreducible here means that the dia-

grams can be connected at each end to an interaction but cannot be cut in two by

cutting an interaction line).

37.1.2 The Schwinger way

We keep following our first step approach that gave us the Hartree-Fock approx-

imation and corresponding susceptibility. Returning to our expression for the

susceptibility in terms a functional derivative Eq.(35.15), namely

−
X
12

G (1 1+)
 (2+ 2)

=  (1− 2) (37.5)

and Fourier transforming, we obtain in the case where the irreducible vertex is

obtained from functional derivatives of the Hartree-Fock self-energy the set of

diagrams in Fig. 33-5. In the middle diagram on the right-hand side of the equality,

there is a sum over wave vectors 0 because three of the original coordinates of the
functional derivative at the bottom of the diagram were different. This means there

are two independent momenta, contrary to the last diagram in the figure. One

of the independent momenta can be taken as  by momentum conservation while

the other one, 0 must be integrated over. The contribution from that middle

diagram is not singular at small wave vector because the Coulomb potential is

integrated over. By contrast, the last diagram has a 12 from the interaction

potential, which is divergent. We thus keep only that last term. The integral

equation, illustrated in Fig., then takes an algebraic form

() = 0()− 0()q() (37.6)

which is easily solved

() =
0()

1 + q0()
=

1

0()
−1 + q

(37.7)

This is the so-called Random Phase Approximation, or RPA. The last form of the

equality highlights the fact that the irreducible vertex, here q, plays the role of

an irreducible self-energy in the particle-hole channel. The analytical continuation

will be trivial.
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k+q k
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Figure 37-3 Fourier transform of
G(11+)
(2+2)

with a momentum  flowing top to

bottom that is used to compute the density-density correlation function in the RPA

approximation.

Note that we have written 0() for the bubble diagram, i.e. the first term

on the right-hand side of the equation in Fig. 33-5 even though everything we

have up to now in the Schwinger formalism are dressed Green’s functions. The

reason is that neglecting the middle diagram on the right-hand side of the equality

is like neglecting the contribution from the Fock, or exchange self-energy in Fig.

33-4. The only term left then is is the Hartree term that we argued should vanish

because of the neutralizing background. Hence, the Green’s functions are bare

ones and the corresponding susceptibility is the Linhard function.

Remark 125 Equivalence to an infinite set of bubble diagrams: The integral equa-

tion for the susceptibility has turned into an algebraic equation in 37.6. By recur-

sively replacing () on the right-hand side of that equation by higher and higher

order approximations in powers of q we obtain

(1)() = 0()− 0()q
0
()

(2)() = 0()− 0()q
0
() + 0()q

0
()q

0
() (37.8)

etc. By solving the algebraic equation then, it is as if we had summed an infinite

series which diagrammatically would look, if we turn it sideways, like Fig. 37-2.The

analogy with the self-energy in the case of the Green’s function is again clear.

37.2 Explicit form for the dielectric constant and

special cases

Using our previous results for the susceptibility of non-interacting particles, the

explicit expression for the real and imaginary parts of the dielectric function in

three dimensions at zero temperature is, for positive frequencies

Re

∙
(q )

0

¸
≡ 1 (q )

0
(37.9)
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= 1 +
2
2

(
1

2
+



4

"Ã
1− ( − )

2

22

!
ln

¯̄̄̄
 −   − 

 +   − 

¯̄̄̄

+

Ã
1− ( + )

2

22

!
ln

¯̄̄̄
 +   + 

 −   + 

¯̄̄̄#)
(37.10)

Im
£
(q )

¤ ≡ 2 (q ) (37.11)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2


 

2
2

;  ≤   − 

4

2
2

³
1− (−)2

22


´
;   −  ≤  ≤  +  

0 ;  ≥  +  

⎫⎪⎬⎪⎭   2


4

2
2

³
1− (−)2

22


´
;  −   ≤  ≤  +  

o
  2

We now analyze these results to extract five important physical ingredients:

a) There is a particle-hole continuum but the poles are simply shifted from their

old positions instead of becoming poles of high-order. b) There is screening at

low frequency. c) There are Friedel oscillations in space. d) There are plasma

oscillations in time. e) At long wave lengths the plasma oscillations exhaust the

−sum rule.

37.2.1 Particle-hole continuum

Let us first think of a finite system with  discrete poles to see that these have

been shifted. The spectral representation tells us, using the fact that, 00 (q
0)

is odd

0(q ) =

Z
0



000 (q
0)

0 −  − 
=

Z
0



0000 (q
0)

(0)2 − ( + )
2

=

2X
=1



2 − ( + )
2
=


Q(2)−1

=1

³
( + )

2 − 2

´
Q2

=1

³
2 − ( + )

2
´ (37.12)

where   0 and  are respectively the residue and the location of each pole.

We have combined the sum of fractions on a common denominator so that the

numerator of the last expression has one less power of ( + )
2
 We do not need

to specify the values of  and  Using this expression for the non-interacting

susceptibility in the result Eq.(37.2) for the RPA susceptibility we find,

(q ) =

Q(2)−1

=1

³
( + )

2 − 2

´
Q2

=1

³
2 − ( + )

2
´
+ q

Q(2)−1
=1

³
( + )

2 − 2

´ (37.13)

The denominator can be rewritten as a polynomial of the same order as the non-

interacting susceptibility, namely of order 2 in ( + )
2
 but the zeros of this

polynomial, corresponding to the poles of the retarded susceptibility, have shifted.

To find out the location of the poles of the charge excitations, at least qualita-

tively, it suffices to look for the domain where the imaginary part is non vanishing.

Using our RPA result Eq.(37.2) and simple algebra

Im

µ
+ 

1 + + 

¶
=



(1 + )
2
+ 2

(37.14)
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we find the following result for the imaginary part

Im(q ) =
Im0(q )

(1 + qRe0(q ))
2
+ (q Im0(q ))

2
(37.15)

In a discrete system Im0(q ) would be proportional to a delta function when-

ever there is a pole in the non-interacting susceptibility. The square of this delta

function that appears in the denominator cancels the corresponding delta function

in the numerator, which is another (less clear) way of saying what we have just

shown in full generality above, namely that in the interacting system the poles are

different from those of the non-interacting system. The new poles are a solution

of

1

q
+Re0(q ) =

1

q
+

2X
=1



2 − 2
= 0 (37.16)

The solution of this equation may in principle be found graphically as illustrated

in Fig.(37-4). We have taken the simple case = 6 for clarity. In reality, →∞
and the separation between each discrete pole is inversely proportional to a power

of the size of the system 1V The poles of the non-interacting susceptibility are
right on the vertical asymptotes while those of the interacting system are at the

intersection of the horizontal line 1q and of the lines that behave as 1 ( − )

near every vertical asymptote. Clearly, except for the last two symmetrically

located solutions at large frequency, all the new solutions are very close to those

of the non-interacting system. In other words, the particle-hole continuum is

basically at the same place as it was in the non-interacting system, even though

the residues may have changed. The two solutions at large frequency correspond

to plasma oscillations, as we will see later. They are well separated from the

particle-hole continuum for small  where 1q is very small. However, at large

wave vector it is quite possible to find that the high frequency poles become very

close again to the particle-hole continuum.

Remark 126 Note that the number of poles in the interacting system is the same

as the number of poles in the non-interacting one. In the situation illustrated in

Fig(37-4), there are six non-interacting poles and six interacting ones.

Since Im
¡
(q )0

¢−1
= 1+q Im(q ) the zeros of the dielectric con-

stant are at the same location as the poles of (q ) and, from what we just

said, these poles are located basically in the same (q) domain as the particle-

hole continuum of the non-interacting system, except for possibly a pair of poles.

This situation is illustrated schematically in Fig.(37-5), that generalizes Fig.(35-6)

37.2.2 Screening

At zero frequency, namely for a static charge perturbation, the imaginary part

of the dielectric constant vanishes, as shown by Eq.(37.11), while the real part

Eq.(37.9) becomes

1 (q 0)

0
= 1 +

2
2

"
1

2
+



2

Ã
1− 2

(2 )
2

!
ln

¯̄̄̄
 + 2

 − 2

¯̄̄̄#
(37.17)

In the long wave length limit, we recover our Thomas Fermi result Eq.(36.20).

This limit can also be obtained directly by approximating the integral defining
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

-1/V(q)

Re0

Figure 37-4 Graphical solution for the poles of the charge susceptibility in the

interacting system.

q



v  q v  qF
F

q q

0 2k
F

v  q
F q

 p q

Figure 37-5 Schematic representation of the domain of frequency and wave vector

where there are poles in the charge susceptibility, or zeros in the longitudinal dielectric

function. In addition to the particle-hole continuum, there is a plasma pole.
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Lindhard function Eq.(46.29) that enters the RPA dielectric function Eqs.(37.4)

lim
q→0

1 (q 0) = lim
q→0

"
1− 2q

Z
3k

(2)
3

 (k)− 
¡
k+q

¢
k − k+q

#
(37.18)

=

"
1− 2q

Z
3k

(2)
3

 (k)

k

#
(37.19)

= 1 + q




"
2

Z
3k

(2)
3
 (k)

#
(37.20)

= 1 +
2

02



(37.21)

= 1 +
2
2

(37.22)

The definition of  is in Eq.(36.16). The corresponding potential

 (r) =

Z
3

(2)
3

2

0

1

2 + 2
q·r ∝ 2

0
− (37.23)

is the screened Coulomb interaction.

Remark 127 The expression 1 (q 0) =
¡
1 + q

0
 (q 0)

¢
would be replaced by

1 (q0)

0
=
³
1− qΠ

(1)
 (q 0)

´
in the general case, with −Π(1) (q 0) the irre-

ducible polarization. That quantity is the sum of all the diagrams that cannot

be cut in two by eliminating one interaction line. In general then,  in

Eq.(37.21) would be different from the non-interacting result. This is relevant in

effective models such as the Hubbard model.

37.2.3 Friedel oscillations

If instead of using the limiting Thomas-Fermi form for small wave vectors one does

a more careful evaluation[14] of the Fourier transform of 1 (q 0) Eq.(37.17), one

finds

lim
→∞

 () ∝ cos (2 )
3

(37.24)

These oscillations are the real-space manifestation of the discontinuity in slope of

the dielectric function that appears in the logarithm at  = 2  These are so-

called Friedel oscillations. They manifest themselves in several ways. For example

they broaden NMR lines and they give rise to an effective interaction S1·S2
between magnetic impurities whose amplitude  oscillates in sign. This is the so-

called RKKY interaction. The change in sign of  with distance is a manifestation

of Friedel’s oscillations. The Friedel oscillations originate in the sharpness of the

Fermi surface. At finite temperature, where the Fermi surface broadens, they are

damped as − (∆ ) where ∆ is of order  Another way to write this last

result is − where the thermal de Broglie wavelength is of order   in

our units. Restoring physical units, that length is defined by setting the thermal

energy uncertainty  equal to ~∆ and identifying the spread in wave vector
around  as ∆ ∼ −1 .

308 DENSITY RESPONSE IN THE PRESENCE OF INTERACTIONS



37.2.4 Plasmons

We have already suggested in Fig.(37-4) that at small wave numbers, a large

frequency pole far from the particle-hole continuum appears. Let us look at this

parameter range. Taking   as a small parameter, the imaginary part of the

dielectric constant Eq.(37.11) is infinitesimal at the plasmon pole but vanishes

everywhere else in its vicinity. On the other hand the limiting form of the real

part of the dielectric constant may be obtained directly by expanding Eqs.(37.4)

and (46.29). Indeed, when the frequency is large and outside the particle-hole

continuum, we can write

lim
q→0

lim
→v −

1 (q )

0
= lim

Àv −

"
1− 2q

Z
3k

(2)
3

 (k)− 
¡
k+q

¢
 + k − k+q

#
(37.25)

= lim
q→0

"
1 + 2q

Z
3k

(2)
3

 (k)− 
¡
k+q

¢
2

¡
k − k+q

¢#
(37.26)

= 1 + 2q

Z
3k

(2)
3

 (k)− 
¡
k+q

¢
2

¡
k − k+q

¢
(37.27)

= 1 +
4q

2

Z
3k

(2)
3
 (k)

¡
k − k+q

¢
(37.28)

To obtain the last expression we did the change of variables k→ −k− q and used
k+q = −k−q The term linear in q vanishes when the angular integral is done

and we are left with

lim
q→0

lim
v −

1 (q )

0
= 1− 2q0

2
2

2
(37.29)

= 1− 2

2
(37.30)

with the value of 2 =
0

2

0
defined in Eq.(36.34). One can continue the above

approach to higher order or proceed directly with a tedious Taylor series expansion

of the real part Eq.(37.9) in powers of   to obtain

1 (q→ 0 )

0
= 1− 2

2
− 3
5

2

2
( )

2

2
+    (37.31)

Several physical remarks follow directly from this result

• Even at long wave lengths ( → 0)  the interaction becomes unscreened at

sufficiently high frequency. More specifically,

1 (q→ 0  À )

0
→ 1 (37.32)

• The collective plasma oscillation that we expected does show up. Indeed,

1 (q→ 0 ) = 0 when

0 = 2 − 2 −
3

5

2

2
( )

2
+    (37.33)

2 ≈ 2 +
3

5
( )

2
+    (37.34)
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Letting this solution be called  we have in the vicinity of this solution

 ≈ 

1 (q→ 0 )

0
≈ 1− 2

2
≈ 2


( − ) (37.35)

which is precisely the form we had obtained from macroscopic considerations.

We now know that the unknown constant we had at this time in Eq.(36.35)

has the value  = 2 .

Fig.(37-6) shows a plot of both the real and the imaginary parts of the dielectric

constant for small wave vector ( ¿  )  We see that the dielectric constant is

real and very large at zero frequency, representing screening, whereas the vanishing

of the real part at large frequency leads to the plasma oscillations, the so-called

plasmon. Given the scale of the figure, it is hard to see the limiting behavior

1 (q∞) → 1 but the zero crossing is illustrated by the maximum in Im (1) 

There is another zero crossing of 1 but it occurs in the region where 2 is large.

Hence this is an overdamped mode.

Figure 37-6 Real and imaginary parts of the dielectric constant and Im (1) as a

function of frequency, calculated for  = 3 and  = 02  Shaded plots correspond

to Im (1)  Taken from Mahan op. cit. p.430

37.2.5 −sum rule

We have not checked yet whether the −sum rule is satisfied. Let us first recall

that it takes the form,

2

Z ∞
0




00 (q) =

2


 (37.36)
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Using our relation between dielectric constant and density fluctuations Eq.(35.2)

0
(q ) = 1 − q


(q ) we obtain the corresponding sum rule for the lon-

gitudinal dielectric constantZ ∞
0



2
 Im

∙
0

 (q→ 0 )

¸
= −q

2


(37.37)

= − 2

40
= −

2


4
(37.38)

Let us obtain the plasmon contribution to this sum rule by using the approximate

form Eq.(37.35)Z ∞
0



2
 Im

"
1

2

( − ) + 

#
= −

Z ∞
0



2

¯̄̄


2

¯̄̄
 ( − )(37.39)

= −
2


4
(37.40)

This means that at  = 0 the plasmon exhaust the −sum rule. Nothing else is

necessary to satisfy this sum rule. On the other hand, for  6= 0 one can check

that the particle-hole continuum gives a contribution

− 2

4
+

2

4
=
3

20
( )

2
(37.41)

as necessary to satisfy the −sum rule.

Remark 128 One of the key general problems in many-body theory is to devise

approximations that satisfy conservation laws in general and the −sum rule in

particular. The RPA is such an approximation. We will discuss this problem in

more details later.
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38. MORE FORMAL MATTERS:

CONSISTENCY RELATIONS BE-

TWEEN SINGLE-PARTICLE SELF-

ENERGY, COLLECTIVE MODES,

POTENTIAL ENERGY AND FREE

ENERGY

This Chapter should be read if you followed the Fynman approach. Otherwise

part of its main message has already been mentioned in earlier sections and the

considerations on the free energy will come later.

We have found an expression for the density fluctuations that appears correct

since it has all the correct Physics. It was a non-trivial task since we had to sum an

infinite subset of diagrams. We will see that it is also difficult to obtain the correct

expression for the self-energy without a bit of physical hindsight. We might have

thought that the variational principle would have given us a good starting point

but we will see that in this particular case it is a disaster. The following theorems

will help us to understand why this is so and will suggest how to go around the

difficulty.

We thus go back to some formalism again to show that there is a general

relation between self-energy and charge fluctuations. We will have a good approx-

imation for the self-energy only if it is consistent with our good approximation for

the density fluctuations. We also take this opportunity to show how to obtain the

self-energy since just a few additional lines will suffice.

38.1 Consistency between self-energy and density

fluctuations

38.1.1 Equations of motion for the Feynmay way

You do not need to read this section if you have followed the source field approach.

You can skip to the next subsection. We start from the equations of motion for

the Green’s function. We need first those for the field operators.

 (1)

1
= − [ (1) ] (38.1)
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Using [] = {} − {} and Eq.(34.1) for  we have

1 (x1 1)

1
=
∇21
2

1 (x1 1) + 1 (x1 1) (38.2)

−
X
10

Z
x10 (x1−x10)†10 (x10  1)10 (x10  1)1 (x1 1)

Remark 129 We assume that the potential has no  = 0 component because of the

compensating effect of the positive background. The argument for the neutralizing

background is as follows. If we had kept it, the above equation would have had an

extra term

+ 0

∙Z
x10 (x1−x10)

¸
1 (x1 1) (38.3)

The q = 0 contribution of the potential in the above equation of motion gives on

the other hand a contribution

−
∙Z

x10 (x1−x10)
¸⎡⎣ 1
V
Z

x10
X
10

†10 (x10  1)10 (x10  1)

⎤⎦1 (x1 1)
(38.4)

While the quantity in bracket is an operator and not a number, its deviations from

0 vanish like V−12 in the thermodynamic limit, even in the grand-canonical
ensemble. Hence, to an excellent degree of approximation we may say that the

only effect of the neutralizing background is to remove the  = 0 component of

the Coulomb potential. The result that we are about to derive would be different

in other models, such as the Hubbard model, where the  = 0 component of the

interaction potential is far from negligible.

Reintroducing our time-dependent potential Eq.(34.7) the above result can be

written in the shorthand notation

 (1)

1
=
∇21
2

 (1) +  (1)−
Z
10
† (10)V (1− 10) (10) (1) (38.5)

From this, we can easily find the equation of motion for the Green’s function

G (1 2) = − ­ £ (1)+ (2)¤® (38.6)

namely,µ


1
− ∇

2
1

2
− 

¶
G (1 2) = − (1− 2)+

¿


∙Z
10
†
¡
10+
¢
V (1− 10) (10) (1)† (2)

¸À
(38.7)

where as usual the delta function comes from the action of the time derivative

on the  functions implicit in the time ordered product. The right-hand side is

not far from what we want. The last term on the right-hand side can be related

to the product of the self-energy with the Green’s function since, comparing the

equation of motion for the Green’s function with Dyson’s equation

G−10 G =1+ΣG (38.8)

we have thatR
100 Σ (1 1

00)G (100 2) = −
D


hR
10 

† (10+) (10 − 1) (10) (1)† (2)
iE
(38.9)

which, in all generality, can be taken as a definition of the self-energy.
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38.1.2 Self-energy, potential energy and density fluctuations

The last equation (38.9) has been derived also in Eq.(32.13) in a different notation

if you followed the functional derivative approach. In this section we keep the

integral on space-time coordinates explicitly. If you have read the first remark in

Sec. 32.2 the frist few equations below are nothing new.

In the limit 2→ 1+ where

1+ ≡ ¡x1 1 + 0+;1¢ (38.10)

the term on the right-hand side of Eq.(38.9) is¿


∙Z
10
†
¡
1+
¢
†
¡
10+
¢
V (10 − 1) (10) (1)

¸À
where we have written explicitly the integral. Note that we have placed † (2)→
† (1+) to the far left of the three fermion operators † (10) (10) (1) because
the potential is instantaneous and these three fermion operators are all at the

same time and in the given order. Recalling the definition of the average potential

energy

2 h i =
X
1

Z
3x1

Z
10

D


h
†
¡
1+
¢
† (10)V (10 − 1) (10) (1)

iE
(38.11)

we directly get from Eq.(38.9) above a relation between self-energy and potential

energy X
1

Z
3x1

Z
10
Σ (1 10)G ¡10 1+¢ = 2 h i (38.12)

We have the freedom to drop the time-ordered product when we recall that the

operators are all at the same time and in the indicated order. Using time-

translational invariance the last result may also be writtenR
1

R
10 Σ (1 1

0)G (10 1+) = 2 h i = R
1

R
10

D


h
† (1+)† (10+)V (10 − 1) (10) (1)

iE
(38.13)

Remark 130 The 1+ on the left-hand side is absolutely necessary for this expres-

sion to make sense. Indeed, taken from the point of view of Matsubara frequencies,

one knows that the self-energy goes to a constant at infinite frequency while the

Green’s function does not decay fast enough to converge without ambiguity. On

the right-hand side of the above equation, all operators are at the same time, in

the order explicitly given.

The right-hand side of the last equation is in turn related to the density-density

correlation function. To see this, it suffices to return to space spin and time indices

and to recall that the potential is instantaneous and spin independent so that

2 h i =
Z
10

Z
1

D
†
¡
1+
¢
†
¡
10+
¢
V (10 − 1) (10) (1)

E
(38.14)

= −
X
110

Z
3x10

Z
3x1

D
†10 (x10)  (x10 − x1)1 (x1)

E
110  (x10 − x1)

+
X
110

Z
3x10

Z
3x1

D
†10 (x10)10 (x10)  (x10 − x1)

†
1
(x1)1 (x1)

E
= −0V (0) + 

Z
3x10

Z
3x1 h (x10)  (x10 − x1) (x1)i (38.15)
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where in the last equation we have usedZ
3x1

X
1

D
†1 (x1)1 (x1)

E
=  = 0V (38.16)

Going to Fourier space, we haveZ
3x10

Z
3x1 h (x10)  (x10 − x1) (x1)i (38.17)

=

Z
3x10

Z
3x1 (x10 − x1) (x10  0;x10) (38.18)

=

Z
3

(2)
3
q

h
lim
→0

V (q )
i

(38.19)

We did not have to take into account the disconnected piece that appears in

Eq.(38.17) but not in  (q ) because this disconnected piece contributes only

at q = 0 and we have argued that q=0 = 0 Note that there is no jump in

 (q ) at  = 0 contrary to the case of the single-particle Green’s function.

Substituting back into Eq.(38.15) we have

2 h i =
Z
10

Z
1

D
†
¡
1+
¢
†
¡
10+
¢
V (10 − 1) (10) (1)

E
= (38.20)

= V
⎡⎣−0 (0) + Z 3

(2)
3
q

X


 (q )

⎤⎦
= V

⎡⎣Z 3

(2)
3
q

⎡⎣X


 (q )− 0

⎤⎦⎤⎦
Substituting the above Eq.(38.20) into the consistency relation between self-energy

and potential energy Eq.(38.13) and then using invariance under time and space

translations as well as spin rotation symmetry to replace
R
1
by 2V this gives the

following relation between self-energy and density fluctuationsZ
10
Σ (1 10)G ¡10 1+¢ = (38.21)


X


Z
3

(2)
3
Σ (k) (k) 

 (38.22)

=
1

2

Z
3

(2)
3
q

⎡⎣X


 (q )− 0

⎤⎦  (38.23)

This plays the role of a sum-rule relating single-particle properties, such as the

self-energy and Green function, to a two-particle quantity, the density-density

correlation function or potential energy.

Remark 131 In short range models, we need to restore the q=0 component and

the disconnected piece has to be treated carefully. Also, the spin fluctuations will

come in. This subject is for the chapter on the Hubbard model.
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38.2 General theorem on free-energy calculations

The diagram rules for the free energy are more complicated than for the Green’s

function. We have seen in the previous chapter the form of the linked-cluster

theorem for the free-energy. It is given by a sum of connected diagrams. However,

in doing the Wick contractions for a term of order , there will be (− 1)! identical
diagrams instead of !. This means that there will be an additional 1 in front of

diagrams of order , by contrast with what happened for Green’s functions. This

makes infinite resummations a bit more difficult (but not undoable!).

There is an alternate way of obtaining the free energy without devising new

diagram rules. It uses integration over the coupling constant. This trick is appar-

ently due to Pauli [15]. The proof is simple. First, notice that

− 1


 ln


= − 1



1




£
−(0+−)¤


=
1



h
−(0+−)

i
=
1


h i 
(38.24)

To differentiate the operator, −(0+−), we have used its definition as a
power series and then taken the derivative with respect to . Even if the operator

 does not commute with 0, the cyclic property of the trace allows one to always

put  on the right-hand side so that in the end, the derivative worked out just

as with ordinary number. (Alternatively, one can do the proof in the interaction

representation). The subscript  in h i is to remind ourselves that the trace is
taken for a Hamiltonian with coupling constant .

The free energy we are interested in is for  = 1, so

Ω = − ln = − ln0 +
R 1
0



h i  (38.25)

From a diagrammatic point of view, the role of the integral over  is to regive the

factor of 1 for each order in perturbation theory.

Remark 132 Recall that the free energy in this grand-canonical ensemble is re-

lated to the pressure.

Ω = −V (38.26)

The expectation value of the potential energy may be obtained by writing down

directly a diagrammatic expansion, or by using what we already know, namely the

density correlations. Indeed we have shown in the previous section, Eq.(38.20),

how the potential energy may be obtained from density correlations,

Ω = − ln = − ln0 (38.27)

+
V
2

Z 1

0





*


Z
3

(2)
3
q

⎡⎣X


 (q )− 0

⎤⎦+




Using our previous relation between self-energy and potential energy, Eq.(38.13)

the coupling-constant integration in Eq.(38.25) may also be done with

Ω = − ln0 + 

2

Z 1

0





Z
1

Z
1”Σ (1 1”)G

¡
1” 1+

¢
 (38.28)

where the subscript  reminds oneself that the interaction Hamiltonian must be

multiplied by a coupling constant .
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39. SINGLE-PARTICLE PROPER-

TIES AND HARTREE-FOCK

We have already mentioned several times our strategy. First we will show the

failure of Hartree-Fock and try to understand the reason for it by returning to

consistency relations between self-energy and density fluctuations. Having cured

the problem by using the screened interaction in the calculation, we will discuss

the physical interpretation of the result, including a derivation of the Fermi liquid

scattering rate that we discussed in the previous Part in the context of photoe-

mission experiments.

It is useful to derive the result from the variational principle as well as directly

from a Green’s function point of view. Since Hartree-Fock is sometimes actually

quite good, it is advisable to develop a deep understanding of this approach.

39.1 Variational approach

In Hartree-Fock theory, we give ourselves a trial one-particle Hamiltonian and use

the variational principle to find the parameters. In the electron gas case the true

non-interacting part of the Hamiltonian is

0 =
X
k

k
+
kk =

X
k

2

2
+kk (39.1)

where the spin-sum is represented by a sum over . The interacting part, written

in Fourier space, takes the form

 −0 =
1

2V
X
k

X
k00

X
q

+k
+
k00qk0−q0k+q (39.2)

with q the Fourier transform of the Coulomb potential

q =
2

402
 (39.3)

Electroneutrality leads to q=0 = 0 as before. The form of the interaction with all

the proper indices is not difficult to understand when we consider the diagrammatic

representation in Fig.(39-1). All that is needed is the conservation of momentum

coming from integrals over all space and translational invariance. The factor of

1V in front comes from a factor V−12 for each change of variable from real-

space to momentum space,
¡V−12¢4, and one overall factor of volume V from

translational invariance which is used to eliminate one of the momentum sums

through momentum conservation. Although there are several ways of labeling the

momenta, the above one is convenient. In this notation q is often referred to as

the “transfer variable” while k and k0 are the band variables.
To apply the variational principle, one takes

e0 =
P
kek+kk (39.4)
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k + q

k’

k’ - q

Figure 39-1 Momentum conservation for the Coulomb interaction.

with the variational parameter ek. We then minimize
−  ln0 +

D
 − e0

E
0

(39.5)

The partition function for e0 −  is computed as usual for non-interacting

electrons

−  ln0 = − ln
Y
k

³
1 + −(k−)´ = −X

k

ln
³
1 + −(k−)´  (39.6)

Then the quantity
D
 − e0

E
0
is easily evaluated as sums of products of pairs

of Greens functions since the average is taken in the case where there are no

interactions, i.e. e0 is quadratic in creation-annihilation operators. This can

be derived from the functional derivative approach and is the content of Wick’s

theorem. Here we use it directly to obtain,D
 − e0

E
0
=
X
k

(k −ek)D+kkE
0

(39.7)

+
1

2V
X
k

X
k00

X
q

q

hD
+k00k0−q0

E
0

D
+kk+q

E
0
−
D
+k00k+q

E
0

D
+kk0−q0

E
0

i


(39.8)

which may be simplified by usingD
+k00k

E
0
= 0kk0

D
+kk

E
0
≡ 0kk0

³ek´ = 1

(k−) + 1 (39.9)

to obtainD
 − e0

E
0
=
X
k

(k −ek)  ³ek´− 2 12VX
k

X
k0

k0−k
³ek0´  ³ek´ (39.10)

where the overall factor of 2 comes from what is left of the spin sums. We have

dropped the term that leads to q=0 as usual because of the neutralizing back-

ground.

We can now determine our variational parameterek by minimizing with respect
to it:



ek
⎡⎣−X

k

ln
³
1 + −(k−)´

⎤⎦ = 2−(k−)¡
1 + −(k−)¢ = 2 ³ek´ (39.11)



ek
D
 − e0

E
0
= −2

³ek´+ 
³ek´
ek

"
2 (k −ek)− 2

V
X
k0

k0−k
³ek0´

#


(39.12)
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Setting the sum of the last two equations to zero, we see that the coefficient of the

square bracket must vanish. Using q = −q we then have

ek = k − 1

V
X
k0

k0−k
³ek0´ = k −

Z
3k0

(2)
3
k−k0

³ek0´ (39.13)

ek = k −
R

3k0

(2)3
2

0|k−k0|2
1


(k0−)+1 (39.14)

As usual the chemical potential is determined by fixing the number of particles.

Before we evaluate this integral let us obtain this same result from the Green’s

function point of view.

In principle we should check that the extremum point that we found by taking

the first derivative is a minimum.

39.2 Hartree-Fock from the point of view of Green’s

functions, renormalized perturbation theory and

effective medium theories

We want to do perturbation theory but using this time for the Hamiltonian

 = e0 +
³
0 − e0 + 

´
(39.15)

The unperturbed Hamiltonian is now e0 and we assume that it takes the same

form as Eq.(39.4) above. In addition to the usual perturbation  , there is now

a translationally invariant one-body potential 0 − e0 One determines the self-

energy in such a way that e0 becomes the best “effective medium” in the sense that

to first order in
³
0 − e0 + 

´
the self-energy calculated in this effective medium

vanishes completely. This is illustrated in Fig.(39-2). This kind of approach is also

known as renormalized perturbation theory [24].

q = 0

k’

k - k’

+ +


k k

~

~
q = 0

Figure 39-2 Effective medium point of view for the Hartree-Fock approximation. In

this figure, the propagators are evaluated with the effective medium e0

The so-called Hartree diagram (or tadpole diagram) with one loop does not

contribute because it is proportional to q=0 = 0. The Hartree term is in a sense

the classical contribution coming from the interaction of the electron with the

average charge density. Because of electroneutrality here it vanishes. The last

diagram on the right of the figure is the Fock term that comes from exchange and

is a quantum effect. Algebraically, Fig.(39-2) giveseΣ = k −ek +Σ(1) (k) = 0 (39.16)
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Using the expression for the exchange, or Fock, diagram Σ(1) (k) we get a minus

sign when we work directly in the Schwinger approach. In the Feynmann approach,

the minus signe is there because we compute to first order and there is no fermion

loop. Furthermore, we have the 
0
 convergence factor. Hence, we obtain for

Σ(1) (k)

Σ(1) (k) = −
Z

3k0

(2)
3

X
0

2

0
¯̄
k− k0

¯̄2 eG0 (k0 0) 0 (39.17)

that we can evaluate using our formula for Matsubara sums. Substituting back

into Eq.(39.16) we get precisely our Hartree-Fock result Eq.(39.14) obtained from

the variational principle.

To close this section, we note that there is another instructive way of rewriting

the last equation for Σ(1) (k)  Using Eq.(39.16) for ek we can remove all reference
to ek and write

Σ(1) (k) = − R 3k0

(2)3

P

0
2

0|k−k0|2
1

0−(k−)−Σ(1)(k)


0
 (39.18)

Performing the summation over Matsubara frequencies and using Eq.(39.16) to

relate ek to Σ(1) (k)  this expression is found identical to our earlier variational
result Eq.(39.14). The above equation Eq.(39.18) looks as if the perturbation

expansion for the full Green’s function, illustrated by a thick arrow in Fig.(39-

3), was written in terms of a perturbation series that involves the full Green’s

function itself. Iterating shows that in this approximation we have a self-energy

that resums the infinite subset of diagrams illustrated on the bottom part of this

same figure. One commonly says that all the “rainbow” diagrams have been

summed.In principle this Hartree-Fock Green’s function may be used in further

k’

k - k’

+
k k kk

 +

+ +

Figure 39-3 Hartree-Fock as a self-consistent approximation for the Green’s function.

This self-consistent approximation is equivalent to a self-energy that sums all the

rainbow diagrams illustrated on the bottom part of the figure. The thick line is the

full Green’s function.

perturbative calculations. We just have to be careful not to double-count the

diagrams we have already included.
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39.3 The pathologies of the Hartree-Fock approxi-

mation for the electron gas.

To evaluate our expression for the Hartree-Fock self-energy ek = k + Σ
(1) (k)

Eq.(39.14) we need the chemical potential. As usual in the grand-canonical en-

semble, the chemical potential is determined by requiring that we have the correct

density. Let us suppose then that we have a density  Then

 = 2

Z
3k

(2)
3

X


eG0 (k )  (39.19)

= 2

Z
3k

(2)
3

1

(k+Σ
(1)(k)−) + 1

(39.20)

Let us focus on the zero temperature case. Then the Fermi function is a step

function and the last integral reduces to

 = 2

Z
3k

(2)
3
 ( − |k|) (39.21)

where the chemical potential is given by

k +Σ
(1) (k )−  = 0 (39.22)

The equation Eq.(39.21) that gives us  tells us that  is precisely the same as in

the non-interacting case. This is an elementary example of a much more general

theorem due to Luttinger that we will discuss in a later chapter. This theorem

says that the volume enclosed by the Fermi surface is independent of interactions.

Clearly, if 0 is the value of the chemical potential in the non-interacting system,

then Σ(1) (k )−  = −0
The integral to do for the Hartree-Fock self-energy is thus, at zero temperature

Σ(1) (k) = −
Z

3k0

(2)
3

2

0
¯̄
k− k0

¯̄2  ( − |k0|) (39.23)

= − 2

083

Z 

0

(0)2 0
Z 1

−1

2 (cos )

2 + (0)2 − 20 cos 
(39.24)

= − 2

420

Z 

0

0
1

−2 ln
Ã¯̄̄̄
¯(0 − )

2

( + 0)2

¯̄̄̄
¯
!
0 (39.25)

We evaluated the integral as a principal part integral because we have argued

that the potential should have no  = 0 component which means
¯̄
k− k0

¯̄2 6= 0.

Pursuing the calculation, we have

Σ(1) (k) = − 2

420


∙
1 +

1− 2

2
ln

µ¯̄̄̄
1 + 

1− 

¯̄̄̄¶¸
;  ≡ 


(39.26)

The function Σ(1) (k) 
³

2

420


´
is plotted in Fig.(??).

Σ(1) ( ) 
³

2

420


´
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Plot of the Hartree-Fock self-energy at zero temperature.

Since lim→0  ln = 0, we have that

Σ(1) (k ) = − 2

420
 (39.27)

The ratio of this term to the zeroth order term, namely the kinetic energy 2 2

is of order 

∝ 2

2 0
∝ 1

0
∝  (39.28)

as can be seen using the definitions Eqs.(36.2)(36.5).

Up to here everything seems to be consistent, except if we start to ask about

the effective mass. The plot of the self-energy suggests that there is an anomaly

in the slope at  = 1 (or  =  ). This reflects itself in the effective mass. Indeed,

using the general formula found in the previous chapter, Eq.(28.37)



∗
= lim
k→k

1 + 
k

ReΣ (k k − )

1− 

ReΣ (k )

¯̄
=k−

= 1 +


k

Σ(1) (k)



¯̄̄̄
=

(39.29)

we have

Σ(1) (k)



¯̄̄̄
=

∝ 

µ




¶
=1


h
1 + 1−2

2
ln
³¯̄̄
1+
1−

¯̄̄´i


¯̄̄̄
¯̄
=1

(39.30)

The problem comes from ln (1− )  Let us concentrate on the contributions pro-

portional to this term





∙µ
1

2
− 

2

¶
ln (1− )

¸
=

µ
− 1

22
− 1
2

¶
ln (1− )

+

µ
1

2
− 

2

¶
1

1− 
(39.31)

As  → 1 we obtain a singularity from ln (0) = −∞ This corresponds to the

unphysical result ∗ = 0 An effective mass smaller than the bare mass is possible
but rather unusual. This is seen for example in three dimension for very small 
(table 8.7 in Giuliani-Vignale). However, in general, interactions will make quasi-

particles look heavier. The result ∗ = 0 obtained here is as close to ridiculous

as one can imagine.

The physical reason for the failure of Hartree-Fock is the following. It is correct

to let the electron have exchange interaction of the type included in rainbow

diagrams do, but it is incorrect to neglect the fact that the other electrons in

the background will also react to screen this interaction. We discuss this in more

details below.
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40. SECOND STEP OF THE AP-

PROXIMATION: GWCURINGHARTREE-

FOCK THEORY

In this Section, we present the solution to the failure of Hartree-Fock that was

found by Gell-Man and Brueckner[16]. In brief, in the first step of the calculation

we obtained collective modes with bare Green’s functions. We saw that just trying

to do Hartree-Fock at the single-particle level was a disaster. Now we want to

improve our calculation of the single-particle properties. The Physics is that the

interaction appearing in Hartree-Fock theory should be screened. Or equivalently,

the self-energy that we find should be consistent with the density fluctuations

found earlier since ΣG is simply related to density fluctuations. The resulting
expresssion that we will find is also known as the GW approximation.

The first subsection should be read if you follow the Feynmann way. Otherwise,

skip to the next subsection.

40.1 An approximation for
P
that is consistent with

the Physics of screening

For Feynmann afficionados, we have seen in a previous Chapter, more specifically

Eq.(38.21), that the self-energy is related to density fluctuations. More specifically,

if we multiply the self-energy by the Green’s function and take the trace, we should

have the same thing basically as we would by multiplying the density-density

correlation function by the potential and taking the trace. This is illustrated

schematically for the Hartree-Fock approximation by the diagram of Fig.(40-1).

The diagram on the left is built from the rainbow self-energy of Fig.(39-3) by

multiplying it by a dressed Green’s function. The one on the right is obtained by

taking a single bubble with dressed propagators and multiplying by a potential.

The change of integration variables k− k0 = −q shows trivially that the diagrams
are identical. The extra term that appears on the right-hand side of the relation

between self-energy and density Eq.(38.21) is due to the fact that one forces the

Green’s functions to correspond to a given time order in the self-energy calculation

that is different from the one appearing naturally on the right-hand side.

Remark 133 Equality (38.21) for the Hartree-Fock approximation. Let us check

just the sums over Matsubara frequencies on both sides of Eq.(38.21) to see that

they are identical. First, the sum on the left hand-side.


X



X
0



 − k


0


0 − k0
=  (k)  (k0) (40.1)

While the sum on the right-hand side is


X



X


1

 − k

1

 +  − k0
(40.2)
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k’

k - k’

k



k+q

k

q

Figure 40-1 Approximation for the density fluctuations that corresponds to the

Hartree-Fock self-energy.

= 
X



X


∙
1

 − k
− 1

 +  − k0

¸
1

 − k0 + k
(40.3)

= 
X


 (k)−  (k0)

 − k0 + k
= − [ (k)−  (k0)] (k0 − k) (40.4)

where we used, with  the Bose function


X


1

 − 
= − () or −  ()− 1 (40.5)

The result of the sum depends on the convergence factor but the −1 in the second
possibility does not contribute once the sum over wave vectors are done. We are

thus left only with

− [ (k)−  (k0)] (k0 − k) = − k0 − k

(k0 + 1) (k + 1)

1

(k0−k) − 1

= − k

(k0 + 1) (k + 1)
(40.6)

= − (1−  (k))  (k0) (40.7)

Eq.(40.1) and the last equation are not strictly equal and that is why it is necessary

to subtract 0 in Eq.(40.1).

Fig.(40-1) shows that the Hartree-Fock approximation corresponds to a very

poor approximation for the density fluctuations, namely one that has no screening,

and no plasma oscillation. Knowing that the RPA approximation for the density

has all the correct properties, it is clear that we should use for the self-energy the

expression appearing in Fig.(40-2). Indeed, in such a case, multiplying Σ by G0

k’

k - k’

 

 

Figure 40-2 Diagrammatic expression for the self-energy in the RPA approximation.

gives a a result, illustrated in Fig.(40-3) that does correspond to multiplying the
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RPA expression for the density Fig.(37-2) by q and summing over q These are

the ring diagrams.

 

 

Figure 40-3 Ring diagrams for ΣG in the RPA approximation. The same diagrams
are used for the free energy calculation.

Using Feynman’s rules, the corresponding analytical expression is

Σ (k) = (40.8)

−
Z

3q

(2)
3

X


q

1 + q0 (q)
G0 (k+ q  + )

= −
Z

3q

(2)
3

X


q

 (q )
G0 (k+ q  + )

Comparing with the Hartree-Fock approximation Eq.(39.18) the differences here

are that a) we do not have self-consistency, b) more importantly, the interaction

is screened. This is illustrated diagrammatically in Fig.(40-4) which is analogous



 

Figure 40-4 RPA self-energy written in terms of the screened interaction.

to the diagram for the Hartree-Fock approximation Fig.(39-3) but with a screened

interaction and only the first rainbow diagram, without self-consistency.

Remark 134 If, instead of summing the whole series in Fig.(40-2) we had stopped

at any finite order, we would have had to deal with divergent integrals. Indeed, con-

sider expanding the RPA susceptibility to first order in Eq.(40.8). This corresponds

to the diagram with one bubble. The corresponding expression isZ
3q

(2)
3

X


 2
q

0
 (q)G0 (k+ q  + )

which is divergent since  2
q is proportional to −4 while the integral over  is in

three dimensions only. Higher order bubbles are worse.
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Figure 40-5 Coordinate (top) and momentum space (bottom) expressions for the

self-energy at the second step of the approximation. The result, when multiplied by

G is compatible with the density-density correlation function calculated in the RPA
approximation.

40.2 Self-energy and screening, the Schwinger way

To obtain an approximation for the self-energy Σ that, when multiplied by G,
gives the density-density correlation function that we just evaluated in the RPA

approximation, we return to the general expression for the self-energy Eq.(32.29)

and the corresponding pictorial representation Eq.(32-2). We replace the irre-

ducible vertex ΣG by the one shown in Fig. 33-1 that we used to compute the
density-density correlation function illustrated in Fig. 33-5. The final result is

illustrated in Fig. 40-5. We just need to replace the functional derivative of the

Green function appearing at the bottom right by the RPA series illustrated in Fig.

37-3. Recalling that the Hartree term vanishes, the final result is equivalent, when

looked at sideways, to the series of bubble diagrams illustrated in Fig. 40-2,

The algebraic expression for this second level of approximation for the self-

energy can be read off the figure. It takes the explicit form

Σ (k) = Σ(2) (k) (40.9)

= −
Z

3q

(2)
3

X


q

∙
1− q

0
 (q)

1 + q0 (q)

¸
G0 (k+ q  + )

where the first term comes from the Fock contribution. The two terms can be
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combined into the single expression

Σ(2) (k) = −
Z

3q

(2)
3

X


q

1 + q0 (q)
G0 (k+ q  + )  (40.10)

Using our result for the longitudinal dielectric constant that follows from the

density fluctuations in the RPA approximation Eq. (37.4), the last result can be

written as

Σ(2) (k) = −
Z

3q

(2)
3

X


q

 (q) 0
G0 (k+ q  + ) (40.11)

which has the very interesting interpretation that the effective interaction entering

the Fock term should be the screened one instead of the bare one. The two are

equal only at very high frequency. The quantity screened potential
q

(q)0
is

often denoted  which means that the integrand is G0, hence the name 
approximation.

Remark 135 Diagrammatically, from Fig. 40-5, it is clear that multiplying by

G0 and summing over , we obtain the series of bubble diagrams for the density
fluctuations, multiplied by the potential. That corresponds to the total potential

energy. Hence, one recovers the sum-rule relating single and two-particle properties

Eq.(38.23). Albegraically, we start from Eq.(40.10) just above and computeZ
3k

(2)
3

X


Σ(2) (k)G0 (k ) −0
−

= −
Z

3q

(2)
3

X


q

1 + q0 (q)

×
Z

3k

(2)
3

X


G0 (k+ q  + )G0 (k )

=

Z
3q

(2)
3

X


q
0
 (q)

1 + q0 (q)

=

Z
3q

(2)
3

X


q (q)  (40.12)

The convergence factor −0
−
is necessary to enforce Σ

¡
1 2
¢

¡
2 1+

¢
and obtain

the potential energy to the right. It is not obvious from the right-hand side that

we need the convergence factor until one realizes that there is a sum over  and

 and only two Green’s functions G0 (k+ q  + )G0 (k ) that survive at
very large frequency, giving a result that is formally divergent. Hence we should

not invert the order of summation over  and  as we did. That can cost the

constant term that appears in Eq.(38.23). ???
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41. PHYSICS INSINGLE-PARTICLE

PROPERTIES

In this Chapter, we interpret the results of calculations based on formulas of the

previous Chapter, and compare with experiments. In particular, we will recover

theoretically the Fermi liquid regime, compute the free energy and compare with

experiment.

41.1 Single-particle spectral weight

The real-part and the absolute value of the imaginary part of the RPA self-energy

at zero temperature are plotted in Fig.(41-1) as a function of frequency for three

different wave vectors. In the Hartree-Fock approximation, the self-energy was

completely frequency independent. The result here is quite different. The screened

interation contains the plasmons and has a drastic effect on single-particle prop-

erties. There are several points worth mentioning.

Figure 41-1 Real and imaginary part of the RPA self-energy for three wave vectors,

in units of the plasma frequency. The chemical potential is included in ReΣ The

straight line that appears on the plots is  − k Taken from B.I. Lundqvist, Phys.

Kondens. Mater. 7, 117 (1968).  = 5?

• ImΣ (k = 0) = 0 for all wave vectors. This is true only at zero temper-

ature. This property will play a key role in the derivation of Luttinger’s

theorem later.

• The straight line that appears on the plots is −k The intersection of this
straight line with ReΣ , which is defined on the figure to contain the chemical

potential, corresponds (in our notation) to the solution of the equation

 − k = ReΣ
 (k )−  (41.1)
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Figure 41-2 RPA spectral weight, in units of the inverse plasma frequency. Taken

from B.I. Lundqvist, Phys. Kondens. Mater. 7, 117 (1968).

As we argued in the previous chapter Eq.(28.24), this determines the position

of maxima in the spectral weight,

 (k) = −2 Im (k) (41.2)

=
−2 ImP

(k )³
 − k −Re

P
(k )

´2
+
³
Im
P

(k )
´2 (41.3)

maxima that we identify as quasiparticles. Let us look at the solutions near

 = 0 These correspond to a peak in the spectral weight Fig.(41-2). At the

Fermi wave vector, the peak is located precisely where the imaginary part

of the self-energy vanishes, hence the peak is a delta function. On the other

hand, away from k = k , the maximum is located in a region where the

imaginary part is not too large, hence the quasiparticle has a finite lifetime.

Recall that to have the quasiparticle shape described in the previous chapter

Eq.(28.29),

 (k) ≈ 2k
"
1



Γk ()

( −k + )
2
+ (Γk ())

2

#
+  (41.4)

it is necessary that at the crossing point, the slope of ReΣ (k ) be negative

because it is necessary that

k =
1

1− 

ReΣ (k )

¯̄
=k−

≥ 0 (41.5)

if the previous formula is to make sense. The value of k , namely 06, is

indicated on this plot.

• Note that in Fig. 41-1 there is a threshold-like feature at  = ±1 where
ImΣ becomes large. This is when the one-particle excitations can emit or

absorb real plasmons. This is discussed further below.

• From the previous discussion, we see that the two maxima away from  = 0

at  =  do not correspond to quasiparticle solutions. The weight near the

maxima away from  = 0 come from scattering rates ImΣ that are large,

but not too large compared with the value of − k −ReΣ (k )  At the

332 PHYSICS IN SINGLE-PARTICLE PROPERTIES



threshold where ImΣ is really large, the spectral weight in fact vanishes

because of the denominator in the general expression for the spectral weight

Eq.(41.2). Note that the maxima away from  = 0 at  =  are near the

value of  where the quasiparticle condition Eq. (41.1) is almost satisfied.

• For the figure on the right,  = 14 , the peak nearest  = 0 corresponds
to a quasiparticle solution. Note however that for wave vectors so far from

the Fermi surface, the width of the peak starts to be quite a bit larger.

The maxima further away all occur in regions where ImΣ is large and the

quasiparticle condition Eq. (41.1) is almost satisfied.

• For  = 06 , there seems to be an additional quasiparticle solution, namely
a solution where 


ReΣ is negative and ImΣ is not too large, located

at an energy  below the main quasiparticle energy. Since the free-electron

band is bounded from below, ImΣ vanishes at sufficiently negative fre-

quency, allowing a new solution to develop when interactions are sufficiently

strong. This solution looks like a bound state.

41.2 Physical interpretation of
P00

In this section, we write the imaginary part of the self-energy in a form that is

easy to interpret physically. The evaluation in the Fermi-liquid limit is given in

the following subsection. Here we want to first show that the imaginary part of

the self-energy defined by

Σ (k ) = Σ0 (k ) + Σ00 (k ) (41.6)

may be written in the form

Σ00 (k ) = − 
2||

R
2⊥
(2)2

R
0

[ (

0) +  ( + 0)] 2
q 

00


¡
⊥ k 0

¢
(41.7)

where k is the solution of the equation

||


k +
2k
2

=

∙
 + 0 −

µ
2

2
− +

2⊥
2

¶¸
(41.8)

Proof: It is preferable to first rewrite the RPA expression Eq.(40.8) in the fol-

lowing form

Σ (k) = −
Z

3q

(2)
3

X


q

∙
1− q

0
 (q)

1 + q0 (q)

¸
G0 (k+ q  + )

(41.9)

= Σ (k) +

Z
3q

(2)
3

X


£
q


 (q)q

¤G0 (k+ q  + )

(41.10)

The first term at  = 0 is the Hartree-Fock contribution, as we can see

from Eq.(39.23). In other words, wether we use G0 or the dressed eG0 in
the Hartree-Fock calculation we obtain the same result at zero temperature.

The important points here however are that (i) it is the only contribution

that survives at infinite frequency and (ii) the imaginary part comes only

from the second term. That second term contains a quantity in square
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brackets that looks like two interaction vertices, q coupling to a density

propagator  (q). When we consider interactions with other types

of excitations, including with phonons, this form will reoccur and will be

more easily susceptible to generalizations. To find the imaginary part, let us

concentrate on this last expression and use the spectral representation for

  We then have

Σ (k)−Σ (k) =

Z
3q

(2)
3

Z
0



X


∙
q

00 (q 
0)

0 − 
q

¸
1

 +  − k+q

(41.11)

We cannot perform the analytical continuation  →  +  before we

have performed the sum over  because, except for  = 0, this would

necessitate going through the poles at  = − + k+q In addition, recall

that we want the high-frequency behavior to be 1 before we do the

analytic continuation, but until we have done the sum over  we cannot

say that we have that asymptotic behavior since  extends to infinity.

To do the sum over bosonic Matsubara frequencies first, we do the partial

fraction decomposition as usual

− 
X


1

 − 0
1

 +  − k+q
(41.12)

= −
X


∙
1

 − 0
− 1

 +  − k+q

¸
1

 + 0 − k+q
(41.13)

=
£
 (

0) + 
¡
k+q

¢¤ 1

 + 0 − k+q
(41.14)

Note that for any  the sum +  is a fermionic Matsubara frequency

when  is a bosonic one. That is why we obtained a Fermi distribution in

the last term. Substituting back into our expression for the self-energy, the

analytic continuation  →  +  can be done and we obtain

Σ (k )−Σ (k) =

Z
3q

(2)
3

Z
0



£
 (

0) + 
¡
k+q

¢¤ q
00
 (q 

0)q
 +  + 0 − k+q

(41.15)

The imaginary part is thus

Σ00 (k ) = −
Z

3q

(2)
3

Z
0


[ (

0) +  ( + 0)] 2
q

00
 (q 

0) 
¡
 + 0 − k+q

¢
(41.16)

Defining || by the direction parallel to the wave vector k and calling ⊥ the
other directions, the integral over || can be performed, giving the condition
in Eq.(41.8). We then obtain, assuming that we are in a region of frequency

where the delta function has a solution, the desired result Eq.(41.7)

In the zero temperature limit,  ( + 0) =  (− − 0) and  (0) = − (−0)
so that if we take   0 then the integral over 0 extends over the interval
−  0  0 where  (0) +  ( + 0) takes the value −1 At low temperature,
the contributions to Σ00 Eq.(41.7) will come mostly from this same frequency inter-
val since this is where the combination  (

0)+ ( + 0) 6= 0. This immediately
allows us to understand why the imaginary part of the self-energy in Fig.(41-1)

above starts to be large when the frequency becomes of the order of the plasma

frequency. This is only when  is that large that the contributions from 0 ≈ 
in 00 can start to contribute. This is where the quasiparticles can start to absorb
or emit plasmons.
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Remark 136 Vanishing of Σ00 at zero temperature: Our general formula for the
imaginary part Eq.(41.7) tells us that at zero temperature Σ00 (k  = 0) = 0 for

all wave vectors, as we have seen in Fig.(41-1). Mathematically, this is so be-

cause lim→0 [ (0) +  (0)] = 0 for all 0 Physically, it is because phase space
vanishes when we sit right at the chemical potential ( = 0) 

It is easier to interpret the physical meaning of the imaginary part by concen-

trating on the case   0 and then performing a change of variables 0 → −0
Then the integration window at  = 0 becomes −  −0  0 or   0  0

Using

 (−0) = − (1 +  (
0)) (41.17)

and 00 (q−0) = −00 (−q 0)  the imaginary part of the self-energy becomes

Σ00 (k ) = −
Z

3q

(2)
3

Z
0


[(1 +  (

0))−  ( − 0)] 2
q

00
 (q 

0) 
¡
 − 0 − k+q

¢
= −

Z
3q

(2)
3
 2
q

00


¡−q  − k+q
¢

£¡
1 + 

¡
 − k+q

¢¢ ¡
1− 

¡
k+q

¢¢
+ 

¡
 − k+q

¢

¡
k+q

¢¤
The first term

¡
1 + 

¡
 − k+q

¢¢ ¡
1− 

¡
k+q

¢¢
represents the decay of a parti-

cle of energy  and wave vector k into an empty particle state of energy k+q and

momentum k+ q plus a bosonic excitation (particle-hole continuum or plasmon)

of energy − k+q and momentum −q The second term 
¡
 − k+q

¢

¡
k+q

¢
represents the case where the incident state is a hole energy  and wave vector k

that decays into another hole of energy k+q and momentum k+ q by absorbing

a boson of energy  − k+q and momentum −q The latter is in some sense the
first process but time reversed. “Scattering-in” terms that represent repopulation

of the state k occur in transport equations, or two-body response functions, not

here.

41.3 Fermi liquid results

Perhaps the best known characteristic of a Fermi liquid is that at frequencies and

temperatures much smaller than the Fermi energy, Σ00 (k  ; = 0) ∝ 2 and

Σ00 (k   = 0; ) ∝  2. To recover this result, valid far from phase transitions,

we start from the above expression Eq.(41.7) for Σ00 but we evaluate it at k = k
and use  ≡   so that

Σ00 (k  ) = − 1
2

R
2⊥
(2)2

R
0

[ (

0) +  ( + 0)] 2
q 

00


¡
⊥ k 0

¢
(41.18)

where k is obtained from the solution of

 k +
2k
2

=

∙
 + 0 − 2⊥

2

¸
(41.19)

The key to understanding the Fermi liquid regime is in the relative width in

frequency of 00 (q
0) 0 vs the width of the combined Bose and Fermi functions.

In general, the function  (
0) +  ( + 0) depends on 0 on a scale max (  )

while far from a phase transition, 00 (q
0) 0 depends on frequency only on the

scale of the Fermi energy. We can assume that it is independent of frequency at

low frequency.
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Proof: As we can see from the explicit expression for the imaginary part of 00
Eq.(37.15), and using the fact that Im0(q 0) = 0,

lim
→0

Im(q ) = lim
→0

Im0(q )

(1 + qRe0(q 0))
2

(41.20)

it suffices that the Lindhard function Im0(q ) has the property that

Im0(q ) is independent of frequency at low frequency. As expected

from the fact that Im0(q ) is odd in frequency, it turns out that Im0(q )

is indeed linear in frequency at low frequency, which proves our point. The

linearity can be explicitly checked from our previous results Eqs.(37.11) and

(37.4).

Hence, at low frequency, we can assume that 00 (q
0) 0 is independent of

frequency in the frequency range over which  (0) +  ( + 0) differs from zero.

Also,  2
q 

00
 (q

0) 0 depends on wave vector over a scale that is of order  as
we can see from Fig.(37-5). Hence, we can neglect the  and 0 dependence of the
solution for k in Eq.(41.19) when we substitute it in our expression for Σ00 One
then finds

Σ00 (k  ) ' −(k )

2

R
0

[ (0) +  ( + 0)]0 = −(k )

4

h
2 + ( )

2
i

(41.21)

where the substitution  =  allowed the integral to be done exactly [17] and

where

 (k ) ≡
Z

2⊥
(2)

2
lim
0→0

 2
q

00


¡
⊥ k (⊥  ) ;0

¢
0

(41.22)

The presence of  2
q does not give rise to problems in the integral over ⊥ near

 = 0 because in this region the contribution is canceled by  2
q that appears in

the denominator of the RPA susceptibility Eq.(41.20). The above result Eq.(41.21)

for Σ00 is the well known Fermi liquid result.
There are known corrections to the Fermi liquid self-energy that come from the

non-analytic 0  behavior of 00 (q
0) near q = 0. In three dimensions[18]

this non-analyticity leads to subdominant 3 ln corrections, while in two dimen-

sions it leads to the dominant 2 ln behavior.[19][20]

Remark 137 Relevance of screened interaction to low-frequency Physics near the

Fermi surface: It can clearly be seen from the above derivation that it is the low-

frequency limit of the screened interaction that gives rise to the damping near the

Fermi surface. This is a key result. If we are interested in properties near the

Fermi surface, screened interactions suffice. This should be kept in mind when we

discuss the Hubbard model later.

We now just quote without proof some of the results of further calculations

of Fermi liquid parameters. The solution of the quasiparticle equation Eq.(41.1)

gives

k = k − 017 (ln  + 02) 
2

+  (41.23)

The effective mass appearing in this expression is now obviously finite and given

by

∗ =


1− 008 (ln  + 02) (41.24)

If we evaluate the scattering rate for  = k −  we find

Γk (k − ) = 02512

( −  )
2

2
(41.25)
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Quinn and Ferrell[21] write the following physically appealing form

Γk (k)
−1
k =

√
32

128


µ
k


¶2
(41.26)

The scattering rate is proportional to the plasma frequency, but reduced by an

important phase space factor. The more general results, beyons leading order in

 can be found in Eqs.(8.92-8.93) of Giuliani and Vignale "Quantum theory of

the electron liquid".

Fig.(41-3) gives the value of the Σ0 and Σ00 evaluated at the frequency corre-
sponding to the quasiparticle position. The important point is that the real-part of

the self-energy is weakly wave vector dependent up to about  = 2  The imagi-

nary part on the other hand vanishes as expected on the Fermi surface, while away

from it remains relatively small on the scale of the Fermi energy. This justifies

a posteriori the success of the free electron picture of solids. Note however that

states far from the Fermi surface do have a lifetime, contrary to the predictions of

band structure calculations.

Remark 138 These results were obtained in the zero-temperature formalism where

by construction the imaginary part of the calculated Green’s function is equal to

the imaginary part of the retarded self-energy above the Fermi surface and to the

imaginary part of the advanced self-energy below the Fermi surface. This explains

the sign change on the figure.

Figure 41-3 Real and imaginary parts of the self-energy of the causal Green’s

function in the zero-temperature formalism. From L. Hedin and S. Lundqvist, Solid

State Physics 23, 1 (1969).

41.4 Free energy

Finally, we use our coupling-constant integration formula Eq.(38.25). In the zero

temperature limit, there will be no contribution from entropy and we will obtain
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the ground state energy in the RPA approximation


 ( = 0)−  = lim

→0
Ω = lim

→0

⎧⎨⎩− ln
⎡⎣Y
k

¡
1 + −k

¢⎤⎦ (41.27)
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We have for the sum over Matsubara frequencies


X


 (q ) = 
X
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0



00 (q
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(41.28)

=

Z
0


 (

0)00 (q
0) (41.29)

In the zero temperature limit,

lim
→0

Z
0


 (

0)00 (q
0) = −

Z 0

−∞

0
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0) (41.30)

=

Z ∞
0

0


00 (q−0) (41.31)

= −
Z ∞
0

0


00 (q

0) (41.32)

so that the expression for the ground state energy becomes


 ( = 0)− 

V (41.33)

= 2
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(2)
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q

∙
− Im

Z ∞
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0



0 (q
0)

1 + q0 (q
0)
− 0(̧41.34)

Note that we have replaced everywhere q by q as prescribed in the coupling

constant integration trick.

Remark 139 Role of the coupling constant integration from the point of view

of diagrams: By expanding the RPA expression, we see that what this coupling

constant integration trick does, is give a factor 1 in front of the corresponding

term of order  in the interaction. As mentioned earlier, if we had developed

Feynman rules directly for the free energy instead of using the coupling constant

trick, we would have written down closed loop diagrams such as those of Fig.(40-3)

and modified Feynman’s rules to add the rule that there is a factor 1 for every

topologically different diagram of order 

The coupling constant integration is easy to performZ 1

0




q

∙
− Im

Z ∞
0

0



0 (q
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1 + q0 (q
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− 0

¸
= −q0 −

Z ∞
0

0


Im
©
ln
£
1 + q
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 (q

0)
¤ª

(41.35)

The rest of the calculation is tedious. One finds[22]

338 PHYSICS IN SINGLE-PARTICLE PROPERTIES




 ( = 0)


=
221

2
− 0916


+ 00622 ln  − 0142 +O (  ln ) (41.36)

The first term is the kinetic energy, the second the contribution from the Fock (ex-

change) diagram while the rest is the so-called correlation energy, namely every-

thing beyond Hartree-Fock.

41.5 Comparison with experiments

We are finally ready to compare the predictions of this formalism to experiments.

The results shown in the present section are taken from Ref.[23].

The first quantity that comes to mind to compare with experiment is the ef-

fective mass. This quantity can in principle be obtained from cyclotron resonance

or from specific heat measurements. It turns out however that the theoretical

prediction for ∗ differs from unity by only about 10% But what makes com-

parisons with experiment for this quantity very difficult is that there are two other

contributions to the effective mass in real materials. First there are band structure

effects. These are small in sodium but large in lithium and many other metals. The

second additional contribution to the effective mass comes from electron-phonon

interactions. We will see in the next chapter that these effects can be quite large.

So we need to wait.

A striking prediction of many body theory is that the size of the jump in

momentum distribution at the Fermi level at zero temperature should be quite

different from unity. Fig.(41-4) illustrates the prediction for sodium at  = 397

The following Table of expected jumps is from Hedin[13].

Figure 41-4 Momentum density in the RPA approximation for an electron gas with

 = 397 From E. Daniel and S.H. Vosko, Phys. Rev. 120, 2041 (1960).
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 
0 1

1 0859

2 0768

3 0700

4 0646

5 0602

6 0568

(41.37)

Unfortunately even through photoemission we do not have access directly to this

jump in three dimensional materials, as we discussed in the previous chapter.

Another probe that gives indirect access to this jump is Compton scattering. In

Compton scattering, photons are scattered inelastically from all the electrons in the

solid. The contribution from conduction electrons can be extracted by subtraction.

In the so-called “sudden approximation”, the cross section for photon scattering

is proportional to
2

Ω
∝
Z

3kk ( + k − k+q) (41.38)

where  is the energy and q the wave vector transferred by the photon. Changing

to polar coordinates, we see that

2

Ω
∝

Z
2 (cos )k

µ
 − q − 


cos 

¶
(41.39)

∝
Z





 ( − ||) (41.40)

where

 ≡ 


( − ) (41.41)

In terms of , we have
2

Ω
∝ 1



Z ∞
||

 (41.42)

For free electrons, this gives

2

Ω
∝  () ∝ 1

2

¡
2 −2

¢
 ( −) (41.43)

In this case then, the slope is discontinuous at  =  as illustrated on the left of

Fig.(41-5). In the interacting case, the change in slope at  remains theoretically

related to  Also, one expects a signal above  as illustrated on the left of the

figure. Experimental results for sodium,  = 396, are given on the right of the

figure along with the theoretical prediction. This metal is the one closest to the

free electron model. The experimentalists have verified that  is a good scaling

variable, in other words that the cross section depends mainly on  Also, the

existence of a tail above  is confirmed. However, the agreement with theory is

not excellent.

The experimental results for the mean free path are more satisfactory. Let the

mean free path k be defined by

1

k
=
Γk

k
=

1

kk
= − 2

k
ImΣ (kk) (41.44)

Remark 140 The factor of 2 is not so easy to explain here, except to say that

if we look at a density perturbation, the scattering rate is twice that appearing in

the single-particle Green functions. We should discuss this in more detail in the

section on Boltzmann transport.
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Figure 41-5 a) Dashed line shows the momentum distribution in Compton scattering

for the non-interacting case while the solid line is for an interacting system. b)

Experimental results in metallic sodium compared with theory,  = 396 Eisenberger

et al. Phys. Rev. B 6, 3671 (1972).

Fig.(41-6) presents the results of experiments on aluminum,  = 207 If one

takes into account only scattering by plasmons one obtains the dashed line. The

full RPA formula, including the contribution from the particle-hole continuum, was

obtained numerically by Lundqvist for  = 2 and is in excellent agreement with

experiment. We do not show the cross section for inelastic electron scattering since,

as expected from the fact that it is proportional to Im
¡
1

¢
 its only prominent

feature at low momentum transfer is the plasma resonance that is much larger

than the particle-hole continuum, as we saw in the theoretical plot of Fig.(37-6).
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Figure 41-6 Mean free path of electrons in aluminum ( = 207) as a function of

energy above the Fermi surface. Circles are experimental results of J.C. Tracy, J. Vac.

Sci. Technol. 11, 280 (1974). The dashed line with symbols  was obtained with

RPA for  = 2 by B.I. Lundqvist Phys. Status Solidi B 63, 453 (1974).
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42. GENERAL CONSIDERATIONS

ONPERTURBATIONTHEORYAND

ASYMPTOTIC EXPANSIONS

It is striking that in the end the RPA results, such as those for the ground state

energy Eq.(41.36), the effective mass Eq.(41.24) or the scattering rate Eq.(41.25)

are non-analytic in  near  = 0 This often occurs in perturbation theory.

In fact, the perturbation expansion is at best an asymptotic expansion since for

attractive potential at zero temperature the ground state is a superconductor and

not a Fermi liquid. In other words,  = 0 is a point of non-analyticity since for

  0 there is symmetry breaking. The following simple example taken from

Ref.[26] is instructive of the nature of asymptotic expansions.

Suppose we want to evaluate the following integral

 () =

Z
√
2

−
2

2
− 
4
4 (42.1)

This is an example where the integral does not exist for   0 but where we will

try nevertheless to expand in powers of  around  = 0 If we do this then,

 () =

∞X
=0

 (42.2)

where

 =
(−1)
4!

Z
√
2

−
2

2 4 (42.3)

=
(−1)
4!

(4− 1)!!
2

(42.4)

with

(4− 1)!! ≡ (4− 1) (4− 3) (4− 5)    1 (42.5)

=
(4)!

(4) (4− 2) (4− 4)    2 (42.6)

=
(4)!

2 (2)!
(42.7)

hence,

 =
(−1)
16!

(4)!

(2)!
(42.8)

Using Stirling’s formula,

! ≈
√
2+12−

we are left with

 ∝ 1√


µ−4


¶
(42.9)

The value of each successive term in the power series is illustrated in Fig.(42-1).

Clearly, whatever the value of  if  is sufficiently large, the higher order terms
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Figure 42-1 Asymptotic expansion of  () for different values of  The residual

error  plotted for the half-integer values. From J.W. Negele and H. Orland, op.

cit. p.56

start to be larger than the low order ones. This is a characteristic of an asymptotic

series.

We can even evaluate the error done when the series is stopped at order  Let

this error be

 =

¯̄̄̄
¯ ()−

X
=0



¯̄̄̄
¯ (42.10)

=

Z
√
2

−
2

2

¯̄̄̄
¯− 

4
4 −

X
=0

(−1)
4!

 ()
4

¯̄̄̄
¯ (42.11)

=

Z
√
2

−
2

2

¯̄̄̄
¯
∞X

=+1

(−1)
4!

 ()
4

¯̄̄̄
¯ (42.12)

The series in the absolute value is an alternating series and it converges. Hence,

an upper bound for this series is the value of the first term, as may be seen from

the fact that

+1 − (+2 − +3)− (+4 − +5)−    ≤ +1 (42.13)

Hence,

 ≤ +1 |+1| (42.14)

We also plot the error in Fig.(42-1). Clearly, the error starts to grow eventually.

Despite this terrible behavior of asymptotic expansions they can be quite useful

in practice. For example, for  = 001 the precision is 10−10 after 25 terms. This
may be estimated by noting from Eq.(42.9) for the asymptotic value of  that

 starts to grow when 4 becomes of order unity. The minimum error is

then estimated with our formula for  Even quantum electrodynamics is an

asymptotic expansion, but the expansion parameter is  = 1137 It is thus an
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extremely good expansion parameter. Sometimes the asymptotic series may be

resumed, at least partially as in RPA or mathematical techniques, such as Borel

summation, may be used to extract the non-analytic behavior.
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43. BEYOND RPA: SKELETON

DIAGRAMS, VERTEXFUNCTIONS

ANDASSOCIATEDDIFFICULTIES.

It is quite difficult to go beyond RPA while preserving important physical prop-

erties, such as conservation laws, or the −sum rule. We can illustrate this by

the following simple example. The Lindhard function with bare Green’s function

satisfies conservation laws since it is the charge susceptibility of free electrons.

Suppose that in the presence of interactions, we succeed in computing the exact

one-body Green’s function. Then, it is tempting to compute the density fluctua-

tions using a bubble made up of the exact Green’s functions that we just obtained.

For one-body interactions, as for example in the impurity problem, this would be

the exact result, as we saw in a previous chapter. However, in the case where

two-body interactions are present, this becomes an approximation that violates

charge conservation.

To see this, we will show that the following consequence of charge conservation

is violated[28]

 (q = 0) = 0 ; if  6= 0 (43.1)

To check that this last equation is a consequence of charge conservation, note that

at q = 0 the density operator is the number operator, an operator that commutes

with the Hamiltonian. This means that  (q = 0) is independent of imaginary

time, which implies that its only non-vanishing Matsubara frequency component

is  = 0. Using the spectral representation for the Green’s function and inversion

symmetry in the Brillouin zone, our single dressed bubble calculation for  on

the other hand will give us the following expression

̃0 (q ) =
2



X
k

Z


2

Z
0

2
 (k) (k+ q0)

( − 0) ( (0)−  ())

( − 0)2 + 2


(43.2)

When there are no interactions and  (k) is a delta function, it is clear that our

exact result Eq.(43.1) is satisfied since only  = 0 will contribute. Otherwise, the
integrand is positive definite so the result is different from zero. To see that know-

ing the exact one-body Green’s function in an interacting system is not enough to

know the density fluctuations, it suffices to return to Fig.(37-1). The diagrams on

the bottom may be accounted for by using dressed propagators, but the diagrams

on the first line cannot be. They enter the general category of vertex corrections,

namely diagrams that cannot be included by simply dressing propagators. Also,

the lesson we have just learned is that to satisfy conservation laws, the vertex has

to do some non-trivial things since the dressed bubble by itself does not satisfy

the conservation law expressed in the form of Eq.(43.1),

To see another example of how apparently reasonable improvements over RPA

may lead to miserable failures consider the following reasoning. We saw from RPA

that there are quasiparticles near the Fermi surface. Also, the low-frequency and

small momentum density fluctuations are determined mainly by quantities near

the Fermi surface, as one can check from the Lindhard function. It would thus

be tempting, in a next iteration, to compute the bubbles entering RPA with a
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renormalized propagator
k

 −k + 
(43.3)

In practice k is in the range 05 to 07 which means that the dielectric constant

might change from 1−q to 1− 1
4
q That would spoil the agreement that

we had with experiment. Again, dressing the bubble and doing nothing to the

vertex is not a good idea.

Another way to approach the problem of going beyond the simple perturba-

tive approaches is to start from exact reformulations of perturbation theory. Other

useful guides when one tries to push beyond the simplest perturbative approaches

are conservation laws, known as Ward identities, as well as sum rules and other

exact results such as the relation between ΣG and density fluctuations that we
have introduced in the present chapter. We will come back on these general con-

siderations in a later chapter. For the time being we give two ways to reformulate

the diagrammatic expansion in a formally exact way.

The first reformulation is illustrated in Fig.(43-1). The propagators are fully

dressed. The interaction line must also be dressed, as illustrated on the second

line. The bubble appearing there is called the polarization propagator since it

plays the role of the polarizability in the definition of the dielectric constant. It

is defined as the set of all diagrams that cannot be cut in two pieces by cutting

a single interaction line. The polarization propagator has a bubble with dressed

propagators but this is not enough. We must also include the so-called vertex

corrections. These vertex corrections, represented by the triangle, are illustrated

by the first few terms of their diagrammatic expansion on the last line of the figure.

A vertex correction (irreducible) cannot be cut in two pieces by cutting either a

propagator or an interaction line, and it is attached to the outside world by three

points, two of which are fermionic, and one of which is bosonic (i.e. attaching

to an interaction line). Both in the polarization bubble and in the self-energy,

only one of the vertices is dressed, otherwise that would lead to double counting

as one can easily check by writing down the first few terms. One can also check

by writing down a few terms that vertex corrections on the Hartree diagrams

are indistinguishable from self-energy effects so they are included in the dressed

propagator.

We will see in a subsequent chapter that the theory for electron-phonon in-

teractions may be written precisely in the form of Fig.(43-1) except for the fact

that the interaction line becomes replaced by a phonon propagator. In addition

a key theorem, that we shall prove, the so-called Migdal theorem, shows that for

electron-phonon interactions vertex corrections may be neglected. The first two

lines of Fig.(43-1) then form a closed set of equations. Migdal’s theorem is behind

the success of electron-phonon theories, in particular the theory of superconduc-

tivity in its Eliashberg formulation.

For pure electron-electron interactions, vertex corrections may not be ne-

glected. Non-diagrammatic ways of approaching the problem, such as that of

Singwi[27], have proven more successful. We will show algebraically in a later

chapter that perturbation theory for electron-electron interactions may also be

formulated in a way that is diagrammatically equivalent to Fig.(43-2). That is

our second exact reformulation of perturbation theory[28] (there are others). The

triangle now represents the fully reducible vertex, namely diagrams that can be

cut in two by cutting interaction lines or particle-particle pairs or particle-hole

pairs in a different channel. (We will discuss the notion of channel in more de-

tails in a later chapter). The box on the other hand represents all terms that

are irreducible with respect to cutting a particle-hole pair of lines in the chosen

channel. To be complete we would need to give a diagrammatic expansion for the

square box but, in practice, the way to make progress with this approach is to
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

 



  

Figure 43-1 Exact resummation of the diagrammatic perturbation expansion.

The dressed interaction on the second line involves the one-interaction irreducible

polarisation propagator. The last line gives the first terms of the diagrammatic

expansion for the vertex corrections.

proceed non-perturbatively, namely to parametrize the box in such a way that it

can later be determined by using sum rules and various other exact constraints of

many-body theory, such as the Pauli principle and conservation laws. This will be

discussed in a later chapter.
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Figure 43-2 Exact representation of the full perturbation series. The triangle now

represents the fully reducible vertex whereas the box represents all terms that are

irreducible with respect to cutting a particle-hole pair of lines in the indicated channel.
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The jellium is clearly a gross caricature of real solids. It does a good job

nevertheless for simple metals, like sodium or aluminum. But it is important

to have more realistic models that take into account the presence of a lattice of

ions. The best methods today to find the electronic charge distribution are based

on Density Functional Theory (DFT), that we explain very schematically in the

first Chapter of this Part. These methods give a band structure that, strictly

speaking, should not be interpreted as single-particle excitations. Nevertheless,

for elements in the top rows of the periodic table, the band structure found from

DFT works well. If we include the long-range Coulomb interaction with the GW

approximation described above, then results for band gaps for example can be

quite good.

For narrow band materials however, such as transition metal oxides that in-

clude  electrons, this is not enough. We will explore the rich Physics contained

in a simple model, the Hubbard model, that was proposed to understand narrow

band materials. That model adds to the band structure an on-site interaction term

 that is supposed to represent the screened Coulomb interaction. We will see

that in such a short-range interaction model, spin excitations that had basically

disappeared from the electron-gas problem, will now play a prominent role. Even

when the interaction is not too strong, we will see why the perturbative methods

that we have described in the previous Part are of limited validity. When the

interaction is not too strong, we can treat the problem non-perturbatively using

the Two-Particle-Self-Consistent approach and others.

The Hubbard model will also allow us to understand why certain materials that

are predicted to be good metals by band structure theory are in fact insulators.

Insulating behavior can be induced by the interaction  when it is larger than

the bandwidth. Such interaction-induced insulators are known as Mott insulators.

And the transition between the metallic and the insulating phase that occurs as

a function of  is called the Mott transition. The best known method to treat

materials that are close to a Mott transition is Dynamical Mean-Field Theory and

its cluster generalizations, that we will explain. High-temperature superconduc-

tors and layered organic conductors are examples of systems that display Mott

insulating phases.

In the next Part we will used the Hubbard model to introduce broken symmetry

states with ferromagnetism as an example. In this Part, we restrict ourselves to

the “normal” paramagnetic state.
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44. DENSITY FUNCTIONAL THE-

ORY

The presence of a static lattice of ions creates bands, as we know from one-electron

theory. How do we generalize this to the many-body case with electron-electron

interactions. In particular, how do we go beyond Hartree-Fock theory?

Modern versions of band structure calculations are based on Density Func-

tional Theory (DFT). This is a ground state or thermal equilibrium method that

is also used for molecules. We begin by describing the general method, then its

implementation for band-structure calculations and then finite temperature gen-

eralizations.

44.1 The ground state energy is a functional of the

local density

The approach is based on a simple theorem of Hohenberg and Kohn [1]. We

present the version of Levy [2, 3]. In both cases, we use the variational principle

for the ground state: the ground state wave function is that which minimizes the

energy,

[Ψ] =
hΨ| |Ψi
hΨ |Ψi 

Proof: We can expand |Ψi on a complete basis of energy eigenstates

|Ψi =
X


 |i  (44.1)

Then the average energy is given by

hΨ| |Ψi =
X


∗ h  |i (44.2)

=
X


∗  (44.3)

where the last line follows because by hypothesis the Hamiltonian is diagonal

in that basis. With 0 the lowest energy state, the inequality follows

X


∗  ≥
ÃX



∗ 

!
0 (44.4)

The prefactor on the right-hand side simplifies with the norm of the wave

function in the denominator, which proves the theorem.

Let

 = b + ̂ + ̂ (44.5)
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where b is the kinetic energy, ̂ the Coulomb interaction between electrons
and ̂ the interaction between the electrons and the positive lattice of ions. More

specifically, with  (r
0) the charge density of the lattice we can write

hΨ| ̂ |Ψi = hΨ|
Z

3r

Z
3r0† (r) (r)

2

40 |r− r0| (r
0) |Ψi (44.6)

=

Z
3r hΨ|† (r) (r) |Ψi

Z
3r0

2

40 |r− r0| (r
0) (44.7)

=

Z
3r (r) (r) (44.8)

wher in the last line we have defined the lattice potential

 (r) ≡
Z

3r0
2

40 |r− r0| (r
0) (44.9)

and the one-body electronic density

 (r) ≡
Z

3r hΨ|† (r) (r) |Ψi 

If we take the set of all normalized wave functions, the variational principle

can be formulated as

 = min
Ψ
hΨ| b + ̂ + ̂ |Ψi 

We now performe the minimization in two steps. First with respect to all wave

functions that have the same one-particle density, then with respect to the one-

particle density

 = min

min
Ψ→

hΨ| b + ̂ + ̂ |Ψi

= min


∙³
min
Ψ→

hΨ| b + ̂ |Ψi
´
+

Z
3r (r) (r)

¸
(44.10)

= min


∙
 [] +

Z
3r (r) (r)

¸
 (44.11)

where we have defined

 [] = min
Ψ→

hΨ| b + ̂ |Ψi  (44.12)

That functional of  contains kinetic energy and Coulomb interaction between

electrons. It is independent of the lattice potential and is thus a universal property

of the inhomogeneous electron-gas. We say inhomogeneous because we have to find

this function for densities that depend on position.

44.2 The Kohn-Sham approach

How can we transform the general ideas of the previous section into a calculational

tool? The Hartree contribution to the potential energy depends only on density.

It is less clear how to write the kinetic energy and the rest of the contributions

to the Coulomg interaction (exchange for example) in a way that depends only
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on density. In the Thomas Fermi approach, we wrote the kinetic energy as a

function of the local Fermi wave vector, and hence as a function of the density.

Nevertheless, that is not very precise when the density changes on short length

scales. Kohn and Sham [4] proposed to expand the density in terms of one-body

orbitals for N particles in a paramagnetic state of  particles:

 (r) =

2X
=1

¯̄


 (r)
¯̄2
 (44.13)

If the wave function was simply obtained by filling these orbitals  (r) up to

the Fermi level, the corresponding kinetic energy would be easy to compute

 = hΨ | b |Ψi =
X
=1

Z
3r

 (r)

µ−∇2
2

¶


 (r)  (44.14)

The Kohn-Sham method then proposes to write for the universal functional

 [] = hΨ | b |Ψi+ 1
2

Z
3r

Z
3r0

2 (r) (r0)
40 |r− r0| +[]

The above equation defines the exchange correlation functional []. Going

back to the definition of  [] we see that

[] = min
Ψ→

hΨ| b + ̂ |Ψi− min
Ψ→

hΨ | b |Ψi

−1
2

Z
3r

Z
3r0

2 (r) (r0)
40 |r− r0|  (44.15)

Note that the Kohn-Sham expression for the kinetic energy is not exact.

Years of experience have yielded good approximations for the universal func-

tional [] The simplest approximation, the Local Density Approximation

(LDA) reads


 [] = −1

2
min
Ψ→

X
0

2X


Z
3r

Z
3r0

2

 (r)


 (r)


0 (r
0)

0 (r
0)

40 |r− r0| +

Z
3r43 (r)

Instead of minizing with respect to the Kohn-Sham orbitals restricted to a given

density and then with respect to the density, one minimizes with respect to the

Kohn-Sham orbitals, obtaining equations that have the structure of the integro-

differential Hartree-Fock equation.

It is important to realize that the Kohn-Sham orbitals serve to compute the

ground-state single-particle density. The eigenstates are Bloch states with a band

index. The corresponding eigenenergies cannot be interpreted as exact single-

particle excitations. They may however serve as a starting point for further calcu-

lations using many-body theory, as we explain in the next Chapter on the Hubbard

model.

44.3 Finite temperature

Mermin [5] has used the Feynmann variational principle to show that in the pres-

ence of an external potential, the grand potential is a functional of the density

and that there is a universal part to it.
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We have already shown, with  the density matrix, that

Ω []  Ω [0] + h − 0i0  (44.16)

We assume that the difference between  and 0 is only the lattice potential but
that suffices to state that there is really an inequality and that the two sides cannot

be equal. Writing explicitly the difference between the two Hamiltonians,

Ω []  Ω [0] +
Z

3r0 (r) ( (r)−  0
 (r))  (44.17)

We could also use the inequality by interchanging the role of  and 0 so that the
following inequality is also valid

Ω [0]  Ω [] +
Z

3r (r) ( 0
 (r)−  (r))  (44.18)

If the densities are identical for the two different lattice potentials, then 0 (r) =
 (r) and adding the two inequalities together we find the absurd result

Ω [] +Ω [0]  Ω [0] +Ω []  (44.19)

Hence, if the two lattice potentials are different, the densities have to differ. In

other words the local density is uniquely determined by the external lattice po-

tential.

If we know the external lattice potential, we can write down the density matrix

 in the usual way. Since there is a one-to-one correspondance between  (r) and

 (r)  the density matrix  is a functional of  (r) and

Ω [] =

Z
3r (r) (r) + F [] (44.20)

where

F [] =
Db + ̂

E

−  [] (44.21)

with  the entropy −Tr[ ln ] determined from the density matrix that is uniquely
determined by the density.

One thus obtains a minimization problem with respect to the density  (r) that

is very similar to what we had at zero temperature.

Remark 141 The original Hohenberg-Kohn theorem is along the lines of the ar-

guments in this section. We could also formulate the Mermin result in a manner

similar to that of Levy for the ground state. The density matrix would replace the

wave function.
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45. THE HUBBARD MODEL

Suppose we have one-body states, obtained either from Hartree-Fock or from Den-

sity Functional Theory (DFT). The latter is a much better approach than Hartree-

Fock. The Kohn-Sham orbitals give highly accurate electronic density and energy

for the ground state. If the problem has been solved for a translationally invariant

lattice, the one-particle states will be Bloch states indexed by crystal momentum

k and band index  Nevertheless, these one-particle states cannot be used to

build single-particle states that diagonalize the many-body Hamiltonian. More

specifically, if we expand the creation-annihilation operators in that basis using

the general formulas for one-particle and two-particle parts of the Hamiltonian, it

will not be diagonal. Suppose that a material has  and  electrons, for which DFT

does a good job. In addition, suppose that there are only a few bands of  charac-

ter near the Fermi surface. Assuming that the only part of the Hamiltonian that is

not diagonal in the DFT basis concerns the states in those  band, it is possible to

write a much simpler form of the Hamiltonian. We will see that nevertheless, solv-

ing such “model” Hamiltonians is non-trivial, despite their simple-looking form.

After providing a “derivation” of the model, we will solve limiting cases that

will illustrate one limit where states are extended, and one limit where they are

localized, giving a preview of the Mott transition.

45.1 Assumptions behind the Hubbard model

A qualitative derivation of the model is as follows. We restrict ourselves to a

single band and expand in the Wannier basis associated with the Bloch states.

The Hamiltonian in the presence of the Coulomb interaction then takes the form

 =
X


X



†
 h| b+ ̂ |i + 1

2

X
0

X


h| h| ̂ |i |i ††00 (45.1)

where b contains all the one-body parts of the Hamiltonin, namely kinetic energy
and lattice potential energy. Here, 

†
 () are creation and annihilation operators

for electrons of spin  in the Wannier orbital centered around site  A single many-

particle state formed by filling orbitals, leading to a Slater determinant as wave

function, cannot diagonalize this Hamiltonian because of the interaction part that

empties orbitals and fills other ones. The true eigenstates are linear combinations

of Slater determinants.

The one-body part by itself is essentially the DFT band structure. In 1964,

Hubbard, Kanamori and Gutzwiller did the most dramatic of approximations,

hoping to have a model simple enough to solve. They assumed that h| h| ̂ |i |i
would be much larger than all other interaction matrix elements when all lattice

sites are equal. Defining  ≡ h| b |i and  ≡ h| h| ̂ |i |i  and using  = 0
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they were left with

 =
X


X



†
 +

1

2

X
0

X



†


†
00

=
X


X



†
 +

X



†
↑

†
↓↓↑ (45.2)

=
X


X



†
 +

X


↓↑ (45.3)

In this expression,  = 
†
 is the density of spin  electrons,  = ∗ is the

hopping amplitude, and  is the screened Coulomb repulsion that acts only on

electrons on the same site. Most of the time, one considers hopping only to nearest

neighbors. In general, we write −−0−00 respectively for the first-, second- and
third-nearest neighbor hopping amplitudes. To go from the first to the second line

we used the Pauli principle 
†


†
 = 0.

Remark 142 This last statement is important. To obtain the Hubbard model

where up electrons interact only with down, we had to assume that the Pauli

principle is satisfied exactly. So approximation methods that do not satisfy this

constraint are suspicious.

The model can be solved exactly only in one dimension using the Bethe ansatz,

and in infinite dimension. The latter solution is the basis for Dynamical Mean Field

Theory (DMFT) that we will discuss below. Despite that the Hubbard model is

the simplest model of interacting electrons, it is far from simple to solve.

Atoms in optical lattices can be used to artificially create a system described by

the Hubbard model with parameters that are tunable. A laser interference pattern

can be used to create an optical lattice potential using the AC Stark effect. One

can control tunneling between potential minima as well as the interation of atoms

between them and basically build a physical system that will be described by the

Hubbard Hamiltonian that we will study further. The derivation given in the case

of solids is phenomenological and the parameters entering the Hamiltonian are

not known precisely. In the case of cold atoms, one can find conditions where

the Hubbard model description is very accurate. By the way, in optical lattices,

interesting physics occurs mostly in the nano Kelvin range. Discussing how such

low temperatures are achieved would distract us to much.

Important physics is contained in the Hubbard model. For example, the in-

teraction piece is diagonal in the localized Wannier basis, while the kinetic energy

is diagonal in the momentum basis. Depending on filling and on the strength of

 compared with band parameters, the true eigenstates will be localized or ex-

tended. The localized solution is called a Mott insulator. The Hubbard model

can describe ferromagnetism, antiferromagnetism (commensurate and incommen-

surate) and it is also believed to describe high-temperature superconductivity,

depending on lattice and range of interaction parameters.

To gain a feeling of the Physics contained in the Hubbard model, let us first

discuss two limiting cases where it can be solved exactly.

45.2 The non-interacting limit  = 0

As a simple exemple that comes back often in the context of high-temperature su-

perconductivity, consider a square lattice in two dimensions with nearest-neighbor
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hopping only. Then, when  = 0, we have

0 =
X



†
 (45.4)

where  is a Hermitian matrix. When there is no magnetic field the one-body

states can all be taken real and  is symmetric. To take advantage of translational

invariance we use our Fourier transforms

 =
1√


X
k

−k·rk (45.5)


†
 =

1√


X
k

k·r†k (45.6)

with r the position of site , andX


k·r = k0 (45.7)

Here  is the nmber of atoms and we take the lattice spacing  to be unity.

Defining r = r + δ and noting that the hopping matrix depends only on the

distance to the neighbors δ, we find

0 =
1



X
r

X
k0


k0·(r+)†k0

X
k0

−k·rk

=
X



k·†kk (45.8)

=
X
k

k
†
kk (45.9)

In the case of nearest-neighbor hopping only, on a two-dimensional square lattice

for example where  = − for nearest-neighbor hopping, we have the dispersion
relation

k = −2(cos  + cos )
Clearly, if the Fermi wave vector is sufficiently small, we can define −1 = 2

and approximate the dispersion relation by its quadratic expansion, as in the free

electron limit

k = −2(cos  + cos ) ∼  +
2 + 2

2

 (45.10)

45.3 The strongly interacting, atomic, limit  = 0

If there are no hoppings and only disconnected atomic sites,

 = 
X


↑↓ − 
X


 (45.11)

there are two energy levels, correspondig to empty, singly (zero energy) and doubly

occupied site (energy ). It is apparently much simpler than the previous problem.

But not quite. A simple thing to compute is the partition function. Since each

site is independent,  = 
1 where 1 is the partition function for one site. We
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find, since there are four possible states on a site, empty, spin up, spin down and

doubly occupied,

1 = 1 +  +  + −(−2) (45.12)

Already at this level we see that there are “correlations”.  1can be factored into¡
1 + 

¢2
only if there are no interactions.

Things become more subtle when we consider the “dynamics”, as embodied

for example in the Green function

G () = −
­

£
 () 

†


¤®
 (45.13)

We can consider only one site at a time since the Hamiltonian is diagonal in

site indicies. Imagine using Lehman representation. It is clear that when the

time evolution operator acts on the intermediate state, we will need to know if

in this intermediate state the system is singly or doubly occupied. We cannot

trace only on up electrons without worrying about down electrons. The Lehman

representation gives a staightforward way of obtaining the Green function. We

can also proceed with the equation of motion approach, a procedure we will adopt

to introduce the concept of hierarchy of equations (the analog of the BBGKY

hierarchy in classical systems). All that we need is




= [ ] = [− −  ] = −− + 

From this, the equation of motion for the Green function is

G ()


= − ()− ­ £[  ()] 
†


¤®
(45.14)

= − () + G () + 
­

£
 ()− () †

¤®
(45.15)

The structure of the equation of motion is very general result. One-body Green

functions are coupling to higher order correlation functions. Let us write down

the equation of motion for that higher order correlation function that we define

as follows

G2 () = −
­

£
 ()− () †

¤®
= − ­ £−† (−)¤®  (45.16)

Following the usual approach, and recalling that here − ()  = [− ()] =
0 because the Hamiltonian preserves the number of particles, we find

G2 ()


= − () h−i+ G2 ()− G2 ()  (45.17)

Instead of generating a higher order correlation function in the term coming

from [  ()], as is usually the case, the system of equations has closed since

−− = −. This is a very special case. Equations (45.15) and (45.17) form a

closed set of equations that is easy to solve in Matsubara frequencies where they

become

( + )G () = 1 + G2 () (45.18)

( + )G2 () = h−i+ G2 ()  (45.19)

Substituting the second equation in the first

( + )G () = 1 +  h−i
( + − )

 (45.20)
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Since

 h−i
( + ) ( + − )

=
 h−i



∙
1

( + − )
− 1

( + )

¸
(45.21)

we are left with

G () = 1− h−i
 + 

+
h−i

 + − 
(45.22)

G () =
1− h−i
 +  + 

+
h−i

 +  + − 


The imaginary part gives us the single-particle spectral weight. Instead of a single

delta function located at a k dependent position, we have two delta functions that

are completely independent of k, as we must expect for a localized state. The

two levels correspond respectively to the electron afinity and ionization potential

of the atom. Physically speaking, if there the fraction of sites occuied by down

electrons is h−i, then a spin up electron will have an energy −+  a fraction

h−i of the time, and an energy − for a fraction 1 − h−i of the time. And
that is independent of the momentum. That is very different from a quasiparticle.

There is no pole à  = 0 unless  = 0

The non-interacting limit is not a good starting point for this problem clearly.

One expects perturbation theory to breakdown. This is simple to see for example

at half filling when h−i = −12 and  = 2. Then,

G () =
1

2

µ
1

 +  + 2
+

1

 +  − 2

¶
=

( + )

( + )
2 − ¡2

4

¢(45.23)
=

1

( + )− 2

4(+)

(45.24)

so that clearly, the retarded self-energy Σ () = 2

4(+)
is singular at low fre-

quency. It gets rid of the pole that is at  = 0 when there is no interaction.

If  is not zero but  À 1, then we have a Mott insulator. In a Mott

insulator, the two peaks that we just found in the single-particle spectral weight

are somewhat broadened, but there is a gap at zero frequency. We will leave this

concept aside for the moment and discuss the weak coupling case.

45.4 Exercices

45.4.1 Symétrie particule-trou pour Hubbard

Soit le modèle de Hubbard sur un réseau carré bi-dimensionnel. On pose une

intégrale de saut  pour les premiers voisins et 0 pour les seconds voisins.
a) Montrez que la relation de dispersion prend la forme suivante lorsque le pas

du réseau est pris égal à l’unité:

k = −2(cos  + cos )− 20 (cos ( + ) + cos ( − ))  (45.25)

b) Montrez que la transformation canonique suivante

k = 
†
k+Q


†
k = k+Q (45.26)
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où Q = ( )  transforme  −  en un Hamiltonien ayant la même forme

mais avec des paramètres différents. Sachant ce résultat, montrez que la solution

obtenue avec 0  0 pour le modèle original est reliée à la solution qu’on obtiendrait
pour ce modèle avec 0  0 à un potentiel chimique différent. Quelle est la relation
entre la densité évaluée à ces deux potentiels chimiques? Finalement, lorsque

0 = 0, montrez que  = 2 correspond au demi-remplissage.

45.4.2 Règle de somme f

En utilisant la définition exacte de  et de  et l’expression pour leurs parties

imaginaires comme des commutateurs, montrez que pour le modèle de Hubbard,

la règle de somme  devientZ



00 (q) =

1



X
k

(k+q + k−q − 2k)k (45.27)

où k =
D

†
kk

E

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46. THE HUBBARD MODEL IN

THE FOOTSTEPS OF THE ELEC-

TRON GAS

In this Chapter, we follow the same steps as the electron gas and derive RPA equa-

tions for the response functions. While spin fluctuations did not play a prominent

role in the electron gas, they will be dominant in the Hubbard model and we will

see why. RPA for the Hubbard model however has a major deficiency: It does not

satisfy the Pauli principle, as we will see. This had no major consequence for the

eletron gas, but in the case of the Hubbard model this is crucial. We will see how

to cure this problem and others using the Two-Particle Self-Consistent Approach

in the next Chapter.

46.1 Single-particle properties

Following functional methods of the Schwinger school[?, ?, ?], we begin, as we

have done earlier, with the generating function with source fields  and field

destruction operators  in the grand canonical ensemble

ln [] = lnTr [−(
− )T ³−†(1)(12)(2)´] (46.1)

We adopt the convention that 1 stands for the position and imaginary time indices

(r1 1)  The over-bar means summation over every lattice site and integration over

imaginary-time from 0 to , and  summation over spins. T is the time-ordering

operator. Before, the spin index was included in the labels.

The propagator in the presence of the source field is obtained from functional

differentiation

G (1 2) = −
D
 (1)

†
 (2)

E

= −  ln []

 (2 1)
 (46.2)

Physically, relevant correlation functions are obtained for  = 0 but it is extremely

convenient to keep finite  in intermediate steps of the calculation.

Using the equation of motion for the field  and the definition of the self-energy,

one obtains the Dyson equation in the presence of the source field [?]¡G−10 − 
¢G = 1 +ΣG ; G−1 = G−10 − −Σ (46.3)

where, from the commutator of the interacting part of the Hubbard Hamiltonian

 one obtains

Σ
¡
1 1
¢

G
¡
1 2
¢


= −
D


†
−
¡
1+
¢
− (1) (1)

†
 (2)

E


(46.4)

−
∙
G (1 2)
− (1+ 1)

− G−
¡
1 1+

¢

G (1 2)

¸
(46.5)
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The imaginary time in 1+ is infinitesimally larger than in 1. This formula can be

deduced from our previous one with the Coulomb interaction by specializing to a

local interaction only between opposite spins. That removes one integral and one

spin sum.

As in the electron gas, we need to know response functions, more specifically

G (1 2) − (1+ 1) 

46.2 Response functions

Response (four-point) functions for spin and charge excitations can be obtained

from functional derivatives (G) of the source-dependent propagator. We will
see that a linear combination of these response functions is related to G (1 2) − (1+ 1)
above. Following the standard approach and using matrix notation to abbreviate

the summations and integrations we have,

GG−1 = 1 (46.6)

G

G−1 + G G

−1


= 0 (46.7)

Using the Dyson equation (46.3) G−1 = G−10 − −Σ this may be rewritten

G

= −G G

−1


G = GˆG + G Σ


G (46.8)

where the symbol ˆ reminds us that the neighboring labels of the propagators have

to be the same as those of the  in the functional derivative. If perturbation theory

converges, we may write the self-energy as a functional of the propagator From

the chain rule, one then obtains an integral equation for the response function in

the particle-hole channel that is the analog of the Bethe-Salpeter equation in the

particle-particle channel

G

= GˆG + G

∙
Σ

G
G


¸
G (46.9)

The labels of the propagators in the last term are attached to the self energy, as

in Eq.(46.8) 1.

To obtain spin and charge fluctuations from the above formula, we restore

spin indices explicitly and represent coordinates with numbers (in our previous

convention, numbers included spin labels, but not here). When the external field

is diagonal in spin indices we need only one spin label on G and . The response

function that can be used then to build both spin and charge fluctuations is

− G (1 1+)
0 (2

+ 2)
=

D


†


¡
1+
¢
 (1)

†
0
¡
2+
¢
0 (2)

E

− G

¡
1 1+

¢

G0

¡
2 2+

¢


= h (1)0 (2)i − h (1)i h0 (2)i  (46.10)

The charge and spin given by

 ≡ ↑ + ↓ (46.11)

1To remind ourselves of this, we may also adopt an additional “vertical matrix notation”

convention and write Eq.(7) as 


= ˆ+


Σ





.
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 ≡ ↑ ()− ↓ ()  (46.12)

Hence, the charge fluctuations are obtained from

 (1 2) = −
X
0

G (1 1+)
0 (2

+ 2)
(46.13)

and the spin fluctuations from

 (1 2) = −
X
0


G (1 1+)
0 (2

+ 2)
0 (46.14)

Restoring spin indices, the integral equation for the spin resolved fluctuations is

G
0

= GˆG0 + G
"
Σ

G
G
0

#
G (46.15)

There is a sum over  The spin indices on the Green’s function are unncessary

when there is rotational invariance, hence we dropped them. Similarly the follow-

ing quantities X


G
0

;
X


Σ

G0 (46.16)

are independent of 0 and X
0

G
0

(46.17)

is independent of  From this, we easily deduce by summing the general spin

resolved response function Eq.(46.15) that

 = −
X
0

G
0

= −2GˆG − G
"X



Σ

G000
X
00

X
0

G00
0

#
G (46.18)

where the value of 000 does ne influence the result. The irreducible charge vertex
is given by  =

Σ↑
G↓ +

Σ↑
G↑ .

For the spin response function, we notice thatX



Σ

0
0 =

µ
Σ↑
0

− Σ↓
0

¶
0 (46.19)

=

µ
Σ↑
↑
− Σ↓

↑

¶
(46.20)

It suffices to take 0 up (+1) and then down (−1) and use rotational invariance to
see that the result is independent of 0This means that the general spin resolved
response function Eq.(46.15) yieds for the spin susceptibility, given (00)2 = 1

 = −
X
0


G
0

0 = −2GˆG

−G
"X
00

X
0

ÃX



Σ

G00 
00
!
00

G00
0

0
#
G

= −2GˆG + G
"µ

Σ↑
G↓ −

Σ↑
G↑

¶X
00

X
0

00
G00
0

0
#
G (46.21)

In summary, we define irreducible vertices appropriate for spin and charge

responses as follows,

 =
Σ↑
G↓ −

Σ↑
G↑ ;  =

Σ↑
G↓ +

Σ↑
G↑  (46.22)
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46.3 Hartree-Fock and RPA

As an example of calculation of response functions, consider the Hartree-Fock

approximation which corresponds to factoring the four-point function in the def-

inition of the self-energy Eq.(46.4) as if there were no interactions, in which case

it is easy to see that
G(12)
−(1+1)

= 0 To be more specific, starting from

Σ
¡
1 1
¢

G
¡
1 2
¢


= −
D


†
−
¡
1+
¢
− (1) (1)

†
 (2)

E

(46.23)

= −
∙
G (1 2)
− (1+ 1)

− G−
¡
1 1+

¢

G (1 2)(̧46.24)

the Hartree-Fock approximation is

Σ
¡
1 1
¢

G

¡
1 2
¢

= G−

¡
1 1+

¢

G (1 2) 

Multiplying the above equation by
¡



¢−1
 we are left with

Σ (1 2) = G−
¡
1 1+

¢

 (1− 2)  (46.25)

so that
Σ↑ (1 2)
G↓ (3 4)

¯̄̄̄
¯
=0

=  (1− 2)  (3− 1)  (4− 2)  (46.26)

and
Σ↑ (1 2)
G↑ (3 4)

¯̄̄̄
¯
=0

= 0

which, when substituted in the integral equation (46.9) for the response function,

tells us that we have generated the random phase approximation (RPA) with,

from Eq.(46.22),  =  =  Indeed, when the irreducible vertex comes from

the Hartree term, the same structure as the one found before for the electron

gas results. The charge susceptibility that follows from the result of the previous

section Eq.(46.18) is

 (1 2) = (0) (1 2)− 1
2
(0)

¡
1 3
¢


¡
3 2
¢

(46.27)

with (0) (1 2) = −2G (1 2)G (2 1)  The Fourier transform is

 () = (0) ()− 

2
(0) () ()  (46.28)

Since at this point the self-energy is a constant, we take for G the non-interacting
Green’s function. In Fourier-Matsubara space, 0() then is the Lindhard function

that, in analytically continued retarded form is, for a discrete lattice of  sites,

0(q ) = − 2


X
k

 (k)− 
¡
k+q

¢
 +  + k − k+q

 (46.29)

Similarly, for the spin susceptibility

 () = (0) () +


2
(0) () ()  (46.30)
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The equations for the spin and charge fluctuations can easily be solved and yield,

respectively

() =
0()

1− 1
2
0()

(46.31)

() =
0()

1 + 1
2
0()

(46.32)

It is known on general grounds [?] that RPA satisfies conservation laws. We

will describe the general methods that lead to approximations that are consistent

with conservation laws in a later chapter. But it is easy to check that for a special

case. Since spin and charge are conserved, then the equalities (q = 0) = 0

and (q = 0) = 0 for  6= 0 follow from the corresponding equality for the

non-interacting Lindhard function 0(q = 0) = 0

Remark 143 If we had used dressed Green’s function to compute the Lindhard

susceptibility, the conservation law  (q = 0,) = 0 for  6= 0 would have
been violated, as shown in Appendix A of Ref.[20]. In general,irreducible vertices

and self-energy (and corresponding Green’s functions) must be taken at the same

level of approximation.

46.4 RPA and violation of the Pauli principle

RPA has a drawback that is particularly important for the Hubbard model. It

violates the Pauli principle that is assumed to be satisfied exactly in its definition

where up spins interact only with down spins. To see this requires a bit more

thinking. We derive a sum rule that rests on the use of the Pauli principle and

check that it is violated by RPA to second order in  . First note that if we sum

the spin and charge susceptibilities over all wave vectors q and all Matsubara

frequencies , we obtain local, equal-time correlation functions, namely





X
q

X


(q) =
D
(↑ − ↓)

2
E
= h↑i+ h↓i− 2 h↑↓i (46.33)

and





X
q

X


(q) =
D
(↑ + ↓)

2
E
− h↑ + ↓i2 = h↑i+ h↓i+ 2 h↑↓i− 2

(46.34)

where on the right-hand side, we used the Pauli principle 2 =
¡
†

¢ ¡
†

¢
=

† − †
†
 = † =  that follows from †

†
 =  = 0 This is the

simplest version of the Pauli principle. Full antisymmetry is another matter [?, ?].

We call the first of the above displayed equations the local spin sum-rule and the

second one the local charge sum-rule. For RPA, adding the two sum rules yields





X
q

X


¡
(q) + (q)

¢
= (46.35)





X


µ
0()

1− 1
2
0()

+
0()

1 + 1
2
0()

¶
= 2− 2 (46.36)

Since the non-interacting susceptibility 0() satisfies the sum rule, we see by

expanding the denominators that in the interacting case it is violated already to
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second order in  because 0() being real and positive, (See Eq.(48.12)), the

quantity
P

 0()
3 cannot vanish.

46.5 RPA, phase transitions and theMermin-Wagner

theorem

The RPA predicts that the normal state is sometimes unstable, namely that if

we decrease the temperature, spin fluctuations at zero frequency start, in certain

cases, to diverge. Below the temperature where that occurs, the spin susceptibility

is negative, which is prohibited by thermodynamic stability, which indicates that a

paramagnetic ground state is an unstable state. Let us illustrate this with a specific

example. Let us evaluate the Lindhard function Eq.(46.29) at zero frequency in

the case where we have only nearest neighbor hopping on a cubic lattice, in other

words, k = k = −2 (cos  + cos  + cos ) Then, if we take  = 0 which in
this case corresponds to half-filling, and choose the wave vector corresponding to

an antiferromagnetic fluctuation, namely  = (  ) that leads to a phase +1

or −1 on alternating sites, we find

0(Q 0) = − 2


X
k

2 (k)− 1
2k

(46.37)

because of the equality  (−) = 1 −  () and the co-called nesting property

k = −k+Q But 2 (k)−1 = − tanh (k2) which allows one to write by using
the definition of the density of states  ()

0(Q 0) =
2



X
k

tanh (k2)

2k
(46.38)

∼ 2

Z
3k

(2)
3

tanh (k2)

2k
(46.39)

∼
Z

 ()
tanh (2)

2
 (46.40)

The last integral diverges when  → 0 or  → ∞ Indeed, take  () constant

near the Fermi level, up to a cutoff energy ±  Near the Fermi level,  = 0

when    we can approximate tanh (2) 2 ∼ 14 So we can extract the
logarithmically divergent part of the integral as follows:Z

 ()
tanh (2)

2
∼

Z 



 (0)
1



∼  (0) ln

µ




¶
 (46.41)

For  sufficiently small, 0(Q 0) diverges, which means that at a certain tem-

perature, the denominator of the spin susceptibility Eq.(46.31) goes through zero.

At that temperature, the spin susceptibility diverges. Below that it is negative. If

we look at the thermodynamic sum rule in Sec. 11.10.1

(Q 0) =

Z




00(Q )


(46.42)
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this means that the imaginary part of the spin susceptibility for positive frequen-

cies has to be negative. It is positive at negative frequencies since it must be

odd. This violates the positivity criterion imposed by stability, Sec. 11.7, namely

00(Q )  0 Hence, the system is unstable.

This instability signals a second-order phase transition that it physical. How-

ever, in two-dimensions, one cannot have a phase transition that breaks a contin-

uous symmetry in two dimensions. That is the content of the Mermin Wagner

theorem.[?, ?] Hence, RPA fails miserably on many grounds in two dimensions:

It violates the Pauli principle and the Mermin-Wagner theorem. The approach in

the next section fixes these two problems and more.
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47. THE TWO-PARTICLE-SELF-

CONSISTENT APPROACH

The two-particle-self-consistent approach (TPSC) is designed to remedy the defi-

ciencies found above in the study of the the one-band Hubbard model. It is also

possible to generalize to cases where near-neighbor interactions are included.

TPSC is valid from weak to intermediate coupling. Hence, on the negative side,

it does not describe the Mott transition. Nevertheless, there is a large number of

physical phenomena that it allows to study. An important one is antiferromag-

netic fluctuations. It is extremely important physically that in two dimensions

there is a wide range of temperatures where there are huge antiferromagnetic fluc-

tuations in the paramagnetic state, without long-range order, as imposed by the

Mermin-Wagner theorem. The standard way to treat fluctuations in many-body

theory, the Random Phase Approximation (RPA) misses this and also, as we saw,

the RPA also violates the Pauli principle in an important way. The composite

operator method (COM), by F. Mancini, is another approach that satisfies the

Mermin-Wagner theorem and the Pauli principle. [?, ?, ?] The Fluctuation Ex-

change Approximation (FLEX) [?, ?], and the self-consistent renormalized theory

of Moriya-Lonzarich [?, ?, ?] are other approaches that satisfy the Mermin-Wagner

theorem at weak coupling? Each has its strengths and weaknesses, as discussed

in Refs. [20, ?]. Weak coupling renormalization group approaches become uncon-

trolled when the antiferromagnetic fluctuations begin to diverge [?, ?, ?, ?]. Other

approaches include the effective spin-Hamiltonian approach [?].

In summary, the advantages and disadvantages of TPSC are as follows. Ad-

vantages:

• There are no adjustable parameters.
• Several exact results are satisfied: Conservation laws for spin and charge,
the Mermin-Wagner theorem, the Pauli principle in the form

D
2↑
E
= h↑i 

the local moment and local-charge sum rules and the f sum-rule.

• Consistency between one and two-particle properties serves as a guide to the
domain of validity of the approach. (Double occupancy obtained from sum

rules on spin and charge equals that obtained from the self-energy and the

Green function).

• Up to intermediate coupling, TPSC agrees within a few percent with Quan-
tum Monte Carlo (QMC) calculations. Note that QMC calculations can

serve as benchmarks since they are exact within statistical accuracy, but

they are limited in the range of physical parameter accessible.

• We do not need to assume that Migdal’s theorem applies to be able to obtain
the self-energy.

The main successes of TPSC include

• Understanding the physics of the pseudogap induced by precursors of a long-
range ordered phase in two dimensions. For this understanding, one needs

a method that satisfies the Mermin-Wagner theorem to create a broad tem-

perature range where the antiferromagnetic correlation length is larger than
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the thermal de Broglie wavelength. That method must also allow one to

compute the self-energy reliably. Only TPSC does both.

• Explaining the pseudogap in electron-doped cuprate superconductors over a
wide range of dopings.

• Finding estimates of the transition temperature for d-wave superconductivity
that were found later in agreement with quantum cluster approaches such

as the Dynamical Cluster Approximation.

• Giving quantitative estimates of the range of temperature where quantum
critical behavior can affect the physics.

The drawbacks of this approach, that I explain as we go along, are that

• It works well in two or more dimensions, not in one dimension 1 [?].

• It is not valid at strong coupling, except at very high temperature and large
 where it recovers the atomic limit [?].

• It is not valid deep in the renormalized classical regime [?].
• For models other than the one-band Hubbard model, one usually runs out
of sum rules and it is in general not possible to find all parameters self-

consistently. With nearest-neighbor repulsion, it has been possible to find a

way out.

For detailed comparisons with QMC calculations, discussions of the physics and

detailed comparisons with other approaches, you can refer to Ref.[20, ?]. You can

read Ref.[?] for a review of the work related to the pseudogap and superconductiv-

ity up to 2005 including detailed comparisons with Quantum Cluster approaches

in the regime of validity that overlaps with TPSC (intermediate coupling).

47.1 TPSC First step: two-particle self-consistency

for G(1)Σ(1) Γ(1) =  and Γ
(1)

 = 

Details of the more formal derivation may be also be found in Ref. [?]. In con-

serving approximations, the self-energy is obtained from a functional derivative

Σ [G] = Φ [G] G of Φ the Luttinger-Ward functional, which is itself computed
from a set of diagrams. We will see this approach later in the course. To liber-

ate ourselves from diagrams and find results that are valid beyond perturbation

theoty, we start instead from the exact expression for the self-energy, Eq.(46.4)

Σ
¡
1 1
¢

G
¡
1 2
¢

= −

D


†
−
¡
1+
¢
− (1) (1)

†
 (2)

E


and notice that when label 2 equals 1+ the right-hand side of this equation is equal

to double-occupancy h↑↓i. Factoring as in Hartree-Fock amounts to assuming
no correlations. Instead, we should insist that h↑↓i should be obtained self-
consistently. After all, in the Hubbard model, there are only two local four point

functions: h↑↓i and
D
2↑
E
=
D
2↓
E
 The latter is given exactly, through the

1Modifications have been proposed in zero dimension to use as impurity solver for DMFT [?]
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Pauli principle, by
D
2↑
E
=
D
2↓
E
= h↑i = h↓i = 2 when the filling  is

known In a way, h↑↓i in the self-energy equation (46.4), can be considered as
an initial condition for the four point function when one of the points, 2, separates

from all the others which are at 1 When that label 2 does not coincide with 1,

it becomes more reasonable to factor à la Hartree-Fock. These physical ideas are

implemented by postulating

Σ(1)

¡
1 1
¢

G(1)

¡
1 2
¢

= G(1)−

¡
1 1+

¢

G(1) (1 2) (47.1a)

where  depends on external field and is chosen such that the exact result
2

Σ
¡
1 1
¢

G
¡
1 1+

¢

=  h↑ (1)↓ (1)i (47.2)

is satisfied. It is easy to see that the solution is

 = 
h↑ (1)↓ (1)i
h↑ (1)i h↓ (1)i

 (47.3)

Substituting  back into our ansatz Eq.(48.3) we obtain our first approximation

for the self-energy by right-multiplying by
³
G(1)

´−1
:

Σ(1) (1 2) = G(1)−
¡
1 1+

¢

 (1− 2)  (47.4)

We are now ready to obtain irreducible vertices using the prescription of section

46.2, Eq.(46.22), namely through functional derivatives of Σ with respect to G In
the calculation of  the functional derivative of h↑↓i  (h↑i h↓i) drops out,
so we are left with 3,

Σ
(1)

↑ (1 2)

G(1)↓ (3 4)

¯̄̄̄
¯
=0

− Σ
(1)

↑ (1 2)

G(1)↑ (3 4)

¯̄̄̄
¯
=0

=  (1− 2)  (3− 1)  (4− 2)

 = =0 = 
h↑↓i
h↑i h↓i  (47.5)

The renormalization of this irreducible vertex may be physically understood as

coming from the physics described by Kanamori and Brueckner [20] (in the lat-

ter case in the context of nuclear physics): The value of the bare interaction is

renormalized down by the fact that the two-particle wave function will want to be

smaller where  is larger. In the language of perturbation theory, one must sum

the Born series to compute how two particles scatter off each other and not work

in the first Born approximation. This completes the derivation of the ansatz that

is central to TPSC.

The functional-derivative procedure generates an expression for the charge ver-

tex  which involves the functional derivative of h↑↓i  (h↑i h↓i) which con-
tains six point functions that one does not really know how to evaluate. But, if

we again assume that the vertex  is a constant, it is simply determined by

the requirement that charge fluctuations also satisfy the fluctuation-dissipation

theorem and the Pauli principle, as in Eq.(46.34). In summary, spin and charge

fluctuations are obtained from

() =
(1)()

1− 1
2
(1)()

(47.6)

() =
(1)()

1 + 1
2
(1)()

 (47.7)

2See footnote (14) of Ref. [?] for a discussion of the choice of limit 1+ vs 1−.
3For   1, all particle occupation numbers must be replaced by hole occupation numbers.
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with the irreducible vertices determined from the sum rules





X
q

X


(1)()

1− 1
2
(1)()

= − 2 h↑↓i (47.8)

and




X
q

X


(1)()

1 + 1
2
(1)()

= + 2 h↑↓i− 2 (47.9)

along with the relations that relates  to double occupancy, Eq.(47.5).

Remark 144 Note that, in principle, Σ(1) also depends on double-occupancy, but

since Σ(1) is a constant, it is absorbed in the definition of the chemical potential

and we do not need to worry about it in this case. That is why the non-interacting

irreducible susceptibility (1)() = 0() appears in the expressions for the suscep-

tibility, even though it should be evaluated with G(1) that contains Σ(1) A rough

estimate of the renormalized chemical potential (or equivalently of Σ(1)), is given

in the appendix of Ref. ([?]). One can check that spin and charge conservation

are satisfied by the TPSC susceptibilities.

Remark 145  h↑i h↓i =  h↑↓i can be understood as correcting the Hatree-
Fock factorization so that the correct double occupancy be obtained. Expressing the

irreducible vertex in terms of an equal-time correlation function is inspired by the

approach of Singwi [?] to the electron gas. But TPSC is different since it also

enforces the Pauli principle and connects to a local correlation function, namely

h↑↓i 

47.2 TPSC Second step: an improved self-energy

Σ(2)

Collective charge and spin excitations can be obtained accurately from Green’s

functions that contain a simple self-energy, as we have just seen. Such modes are

emergent objects that are less influenced by details of the single-particle properties

than the other way around, especially at finite temperature where the lowest

fermionic Matsubara frequency is not zero. The self-energy on the other hand is

much more sensitive to collective modes since these are important at low frequency.

The second step of TPSC is thus to find a better approximation for the self-energy.

This is similar in spirit to what is done in the electron gas [3] where plasmons

are found with non-interacting particles and then used to compute an improved

approximation for the self-energy. This two step process is also analogous to

renormalization group calculations where renormalized interactions are evaluated

to one-loop order and quasiparticle renormalization appears only to two-loop order

[?, ?, ?].

The procedure will be the same as for the electron gas. But before we move

to the algebra, we can understand physically the result by looking at Fig. 47-1

that shows the exact diagrammatic expressions for the three-point vertex (green

triangle) and self-energy (blue circle) in terms of Green’s functions (solid black

lines) and irreducible vertices (red boxes). The bare interaction  is the dashed

line. One should keep in mind that we are not using perturbation theory despite

the fact that we draw diagrams. Even within an exact approach, the quantities

defined in the figure have well defined meanings. The numbers on the figure refer
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Figure 47-1 Exact expression for the three point vertex (green triangle) in the

first line and for the self-energy in the second line. Irreducible vertices are the red

boxes and Green’s functions solid black lines. The numbers refer to spin, space and

imaginary time coordinates. Symbols with an over-bard are summed/integrated over.

The self-energy is the blue circle and the bare interaction  the dashed line.

to spin, space and imaginary time coordinates. When there is an over-bar, there

is a sum over spin and spatial indices and an integral over imaginary time.

In TPSC, the irreducible vertices in the first line of Fig. 47-1 are local, i.e.

completely momentum and frequency independent. They are given by  and

 If we set point 3 to be the same as point 1 then we can obtain directly

the TPSC spin and charge susceptibilities from that first line. In the second

line of the figure, the exact expression for the self-energy is displayed4. The

first term on the right-hand side is the Hartree-Fock contribution. In the second

term, one recognizes the bare interaction  at one vertex that excites a collective

mode represented by the green triangle and the two Green’s functions. The other

vertex is dressed, as expected. In the electron gas, the collective mode would be

the plasmon. If we replace the irreducible vertex using  and  found for

the collective modes, we find that here, both types of modes, spin and charge,

contribute to the self-energy [?].

Moving now to the algebra, let us repeat our procedure for the electron gas

to show how to obtain an improved approximation for the self-energy that takes

advantage of the fact that we have found accurate approximations for the low-

frequency spin and charge fluctuations. We begin from the general definition of

the self-energy Eq.(46.4) obtained from Dyson’s equation. The right-hand side of

that equation can be obtained either from a functional derivative with respect to

an external field that is diagonal in spin, as in our generating function Eq.(46.1),

or by a functional derivative of
D
− (1)

†
 (2)

E


with respect to a transverse

external field  namely an external field that is not diagonal in spin indices.

Working first in the longitudinal channel, the right-hand side of the general

definition of the self-energy Eq.(46.4) may be written as

Σ
¡
1 1
¢G ¡1 2¢ = − " G (1 2)

− (1+ 1)

¯̄̄̄
=0

− G−
¡
1 1+

¢

G (1 2)

#
 (47.10)

4 In the Hubbard model the Fock term cancels with the same-spin Hartree term
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Figure 47-2 Exact self-energy in terms of the Hartree-Fock contribution and of the

fully reducible vertex Γ represented by a textured box.

The last term is the Hartree-Fock contribution. It gives the exact result for the

self-energy in the limit  → ∞.[20] The G− term is thus a contribution

to lower frequencies and it comes from the spin and charge fluctuations. Right-

multiplying the last equation by G−1 and replacing the lower energy part G−
by its general expression in terms of irreducible vertices, Eq.(46.9) (recalling that

for G− the first term vanishes) we find

Σ(2) (1 2) = G(1)−
¡
1 1+

¢
 (1− 2) (47.11)

−G(1)

¡
1 3
¢⎡⎣ Σ

(1)


¡
3 2
¢


G(1)

¡
4 5
¢


¯̄̄̄
¯̄
=0

G(1)

¡
4 5
¢


− (1+ 1)

¯̄̄̄
¯̄
=0

⎤⎦ 
Every quantity appearing on the right-hand side of that equation has to be taken

from the TPSC results. This means in particular that the irreducible vertices

Σ
(1)
 G(1)0 are at the same level of approximation as the Green functions G(1)

and self-energies Σ
(1)
  In other approaches one often sees renormalized Green func-

tions G(2) appearing on the right-hand side along with unrenormalized vertices,
ΣG0 → Wewill see later in the context of electron-phonon interactions that

this is equivalent to assuming, without justification, that the so-called Migdal’s

theorem applies to spin and charge fluctuations.

In terms of  and  in Fourier space, the above formula[?] reads,

Σ(2) () = − +


4





X


h


(1)
 () + 

(1)

 ()
i
G(1) ( + ) (47.12)

The approach to obtain a self-energy formula that takes into account both lon-

gitudinal and transverse fluctuations is detailed in Ref.([?]). Crossing symmetry,

rotational symmetry and sum rules and comparisons with QMC dictate the final

formula for the improved self-energy Σ(2) as we now sketch.

There is an ambiguity in obtaining the self-energy formula [?]. Within the

assumption that only  and  enter as irreducible particle-hole vertices, the

self-energy expression in the transverse spin fluctuation channel is different. What

do we mean by that? Consider the exact formula for the self-energy represented

symbolically by the diagram of Fig. 47-2. In this figure, the textured box is

the fully reducible vertex Γ (  − 0  + 0 − ) that depends in general on three

momentum-frequency indices. The longitudinal version of the self-energy corre-

sponds to expanding the fully reducible vertex in terms of diagrams that are irre-

ducible in the longitudinal (parallel spins) channel illustrated in Fig. 47-1. This

takes good care of the singularity of Γ when its first argument  is near ( ) 
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The transverse version [?, ?] does the same for the dependence on the second

argument  − 0, which corresponds to the other (antiparallel spins) particle-hole
channel. But the fully reducible vertex obeys crossing symmetry. In other words,

interchanging two fermions just leads to a minus sign. One then expects that

averaging the two possibilities gives a better approximation for Γ since it pre-

serves crossing symmetry in the two particle-hole channels [?]. By considering

both particle-hole channels only, we neglect the dependence of Γ on  + 0 − 

because the particle-particle channel is not singular. The final formula that we

obtain is [?]

Σ(2) () = − +


8





X


£
3() + ()

¤G(1) ( + ) (47.13)

The superscript (2) reminds us that we are at the second level of approximation.

G(1) is the same Green’s function as that used to compute the susceptibilities

(1)(). Since the self-energy is constant at that first level of approximation, this

means that G(1) is the non-interacting Green’s function with the chemical potential

that gives the correct filling. That chemical potential (1) is slightly different from

the one that we must use in
¡G(2)¢−1 =  + (2) − k −Σ(2) to obtain the same

density [?]. Estimates of (1) may be found in Ref. [?, ?]). Further justifications

for the above formula are given below in Sect.47.3.

47.3 TPSC, internal accuracy checks

How can we make sure that TPSC is accurate? We will show sample comparisons

with benchmark Quantum Monte Carlo calculations, but we can check the accu-

racy in other ways. For example, we have already mentioned that the f-sum rule

Eq.(48.5) is exactly satisfied at the first level of approximation (i.e. with 
(1)

k on

the right-hand side). Suppose that on the right-hand side of that equation, one

uses k obtained from G(2) instead of the Fermi function. One should find that
the result does not change by more than a few percent. This is what happens

when agreement with QMC is good.

When we are in the Fermi liquid regime, another way to verify the accuracy of

the approach is to verify if the Fermi surface obtained from G(2) satisfies Luttinger’s
theorem very closely. Luttinger’s theorem says that even an interacting system,

when there is a jump in k at the Fermi surface at  = 0 (as we have seen in the

electron gas) then the particle density is determined by the number of k points

inside the Fermi surface, as in the non-interacting case.

Finally, there is a consistency relation between one- and two-particle quantities

(Σ and h↑↓i). The relation

Σ
¡
1 1
¢G ¡1 1+¢ ≡ 1

2
Tr (ΣG) = 



X
k

X


Σ(k )G(k )−0
−
=  h↑↓i

(47.14)

should be satisfied exactly for the Hubbard model. In standard many-body books

[?], it is encountered in the calculation of the free energy through a coupling-

constant integration. We have seen this in the previous Chapter 38. In TPSC, it

is not difficult to show 5 that the following equation

1

2
Tr
³
Σ(2)G(1)

´
=  h↑↓i (47.15)

5Appendix B or Ref. [20]
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is satisfied exactly with the self-consistent  h↑↓i obtained with the susceptibili-
ties6. An internal accuracy check consists in verifying by how much 1

2
Tr
¡
Σ(2)G(2)¢

differs from 1
2
Tr
¡
Σ(2)G(1)¢  Again, in regimes where we have agreement with

Quantum Monte Carlo calculations, the difference is only a few percent.

The above relation between Σ and h↑↓i gives us another way to justify our
expression for Σ(2) Suppose one starts from Fig. 47-1 to obtain a self-energy

expression that contains only the longitudinal spin fluctuations and the charge

fluctuations, as was done in the first papers on TPSC [?]. One finds that each

of these separately contributes an amount  h↑↓i 2 to the consistency relation
Eq.(47.15). Similarly, if we work only in the transverse spin channel [?, ?] we

find that each of the two transverse spin components also contributes  h↑↓i 2
to 1

2
Tr
¡
Σ(2)G(1)¢  Hence, averaging the two expressions also preserves rotational

invariance. In addition, one verifies numerically that the exact sum rule (Ref. [20]

Appendix A)

−
Z

0


Σ00 (k0) = 2− (1− −) (47.16)

determining the high-frequency behavior is satisfied to a higher degree of accuracy

with the symmetrized self-energy expression Eq. (47.13).

Eq. (47.13) for Σ(2) is different from so-called Berk-Schrieffer type expressions

[?] that do not satisfy 7 the consistency condition between one- and two-particle

properties, 1
2
Tr (ΣG) =  h↑↓i 

Remark 146 Schemes, such as the fluctuation exchange approximation (FLEX),

that we will discuss later, use on the right-hand side (2), are thermodynamically

consistent (Sect. ??) and might look better. However, as we just saw, in Fig.

48-2, FLEX misses some important physics. The reason [20] is that the vertex

entering the self-energy in FLEX is not at the same level of approximation as the

Green’s functions. Indeed, since the latter contain self-energies that are strongly

momentum and frequency dependent, the irreducible vertices that can be derived

from these self-energies should also be frequency and momentum dependent, but

they are not. In fact they are the bare vertices. It is as if the quasi-particles had a

lifetime while at the same time interacting with each other with the bare interac-

tion. Using dressed Green’s functions in the susceptibilities with momentum and

frequency independent vertices leads to problems as well. For example, the conser-

vation law  (q = 0,) = 0 is violated in that case, as shown in Appendix A

of Ref.[20]. Further criticism of conserving approaches appears in Appendix E of

Ref.[20] and in Ref.[?].

6FLEX does not satisfy this consistency requirement. See Appendix E of [20]. In fact double-

occupancy obtained from Σ can even become negative [?].
7 [20] Appendix E)
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48. TPSC, BENCHMARKING AND

PHYSICAL ASPECTS

In this chapter, we present a physically motivated approach to TPSC and bench-

mark the theory by comparing with Quantum Monte Carlo simulations. We also

discuss physical consequences of the approach, in particular the appearance of

a pseudogap that is the precursor of long-range order that occurs only at zero

temperature. We show that this physics seems to be realized in electron-doped

cuprates.

48.1 Physically motivated approach, spin and charge

fluctuations

As basic physical requirements, we would like our approach to satisfy a) con-

servation laws, b) the Pauli principle and c) the Mermin Wagner theorem. The

standard RPA approach satisfies the first requirement but not the other two as

we saw in Sec. 46.4.

How can we go about curing this violation of the Pauli principle while not

damaging the fact that RPA satisfies conservation laws? The simplest way is to

proceed in the spirit of Fermi liquid theory and assume that the effective interac-

tion (irreducible vertex in the jargon) is renormalized. This renormalization has

to be different for spin and charge so that

() =
(1)()

1− 1
2
(1)()

(48.1)

() =
(1)()

1 + 1
2
(1)()

 (48.2)

In practice (1)() is the same1 as the Lindhard function 0() for  = 0 but,

strictly speaking, there is a constant self-energy term that is absorbed in the

definition of  [?]. We are almost done with the collective modes. Substituting

the above expressions for () and () in the two sum-rules, local-spin and

local-charge appearing in Eqs.(46.33,46.34), we could determine both  and 
if we knew h↑↓i  The following ansatz

 h↑i h↓i =  h↑↓i (48.3)

gives us the missing equation. Now notice that  or equivalently h↑↓i depend-
ing on which of these variables you want to treat as independent, is determined

self-consistently. That explains the name of the approach, “Two-Particle-Self-

Consistent”. Since the the sum-rules are satisfied exactly, when we add them up

the resulting equation, and hence the Pauli principle, will also be satisfied exactly.

1The meaning of the superscripts differs from that in Ref. [20]. Superscripts (2) (1) here

correspond respectively to (1) (0) in Ref. [20]
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In other words, in Eq.(46.36) that follows from the Pauli principle, we now have

 and  on the left-hand side that arrange each other in such a way that there

is no violation of the principle. In standard many-body theory, two-particle self-

consistency is achieved in a much more complicated by solving parquet equations.

[?, ?]

The ansatz Eq.(48.3) is inspired from the work of Singwi [?, ?] and was also

found independently by M. R. Hedeyati and G. Vignale [?]. The whole procedure

was justified in the previous Chapter. For now, let us just add a few physical

considerations.

Since  and  are renormalized with respect to the bare value, one might

have expected that one should use the dressed Green’s functions in the calculation

of 0 ()  It is explained in appendix A of Ref.[20] that this would lead to a

violation of the results (q = 0) = 0 and (q = 0) = 0. In the present

approach, the f-sum ruleZ



00 (q) = lim

→0

X


¡
− − 

¢
 (q ) (48.4)

=
1



X
k

(k+q + k−q − 2k)k (48.5)

is satisfied with k = 
(1)

k, the same as the Fermi function for the non-interacting

case since it is computed from G(1). 2

Remark 147  h↑i h↓i =  h↑↓i can be understood as correcting the Hatree-
Fock factorization so that the correct double occupancy be obtained. Expressing the

irreducible vertex in terms of an equal-time correlation function is inspired by the

approach of Singwi [?] to the electron gas. But TPSC is different since it also

enforces the Pauli principle and connects to a local correlation function, namely

h↑↓i 

48.2 Mermin-Wagner, Kanamori-Brueckner

The functional form of the results that we found for spin and charge fluctua-

tions have the RPA form but the renormalized interactions  and  must be

computed from





X
q

X


(1)()

1− 1
2
(1)()

= − 2 h↑↓i (48.6)

and




X
q

X


(1)()

1 + 1
2
(1)()

= + 2 h↑↓i− 2 (48.7)

With the ansatz Eq.(48.3), the above system of equations is closed and the Pauli

principle is enforced. The first of the above equations is solved self-consistently

with the  ansatz. This gives the double occupancy h↑↓i that is then used
to obtain  from the next equation. The fastest way to numerically compute

(1)() is to use fast Fourier transforms [?].

2For the conductivity with vertex corrections [?], the f-sum rule with k obtained from (2)

is satisfied.
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These TPSC expressions for spin and charge fluctuations were obtained by

enforcing the conservations laws and the Pauli principle. In particular, TPSC

satisfies the f-sum rule Eq.(48.5). But we obtain for free a lot more of the physi-

cal results, namely Kanamori-Brueckner renormalization and the Mermin-Wagner

theorem.

Let us begin with Kanamori-Brueckner renormalization of  . Many years ago,

Kanamori in the context of the Hubbard model [?], and Brueckner in the context of

nuclear physics, introduced the notion that the bare  corresponds to computing

the scattering of particles in the first Born approximation. In reality, we should

use the full scattering cross section and the effective  should be smaller. From

Kanamori’s point of view, the two-body wave function can minimize the effect of

 by becoming smaller to reduce the value of the probability that two electrons

are on the same site. The maximum energy that this can cost is the bandwidth

since that is the energy difference between a one-body wave function with no nodes

and one with the maximum allowed number. Let us see how this physics comes

out of our results. Far from phase transitions, we can expand the denominator of

the local moment sum-rule equation to obtain





X
q

X


(1)()

µ
1 +

1

2


(1)()

¶
= − 2


h↑i h↓i  (48.8)

Since 


P
q

P


0() = − 2 h↑i h↓i, we are can solve for  and obtain 3.

 =


1 + Λ
(48.9)

Λ ≡ 1

2




X


X
q

³
(1)

´2
(q)  (48.10)

We see that at large   saturates to 1Λ, which in practice we find to be of

the order of the bandwidth. For those that are familiar with diagrams, note that

the Kanamori-Brueckner physics amounts to replacing each of the interactions 

in the ladder or bubble sum for diagrams in the particle-hole channel by infinite

ladder sums in the particle-particle channel [?]. This is not quite what we obtain

here since
¡
(1)

¢2
is in the particle-hole channel, but in the end, numerically, the

results are close and the Physics seems to be the same. One cannot make strict

comparisons between TPSC and diagrams since TPSC is non-perturbative.

While Kanamori-Brueckner renormalization, or screening, is a quantum effect

that occurs even far from phase transitions, when we are close we need to worry

about the Mermin-Wagner theorem. To satisfy this theorem, approximate theories

must prevent h↑↓i from taking unphysical values. This quantity is positive and

bounded by its value for  =∞ and its value for non-interacting systems, namely

0 ≤ h↑↓i ≤ 24. Hence, the right-hand side of the local-moment sum-rule

Eq.(48.6) is contained in the interval
£
 − 1

2
2
¤
 To see how the Mermin-Wagner

theorem is satisfied, write the self-consistency condition Eq.(48.6) in the form





X


(1)()

1− 1
2


h↑↓i
h↑ih↓i

(1) ()
= − 2h↑↓i (48.11)

Consider increasing h↑↓i on the left-hand side of this equation. The denomina-
tor becomes smaller, hence the integral larger. To become larger, h↑↓i has to
decrease on the right-hand side. There is thus negative feedback in this equation

that will make the self-consistent solution finite. This, however, does not prevent

3There is a misprint of a factor of 2 in Ref. [20]. It is corrected in Ref.[?].
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the expected phase transition in three dimensions [?]. To see this, we need to look

in more details at the phase space for the integral in the sum rule.

As we know from the spectral representation for 

 (q ) =

Z
0



00 (q
0)

0 − 
=

Z
0



000 (q
0)

(0)2 + ()
2
 (48.12)

the zero Matsubara frequency contribution is always the largest. There, we find

the so-called Ornstein-Zernicke form for the susceptibility.

Ornstein-Zernicke form Let us focus on the zero Matsubara frequency contri-

bution and expand the denominator near the point where 1−1
2


(1)(Q0) =

0 The wave vector Q is that where (1) is maximum. We find [?],

 (q+Q ) ' (1)(Q0)

1− 1
2
(1) − 1

4


2(1)

Q2 2 − 1
2


(1)

()


∼ 2

1 + 22 + 
 (48.13)

where all quantities in the denominator are evaluated at (Q 0) On dimen-

sional grounds,

−1
4


2(1)(Q 0)

Q2


µ
1− 1

2


(1)(Q 0)

¶
scales (noted ∼) as the square of a length, , the correlation length. That
length is determined self-consistently. Since,  ∼ −2 all finite Matsub-
ara frequency contributions are negligible if 2 ∼ 22 À 1. That

condition in the form  ¿  justifies the name of the regime we are in-

terested in, namely the renormalized classical regime. The classical regime

of a harmonic oscillator occurs when  ¿  The regime here is “renormal-

ized” classical because at temperatures above the degeneracy temperature,

the system is a free classical gas. As temperature decreases below the Fermi

energy, it becomes quantum mechanical, then close to the phase transition,

it becomes classical again.

Substituting the Ornstein-Zernicke form for the susceptibility in the self-consistency

relation Eq.(48.6), we obtain



Z
q

(2)


1

2 + −2
= e (48.14)

where e contains non-zero Matsubara frequency contributions as well as  −
2 h↑↓i  Since e is finite, this means that in two dimensions ( = 2), it is impos-

sible to have −2 = 0 on the left-hand side otherwise the integral would diverge

logarithmically. This is clearly a dimension-dependent statement that proves the

Mermin-Wagner theorem. In two-dimensions, we see that the integral gives a

logarithm that leads to

 ∼ exp ( 0 ) 
where in general,  0 can be temperature dependent [?]. When  0 is not tempera-
ture dependent, the above result is similar to what is found at strong coupling in

the non-linear sigma model. The above dimensional analysis is a bit expeditive.

A more careful analysis [?, ?] yields prefactors in the temperature dependence of

the correlation length.
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Figure 48-1 Wave vector (q) dependence of the spin and charge structure factors

for different sets of parameters. Solid lines are from TPSC and symbols are QMC

data. Monte Carlo data for  = 1 and  = 8 are for 6 × 6 clusters and  = 05;

all other data are for 8 × 8 clusters and  = 02. Error bars are shown only when

significant. From Ref. [?].

48.3 Benchmarking

Quantum Monte Carlo calculations, that we explain in a later Chapter of this

book, can be considered exact within statistical sampling. Hence they can be

used as benchmarks for any approximation scheme. In this section, we present a

few benchmarks on spin and charge fluctuations, and then on self-energy. More

comparisons may be found in Refs. [?] and [?, 20, ?, ?] and others quoted in these

papers.

48.3.1 Spin and charge fluctuations

The set of TPSC equations for spin and charge fluctuations Eqs.(48.6,48.7,48.3)

is rather intuitive and simple. The agreement of calculations with benchmark

QMC calculations is rather spectacular, as shown in Fig.(48-1). There, one can

see the results of QMC calculations of the structure factors, i.e. the Fourier trans-

form of the equal-time charge and spin correlation functions, compared with the

corresponding TPSC results.

This figure allows one to watch the Pauli principle in action. At  = 4

Fig.(48-1a) shows that the charge structure factor does not have a monotonic

dependence on density. This is because, as we approach half-filling, the spin

fluctuations are becoming so large that the charge fluctuations have to decrease

so that the sum still satisfies the Pauli principle, as expressed by Eq.(46.36). This

kind of agreement is found even at couplings of the order of the bandwidth and

when second-neighbor hopping 0 is present [?, ?].
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Figure 48-2 Single-particle spectral weight (k ) for  = 4,  = 5,  = 1, and

all independent wave vectors k of an 8× 8 lattice. Results obtained from maximum

entropy inversion of Quantum Monte Carlo data on the left panel, from TPSC in the

middle panel and form the FLEX approximation on the right panel. (Relative error in

all cases is about 0.3%). Figure from Ref.[?]

Remark 148 Even though the entry in the renormalized classical regime is well

described by TPSC [?], equation (48.3) for  fails deep in that regime because

Σ(1) becomes too different from the true self-energy. At  = 1, 0 = 0, deep in

the renormalized classical regime,  becomes arbitrarily small, which is clearly

unphysical. However, by assuming that h↑↓i is temperature independent below
  a property that can be verified from QMC calculations, one obtains a qualita-

tively correct description of the renormalized-classical regime. One can even drop

the ansatz and take h↑↓i from QMC on the right-hand side of the local moment

sum-rule Eq.(48.6) to obtain 

48.3.2 Self-energy

We check that the formula for the self-energy Eq.(47.13) is accurate by comparing

in Fig. 48-2 the spectral weight (imaginary part of the Green’s function) obtained

from Eq.(47.13) with that obtained from Quantum Monte Carlo calculations. The

latter are exact within statistical accuracy and can be considered as benchmarks.

The meaning of the curves are detailed in the caption. The comparison is for

half-filling in a regime where the simulations can be done at very low temperature

and where a non-trivial phenomenon, the pseudogap, appears. This all important

phenomenon is discussed further below in subsection 52.1 and in the first case

study, Sect. 52.2. In the third panel, we show the results of another popular Many-

Body Approach, the FLuctuation Exchange Approximation (FLEX) [?]. It misses

[?] the physics of the pseudogap in the single-particle spectral weight because it

uses fully dressed Green’s functions and assumes that Migdal’s theorem applies,

i.e. that the vertex does not need to be renormalized consequently Ref.[20, ?].

The same problem exists in the corresponding version of the GW approximation.

[?]
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Remark 149 The dressing of one vertex in the second line of Fig. 47-1 means

that we do not assume a Migdal theorem. Migdal’s theorem arises in the case

of electron-phonon interactions [?]. There, the small ratio  where  is

the electronic mass and  the ionic mass, allows one to show that the vertex

corrections are negligible. This is extremely useful to formulate the Eliashberg

theory of superconductivity.

Remark 150 In Refs. [20, ?] we used the notation Σ(1) instead of Σ(2) The

notation of the present paper is the same as that of Ref. [?]
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49. DYNAMICAL MEAN-FIELD

THEORYANDMOTTTRANSITION-

I

In this Chapter, we will see a physically motivated derivation of dynamical mean-

field theory and discuss the results found by this method on the Mott transition.

A more rigorous approach to the derivation will appear later in this book. There

are many review articles. We quote from Ref.[7] amongs others.

The band picture of electrons explained very well the occurence of metals,

with bands that are unfilled, and insulators, with filled bands, de Boer and Ver-

wey (1937) reported that many transition-metal oxides with a partially filled d-

electron band were exceptions. They were often poor conductors and indeed often

insulators. NiO became the prototypical example. following their report, Peierls

(1937) pointed out the importance of the electron-electron correlation: According

to Mott (1937), Peierls noted

“it is quite possible that the electrostatic interaction between the elec-

trons prevents them from moving at all. At low temperatures the

majority of the electrons are in their proper places in the ions. The

minority which have happened to cross the potential barrier find there-

fore all the other atoms occupied, and in order to get through the lattice

have to spend a long time in ions already occupied by other electrons.

This needs a considerable addition of energy and so is extremely im-

probable at low temperatures.”

Peierls is explaining that at half-filling, every unit cell is occupied by one carrier

in the presence of strong Coulomb repulsion. And the electrons cannot move

because of the large Coulomb repulsion it would cost. Later, Slater found another

way to obtain an insulator at half-filling even when Coulomb interactions are weak.

This is when long-range antiferromagnetic order leads to a doubling of the unit

cell. We have already seen in the previous Chapter that perfect nesting could lead

to a diverging antiferromagnetic susceptibility, and hence to a phase transition

with arbitrarily weak interaction. In that case, the Brillouin zone becomes half

the size so the band split in two and the lower band is now full. The Mott insulator

and the antiferromagnetic insulator are conceptually very different. One has long-

range order while the other does not.

In the 1970’s vanadium oxide became an example of a material showing a Mott

transition. The phase diagram appears in Fig. 49-1. The substitution of vanadium

by another metal with d electrons is modeled here as pressure. The accuracy of this

hypothesis is confirmed by real pressure experiments that appear on the same plot

(see the top and bottom horizontal axis). Pressure increases the overlap between

orbitals, hence the kinetic energy and tends to delocalize electrons. We see on this

phase diagram a finite temperature first order transition between a metal and an

insulator without long-range order. This material has a three-dimensional lattice

structure.

Layered organic conductors are quasi two-dimensional materials with a half-

filled band. These are soft materials, so one can apply pressure and have a sizeable

effect on the electronic structure. One observes a first-order metal-insulator tran-

sition at high-temperature that ends at a critical point. For both materials there
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Figure 49-1

is an antiferromagnetic phase at low temperature, suggesting the importance of

electron-electron interactions.

Simple pictures of the Mott transition have been proposed. In the Brinkman-

Rice scenario, the effective mass becomes infinite at the Mott transition. In the

Mott picture, at large interaction and half-filling, the non-interacting band splits in

two and there is an empty and a filled band, so no conduction. As the interaction

strenght decreases, a metallic phase occurs when the bands overlap.

The modern view of this transition contains a bit of both of the above ideas.

That view emerges from dynamical mean-field theory, that we explain in this

Chapter. This theory was discovered after Vollhardt and Metzner proposed and

exact solution for the Hubbard model in infinite dimension. Georges and Kotliar

and independently Jarrell arrived at the same theory.

We begin with an apparently related problem, that of a single site with a

Hubbard interaction, connected to a bath of non-interacting electrons. This is the

so-called Anderson impurity model. The we will argue that in infinite dimension

the self-energy depends only on frequency. That will allow us to establish a self-

consistency relation.

49.1 Quantum impurities

We will only set up the problem of quantum impurities without solving it. The

Numerical Renormalization Group approach (NRG) and Density Matrix Renor-

malization Group are examples of approaches that can be used to solve this prob-

lem.

We begin with the Anderson impurity problem. Including the chemical poten-
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Figure 49-2

tial the model is defined by

 =  + + −  (49.1)

 ≡
X


(− ) 
†
 + 

³

†
↑↑

´³

†
↓↓

´
(49.2)

 ≡
X


X
k

(k − ) 
†
kk (49.3)

 ≡
X


X
k

³
k

†
k +  ∗k

†
k

´
(49.4)

To physically motivate this model, think of a single  level on an atom where

the on-site interaction is very large. That site is hybridized through k with

conduction electrons around it. The sum over k in the hybridization part of the

Hamiltonian  basically tells us that it is the local overlap of the conduction

band with the impurity that produces the coupling.

Suppose we want to know the properties of the impurity, such as the local

density of states. It can be obtained from the Green function

G () = −
D
 () 

†


E
 (49.5)

We will proceed with the equations of motion method, following steps analogous

to those in the exercise on non-interacting impurities. We first write the equations

of motion for k and 




k = [  k] (49.6)

= − (k − ) k − k (49.7)




 = [  ] (49.8)

= − (− )  − 
†
−− −

X
k

 ∗kk (49.9)
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Proceeding like our in our earlier derivation of the equations of motion we have




G () = − ()

Dn
 ()  

†


oE
−
D


³
− (− )  ()− 

†
− () − ()  ()−  ∗kk

´

†


E
(49.10)

= − ()− (− )G () + 
D


†
− () − ()  () 

†


E
−
X
k

 ∗kG (k  )

where we defined

G (k  ) = −
D
k () 

†


E
 (49.11)

To eliminate this quantity, we write its equations of motion




G (k  ) = − ()

Dn
k ()  

†


oE
−
D
 (− (k − ) k ()− k ()) 

†


E
= − (k − )G (k  )− kG () (49.12)

that follows because
n
k 

†


o
= 0 It can be solved by going to Matsubara

frequencies

G (k  ) = 1

 − (k − )
kG ()  (49.13)

Substituting in the equation for G () we obtain"
 − (− )−

X
k

 ∗k
1

 − (k − )
k

#
G ()

= 1− 

Z 

0


D


†
− () − ()  () 

†


E
 (49.14)

The last term on the right-hand side is related to the self-energy as usual by

Σ ()G () ≡ −
Z 

0


D


†
− () − ()  () 

†


E
(49.15)

The equation to be solved has exactly the same Dyson equation structure as that

which we would find for a single impurity

G0 ()−1 G () = 1 +Σ ()G () (49.16)

G () = G0 () + G0 ()Σ ()G () (49.17)

except that now the “non-interacting” Green function is

G0 ()−1 =  − (− )−
X
k

 ∗k
1

 − (k − )
k (49.18)

This is in fact exactly the non-interacting Green function that we would find with

 = 0 One can propagate from the impurity site back to the impurity site by

going through the bath. One often defines the hybridization function ∆ ()

by

∆ () =
X
k

 ∗k
1

 − (k − )
k (49.19)

The solution to this impurity problem is complicated. The structure in imag-

inary time is highly non-trivial. Wick’s theorem does not apply to the effective
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impurity problem. Contrary to the atomic limit, the number of electrons on a

site is not conserved, i.e. it is time-dependent, and the simplicity of the problem

is lost. There is a complicated dynamics where electrons move in and out of the

impurity site and what happens at a given time depends on what happened at

earlier ones. For example, if there is a down electron on the impurity site, another

down electron will not be able to come on the site unless the previous one comes

out. The problem contains the rich Physics that goes under the name of Kondo

and could be the subject of many chapters in this book. We will not for now

expand further on this.

49.2 A simple example of a model exactly soluble

by mean-field theory

Let us forget momentarily about quantum mechanics and consider a simpler prob-

lem of classical statistical mechanics. Mean-field theory is often taken as an ap-

proximate solution to a model. It can also be formulated as an exact solution of

a different model. That helps understand the content of mean-field theory.

Mean-field theory is the exact solution of the following infinite range Ising

model

 = − 1

2

Ã
X
=1



!2
− 

X


 (49.20)

with  = ±1We have chosen the exchange  = 1. The range of the interaction is
extremely weak in the thermodynamic limit. The 1 normalisation is necessary

to have an energy that is extensive, i.e. proportional to the number of sites. In

the usual Ising model, a given site interacts only with its neighbors so the energy

is clearly extensive.

To compute the partition function, we use the Hubbard-Stratonovich transfor-

mation that represents − as a Gaussian integral





2 (


=1 )

2
+


 


=

µ


2

¶12 Z ∞
−∞

[−

2
2+(+)


 ] (49.21)

The result can be checked by completing the square. Then, the partition function

can be computed easily

 =
X
{}

−

=

µ


2

¶12 Z ∞
−∞

−

2
2 [2 cosh ( (+ ))]



=

µ


2

¶12 Z ∞
−∞

− () (49.22)

where

 () =
2

2
− 1


ln [2 cosh ( (+ ))]  (49.23)

Because  → ∞ we can evaluate the integral by steepest descent and the free

energy per site is given by

 () = min


 () +O

µ
1



¶
 (49.24)
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The value of  which minimizes  has the meaning of magnetization density.

Indeed,  = 0 leads to

 = tanh[ (+ )] (49.25)

and using the previous result,

 =

µ




¶


= tanh[ (+ )] =  (49.26)

This is what is found in mean-field theory.

49.3 The self-energy is independent of momentum

in infinite dimension

It took a long time to find a variant of the Hubbard model that could be solved

by a mean-field theory. That the Hubbard model was exactly soluble in infinite

dimension was discovered by Metzner and Vollhardt. Kotliar and George and

Jarrell found that is was possible to formulate a mean-field theory based on these

ideas. The key result is that in infinite dimension, the self-energy depends only

on frequency.

First we need to formulate the Hubbard model in such a way that in infinite

dimension it gives a non-trivial and physical result, somewhat in the way that

we did for the Ising model above. The possibly troublesome term is the kinetic

energy. Consider the value of
D

†


E
for nearest neighbors. In the ground state,

that quantity can be interpreted as the matrix element h
¯̄


®
where

¯̄


®
is

the ground state with one less particle at site  and h| the ground state where
we add a particle at site  Hence

¯̄
h

¯̄


®¯̄2
is the probability for a particle to

go from  to  It has to scale like 1 if we want particle-number to be conserved.

This means that
D

†


E
scales as 1

√
 so if we want a finite number for the

kinetic energy, we need to multiply  by
√
 Taking into account that there are 

neighbors, with  = 2 for a hypercubic lattice, we need an additional factor of

1 The kinetic energy in the end is thus written as

 = −
³
∗
√

´ 1


X
hi

³

†
 + 

´
 (49.27)

The interaction term does not need to be scaled since it is local. The quantity

∗
√
 thus plays the role of the usual  entering the kinetic energy, with ∗ finite

in the →∞ limit

We can find the same result by requiring that the bandwidth remains finite in

the infinite dimensional limit. Consider the single-particle density of states

 () =

Z 

−

1

2

Z 

−

2

2
  

Z 

−



2
 ( − 1 − 2 −    ) (49.28)

with  = −2 cos . This has the structure of a probability density for a variable
that is the sum of identically distributed statistically independent variables. One

can make the change of variables from  () = 1 (2) to  () so that

 () =

Z
1

Z
2   

Z
 (1) (2)     ()  ( − 1 − 2 −    ) 

(49.29)
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The resulting probability density is a Gaussian with mean zero since
R
1 (1) 1 =

0 and variance 22 because
R
1 (1) 

2
1 =

R 
−

1
2
(2 cos (1))

2
= (2)

2
2

More specifically,

 () =
1q

 (2)
2


exp

"
−
µ



2
√


¶2#
 (49.30)

This means that in the limit →∞, we need to choose

 = ∗
√


with ∗ finite if we want a density of states with a finite width in that limit. In
the same way that we had to take an effective exchange interaction smaller in our

Ising model example, here we need to take an effective hopping that is smaller,

∗
√
 in the infinite dimensional limit.

The fact that
D

†


E
scales as 1

√
 in the  → ∞ limit has important

consequences on the self energy. Indeed, G will also scale as 1
√
 Hence, if we

consider the real space expression for Σ12 where 1 and 2 are near-neighbor sites,

then apart from the Hartree-Fock term that arises in first order perturbation

theoty, we find from second order that the contribution is proportional to G312
which is proportional to 132 There is an additional factor 1

√
 in the Green’s

function every time the distance increases by one so Σ for more distant  is even

smaller. In the end, this means that the self-energy depends only on frequency.

49.4 The dynamical mean-field self-consistency re-

lation

Since the self-energy depends only on frequency, the Green’s function on the infi-

nite lattice reads in Fourier-Matsubara space

G (k) = 1

 − k −Σ ()  (49.31)

The Green’s function in real space, on the same lattice site, is obtained from

Fourier transformation

G () =

Z
k

(2)


1

 − (k − )−Σ ()

=

Z
k

(2)


Z
 (− (k − ))

1

 − −Σ ()

=

Z
 ()

1

 − −Σ ()  (49.32)

We give more detailed justification in a later chapter, but for now, we just ask

that this result be the same as that obtained for a single site in the presence of a

bath. In other words, we assume that the influence of the rest of the lattice is to

transfer electrons in and out of the lattice site. But we know that for a single site

in a bath,

G−1 () =
¡G0 ()¢−1 −Σ ()  (49.33)
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Figure 49-3 First order transition for the Mott transition. (a) shows the result fro

two dimensions obtained for a 2× 2 plaquette in a bath. In (b), the result obtained
for a single site. The horizontal axis is  = ( −  )  with  = 605

in the plaquette case and  = 935 in the single site case.

So we solve the problem iteratively as follows. Take a
¡G0 ()¢−1 and com-

pute Σ () for the single-site Anderson impurity problem. Substitute that self-

energy in the expression for the infinite lattice Green’s function and ask that the

projected Green’s function found from Eq.(49.32) be equal to the impurity Green’s

function Eq.(49.33). If this is not the case, change G0 () until the condition is
satisfied. The difficult part of the problem resides in finding the solution of the

impurity problem. There are a number of methods to do that. So usually, it is

not enough to say that one is working with dynamical mean-field theory. One also

has to specify the “impurity solver”.
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Figure 49-4 decrease for U 1:1 W; from Ref. [78] in Vollhardt in Mancini.

49.5 The Mott transition

Clausius-Clapeyron

 =  +  + (49.34)

 ( −  − ) = − −+ (49.35)

Set  = 0then along the phase boundary

−  + = − + (49.36)

Hence



=

 −

 − 
(49.37)

49.6 Doped Mott insulators




=

UD − OD

OD − UD
 (49.38)

The calculation shows that  increases as  increases (i.e. the first-order line

bends toward the Mott insulator). This implies that the UD phase has a lower

entropy than the OD phase. In an analogous way, by taking a constant  plane,

one obtains



=

UD − OD

UD −OD

 (49.39)

The calculations show that  decreases as  increases. Hence, the UD phase

has lower double occupancy than the OD phase. This is as expected and suggests

again that in the UD phase the correlations are stronger.
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Figure 49-5

Figure 49-6

Figure 49-7
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Figure 49-8

Figure 49-9

Figure 49-10
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Part VII

Broken Symmetry

405





From now on, these are very sketchy notes that will evolve towards a more

structured text with time.

In this chapter we encounter the limits of our first principle of adiabatic conti-

nuity, mentioned in the introduction That principle is in competition with another

one. Indeed. interactions may lead to divergent perturbation theory that cannot

be resummed in any way. This breakdown reflects a deep fact of nature, that inter-

actions may lead to new phases of matter, and these phases may be characterized

sometimes by broken symmetries. This is the principle of broken symmetry. It is

a principle because it is an empirically observed fact of very broad applicability.

We will see how it arises in the simplest manner in a model of ferromagnetism

proposed many years ago by Stoner. Original ideas go back to Weiss. This will

allow us to develop most of the concepts and approaches we will need to study

superconductivity. One of the lessons of this chapter will be that it is impossible

to reach a broken symmetry phase from the phase without the broken symmetry

by using perturbation theory. And vice-versa. The transition point, whether as a

function of interaction strength or as a function of temperature, is a singularity.

Our main example will be ferromagnetism. At the end of the chapter we will touch

upon many problems of mean-field theories.
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50. WEAK INTERACTIONS AT

LOW FILLING, STONER FERRO-

MAGNETISM AND THE BROKEN

SYMMETRY PHASE

Consider the case of an almost empty band where the dispersion relation is

quadratic. And take  small so that we may think a priori that perturba-

tion theory is applicable. Stoner showed using simple arguments that if  is large

enough, the system has a tendency to become ferromagnetic. We will look at this

result from many points of view. And then we will see that Stoner’s argument has

some problems and that ferromagnetism is much harder to find than what Stoner

first thought.

50.1 Simple arguments, the Stoner model

In the Hartree Fock approximation,ek = k +  h−i (50.1)

The idea of Stoner, illustrated in Figs.() and () for two and three dimensions, is

best illustrated in the limiting case where  is very large. Then by taking all the

spins to be up, one increases the kinetic energy, but there is no potential energy.

Clearly, if  is large enough (Nagaoka ferromagnetism) it seems that this will

always be the lowest energy solution since the kinetic energy is the same whatever

the value of  .

The above solution breaks the rotational symmetry of the original Hamiltonian,

yet it is a lower energy state. The proper way to consider this problem is to put

an infinitesimal magnetic field pointing in one direction in the original Hamil-

tonian, then take the infinite volume limit, then take the field to zero. In pratical

situations, this is how symmetry is broken anyway.

At the threshold for the instability, when the two wave vectors become different,

the energies for up and down spins are still identical, so


k ↑
− k↓ = 

¡h↓i− ­↑®¢  (50.2)

Expanding the left-hand side in powers of h↓i−
­
↑
®
we have, using that







is independent of spin,








¡h↓i− ­↑®¢ = 
¡h↓i− ­↑®¢ (50.3)




=  (50.4)

1 = 



= 





Z 

 ()  (50.5)

1 =  ( ) (50.6)
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where  () is the density of states for a given spin species. The last formula is

the celebrated Stoner criterion for antiferromagnetism.

50.2 Variational wave function

If we take a non-interacting solution but with two different Fermi wave vectors for

up and down electrons, then we can write a variational wave function

|Ψi = Π
k↑
 (↑ − |k|)Π

k↓
 (↓ − |k|) †k↑†k↓ |0i  (50.7)

Using Ritz’s variational principle, we need to minimize

hΨ| −  |Ψi =
X
k

(k − ) hki+ h−i hi  (50.8)

We will not proceed further since this is a special case ( = 0) of the more general

equations treated in the following section.

50.3 Feynman’s variational principle for variational

Hamiltonian. Order parameter and ordered

state

Anticipating that there will be a broken symmetry, it is tempting to choose as a

trial Hamiltonian

e0 =
X
k

k
†
kk + 

X


(h↑i↓ + h↓i↑) (50.9)

=
X
k

k
†
kk + 

X
k

³
h↑i †k↓k↓ + h↓i †k↑k↑

´
(50.10)

In other words, it is as if we had written in the interaction term ↑ → h↑i+↑
and neglected the terms quadratic in  (with at the end ↑ → ↑).
The calculation then proceeds as usual by using Feynman’s variational principle

−  ln ≤ − ln0 +
D³

 − e0

´E
0 (50.11)

to minimize the right-hand side, which can be written, using the usual definition

k = k − 

− ln
"Y
k

³
1 + −(k+h↑i)

´³
1 + −(k+hh↓ii)

´#
+ h↑i h↓i− 2 h↑i h↓i  (50.12)

Defining

 = h↑i+ h↓i (50.13)
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and the “order parameter”

 = h↑i− h↓i (50.14)

that measures the magnetization, or spin polarization, we set the derivative with

respect of  equalt to zero to obtain the extremum. This leads to

X


("
−

X
k

−(k+h−i)

1 + −(k+h−i)

µ


 h−i


¶#
− 

µ
 hi


h−i
¶)

= 0

(50.15)

which, using the derfinition of the magnetization Eq.(50.14) and of the Fermi

function, can be written

−
X
k


¡
k + 

­
↓
®¢
+
X
k

 (k +  h↑i)− h↓i+ h↑i = 0 (50.16)

This equation is called the “gap equation”, as we will understand in the following

sections. It must be solved simultaneously with the equation for the chemical

potential

h↓i+ h↑i = 1



X
k

¡
 (k +  h↑i) + 

¡
k + 

­
↓
®¢¢

 (50.17)

50.4 The gap equation and Landau theory in the

ordered state

Using our definition of the magnetization Eq.(50.14) and the equation for the

minimum Eq.(50.16), we obtain an equation (also called the gap equation) for the

order parameter ,

 =
1



X
k

³

³
k + 



2
− 



2

´
− 

³
k + 



2
+ 



2

´´
 (50.18)

Suppose we are close to the transition where is small. Expanding the right-hand

side, we have

 =
1



X
k

 (k)

k
(−) +O ¡3

¢
(50.19)

=  ( )+O
¡
3
¢
 (50.20)

where we have used that as  → 0 the derivative of the Fermi function becomes

minus a delta function.

The last equation may also be written

(1−  ( )) = 3 (50.21)

where a more detailed calculation gives that

 =
 00 ( )
24

− (
0 ( ))

2

8 ( )
 (50.22)

That quantity is generally negative, although one must watch in two dimensions

for example where the second derivative of the density of state is positive. The
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calculation of  is tedious since one must also take into account the dependence of

the chemical potential on 2.

The last form of the equation for Eq.(50.21) is the so-called Landau-Ginzburg

equation for the magnetization. If we had expanded the trial free energy in powers

of , we would have obtained the Landau-Ginzburg free energy. That free energy

would have been of the form of a polynomial in powers of 2 given the structure

of its first derivative in  3 etc... It could have been guessed based purely on

general symmetry arguments. The free energy must be a scalar so given that  is

a vector, one has to take its square. The difference here is that we have explicit ex-

pression for the coefficients of 2 in terms of a microscopic theory. In the absence

of a microscopic theory, one can make progress anyway with the Landau-Ginzburg

strategy.

What are the consequences of the equation for the magnetisation Eq.(50.21)?

First of all we recover the Stoner criterion,  = 0 when 1 =  ( ) and takes

a finite value 2 =  (1−  ( )) if  is sufficiently large. This is the broken

symmetry state. Here that state breaks rotational invariance.

Broken symmetry is an empirically observed property of matter. Ferromagnets,

solids, antiferromagnets, superconductors are all broken symmetry states. The

fact the broken symmetry is a general result that is empirically observed makes

it a principle. Landau-Ginzburg type theories are theories of principle. The free

energy is a scalar, the broken symmetry is described by an order parameter so the

free energy is a function of all scalars that can be built with this order parameter.

Remark 151 It should be clear that the phase transition can occur at fixed tem-

perature by increasing  or at fixed  by decreasing  Indeed, in general the equa-

tion for the order parameter Eq.(50.19) is temperature dependent. In Eq.(50.20)

we have taken the zero temperature limit.

50.5 The Green function point of view (effective

medium)

We can obtain the same results from the effective medium point of view. We

proceed exactly as with Hartree-Fock theory for the normal state except that this

time, our trial Hamiltonian e0 is spin dependent

e0 =
X
k

ek†kk (50.23)

Starting from the diagrams in Fig.(39-2) and recalling that only the Hartree dia-

gram survives because up electrons interact only with down, the effective medium

equations are obtained for each spin component

eΣ =  h−i+ k − ek = 0 (50.24)

so that we recover the Stoner result ek = k +  h−i  The gap equation is
obtained from

G (k) =
1

 − ek + 
(50.25)
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from which we extract the spin-dependent density

hi = 
X



1



X
k

1

 − ek + 
(50.26)

=
1



X
k

 (k +  h−i− )  (50.27)

Adding the previous equations to h↓i+ h↑i  we recover all the previous results
for the magnetization etc.
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51. INSTABILITY OF THE NOR-

MAL STATE

In this section, we will see that there are signs of the ferromagnetic instability in

the normal state itself. We will find a divergence of the q = 0 spin susceptibility.

That divergence is physical, but it also signals a breakdown of perturbation theory.

Starting from the normal state, we cannot go below the transition temperature,

or below the critical value of We first treat the  = 0 case and then include the

effect of interactions.

As a preamble, we recall why it is the connected function that we are interested

in

 hi


¯̄̄̄
=0

=




Tr
£
−(−)

¤
Tr
£
−(−)

¤ ¯̄̄̄¯
=0

(51.1)

= hi− hi hi ≡ hi  (51.2)

51.1 The noninteracting limit and rotational invari-

ance

The spin susceptibility is obtained from the spin-spin correlation function. Very

schematically, consider the connected part of the time-ordered product,

hi = h (↑ − ↓) (↑ − ↓)i (51.3)

= h↑↑i + h↓↓i − h↑↓i − h↓↑i (51.4)

We have assumed ~2 = 1 here for the purposes of this discussion. As illustrated in
Fig.(?), only the first two terms have non-zero contractions. Hence, for the nonin-

teracting system, the charge and spin susceptibilities are identical when expressed

in units ~2 = 1 since

hi = h (↑ + ↓) (↑ + ↓)i (51.5)

= h↑↑i + h↓↓i + h↑↓i + h↓↑i  (51.6)

Since the last two terms do not contribute, we are left for both spin and charge

with

0 (q ) = − 1


X
p


X


G0 (p+ q  + )G
0
 (p ) (51.7)

= − 2


X
p


¡
p
¢− 

¡
p+q

¢
 + p − p+q

 (51.8)
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Rotational invariance should give us in general, ven in the presence of interactions,­


+−
®

+
­


−+
®

=

1

4
h ( + ) ( − )i (51.9)

+
1

4
h ( − ) ( + )i (51.10)

=
1

2

¡hi + hi¢
= hi  (51.11)

This comes out indeed from considering the diagrams in Fig.(). At the outer ver-

tices, the spin must now flip as indicated because of the presence of the operators

+−.

51.2 Effect of interactions, the Feynman way

You can read the next section immediatly if you have read the previous part.

In the Hubbard model, we took into account the Pauli principle so that up

electrons interact only with down electrons. If we return to the original problem

where up can interact with down, we need to sum at the same time ladders and

bubbles in the way indicated in Fig.(?) to recover rotational invariance in an

RPA-like approximation. Since the interaction  is independent of momentum,

the two diagrams in Fig.(?a) cancel each other exactly and we are left only with

Fig.(?b) which corresponds to the theory where up interacts only with down.

In that theory, the set of diagrams that contributes to hi is given in
Fig.(?). It is different from the set of diagrams that contributes to h+−i +
h−+i but the final answer is the same in the paramgnetic state with no
broken symmetry. Bubbles only contribute to hi but the odd terms have
one extra minus sign because the minus sign in − h↑↓i − h↓↑i  Hence,
the result is exacly the same as for h+−i + h−+i that we compute
with the ladder sum in Fig.(?). Consider for example h+−i  There is one
minus sign for each order in perturbation theory, hence a factor (−) and since
there are no extra fermion loops included and  is momentum independent, it is

the quantity −02 that is multiplied when we increase the order by one. More
specifically, we obtain­


+−

®

=

0
2
+

0
2
(−)

³
−0
2

´
+

0
2
(−)2

³
−0
2

´2
+   (51.12)

=
02

1− 
2
0

 (51.13)

We thus obtain in Fourier space where the above equation is algebraic,

 =
­


+−
®

+
­


−+
®

= hi =

0

1− 
2
0

 (51.14)

At finite frequency, a retarded response function can be positive or negative be-

cause of resonnances. But at zero frequency, we are looking at thermodynamics,

hence a susceptibility must be positive. One can show that any  (q ) is positive

when 000 (q ) = −000 (q−), since

 (q ) =

Z




00 (q )
 − 

=

Z




00 (q )

()
2
+ ()

2
(51.15)
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hence a fortiori  (q 0) is positive. Hence, the RPA result Eq.(51.14) is non-

physical when 1  
2
0 (q 0)  There is a phase transition when the generalized

Stoner criterion

1 = 
2
0 (q 0) (51.16)

is satisfied. Note that the first wave vector for which the above result is satisfied is

the one that becomes unstable. It does not necessarily correspond to a uniform fer-

romagnet (q = 0). We will see a specific example below with the antiferromagnet.

In the special ferromagnetic case

lim
q→0

0 (q 0) = lim
q→0
− 2


X
p


¡
p
¢− 

¡
p+q

¢
p − p+q

= − 2


X
p


¡
p
¢

p
(51.17)

which reduces to 2 ( ) in the zero temperature limit. So we recover the simple

special case found previously for example in Eq.(50.6).

51.3 Magnetic structure factor and paramagnons

The transition to the ferromagnetic state is a continuous transition (or second

order transition in the mean-field language). It is signaled by a diverging suscepti-

bility. The correlation length is diverging at the transition point. We can see this

by expanding  (q0) near the transition point so that it becomes asymptotically

equal to

 (q0) ≈ 0 (0 0)

1− 
2
0 (q 0)−

¡

2

¢2 20(q0)

22
2
∼ 

−2 + 2
(51.18)

which shows an exponential decrease in real space with correlation length −2 ∼
1 − 

2
0 (q 0)  The above functional form is known by the name of Ornstein-

Zernicke. At the transition point, the system becomes “critical”. The transition

point itself is called a critical point. The presence of this long correlation length

also manifests itself in the existence of “critical slowing down”. In the present case,

we will discover an overdamped collective mode whose typical frequency decreases

as we approach the critical point.

Consider for example, the zero temperature transverse magnetic structure fac-

tor

⊥ (q ) =
2

1− −
00⊥ (q)  (51.19)

In the paramagnetic state there is rotational invariance so there is in fact no

difference between longitudinal and transverse. We see that  = 0, ⊥ (q ) =
200⊥ (q) for   0. The RPA prediction is thus,

⊥ (q ) = 2 Im

"
0

1− 
2
0

#
=

2000 (q )¡
1− 

2
00 (q )

¢2
+
¡

2
000 (q )

¢2(51.20)
≈ 2000 (q )

(1−  ( ))
2
+
¡

2
000 (q )

¢2  (51.21)

To evaluate 000 (q ), it suffices to analytically continue our general result for the
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non-interacting spin susceptibility Eq.(51.8) in the small q limit

0 (q ) = − 2


X
p


¡
p
¢− 

¡
p+q

¢
 +  + p − p+q

(51.22)

≈ − 2


X
p


¡
p
¢

p

p − p+q

 +  + p − p+q
(51.23)

and to use

p − p+q = −
p · q

− 2

2

as well as the fact that p in the integrand is constrained to lie near the Fermi

surface and that  À  so that p − p+q ≈ −v · q

0 (q ) = 2

Z
 ()

Z 1

−1

 (cos )

2

 (− )



  cos 

 +  −   cos 
(51.24)

000 (q ) = −2
Z

 ()

Z 1

−1

 (cos )

2

 (− )


 cos () ( −   cos )(51.25)

=  ( )


 
≡ 



 
(51.26)

Substituting in the RPA expression Eq.(51.20) we find

⊥ (q ) = 200⊥ (q) =
2 

 

(1−  ( ))
2
+
³
 

 

´2  (51.27)

This function is plotted in Fig.(?) as a function of  for two small values of

q and for  = 0 and  ( ) = 08 along with 200⊥ (q) . Clearly this

mode is in the particle-hole continuum, in other words it is overdamped. Also

its characteristic frequency is becoming smaller as the correlation length −2 ≈
1− ( ) increases, to eventually diverge at the critical point. We have a “soft
mode”. In the presence of a small uniform magnetic field , the low-frequency

small  limit takes the form

⊥ (q ) =


−2 + 2 + 23 −  
 

 (51.28)

51.4 Collective Goldstone mode, stability and the

Mermin-Wagner theorem

What do the collective modes look like in the ordered state? The energy to make

a particle-hole excitation by creating say a hole of up spin and a particle of down

spin, as can be done for example by scattering a neutron that flips its spin, is

k↓ − 
k ↑

= 
¡h↓i− ­↑®¢ =  This tells us, with   0 that there is a

gap

∆ = 

in the particle-hole continuum in the ordered state. We see in passing that the

equation for  is also the equation for the gap ∆. But that is not the whole
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story. We also need to look at the collective modes. It is a general result (Gold-

stone’s theorem) that when there is a continuous symmetry that is broken, such

as rotational symmetry, then there is a colletive mode whose frequency vanishes at

long wave lengths and whose role is to “restore” the symmetry. In the case of the

ferromagnet, it does not cost any energy to rotate the overall magnetization of the

system. This is the mode that restores the symmetry. At small  the frequency

will be very smalll by continuity.

51.4.1 Tranverse susceptibility

The longitudinal susceptibility is always gapped in the ordered state since it corre-

sponds to changing the magnetization. The transverse susceptibility on the other

hand is given by a RPA formula analogous to above Eq.(51.14). Being careful that

−+⊥ (q ) ≡ h+−i has one less factor of two in its definition we find,

−+⊥ (q ) =
−+0⊥ (q )

1− −+0⊥ (q )
(51.29)

with, given the new excitation spectrum in the ordered state, a new definition of

the “non-interacting” susceptibility −+0⊥ (q )

−+0⊥ (q ) = − 1


X
p

(ep+q↑)− (ep↓)
 +  + ep+q↑ − ep↓  (51.30)

that corresponds to the diagram in Fig.(?). Expanding as before in the small q

limit, we have for small wave vector

ep+q↑ − ep↓ ≈ v · q+ 
¡­
↓
®− h↑i¢ = v · q−∆ (51.31)

so that for v · q¿ ∆ we can expand,

−+0⊥ (q ) ≈ − 1


X
p

(ep+q↑)− (ep↓)
 +  −∆

×
"
1− v · q

 +  −∆ +

µ
v · q

 +  −∆
¶2
+ · · ·

#
(51.32)

≈ −
¡h↑i− ­↓®¢
 +  −∆

¡
1 +O

¡
2
¢¢
=

−∆
 +  −∆

"
1 +



( +  −∆)2
2

#
(51.33)

The above formula immediately gives that at  = 0 imaginary part is non vanishing

for  = ∆ i.e. there is a gap in the particle-hole continuum.

To see the effect of residual interactions in the ordered state, in other words the

effect of the interactions that are not taken care of by the mean field, we consider

the corresponding RPA result in the additional limit ||  ∆

−+⊥ (q ) =
−+0⊥ (q )

1− −+0⊥ (q )
≈

−∆
+−∆

1− −∆
+−∆ +  

(+−∆)2 
2
(51.34)

≈ −∆
 +  −2

 (51.35)
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The complete transverse spin susceptibility is obtained by combining the two re-

sults

−+⊥ (q ) + +−⊥ (q ) =
−∆

 +  −2
+

∆

 +  +2
(51.36)

= −∆


22

( + )
2 − (2)

2


In these expressions we have used that the calculation of −+0⊥ (q ) amounts to

changing ∆→ −∆ as can be seen by repeating the steps above with up and down
spins interchanged. Note also that the last form is that of the propagator for a

single boson of frequency 2 There is thus a collective mode at  = ±2 where

 = 
2∆

 We did not evaluate the constant 

This mode, a Goldstone mode, appears in the particle-hole continuum gap.

We can also see this from the imaginary part

Im
¡
−+⊥ (q ) + +−⊥ (q )

¢
= 
∆



¡
 −2

¢− 
∆



¡
 +2

¢
 (51.37)

It is thus a propagating mode and here it has a quadratic dispersion relation,

just like we find in the 1 expansion of ferromagnetic spin models. Stability

requires that  be positive, otherwise the condition for positivity of dissipation

Im
¡
−+⊥ (q ) + +−⊥ (q )

¢
  0 is violated.

51.4.2 Thermodynamics and the Mermin-Wagner theorem

The thermodynamic transverse susceptibility is obtained from the usual thermo-

dynamic sum rule (Note that Im
¡
−+⊥ (q 0) + +−⊥ (q 0)

¢
is odd but not each

of the terms individually).

−+⊥ (q  = 0) + +−⊥ (q  = 0) =

Z
0



Im
¡
−+⊥ (q 0) + +−⊥ (q 0)

¢
0

(51.38)

The contribution of the Goldstone mode to that susceptibility is easy to obtain

from our previous results

−+⊥ (q  = 0) + +−⊥ (q  = 0) =
∆



2

2
 (51.39)

Again we see that  must be positive if we want a positive susceptibility. Note

however that the divergence of the susceptibility at  = 0 is physical and does not

denote an instability of the system. It just reflects the fact that the orientation of

the magnetization can be changed at will, without energy cost, since the broken

rotation symmetry is a continuous symmetry. The 12 dependence of the last

result is very general. It is a consequence of so-called Bogoliubov inequalities

(Foster). Physically, in the original position space it means that there are long-

range correlations in  and in .

Despite the singular behavior in the long-wave length fluctuations, the local

quantities, such as
­
2
®
on one site for example, should be finite. This may be

obtained from the correlation function for h+−i since we still have rotation
symmetry around the  axis, so that

­
2
®
=
­
2
®
, and inversion symmetry, so

that hi = 0. This means that the following quantity


X


1



X
q

−+⊥ (q ) 
± (51.40)
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must be finite. Since + and − do not commute, we must specify the convergence
factor, as usual, but either one must give a finite result. But we know from the

previous section Eq.(51.35) that the spin-wave contribution to that susceptibility

is

−+⊥ (q ) =
−∆

 −2
 (51.41)

Substituting this in our previous condition and using the usual result

lim
→0


X




 − 
=

−1
 − 1 (51.42)

for performing the sum over bosonic Matsubara frequencies, we obtain in the long

wavelength limit


X


1



X
q

−∆
 −2

 =
∆



1



X
q

1

2 − 1 (51.43)

∼ ∆



Z


(2)




2
(51.44)

a quantity that diverges logarithmically in  = 2 That is a manifestation of the

Mermin-Wagner theorem, a much more general result that says that a continuous

symmetry cannot be broken in two dimension at finite temperature. In other

words, if we assume that a continuous symmetry is broken at finite temperature,

we find that the thermal fluctuations of the Goldstone modes destroy it.

Remark 152 A classical way to obtain the last result is to see that the free energy

functional should contains a term  (∇)2 as a restoring force for deviations
from the perfectly aligned state. In Fournier space, this means 2q−q so
that by the equipartition theorem, 2 hq−qi ∝  . Since the local value of­
2
®
is obtained from

R


(2)
hq−qi we recover the previous result Eq.(51.44)

concerning the divergence of local fluctuations in two dimensions.

51.4.3 Kanamori-Brückner screening: Why Stoner ferromagnetism has problems

Very early on, Kanamori in the context of Solid State Physics and Brückner in

the context of nuclear matter, found in the low density limit that interactions

 are renormalized by quantum fluctuations. Said in a less mysterious manner,

the cross section for two electrons scattering off each other should be calculated

beyond the Born approximation. As we have seen in the problem of one electron

scattering off and impurity in Fig.(?), in the case of only two electrons scattering

off each other, summing the Born series, or the analog of the Lipmann-Schwinger

equation, corresponds to summing the ladder diagrams in Fig. (?). This means

that in the calculation of the diagram in Fig.(?) that contributes to the transverse

spin susceptibility, we should use instead the diagram in Fig.(?). By flipping the

lines, one also sees that this is identical to computing the “fan diagrams” illustrated

in Fig.(?). In other words, everywhere  appears in the summationn of the ladder

diagrams to compute the transverse susceptibiloity, we should instead use

 (Q) =


1 + Λ (Q)
(51.45)

where Λ is given by the diagram in Fig.(?). To recover a simple momentum

independent   we average the above expression overQ In addition, we assume
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that the  = 0 piece dominates. It was shown by Chen et al. (1991) by

comparing the results of the above approximation with essentially exact quantum

Monte Carlo calculations, that this is a good approximation. It does not seem to

work however for the charge fluctuations.

The consequences of this effect are important. Indeed, there is a maximum

value of  given by the average of 1Λ (Q0)  This gives roughly the bandwidth

since physically this effect comes about from making the two-body wave function

small where  is large.This is more or less like making a node in the two-body

wave function. The maximum kinetic energy that can cost is the bandwidth 

Hence, the maximum of  is  On the other hand, the density of states

 ( ) is proportional to 1 So at best the product  ( ) can become

equal to unity with difficulty at large  . In more exact calculations, one sees

that ferromagnetism does not generally occur in the one-band Hubbard model,

because of this effect, except perhaps in special cases where there is a Van Hove

singularity in the density of states that is not located at half-filling (otherwise

antiferromagnetism dominates), a possibility that arises when 0 6= 0 (Hankevych
et al. 2004).

A more systematic way of taking these effects into account, including the charge

channel and the absence of ferromagnetism unless one is close to the Van Hove

singularity, is the TPSC that we introduced in the previous part.
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52. ANTIFERROMAGNETISMCLOSE

TO HALF-FILLING AND PSEUDO-

GAP IN TWO DIMENSIONS

We return to the normal state and look at the dominant instability in the half-

filled case  = 1. In that case, the Fermi surface of the Hubbard model with

nearest-neighbor hopping exhibits the phenomenon of nesting. For example, the

Fermi surface in the two-dimensional case is a diamond, as illustrated in Fig. (?).

All the points of the flat surfaces are connected by the same wave vectorQ =( )

which leads to a very large susceptibility. Whereas at low filling the maximum

susceptibility is at  = 0 in the present case it is a local maximum that is smaller

than the maximum at Q as we will see.

Let us compute the spin susceptibility at that nesting wave vector. Nesting in

the present case means that

p+Q = −2 (cos ( + ) + cos ( + )) = −p (52.1)

Using this result we find that the zero-frequency susceptibility at that wave vector

Q is

0 (Q 0) = − 2


X
p


¡
p
¢− 

¡
p+Q

¢
p − p+Q

= − 2


X
p


¡
p
¢− 

¡−p¢
2p

(52.2)

=
1



X
p

1− 2 ¡p¢
p

=
1

2

Z
 ()

tanh
³

2

´
2

 (52.3)

Assume that the density of states is a constant. For  À  we are integrating

1 However, for    the singularity in the denominator of the integrand is

cutoff. In other words, we obtain a contribution that diverges at low temperature

like ln ( ) where  is the bandwidth. This means that at sufficiently low

temperature, the criterion 1 − 
2
0 (Q 0) = 0 will always be satisfied whatever

the value of  and there will be a transition to a state characterized by the wave

vector Q. This is the antiferromagnetic state where spins alternate in direction

from one site to the other. In two dimensions for example, the chemical potential

at  = 1 sits right at a logarithmic van Hove singularity in  () so that in fact

0 (Q 0) scales like ln
2 ( ), which is larger than the single power of ln that

one would obtain at  = 0.

When there is no nesting, like when the next-nearest neighbor hopping 0 con-
tributes, the susceptibility does not diverge at low temperature. In that case, the

transition will occur only if  is large enough.

52.1 Pseudogap in the renormalized classical regime

When we compared TPSC with Quantum Monte Carlo simulations and with

FLEX in Fig. 48-2 above, perhaps you noticed that at the Fermi surface, the
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Figure 52-1 Cartoon explanation of the pseudogap due to precursors of long-range

order. When the antiferromagnetic correlation length  becomes larger than the

thermal de Broglie wavelength, there appears precursors of the  = 0 Bogoliubov

quasi-particles for the long-range ordered antiferromagnet. This can occur only in the

renormalized classical regime, below the dashed line on the left of the figure.

frequency dependent spectral weight has two peaks instead of one. In addition, at

zero frequency, it has a minimum instead of a maximum. That is called a pseudo-

gap. A cartoon explanation [?] of this pseudogap is given in Fig. 52-1. At high

temperature we start from a Fermi liquid, as illustrated in panel I. Now, suppose

the ground state has long-range antiferromagnetic order as in panel III, in other

words at a filling between half-filling and . In the mean-field approximation we

have a gap and the Bogoliubov transformation from fermion creation-annihilation

operators to quasi-particles has weight at both positive and negative energies. In

two dimensions, because of the Mermin-Wagner theorem, as soon as we raise the

temperature above zero, long-range order disappears, but the antiferromagnetic

correlation length  remains large so we obtain the pseudogap illustrated in panel

II. As we will explain analytically below, the pseudogap survives as long as  is

much larger than the thermal de Broglie wave length  ≡  ( ) in our usual

units. At the crossover temperature  , the relative size of  and  changes and

we recover the Fermi liquid.

We now proceed to sketch analytically where these results come from starting

from finite  . Details and more complete formulae may be found in Refs. [?, ?,

20, ?]1 . We begin from the TPSC expression (47.13) for the self-energy. Nor-

mally one has to do the sum over bosonic Matsubara frequencies first, but the

zero Matsubara frequency contribution has the correct asymptotic behavior in

fermionic frequencies  so that, as in Sect.48.2, one can once more isolate on

the right-hand side the contribution from the zero Matsubara frequency. In the

renormalized classical regime then, we have 2

Σ(k  ) ∝ 

Z
−1

1

2 + −2
1

 − k+Q+q
(52.4)

whereQ is the wave vector of the instability. This integral can be done analytically

1Note also the following study from zero temperature [?]
2This formula is similar to one that appeared in Ref.[?]
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in two dimensions [20, ?]. But it is more useful to analyze limiting cases [?].

Expanding around the points known as hot spots where k+Q = 0, we find after

analytical continuation that the imaginary part of the retarded self-energy at zero

frequency takes the form

Σ00(k  0) ∝ −
Z

−1⊥||
1

2⊥ + 2|| + −2
(0 ||) (52.5)

∝ 

0
3− (52.6)

In the last line, we just used dimensional analysis to do the integral.

The importance of dimension comes out clearly [?]. In  = 4, Σ00(k  0)
vanishes as temperature decreases,  = 3 is the marginal dimension and in  = 2

we have that Σ00(k  0) ∝  that diverges at zero temperature. In a Fermi

liquid the quantity Σ00(k  0) vanishes at zero temperature, hence in three or
four dimensions one recovers the Fermi liquid (or close to one in  = 3). But

in two dimensions, a diverging Σ00(k  0) corresponds to a vanishingly small
(k   = 0) as we can see from

(k ) =
−2Σ00(k  )

( − k −Σ0(k  ))2 +Σ00(k  )2  (52.7)

Fig. 31 of Ref.[?] illustrates graphically the relationship between the location of

the pseudogap and large scattering rates at the Fermi surface. At stronger  the

scattering rate is large over a broader region, leading to a depletion of (k) over

a broader range of k values.

Remark 153 Note that the condition  À 1, necessary to obtain a large

scattering rate, is in general harder to satisfy than the condition that corresponds to

being in the renormalized classical regime. Indeed,  À 1 corresponds  À
−1 while the condition  ¿  for the renormalized classical regime corresponds

to  À −2 with appropriate scale factors, because  scales as 
−2 as we saw

in Eq. (48.13) and below.

To understand the splitting into two peaks seen in Figs. 48-2 and 52-1 con-

sider the singular renormalized contribution coming from the spin fluctuations in

Eq. (52.4) at frequencies  À  
−1 Taking into account that contributions to

the integral come mostly from a region  ≤ −1, one finds

Σ0(k  ) =
µ


Z
−1

1

2 + −2

¶
1

 − k+Q

≡ ∆2

 − k+Q
(52.8)

which, when substituted in the expression for the spectral weight (52.7) leads to

large contributions when

 − k − ∆2

 − k+Q
= 0 (52.9)

or, equivalently,

 =
(k + k+Q)±

p
(k − k+Q)

2 + 4∆2

2
 (52.10)

which, at  = 0, corresponds to the position of the hot spots3. At finite frequen-

cies, this turns into the dispersion relation for the antiferromagnet [?].

3For comparisons with paramagnon theory see [?].
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It is important to understand that analogous arguments hold for any fluctua-

tion that becomes soft because of the Mermin-Wagner theorem,[20, ?] including

superconducting ones [20, ?, ?]. The wave vector Q would be different in each

case.

To understand better when Fermi liquid theory is valid and when it is replaced

by the pseudogap instead, it is useful to perform the calculations that lead to

Σ00(k  0) ∝  in the real frequency formalism. The details may be found in

Appendix D of Ref. [20].

52.2 Pseudogap in electron-doped cuprates

High-temperature superconductors are made of layers of CuO2 planes. The rest of

the structure is commonly considered as providing either electron or hole doping

of these planes depending on chemistry. At half-filling, or zero-doping, the ground

state is an antiferromagnet. As one dopes the planes, one reaches a doping, so-

called optimal doping, where the superconducting transition temperature  is

maximum. Let us start from optimal hole or electron doping and decrease doping

towards half-filling. That is the underdoped regime. In that regime, one observes

a curious phenomenon, the pseudogap. What this means is that as temperature

decreases, physical quantities behave as if the density of states near the Fermi

level was decreasing. Finding an explanation for this phenomenon has been one

of the major challenges of the field [?, ?].

To make progress, we need a microscopic model for high-temperature super-

conductors. Band structure calculations [?, ?] reveal that a single band crosses

the Fermi level. Hence, it is a common assumption that these materials can be

modeled by the one-band Hubbard model. Whether this is an oversimplification

is still a subject of controversy [?, ?, ?, ?, ?, ?]. Indeed, spectroscopic studies

[?, ?] show that hole doping occurs on the oxygen atoms. The resulting hole

behaves as a copper excitation because of Zhang-Rice [?] singlet formation. In ad-

dition, the phase diagram [?, ?, ?, ?, ?, ?] and many properties of the hole-doped

cuprates can be described by the one-band Hubbard model. Typically, the band

parameters that are used are: nearest-neighbor hopping  = 350 to 400 meV and

next-nearest-neighbor hopping 0 = −015 to −03 depending on the compound
[?, ?]. Third-nearest-neighbor hopping 00 = −050 is sometimes added to fit finer
details of the band structure [?]. The hoppings beyond nearest-neighbor mean

that particle-hole symmetry is lost even at the band structure level.

In electron-doped cuprates, the doping occurs on the copper, hence there is

little doubt that the single-band Hubbard model is even a better starting point in

this case. Band parameters [?] are similar to those of hole-doped cuprates. It is

sometimes claimed that there is a pseudogap only in the hole-doped cuprates. The

origin of the pseudogap is indeed probably different in the hole-doped cuprates.

But even though the standard signature of a pseudogap is absent in nuclear mag-

netic resonance [?] (NMR) there is definitely a pseudogap in the electron-doped

case as well [?], as can be seen in optical conductivity [?] and in Angle Resolved

Photoemission Spectroscopy (ARPES) [?]. As we show in the rest of this section,

in electron-doped cuprates strong evidence for the origin of the pseudogap is pro-

vided by detailed comparisons of TPSC with ARPES as well as by verification with

neutron scattering [?] that the TPSC condition for a pseudogap, namely   

is satisfied. The latter length makes sense from weak to intermediate coupling

when quasi-particles exist above the pseudogap temperature. In strong coupling,
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Figure 52-2 On the left, results of TPSC calculations [?, ?] at optimal doping,

 = 015 corresponding to filling 115 for  = 350 meV, 0 = −0175 j = 005
 = 575  = 120 The left-most panel is the magnitude of the spectral weight

times a Fermi function,  (k )  () at  = 0 so-called momentum-distribution

curve (MDC). Red (dark black) indicates larger value and purple (light grey) smaller

value. The next panel is  (k )  () for a set of fixed k values along the Fermi

surface. These are so-called energy-dispersion curves (EDC). The two panels to

the right are the corresponding experimental results [?] for Nd2−CeCuO4 Dotted
arrows show the correspondence between TPSC and experiment.

i.e. for values of  larger than that necessary for the Mott transition, there is

evidence that there is another mechanism for the formation of a pseudogap. This

is discussed at length in Refs. [?, ?] 4 . The recent discovery [?] that at sufficiently

large  there is a first order transition in the paramagnetic state between two

kinds of metals, one of which is highly anomalous, gives a sharper meaning to

what is meant by strong-coupling pseudogap.

Let us come back to modeling of electron-doped cuprates. Evidence that these

are less strongly coupled than their hole-doped counterparts comes from the fact

that a) The value of the optical gap at half-filling, ∼ 15 eV, is smaller than for
hole doping, ∼ 20 eV [?]. b) In a simple Thomas-Fermi picture, the screened

interaction scales like  Quantum cluster calculations [?] show that 

is smaller on the electron-doped side, hence  should be smaller. c) Mechanisms

based on the exchange of antiferromagnetic calculations with  at weak to in-

termediate coupling [?, ?] predict that the superconducting  increases with .

Hence  should decrease with increasing pressure in the simplest model where

pressure increases hopping  while leaving  essentially unchanged. The oppo-

site behavior, expected at strong coupling where  = 42 is relevant [?, ?], is

observed in the hole-doped cuprates. d) Finally and most importantly, there is

detailed agreement between TPSC calculations [?, ?, ?] and measurements such

as ARPES [?, ?], optical conductivity [?] and neutron [?] scattering.

To illustrate the last point, consider Fig. 52-2 that compares TPSC calcula-

tions with experimental results for ARPES. Apart from a tail in the experimental

results, the agreement is striking. 5. In particular, if there was no interaction, the

Fermi surface would be a line (red) on the momentum distribution curve (MDC).

4See also conclusion of Ref.[?].
5 Such tails tend to disappear in more recent laser ARPES measurements on hole-doped com-

pounds [?].
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Figure 52-3

Instead, it seems to disappear at symmetrical points displaced from (2 2) 

These points, so-called hot spots, are linked by the wave vector ( ) to other

points on the Fermi surface. This is where the antiferromagnetic gap would open

first if there was long-range order. The pull back of the weight from  = 0 at the

hot spots is close to the experimental value: 100 meV for the 15% doping shown,

and 300 meV for 10% doping (not shown). More detailed ARPES spectra and

comparisons with experiment are shown in Ref. [?]. The value of the temperature

 ∗ at which the pseudogap appears [?] is also close to that observed in optical
spectroscopy [?]. In addition, the size of the pseudogap is about ten times  ∗ in
the calculation as well as in the experiments. For optical spectroscopy, vertex cor-

rections (see Sect. ??) have to be added to be more quantitative. Experimentally,

the value of  ∗ is about twice the antiferromagnetic transition temperature up to
 = 013. That can be obtained [?] by taking  = 003 for hopping in the third

direction. Recall that in strictly two dimensions, there is no long-range order.

Antiferromagnetism appears on a much larger range of dopings for electron-doped

than for hole-doped cuprates.

These TPSC calculations have predicted the value of the pseudogap temper-

ature at  = 013 before it was observed experimentally [?] by a group unaware

of the theoretical prediction in Fig.52-3. In addition, the prediction that  should

scale like  at the pseudogap temperature has been verified in neutron scattering

experiments [?] in the range  = 004 to  = 015. The range of temperatures and

doping explored in that work is shown in Fig. 52-4. Note that the antiferromag-

netic phase boundary, that occurs here because of coupling in the third dimension,

is at a location different from earlier estimates that appear in Fig. 52-3. However,

the location of the pseudogp temperature has not changed. At the doping that

corresponds to optimal doping,  ∗ becomes of the order of 100 K, more than four
times lower than at  = 004 The antiferromagnetic correlation length  beyond

optimal doping begins to decrease and violate the scaling of  with  In that

doping range,  ∗ and the superconducting transition temperature are close. Hence
it is likely that there is interference between the two phenomena [?], an effect that

has not yet been taken into account in TPSC.

An important prediction that one should verify is that inelastic neutron scat-

tering will find over-damped spin fluctuations in the pseudogap regime and that

the characteristic spin fluctuation energy will be smaller than  whenever a

pseudogap is present. Equality should occur above  ∗.
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Figure 52-4

Finally, note that the agreement found in Fig. 52-2 between ARPES and TPSC

is for  ∼ 6 At smaller values of  the antiferromagnetic correlations are not

strong enough to produce a pseudogap in that temperature range. For larger  the

weight near (2 2) disappears, in disagreement with experiments. The same

value of  is found for the same reasons in strong coupling calculations with Cluster

Perturbation Theory (CPT) [?] and with slave boson methods [?]. Recent first

principle calculations [?] find essentially the same value of  In that approach, the

value of  is fixed, whereas in TPSC it was necessary to increase  by about 10%

moving towards half-filling to get the best agreement with experiment. In any case,

it is quite satisfying that weak and strong coupling methods agree on the value of 

for electron-doped cuprates. This value of  is very near the critical value for the

Mott transition at half-filling [?]. Hence, antiferromagnetic fluctuations at finite

doping can be very well described by Slater-like physics (nesting) in electron-doped

cuprates.

For recent calculations including the effect of the third dimension on the

pseudogap see [?]. Finally, note that the analog of the above mechanism for the

pseudogap has also been seen in two-dimensional charge-density wave dichalco-

genides [?].

PSEUDOGAP IN ELECTRON-DOPED CUPRATES 429



430 ANTIFER-

ROMAGNETISM CLOSE TO HALF-FILLING AND PSEUDOGAP IN TWO DIMENSIONS



53. ADDITIONALREMARKS: HUBBARD-

STRATONOVICH TRANSFORMA-

TION AND CRITICAL PHENOM-

ENA

ADDITIONAL REMARKS: HUBBARD-STRATONOVICH TRANSFORMATION AND

CRITICAL PHENOMENA 431



432 ADDITIONAL REMARKS:

HUBBARD-STRATONOVICH TRANSFORMATION AND CRITICAL PHENOMENA



Part VIII

Appendices

433





A. FEYNMAN’S DERIVATION OF

THE THERMODYNAMIC VARIA-

TIONAL PRINCIPLE FOR QUAN-

TUM SYSTEMS

For quantum systems, the general result Eq.(30.60) applies but it is more difficult

to prove because there is in general no basis that diagonalizes simultaneously

each and every term in the expansion of  exp
h
− R 

0
 e ()i  If e was not time

dependent, as in the classical case, then matters would be different since e  would

be diagonal in the same basis as e and one could apply our inequality Eq.(30.58)

in this diagonal basis and prove the theorem. The proof of the variational principle

in the quantum case is thus more complicated because of the non-commutation

of operators. The proof given in Sec. 30.3.2 is simpler than this one. As far as I

know, the following proof is due to Feynman [17].

Proof: First, let

 () = e0 + 
³
 − e0

´
(A.1)

= e0 + e (A.2)

then

 (0) = e0 (A.3)

and

 (1) =  (A.4)

The exact free energy corresponding to  () is then written as  ()  If

for any  we can prove that 2 () 2 ≤ 0 then the function  () is

concave downward and we can write

 (1) ≤  (0) +
 ()



¯̄̄̄
=0

(A.5)

as illustrated in Fig.(A-1). Eq.(A.5) is the variational principle that we want

Eq.(30.60). Indeed, let us compute the first derivative of  () by going to

the interaction representation where e0 plays the role of the unperturbed

Hamiltonian and use the result for  in terms of connected graphs Eq.(30.57)

to obtain

 ()



¯̄̄̄
=0

=




n
−

hD


h
−



0
( ()− 0)

iE
0 − 1

io
=0
(A.6)

= 

*Z 

0


³ b ()− e0

´+
0 (A.7)

=
D
 − e0

E
0 (A.8)

The second line follows simply by expanding the time-ordered product to

first order while the last line follows if we use the cyclic property of the trace
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Figure A-1 Geometrical significance of the inequalities leading to the quantum

thermodynamic variational principle.

to eliminate the imaginary-time dependence of the Hamiltonian. All that we

have to do now is to evaluate the second derivative 2 () 2 ≤ 0 for an
arbitrary value of  This is more painful and will occupy us for the rest of

this proof. It is important to realize that this concavity property of the free-

energy is independent on the form of the Hamiltonian in general and of the

interactions in particular, as long as the Hamiltonian is time-independent.

The generalization to the time-dependent case is not obvious. The second

derivative may be evaluated by going to the interaction representation where

 () is the unperturbed Hamiltonian and 
³
 − e0

´
is the perturbation.

Then,

 (+ ) = −
∙D



h
−




0
( ()− 0)

iE

− 1
¸
−  ln () (A.9)

and the second derivative of  () may be obtained from the second-order

term in  in the above expression. Note that the average is taken with

the density matrix exp ( ()− )  ()  Expanding the exponential to

second order in  and returning to our definition of e Eq.(A.2) we find

 (+ ) =  () + 
De E


− 1
2
2

⎛⎝ 1


*


"
−

Z 

0

 e ()#2+


⎞⎠+   

 (+ ) =  () +
 ()


+
1

2
2

2 ()

2
+    (A.10)

so that the second derivative, using the expression we found above for the

second cumulant Eq.(30.55) is,

2 ()

2
= − 1



*


⎡⎣Ã−Z 

0

 e ()!2
⎤⎦+



(A.11)

= − 1


*


⎡⎣Ã−Z 

0

 e ()!2
⎤⎦+



+
1



*Z 

0

 e ()+2

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This is where we need to roll up our sleeves and do a bit of algebra. Using

the cyclic property of the trace and the definition of time-ordered product,

we can rewrite the above result as follows,

2 ()

2
= −2 1



*Z 

0

 e ()Z 

0

 0 e ( 0)+


+ 
De E2


(A.12)

Let us work a bit on the first term by going to the basis where  () is

diagonal. We obtain, using also the cyclic property of the trace,*Z 

0

 e ()Z 

0

 0 e ( 0)+


(A.13)

=
1

 ()

X


−

Z 

0



Z 

0

 0(− 0)−(− 0)
¯̄̄
h| e |i¯̄̄2

=
1

 ()

X
6=

−

Z 

0

(−)
(−)

0

 −

¯̄̄̄
¯


0

¯̄̄
h| e |i¯̄̄2

+
1

 ()

X


−

Z 

0


¯̄̄
h| e |i¯̄̄2 (A.14)

=
1

 ()

X
6=

−

Z 

0


1− (−)

 −

¯̄̄
h| e |i¯̄̄2 (A.15)

+
2

2 ()

X


−
¯̄̄
h| e |i¯̄̄2 (A.16)

The first term on the right-hand side is easily evaluated as follows

1

 ()

X
6=

−

"


 −

+
(−) − 1
( −)

2

# ¯̄̄
h| e |i¯̄̄2

=


 ()

X
6=

−

¯̄̄
h| e |i¯̄̄2
 −

(A.17)

where we have used the fact that the term with the denominator ( −)
2

goes into minus itself under a change of dummy summation variables ←→
 Substituting all we have done in the expression for the second derivative

Eq.(A.12) we finally obtain

2 ()

2
= − 2

 ()

X
6=

−

¯̄̄
h| e |i¯̄̄2
 −

(A.18)

−

⎛⎜⎝
P

 
−

¯̄̄
h| e |i¯̄̄2

 ()
−
ÃP

 
− h| e |i
 ()

!2⎞⎟⎠
The terms on the last line gives a negative contribution, as can be seen from

the Cauchy-Schwarz inequality"X


||2
#"X



||2
#
≥
¯̄̄̄
¯X




¯̄̄̄
¯
2

(A.19)
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when we substitute

 =

s
−

 ()
(A.20)

 =

s
−

 ()
h| e |i (A.21)

This allows us to prove that the sign of the second derivative is negative for

any  It suffices to rewrite the first term in Eq.(A.18) in the form

− 2

 ()

X
6=

−

¯̄̄
h| e |i¯̄̄2
 −

= − 1

 ()

X
6=

− − −

 −

¯̄̄
h| e |i¯̄̄2

(A.22)

and to use the Cauchy-Schwartz inequality to obtain

2 ()

2
≤ − 1

 ()

X
6=

− − −

 −

¯̄̄
h| e |i¯̄̄2 ≤ 0 (A.23)

QED
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C. DEFINITIONS

1. Canonical averageP
 
− h| O |iP
 
− =

P
 h| −O |iP

 
− =


£
−O¤

 [− ]
= hOi (C.1)

2. We often define the density matrix by

b = −Tr
£
−

¤
 (C.2)

Then, we can write

h ()i = Tr [b ()] (C.3)

3. Conductivity sum ruleZ ∞
−∞



2
 [( )] =

2

2
=

2

8
(C.4)

4. Dielectric constants

←→
 (q ) =

Ã
1− 2

( + )2

!
←→
 +

4

( + )2

µ←→
jj(q )

¶
 (C.5)

1

(q )
= 1− 4

2
(q ) (C.6)

5. Equalities.

≈   (C.7)

∼   (C.8)

≡    

6. f sum rule Z ∞
−∞




”(k ) =

k2


 (C.9)

7. Fluctuation-dissipation theorem

 () =
2~

1− −~
” () (C.10)

8. Fourier transforms

k =

Z
3 (r)e

−k·r

(r) =

Z
3

(2)
3
ke

k·r

 =

Z
 ()

() =

Z


2

−
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(note the difference in sign in the exponent for space and time Fourier trans-

forms.)

Convolution theorem:Z


∙Z
0(0)(− 0)

¸
≡ 

Parseval’s theorem is obtained by taking
R


2
on both sides of the previous

equality Z
0(0)(−0) ≡

Z


2


The above two theorems may also be written in a reciprocal mannerZ


2
−

∙Z
0

2
0−0

¸
= ()()

Z
0

2
0−0 =

Z
()()

9. Heisenberg representation

O() = ~O−~

10. Interaction representation

O() = 0~O
−0~

~



( 0) = H()( 0) (C.11)

( 0) = 
−  

0
H(

0)0

(0 0) = 1

1. Kramers-Krönig relations


h
 ()

i
= P

Z
0




h
 (

0)
i

0 − 


h
 ()

i
= −P

Z
0




h
 (

0)
i

0 − 


2. Kubo formula for longitudinal conductivity

( ) =
1

( + )

∙
( )−

2



¸
=

∙
1


( )

¸
 (C.12)

for transverse conductivity

( ) =
1

( + )

∙
( )−

2



¸
 (C.13)
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3. Mathematical identities

lim
→0

1

 + 
= lim

→0
 − 

2 + 2
= lim

→0

∙


2 + 2
− 

2 + 2

¸
= P 1


− ()

lim
→0

1

 − 
= lim

→0
 + 

2 + 2
= lim

→0

∙


2 + 2
+



2 + 2

¸
= P 1


+ ()

4. Normalization:

Continuum normalization for plane waves:

hR| |ki = 1

Ω12
k·R (C.14)Z

k

(2)
3
=
1

V
X
k

; V =  ;  =



 ;  = −


+1 −1 0 1  



(C.15)Z
r |ri hr| = 1 (C.16)

hr| |r0i =  (r− r0) (C.17)

hr| |ki = k·r (C.18)Z
k

(2)
3
|ki hk| = 1 (C.19)

hk| |k0i = (2)3  ¡k− k0¢
5. Plasma frequency

2 =
42


(C.20)

6. Response function (Susceptibility)

(r r
0;  0) =



~
h[(r ) (r0 0)]i (− 0)

or in short hand,

” (− 0) =
1

2~
h[() (

0)]i 

 (− 0) = 2” (− 0)(− 0)

For operators with the same signature under time reversal,


h
 ()

i
= ” ()

while two operators   with opposite signatures under time reversal


h
 ()

i
= ” ()

Spectral representation

 () =

Z
0



” (
0)

0 − 
(C.21)
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7. Tensors. Multiplication by a vectorµ←→
 ·A

¶


=
X


  (C.22)

Transverse part

←→
 (q ) =

³←→
I −bqbq´ ·←→ (q ) · ³←→I −bqbq´ (C.23)

Longitudinal part ←→
(q ) = bqbq ·←→ (q ) · bqbq (C.24)

8. Thermal average (see canonical average)

9. Theta function (Heaviside function)

() =
1 if   0

0 if   0
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