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2. CORRELATION FUNCTIONS

Whenever the N-body problem can be solved exactly in d dimensions, the result
is a function of Nd coordinates and of time, Ψ(x1, y1, ..., xd, yd, ...; t). Variational
approaches, such as that used in the description of the fractional Quantum-Hall
effect, start from such a wave-function. While all the Physics is in the wave-
function, it is sometimes not easy to develop a Physical intuition for the result.
In the cases where perturbation theory can be applied, Feynman diagrams help
develop a physical intuition. Also, variational wave functions are usually chosen
with a few physically motivated parameters.
Whether perturbation theory is applicable or not, we rarely need all the in-

formation contained in the wave-function. A reduced description in terms of only
a few variables suffices if it allows us to explain what can be observed by experi-
mental probes. Correlation functions offer us such a description.
In this Chapter, we will introduce correlation functions. First, we show that

what is measured by experimental probes can in general be expressed as a correla-
tion function, whether the experiment is a scattering experiment, such as neutron
diffraction, or a transport measurement in the linear response regime.
Whatever the appropriate microscopic description of the system, or whatever

the underlying broken symmetry, the result of any given type of experiment can
be expressed as a specific correlation function.
We will need to treat two different aspects of correlation functions.
First, general properties, which are independent from the specific manner in

which we compute correlation functions. For example

• Symmetries
• Positivity
• Fluctuation-dissipation theorems relating linear response and equilibrium
fluctuations

• Kramers-Kronig transformations, which follow from causality

• Kubo relations, such as that relating linear response to a specific correlation
function.

• Sum rules

• Goldstone theorem, which follows from Bogoliubov inequalities

Second, we will need to develop techniques to compute specific correlation func-
tions. Sometimes, phenomenological considerations suffice to find, with unknown
parameters, the functional dependence of correlations functions on say wave-vector
and frequency. These phenomenological considerations apply in particular in the
hydrodynamic regime, and whenever projection operator techniques are used.
Microscopic approaches will lead us to use another type of correlation functions,

namely Green’s functions. They will occupy a large fraction of this book. In fact,
Green’s function are just one type of correlation function. They will appear very
naturally. Furthermore, many of the general properties of correlation functions
which we discuss in the present chapter will transpose directly to these functions.
Much of this chapter is inspired from Foster.[1]
In the present chapter, we intend to
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• Show that scattering experiments are a measure of equilibrium fluctuations

• Linear response to an external perturbation can be expressed as an equilib-
rium correlation function

And this correlation function can be related to equilibrium fluctuations by the
fluctuation-dissipation theorem.

• Then we discuss general properties of correlation functions
• Give a specific example of sum-rule calculation.

2.1 Relation between correlation functions and ex-
periments

We want to illustrate the fact that scattering experiments with weak probes usually
measure various equilibrium correlation functions of a system. What we mean by
“weak probes” is simply that Fermi’s Golden rule and the Born approximation
are all that we need to describe the effect of the system on the external probe,
and vice-versa. As an example, we will describe in detail the case of inelastic
electron scattering but it should be clear that similar considerations apply to a
large number of cases: inelastic light scattering, neutron scattering, etc... The
plan is simply to use Fermi’s Golden Rule to compute the cross section. We will
obtain

dσ
d²fdΩf

=
h

m2

(2π)3~5
kf
ki

¯̄
V c−q

¯̄2i R
dt eiωt

­
ρq(t)ρ−q(0)

®
(2.1)

Forgetting for the moment all the details, the key point is that the cross section is
related to the Fourier transform of the density-density correlation function. The
trick, due to Van Hove, to derive this formula from the Golden rule is to use the
Dirac representation of the delta function for energy conservation and the Heisen-
berg representation to express the final result as a correlation function. Since in
the Born approximation, incident and final states of the probe are plane waves,
everything about the probe is known. The only reference to it will be through ex-
plicitly known matrix elements and quantum numbers, such as momentum, energy,
spin etc...
Consider the experiment illustrated on figure (2-1). V is the volume of the

system, and Ω a quantization volume.
The Hamiltonian of the system is H and the interaction between the probe

electron and the system is simply the potential energy v(R) felt by the probe-
electron of charge e at position R due to the N other charged particles inside the
system, namely

v(R) =
NX
α=1

eαV
c(R− rα) =

Z
d3rρ(r)V c(R− r) (2.2)

with V c(R) the Coulomb potential and

ρ(r) =
NX
α=1

eαδ(r− rα) (2.3)

16 CORRELATION FUNCTIONS



Ω

e

V
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f

Figure 2-1 Electron scattering experiment. Ω is the quantization volume for the
incoming and outgoing plane waves while V is the sample’s volume. Each charge
inside is labeled by eα while the probe’s charge is e and the incident and outgoing
momenta are resprectively ki and kf .

the charge density operator for the system being probed. Fermi’s Golden rule tells
us that the transition rate from an initial state i to a final state f is given by

Pi→f = 2π
~ |Vfi|2 δ(Ef −Ei − ~ω) (2.4)

where Ei is the initial energy of the system and Ef the final one. Correspondingly,
the initial and final energies and momentum of the probe electron are given by,

²f = ²i − ~ω
~kf = ~ki − ~q. (2.5)

We proceed to evaluate the matrix element as far as we can. It should be
easy to eliminate explicit reference to the probe electron since it has rather trivial
plane-wave initial and final states. It is natural to work in the basis where the
system’s initial and final eigenstates are energy eigenstates, respectively |ii and
|fi , while for the probe electron they are |kii and |kf i. The latter eigenstates in
the box of volume Ω are plane waves:

hR |kii = 1

Ω1/2
eiki·R

Then, in the Born approximation, we have that

Vfi = hf |⊗ hkf |
Z
d3rρ(r)V c(R− r) |kii⊗ |ii (2.6)

where the plane-wave matrix element can easily be evaluatedZ
d3R hkf | Ri V c(R− r) hR| kii = Ω−1

Z
d3Rei(ki−kf )·RV c(R− r) = V c−q

Ω
eiq·r

(2.7)
so that substitution in the expression for the matrix element gives,

Vfi =
V c−q
Ω

Z
d3r hf | ρ(r) |ii eiq·r = V c−q

Ω
hf | ρ−q |ii . (2.8)

Substituting back in Fermi’s Golden rule (2.4), we obtain

Pi→f =
2π

~

¯̄̄̄
V c−q
Ω

¯̄̄̄2
hi| ρq |fi hf | ρ−q |ii δ(Ef −Ei − ~ω). (2.9)

Only the momentum and energy of the probe electron appear in this final expres-
sion, as we had set-up to do.
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Définition 1 Note in passing that we use the following definitions for Fourier
transforms in the continuum

fq =
R
d3r f(r)e−iq·r (2.10)

f(r) =
R

d3k
(2π)3

fqe
iq·r (2.11)

gω =
R
dt g(t)eiωt (2.12)

g(t) =
R
dω
2π gωe

−iωt (2.13)

To compute the cross section of that probe electron, one proceeds in the usual
manner described in textbooks. We will use a standard approach, but a more
satisfactory derivation of cross section based on incident wave packets can be
found in Ref.([4]). The total cross section, whose units are those of a surface, is
equal to

σ =
Number of transitions per unit time

Number of incident particles per unit time per unit surface
(2.14)

What we want is the differential cross section, in other words we want the cross
section per solid angle dΩf and per energy interval d²f . This is computed as
follows. Since we cannot resolve the final electron state to better than d²fdΩf
all the final states in this interval should be counted. In other words, we should
multiply Pi→f by the number of free electron states in this interval, namely

Ωd3kf/(2π)
3 = Ωkfmd²fdΩf~−2/(2π)3. (2.15)

We should also trace over all final states |fi of the system since those are not
measured. These states are constrained by conservation laws as we can see from
the fact that energy conservation is insured explicitly by the delta function, while
momentum conservation should come out automatically from the matrix element.
The initial state of the system is also unknown. On the other hand, we know that
the system is in thermal equilibrium, so a canonical average over energy eigenstates
should give us the expected result. The differential cross section for scattering in
an energy interval d²f and solid angle dΩf should then read,

dσ

d²fdΩf
=
Number of transitions per unit time in given solid angle and energy interval

Number of incident particules per unit time per unit surface
.

(2.16)

=

·
Ωkfm~−2/(2π)3

~ki/(mΩ)

¸ P
i e
−βEiP

f Pi→fP
i e
−βEi

where we have used that the number of incident particles per unit time per unit
surface is the velocity ~ki/m divided by the volume.
When we substitute the explicit expression for the transition probability in this

last equation, it is possible to make the result look like an equilibrium correlation
function by using Van Hove’s trick to rewrite the matrix elements coming in the
transition probability. Using the Heisenberg representation for the time evolution
of the operators

O(t) = eiHt/~Oe−iHt/~ (2.17)

and taking H as the Hamiltonian for the system excluding probe electron, we
have, H |ii = Ei |ii so that

2π~ hi| ρq |fi δ(Ef −Ei − ~ω) =
Z
dt eiωt hi| ρq |fi e−i(Ef−Ei)t/~ (2.18)

18 CORRELATION FUNCTIONS



=

Z
dt eiωt hi| eiHt/~ρqe−iHt/~ |fi =

Z
dt eiωt hi| ρq(t) |fi . (2.19)

Substituting this expression in the equation for the transition probability, (2.9)

X
f

Pi→f = 2π
¯̄̄̄
V c−q
Ω~

¯̄̄̄2 Z
dt eiωt hi| ρq(t)ρ−q(0) |ii (2.20)

the cross section is proportional toP
i e
−βEi R dt eiωt hi| ρq(t)ρ−q(0) |iiP

i e
−βEi =

P
i

R
dt eiωt hi| e−βHρq(t)ρ−q(0) |iiP

i e
−βEi

(2.21)

=

Z
dt eiωt

Tr
£
e−βHρq(t)ρ−q(0)

¤
Tr [e−βH ]

=

Z
dt eiωt

­
ρq(t)ρ−q(0)

®
. (2.22)

More explicitly, we find Eq.(2.1) quoted at the beginning of the section. We
thus have succeeded in expressing the inelastic electron-scattering experiment as
a measurement of equilibrium density fluctuations!

Définition 2 In the last equation, we have also introduced what we mean by the
thermal average hi . Here we used the canonical ensemble, but we will mostly use
the grand-canonical one. The only change implied is e−βH → e−β(H−µN). Note
also that the quantity

ρ ≡ e−βH
Tr[e−βH ] (2.23)

is often called the density matrix. The fact that thermal averages are traces is an
important fact that we will often use later.

2.2 Linear-response theory

We are interested in the response of a system to a weak external perturbation.
The electrical conductivity is the response to a weak applied field, the thermal
conductivity the response to a thermal gradient etc... The result will be again
an equilibrium correlation function. We will be able to relate this correlation
function to equilibrium correlation functions of the type just calculated at the end
of the last section by developing the so-called “fluctuation-dissipation theorem”.
The plan to compute the effect of an external perturbation is to add it to the
Hamiltonian and then to treat it as a perturbation, taking the full interacting
Hamiltonian of the system H0 as the unperturbed Hamiltonian.
Let

H (t) = H0 + δH(t) (2.24)

where H0 is the Hamiltonian of the system under study and δH(t) is the pertur-
bation given by the time-dependent Hamiltonian

δH(t)= − R d3rAi(r)ai(r,t). (2.25)

In this expression, Ai is some observable of the system (excluding external per-
turbation) in the Schrödinger representation, while ai(r,t) is the external field.
Examples of such couplings to external fields include the coupling to a magnetic
field h through the magnetization M, (Ai (r) = Mz (r) ; ai(r,t) = hz(r, t)) or
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the coupling to an electromagnetic vector potential A/c through a current j,
(Ai (r) = jx(r)δi,x; ai(r,t) = Ax(r,t)δi,x/c) or that of a scalar potential φ through
the density ρ (Ai (r) = ρ (r) ; ai(r,t) = φ(r, t)). In this approach, it is clear that
the external perturbation is represented in the semi-classical approximation, in
other words it is not quantized. We first pause to recall the various representa-
tions, or pictures, of quantum mechanics, introducing the interaction representa-
tion as the framework where perturbation theory is most easily formulated. Then
we go on to derive linear response theory.

2.2.1 Schrödinger and Heisenberg pictures.

Since the Hamiltonian is the infinitesimal generator of time translations, Schrödinger’s
equation for a time-dependent Hamiltonian takes the same form as usual,

i~
∂ψS
∂t

= H(t)ψS . (2.26)

Using the fact that H(t) is Hermitian, one can easily prove that ∂ (ψ∗SψS) /∂t = 0,
in other words that probability is conserved. Hence, the solution of this equation
will be given by

ψS(t) = U(t, t0)ψS(t0) (2.27)

where U(t, t0) is a unitary operator satisfying

U(t0, t0) = 1 (2.28)

while by time-reversal symmetry

U(t0, t)U(t, t0) = 1. (2.29a)

Conservation of probability gives

U(t, t0)
†U(t, t0) = 1 (2.30)

so that combining the last result with the definition of the inverse, we have,

U(t, t0)
−1 = U(t, t0)†. (2.31)

Furthermore, when we can use time-reversal invariance, Eq.(2.29a), we also have

U(t, t0)
−1 = U(t, t0)† = U(t0, t). (2.32)

By definition, for all values of t, the expectation value of an operator is the
same in either the Schrödinger, or the Heisenberg picture.

hψS (t)|OS |ψS (t)i = hψH | OH (t) |ψHi . (2.33)

In the Heisenberg picture the operators are time-dependent while in the Schrödinger
picture, only the wave functions are time dependent. Let us choose t = 0 to be
the time where both representations coincide. The choice of this time is arbitrary,
but taking t = 0 simplifies greatly the notation. We have then that

OS(t = 0) = OH(t = 0) ≡ OS (2.34)

ψS (t = 0) = ψH (t = 0) ≡ ψS (2.35)
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Using the expression for the time-dependent wave function, and the equality of
matrix elements Eq.(2.33), we obtain

OH(t) = U†(t, 0)OSU(t, 0). (2.36)

One recovers all the usual results for time-independent Hamiltonians by noting
that in this case, the solution of Schrödinger’s equation is,

U(t, t0) = e
−iH(t−t0)/~ . (2.37)

Remarque 1 When there is time-reversal invariance, then it is useful to replace
the adjoint by the time-reversed operator, so that the connection between Heisen-
berg and Schrödinger picture Eq.(2.36) becomes

OH(t) = U(0, t)OSU(t, 0). (2.38)

Because we do not want to assume for the time being that there is time-reversal
invariance, we shall stick here with the usual expression Eq.(2.36) but in much of
the later chapters, the above representation will be used.

2.2.2 Interaction picture and perturbation theory

Perturbation theory is best formulated in the “interaction representation”. In this
picture, one can think of both operators and wave functions as evolving, as we
will see. We take

H (t) = H0 + δH(t) (2.39)

where H0 is time-independent as above, but the proof can be generalized to time-
dependent H0 simply by replacing eiH0t/~ everywhere below by the appropriate
evolution operator.
The definition of the evolution operator in the interaction representation UI(t, 0)

is given by
U(t, 0) ≡ e−iH0t/~UI(t, 0). (2.40)

and
U(0, t) ≡ UI(0, t)eiH0t/~ . (2.41)

so that for example

U(t, t0) ≡ e−iH0t/~UI(t, t0)e
iH0t0/~ (2.42)

We have used the fact that UI(t, t0) obeys the same general properties of unitarity
as an ordinary evolution operator, as can easily be checked. Again the interaction
representation will coincide with the other two at t = 0. The justification for
the definition of UI abobe is that when the external perturbation δH(t) is small,
UI(t, t0) is close to unity. If we write again the equality of matrix elements in the
general case, we obtain

hψS (t)| OS |ψS (t)i = hψS |U†(t, 0)OSU(t, 0) |ψSi (2.43)

= hψS |U†I (t, 0)eiH0t/~OSe−iH0t/~UI(t, 0) |ψSi (2.44)

= hψS |U†I (t, 0)OI (t)UI(t, 0) |ψSi (2.45)

LINEAR-RESPONSE THEORY 21



This last result is important. It can be interpreted as saying that the operators
in the interaction representation evolve with

OI (t) = eiH0t/~OSe−iH0t/~ (2.46)

while the wave functions obey

|ψI (t)i = UI(t, 0) |ψSi (2.47)

In other words, in the interaction picture both the operators and the wave function
evolve. We still have to find the equation of motion for UI(t, t0). The result will
justify why we introduced the interaction representation. Start from Schrödinger’s
equation,

i~
∂U(t, t0)

∂t
= H(t)U(t, t0) (2.48)

which gives the equation of motion for UI(t, 0), namely

H0e
−iH0t/~UI(t, 0) + e

−iH0t/~ i~
∂

∂t
UI(t, 0) = H(t)e−iH0t/~UI(t, 0) (2.49)

i~
∂

∂t
UI(t, 0) = e

iH0t/~δH(t)e−iH0t/~UI(t, 0). (2.50)

so that using the definition of time evolution of an arbitrary operator in the inter-
action representation as above (2.46) the equation for the time evolution operator
UI(t, 0) in the interaction representation may be written,

i~
∂

∂t
UI(t, 0) = δHI(t)UI(t, 0) (2.51)

with the initial condition
UI(0, 0) = 1. (2.52)

As expected, Eq.(2.51) tells us that, if there is no perturbation, UI is equal to
unity for all times and only the operators and not the wave function evolve. The
interaction representation then reduces to the Heisenberg representation. Multi-
plying the equation of motion from the right by UI(0, t0) we have for an arbitrary
initial time

i~ ∂
∂tUI(t, t0) = δHI(t)UI(t, t0) (2.53)

We will come back later to a formal solution of this equation. To linear order
in the external perturbation, it is an easy equation to solve by iteration using
the initial condition as the initial guess. Indeed, integrating on both sides of the
equation of motion (2.53) and using the initial condition, we have

UI(t, t0) = 1− i
~
R t
t0
dt0 δHI(t0)UI(t0, t0) (2.54)

which, iterated to first order, gives,

UI(t, t0) = 1− i

~

Z t

t0

dt0 δHI(t0) +O(δH2
I) (2.55)

and correspondingly

U†I (t, t0) = 1 +
i

~

Z t

t0

dt0 δHI(t0) +O(δH2
I) (2.56)
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2.2.3 Linear response

Returning to our general considerations, in the case of interest to us the external
perturbation in the interaction representation is of the form,

δHI(t)= −
R
d3rA0i (r, t)ai(r,t) (2.57)

where for short we wrote A0i (r, t) to represent a system’s observable evolving in
the system’s Heisenberg representation,

A0i (r, t) =e
iH0t/~Ai(r)e

−iH0t/~ . (2.58)

Suppose we want the expectation value of the observable B in the presence of
the external perturbation turned on at time t0. Then, starting from a thermal
equilibrium state at time t0, it suffices to evolve B (r) with the full evolution
operator, including the external perturbation

hB(r, t)i = ­U†(t, t0)B(r)U(t, t0)® (2.59)

Using the interaction representation Eq.(2.42), this becomes

hB(r, t)i =
D
U†I (t, t0)B

0(r, t)UI(t, t0)
E
. (2.60)

In this last expression, B0(r, t) is now in the system’s Heisenberg representation of
the system without the external perturbation. We also used the fact that e−iH0t0/~

commutes with the density matrix and that the trace has a cyclic property to
cancel the e−iH0t0/~ and the eiH0t0/~ .
Using the explicit expression Eq.(2.57) for the external perturbation in the

equation for the evolution operator in the interaction representation (2.55), we
have that the term linear in applied field is then given by,

δ hB(r, t)i = i

~

Z t

t0

dt0
Z
d3r0

­£
B0(r, t), A0i (r

0, t0)
¤®
ai(r

0,t0). (2.61)

It is customary to take t0 = −∞, assuming that the perturbation is turned-on
adiabatically slowly. One then defines a “retarded” response function, or suscep-
tibility χR, by

δ hB(r, t)i = R∞−∞ dt0 R d3r0 χRBAi(r, t; r0, t0)ai(r0,t0) (2.62)

with,

χRBAi(r, t; r
0, t0) = i

~
­£
B0(r, t), A0i (r

0, t0)
¤®
θ(t− t0). (2.63)

This response function is called “retarded” because the response always comes after
the perturbation, as expected in a causal system. The function θ(t − t0) ensures
this causality. One can also define anti-causal response functions. We come back
to this later. For the moment, recall that the superscript 0 here means to zeroth
order in the external probe. In other words, the linear response is given by an
equilibrium correlation function. One normally does not write the superscript 0
which is usually kept to mean non-interacting system. From now on, we drop this
superscript.

Remarque 2 Translationally invariant case: Since we compute equilibrium av-
erages, the susceptibility χRBAi(r, t; r

0, t0) can depend only on the time difference.
In the translationally invariant case, the susceptibility is also a function of only
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r− r0 so that Fourier transforming the expression for the linear response (2.62),
we obtain from the convolution theorem in this case,

δ hB(q,ω)i = χRBAi(q,ω)ai(q,ω). (2.64)

Remarque 3 Frequency of the response: The response is at the same frequency
as the external field, a feature which does not survive in non-linear response.

Remarque 4 Onsager reciprocity relations: Given the expression for the response
function in terms of a commutator of Hermitian operators, it is clear that the re-
sponse of the operator B to an external perturbation that couples to A is simply
related to the response of A to a perturbation that couples to B, in other words
where the operators have reversed roles. These are “Onsager’s reciprocity rela-
tions”.

Remarque 5 Validity of linear response and heating: Finally, we can ask whether
it is really justified to linearize the response. Not always since the external pertur-
bation can be large. But certain arguments suggest that it is basically never correct
in practice to linearize the response. Indeed, assume we apply an external electric
field E. As long as the energy gained by the action of the field is smaller than
kBT , the linearization should be correct. In other words, linear response theory
should be valid for a time

t <
kBT

eEv
. (2.65)

This is unfortunately a ridiculously small time. Taking v ≈ pkBT/m the condi-
tion becomes t <

√
mkBT/eE with E = 1V/cm,

√
mkBT/eE ≈

√
10−3010−23102/10−19 ≈

10−6s. Indeed, one finds that unless there is a temperature gradient, or an explicit
interaction with a system in equilibrium (such as phonons), the second order term
in perturbation theory is secular, i.e. it grows linearly with time. This is nothing
more than the phenomenon of Joule heating.[2] We are then forced to conclude
that linear response theory applies, only as long as the system is maintained in
equilibrium by some means: for example by explicitly including interactions with
phonons which are by force taken to be in thermal equilibrium, or by allowing for a
thermal gradient in the system that carries heat to the boundaries. In a Boltzmann
picture, one can see explicitly that if the second-order term in E is kept small by
collisions with a system in thermal equilibrium, then the linear term is basically
equal to what we would have obtained by never going to second-order in the first
place.[2]

Remarque 6 Reversibility and linear response: Other arguments against linear
response theory center on the fact that a correlation function where operators all
evolve reversibly cannot describe irreversible processes.[3] We will see explicitly
later that it is possible to compute irreversible absorption with this approach. We
will also see how irreversibility comes in the infinite-volume limit.

2.3 General properties of correlation functions

It is useful to know analytic properties that do not depend on the microscopic
model considered. This has at least two advantages: a) to check whether approx-
imation schemes satisfy these exact relations b) to formulate phenomenological
relations which are consistent. We will see that approximate calculations cannot
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satisfy all known exact relations for correlation functions, but it will be obvious
that violating certain relations is more harmful than violating others. Many of
the general properties which we will discuss in the present context have trivial
generalizations for Green’s function. Working on these general properties now
will make them look more natural later when we introduce the curious Green’s
function beast!

2.3.1 Notations and definitions

To start with, recall the definition

χRBA(r, t; r
0, t0) =

i

~
h[B(r, t), A(r0, t0)]i θ(t− t0). (2.66)

We have removed the superscript 0 which was only used as a crutch in the deriva-
tion of linear-response theory to indicate that the operators were evolving with the
unperturbed Hamiltonian. Since the unperturbed Hamiltonian in the present con-
text is the full Hamiltonian of the system, including interactions, we will drop the
superscript 0 from now on. It will be used later in a context where the unperturbed
Hamiltonian is that of non-interacting particles.
We define one more correlation function which will, in most cases of physical

interest, play the role of the quantity which describes absorption. Welcome χ00

χ00BA(r, t; r
0, t0) = 1

2} h[B(r, t), A(r0, t0)]i

The two in the denominator looks strange, but it will allow χ00 to generally be
the imaginary part of a response function without extra factors of 2. With this
definition, we have

χRBA(r, t; r
0, t0) = 2iχ00BA(r, t; r

0, t0)θ(t− t0). (2.67)

To shorten the notation, we will also use the notation

χRAiAj (t− t0) = i
~ h[Ai(t), Aj(t0)]i θ(t− t0). (2.68)

In this notation we include in the indices i and j the positions as well as any
other label of the operator such as vector component. In this notation, we have
not assumed translational invariance. We did however assume time-translation
invariance. Since we are working with equilibrium averages above, this is always
true.

Exercice 2.3.1 Check time-translational invariance explicitly by using Heisen-
berg’s representation, the cyclic property of the trace and the fact that the den-
sity matrix (Z−1e−βH in the canonical ensemble, or Ξ−1e−β(H−µN) in the grand-
canonical) commutes with the time-evolution operator e−iHt/~ .

Corresponding to the short-hand notation, we have

χ00AiAj (t− t0) ≡ 1
2~ h[Ai(t), Aj(t0)]i . (2.69)

χRAiAj (t− t0) = 2iχ00AiAj (t− t0)θ(t− t0). (2.70)
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2.3.2 Symmetry properties of the response functions

The quantity χ00AiAj (t−t0) contains all the non-trivial information on the response.
Indeed, the causal response is simply obtained by multiplying by a trivial θ(t− t0)
function. Certain symmetries of this response function depend on the particular
symmetry of the Hamiltonian, others are quite general. Let us consider them in
turn.[1]

Properties that depend on the symmetry of the Hamiltonian

Let S be a symmetry of the Hamiltonian. By this we mean that the operator S
representing the symmetry commutes with the Hamiltonian

[H,S] = 0 (2.71)

To be more precise, in the context of statistical mechanics we say that S is a
symmetry of the system when it commutes with the density matrix

[ρ, S] = 0 (2.72)

To extract non-trivial consequences of the existence of a symmetry, one first
takes advantage of the fact that the trace can be computed in any complete basis
set. This means that the thermal average of any operator O is equal to its thermal
average in a basis where the symmetry operation S has been applied to every
basis function. Since the symmetry operation commutes with the density matrix
by assumption, one can then let the symmetry operations act on the operators
instead of on the basis functions. In other words, we have­

S−1OS® = hOi (2.73)

It is because S and O in general do not commute that the above equation leads
to non-trivial consequences.
Let us look in turn at the consequences of translational invariance and of

invariance under a parity transformation rα→ −rα.

• Translational invariance: When there is translational invariance, it means
that if all operators are translated byR, the thermal averages are unchanged.
In other words,

χ00BA(r, t; r
0, t0) = χ00BA(r+R, t; r

0 +R, t0) (2.74)

so that χ00BA is a function of r− r0 only. Since we already know that χ00BA is
a function only of t− t0, in such cases we write

χ00BA(r, t; r
0, t0) = χ00BA(r− r0; t− t0) (2.75)

In the general case, to go to Fourier space one needs two wave vectors, cor-
responding respectively to r and r0 but in the translationally invariant case,
only one wave vector suffices. (You can prove this by changing integration
variables in the Fourier transform to the center of mass and difference vari-
ables).

• Parity: Under a parity transformation, operators transform as follows

P−1O (r)P = εPO (−r) (2.76)
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where εP = ±1. This number is known as the “signature” under parity
transformation. That εP = ±1 is the only possibility for simple operators
like density and momentum follows from the fact that applying the parity
operation twice is the same as doing nothing. In other words, P 2 = 1. To be
more specific, εPρ = 1 for density since performing the symmetry operation
rα→ −rα for every particle coordinate appearing in the density operator

ρ(r) =
NX
α=1

eαδ(r− rα) (2.77)

we find

P−1ρ(r)P=
NX
α=1

eαδ(r+ rα) =
NX
α=1

eαδ(−r− rα) = ρ(−r) (2.78)

For the momentum operator, εPp = −1, as we can show by the following
manipulations

p(r) =
NX
α=1

}
i
∇rαδ(r− rα) (2.79)

P−1p(r)P=
NX
α=1

−}
i
∇rαδ(r+ rα) = −

NX
α=1

}
i
∇rαδ(−r− rα) = −p(−r)

(2.80)
In general then, this implies that

χ00BA(r, t; r
0, t0) = εPBε

P
Aχ

00
BA(−r, t;−r0, t0) (2.81)

When we also have translational invariance, the last result means the χ00BA(r− r0; t−
t0) is even or odd in r− r0 depending on whether the operators have the same
or opposite signatures under parity. Correspondingly, the Fourier transform
in the translationally invariant case is odd or even, as can easily be proven
by a change of integration variables in the Fourier transform

χ00BA(q; t− t0) = εPBε
P
Aχ

00
BA(−q; t− t0) (2.82)

• Time-reversal symmetry in the absence of spin: From the Schrödinger equa-
tion in the absence of spin, one can see that when the Hamiltonian is real,
then complex conjugation leads to an equation that evolves the complex con-
jugate wave function as if t→ −t. We thus take time-reversed states as just
this operation of complex conjugation. A system in equilibrium obeys time-
inversion symmetry, unless an external magnetic field is applied. This means
that equilibrium averages evaluated with time-reversed states are equal to
equilibrium averages evaluated with the original bases. In fact time-inversion
symmetry is a very subtle subject. A very complete discussion may be found
in Gottfried[4] and Sakurai[8]. We present an oversimplified discussion. Let
us call Tt the operator that time-reverses a state. This is the operation of
complex conjugation that we will call K. The first thing to notice it that it
is unlike any other operator in quantum mechanics. In particular, the Dirac
notation must be used with extreme care. Indeed, for standard operators,
say X, we have the associative axiom

hα|X |βi = hα| (X |βi) = (hα|X) |βi (2.83)

This is clearly incorrect if X is the complex conjugation operator. Hence,
we must absolutely specify if it acts on the right or on the left. Hence, we
will write K−→ when we want to take the complex conjugate of a ket, and K←−
to take the complex conjugate of a bra.
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Remarque 7 Antiunitary operators: Time reversal is an antiunitary oper-
ation. The key property that differentiates an anti-unitary operator from a
unitary one is its action on a linear combination

Tt (a1 |ψ1i+ a2 |ψ2i) = a∗1Tt |ψ1i+ a∗2Tt |ψ2i (2.84)

In general such an operator is called antilinear. Antiunitarity comes in when
we restrict ourselves to antilinear operators that preserve the norm. The time
reversal operator is such an operator. Under time reversal, an arbitrary ma-
trix element preserves its norm, but not its phase. This is easy to see from
the fact that for an arbitrary matrix element hψ1|K←−K−→ |ψ2i = hψ2 |ψ1i 6=
hψ1 |ψ2i the phase changes sign under complex conjugation while the square
modulus hψ2 |ψ1i hψ1 |ψ2i is invariant. Gottfried[4] shows that only discrete
transformations (not continuous ones) can be described by anti-unitary op-
erators. This reference also discusses the theorem by Wigner that states
that if we declare that two descriptions of quantum mechanics are equiva-
lent if |hψ2 |ψ1i| =

¯̄­
ψ02
¯̄
ψ01
®¯̄
(equality of “rays”) then both unitary and

anti-unitary transformations are allowed.

Remarque 8 The adjoint is not the inverse. Note that T †t Tt = K←−K−→, so this
last quantity is not the identity because the rightmost complex conjugation
operator acts to the right, and the leftmost one to the left. Again, it is not
convenient to talk about time-reversal in the usual Dirac notation.

• Returning to the action of the time reversal operation on a Schrödinger
operator, we see that the expectation value of an arbitrary operator between
time reversed states is

hi|K←−OK−→ |ji =
³
hi|K←−

´³
K−→O

∗ |ji
´
= (hi| O∗ |ji)∗ = hj| O†∗ |ii (2.85)

Applying this expression Eq.(2.85) for expectation values taken between
time-reversed states, and recalling that the density matrix is real, we find
for equilibrium averages,D

K←−OK−→
E
=
­O†∗® = εt

­O†® (2.86)

The last equality defines the signature of the time-reversal operation for
operators. One easily finds that ²t = +1 for position while ²t = −1 for
velocity or momentum, etc... We can use this last results to find the effect
of the time-reversal invariance on general correlation functions. The action
of time reversal Eq.(2.86) gives, when A and B are self-adjoint operators,
and K−→H = HK−→D

K←−A(t)BK−→
E
=
D
B∗e−iHt/}A∗eiHt/}

E
= ²tA²

t
B hBA(−t)i (2.87)

In addition to the signature, the order of operators is changed as well as the
sign of time. For χ00AiAj (t− t0) this immediately leads to

χ00AiAj (t− t0) = ²ti²tjχ00AjAi(−t0 − (−t)) (2.88)

and for the corresponding Fourier transform in frequency,

χ00AiAj (ω) = ²
t
i²
t
jχ
00
AjAi

(ω) . (2.89)
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Remarque 9 In the case of an equilibrium average where both the density
matrix and the Hamiltonian commute with the time-reversal operation, we
have as usual that ­

T−1t OTt
®
= hOi (2.90)

Hence as expected, Eqs.(2.86) and (2.90) together imply that operators that
have an odd signature with respect to time reversal symmetry have a vanish-
ing expectation value in equilibrium.

• Time-reversal symmetry in the presence of spin: Spin should transform un-
der time reversal like angular momentum r× p, in other words it should
change sign since r does not while p does. Complex conjugation has this
property for r× p but not for spin represented by Pauli matrices. We should
really wait for the section where we treat fermions to discuss this problem
but we can start to address it here. To come out from the problem that
complex conjugation does not suffice anymore, it suffices to notice that in
general the time reversal operator has to be represented by a unitary oper-
ator times complex conjugation. The resulting operator is still anti-unitary,
as can easily be proven. Let us thus write

Tt = K−→U (2.91)

where K−→ is complex conjugation again and U is a unitary operator U†U = 1
in spin space that we need to find. Note that the action on a bra is given by

U†K←− (2.92)

Let us first repeat the steps of calculating expectation values in time-reversed
states, as in Eq.(2.85), but for the more general case

hi|U†K←−OK−→U |ji =
³
hi|U†K←−

´³
K−→O

∗U |ji
´
=
¡hi|U†O∗U |ji¢∗ = hj|U†O†∗U |ii

(2.93)
Computing the equilibrium trace with U†O†∗U is thus equivalent to com-
puting the equilibrium trace in time-reversed states but with O. If we take
for O the spin σ, the net effect of the time-reversal operation should be to
change the direction of the spin, in other words, we want

U†σ†∗U = −σ (2.94)

The expression for U will depend on the basis states for spin. Using the
Pauli matrix basis

σx ≡
·
0 1
1 0

¸
; σy ≡

·
0 −i
i 0

¸
; σz ≡

·
1 0
0 −1

¸
(2.95)

we have σ† = σ, and σ∗x = σx, σ
∗
y = −σy, σ∗z = σz so that Eq.(2.94) for

time reversal gives us the following set of equations for the unitary operator
U

U†σxU = −σx (2.96)

U†σyU = σy (2.97)

U†σzU = −σz (2.98)

Given the fundamental properties of Pauli matrices

σiσj + σjσi = 0 for i 6= j
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σ2i = 1 (2.99)

σiσj = iσk (2.100)

where i, j, k are cyclic permutations of x, y, z, the solution to the set of
equations for U is

U = eiδσy (2.101)

where δ is an arbitrary real phase. This is like a π rotation along the y
axis so that already we can expect that up will be transformed into down
as we were hoping intuitively. In summary, the time reversal operator in
the presence of spin multiplies the spin part by eiδσy and takes the complex
conjugate.

Tt = K−→e
iδσy (2.102)

Note the action of this operator on real spinors quantized along the z direc-
tion

Tt |↑i = −ie−iδ |↓i (2.103)

Tt |↓i = ie−iδ |↑i (2.104)

The time reversal operator thus transforms up into down and vice versa but
with a phase. Even if we can choose eiδ = i to make the phase real, the
prefactor cannot be +1 for both of the above equations. In particular, note
that TtTt |↑i = − |↑i , another strange property of spinors. The application
of two time reversal operations on spinors is like a 2π rotation around y so
that it changes the phase of the spinor. It can be proven that this result is
independent of the choice of quantization axis, as we can expect.[4] As far
as the main topic of the present section is concerned, observables such as
angular momentum will have a simple signature under time reversal (they
are always two spinors that come in for each observable Ai) so that the
results of the previous section are basically unmodified.

When χ00AiAj (ω) is real, the properties of being a commutator (2.106) and of
Hermiticity (2.108) allow us to further show that χ00AiAi(ω) is also an odd function
of frequency, an important result that we show in the following section.

Properties that follow from the definition.

Let us thus write down the general symmetry properties of χ00AiAj (t − t0) that
simply follow from its definition (2.69).

• Commutator: Since it is a commutator, we have

χ00AiAj (t− t0) = −χ00AjAi(t0 − t) (2.105)

which in frequency space reads,

χ00AiAj (ω) = −χ00AjAi(−ω) . (2.106)

• Hermiticity: Taking the observables as Hermitian, as is usually the case, one
can use the cyclic property of the trace and the Hermiticity of the density
matrix to show that

χ00AiAj (t− t0) =
h
χ00AjAi(t

0 − t)
i∗
. (2.107)

(Proof for Hermitian operators: h[Ai, Aj ]i∗ = Tr {ρAiAj − ρAjAi}∗
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= Tr {AjAiρ−AiAjρ} = Tr {ρ [Aj , Ai]} )
In Fourier space, this becomes,

χ00AiAj (ω) =
h
χ00AjAi(ω)

i∗
. (2.108)

Remarque 10 Non-hermitian operators: It is important to note that the opera-
tors Ai may be non-Hermitian, as is the case for superconductivity. In such cases,
one should remember that the above property may not be satisfied.

Remarque 11 Most useful property: The most important consequence of this
section that we will often use is that correlation functions such as χ00ρqρ−q(ω) are
odd in frequency and real

χ00ρqρ−q(ω) = −χ00ρqρ−q(−ω) =
h
χ00ρqρ−q(ω)

i∗
(2.109)

To prove this, we first use Hermiticity Eq.(2.108) in the form

χ00ρrρr0 (ω) =
h
χ00ρr0ρr(ω)

i∗
(2.110)

to show that χ00ρqρ−q(ω) is real

χ00ρqρ−q(ω) =
Z
d3r

Z
d3r0e−iq·(r−r

0)χ00ρrρr0 (ω) (2.111)

=

·Z
d3r

Z
d3r0eiq·(r−r

0)χ00ρr0ρr(ω)
¸∗

(2.112)

=
h
χ00ρqρ−q(ω)

i∗
(2.113)

The commutator property Eq.(2.106), χ00ρqρ−q(ω) = −χ00ρ−qρq(−ω) and symmetry
under parity transformation Eq.(2.82), χ00ρ−qρq(−ω) = χ00ρqρ−q(−ω) then suffice to
show that χ00ρqρ−q(ω) is also odd in frequency χ

00
ρqρ−q(ω) = −χ00ρqρ−q(−ω). Instead

of parity, one could have invoked time-reversal symmetry Eq.(2.89) and the com-
mutator property Eq.(2.106) to show that χ00ρqρ−q(ω) is odd since then χ00ρrρr0 (ω) =
χ00ρr0ρr(ω) = −χ00ρrρr0 (−ω) immediately implies that χ00ρqρ−q(ω) = −χ00ρqρ−q(−ω).

2.3.3 Kramers-Kronig relations and causality

These Kramers-Kronig relations are by far the best known and most useful rela-
tions. They relate real and imaginary parts of response functions and they come
simply from causality. Causality is insured by the presence of the θ function in the
expression for the response functions Eq.(2.70). Causality simply states that the
response to an applied field at time t0 occurs only at time t later. This is satisfied
in general in our formalism, as can be seen by looking back at the formula for
the linear response Eq.(2.62). Kramers-Kronig relations are the same causality
statement as above, seen from the perspective of Fourier transforms. To be more
specific, in this section we will derive the following results:

Re
h
χRAiAj (ω)

i
= P R dω0

π

Im
h
χRAiAj

(ω0)
i

ω0−ω (2.114)
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Im
h
χRAiAj (ω)

i
= −P R dω0

π

Re
h
χRAiAj

(ω0)
i

ω0−ω . (2.115)

They come from analytic properties of the response functions in the complex
frequency plane. We give two derivations.

The straightforward manner:

Let us first derive the relations the easy way. Suppose that we know the Fourier
transform in frequency χRAiAj (ω) of the response function. We call it the retarded
function because the response comes after the perturbation. It is causal. One way
to make sure that its real time version χRAiAj (t − t0) contains θ(t − t0) is to have
χRAiAj (ω) analytic in the upper half-plane. To see that analyticity in the upper
half-plane is a sufficient condition to have θ(t− t0), consider

χRAiAj (t− t0) =
Z ∞
−∞

dω

2π
e−iω(t−t

0)χRAiAj (ω). (2.116)

If t − t0 is negative, then it is possible to close the contour in the upper half
plane since the exponential will decrease at positive imaginary frequencies. Since
χRAiAj (ω) is analytic in that half-plane, the result will be zero, which is just another
way to say that χRAiAj (t − t0) is proportional to θ(t − t0), as we had planned to
show. In the next subsection, we will show that analyticity in the upper half plane
is also a necessary condition to have θ(t− t0).
Assuming that χRAiAj (ω) is analytic in the upper half plane, it is then easy to

derive the Kramers-Kronig relations. It now suffices to useZ
dω0

π

1

ω0 − ω − iηχ
R
AiAj (ω

0) = 2iχRAiAj (ω + iη) (2.117)

which is easy to prove by applying the residue theorem on a contour closed in the
upper half plane where χRAiAj (ω) is analytic. This also assumes that χ

R
AiAj

(ω0)
falls off at least like a small power of 1/ω0 so that there is no contribution from
the part at ∞. We then need the following identity,

lim
η→0

1

ω ∓ iη = lim
η→0

ω ± iη
ω2 + η2

= lim
η→0

·
ω

ω2 + η2
± iη

ω2 + η2

¸
= P 1

ω
± iπδ(ω) (2.118)

where δ is Dirac’s delta function and P means principal part integral. – Suppose
the factor 1/ (ω + iη) on the left is in an integral that can be done by contour
integration. Then, knowing the definition of the delta function, this can be used
as the definition of principal part.– Using this identity and setting equal the real
parts of our contour integral (2.117) we obtain, upon taking the lim η → 0,

P
Z
dω0

π

Re
h
χRAiAj (ω

0)
i

ω0 − ω
− Im

h
χRAiAj (ω)

i
= −2 Im

h
χRAiAj (ω)

i
(2.119)

while from the imaginary part,

P
Z
dω0

π

Im
h
χRAiAj (ω

0)
i

ω0 − ω
+Re

h
χRAiAj (ω)

i
= 2Re

h
χRAiAj (ω)

i
. (2.120)

This is precisely what we mean by the Kramers-Kronig relations, namely we re-
cover the results Eqs.(2.114)(2.115) at the beginning of this section. From the
proof just given, Kramers-Kronig relations will apply if

• χRAiAj (ω) is analytic, as a function of complex frequency, in the upper half-
plane.

• χRAiAj (ω) falls off at least as a small power of ω at infinity.
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Spectral representation and alternate derivation.

It is instructive to perform a derivation which starts from what we found earlier.
We will gain as a bonus an explicit expression for real and imaginary parts in
terms of correlation functions, as well as a derivation of the analyticity properties
from scratch. In fact this will also complete the proof that analyticity in the upper
half-plane is both necessary and sufficient to have causality.
Using the convolution theorem, we would write for the frequency-space version

of the response functions, (2.70)

χRAiAj (ω) = 2i

Z
dω0

2π
χ00AiAj (ω

0)θ(ω − ω0). (2.121)

This looks nice, but it does not really mean anything yet because we encounter a
serious problem when we try to evaluate the Fourier transform of the θ function.
Indeed, Z ∞

−∞
dteiωtθ(t) =

eiωt

iω
|∞0 (2.122)

and we have no idea what eiω∞ means. To remedy this, we have to return to
the expression for the linear response (2.62). Assuming that the external field
ai is turned-on adiabatically from t = −∞, we multiply whatever we had before
by eηt

0
, taking the limit of vanishing η at the end of the calculation. We also

adiabatically turn off the response at t→∞ by using a factor e−ηt.The equation
for the response in time (2.70) is then simply multiplied by eη(t

0−t), so that it
still depends only on the time difference. Furthermore, when we take its Fourier
transform,

R∞
−∞ d(t − t0)eiω(t−t

0), everything proceeds as before, except that we

can use the extra convergence factor e−η(t−t
0), to make sense out of the Fourier

transform of the Heaviside theta function. To be more specific, the equation for
the response (2.70) now reads,

χRAiAj (t− t0)e−η(t−t
0) = 2iχ00AiAj (t− t0)θ(t− t0)e−η(t−t

0) (2.123)

so that in the calculation of the response (2.121) we have,Z ∞
−∞

d(t− t0)ei(ω+iη−ω0)(t−t0)θ(t− t0) = ei(ω+iη−ω
0)(t−t0)

i(ω + iη − ω0)
|∞0 =

1

i(ω0 − ω − iη) .
(2.124)

Everything behaves as if we had computed the Fourier transform for ω+iη instead
of ω,

χRAiAj (ω + iη) = 2i

Z
dω0

2π
χ00AiAj (ω

0)θ(ω + iη − ω0) (2.125)

=

Z
dω0

π

χ00AiAj (ω
0)

ω0 − (ω + iη) (2.126)

This function is called the “retarded response” to distinguish it from what we
would have obtained with θ(t0 − t) instead of θ(t − t0). The retarded response is
causal, in other words, the response occurs only after the perturbation. In the anti-
causal case (“advanced response”) the response all occurs before the perturbation
is applied. In the latter case, the convergence factor is e−η(t

0−t) instead of eη(t
0−t).

Introducing a new function

χAiAj (z) =
R
dω0
π

χ00AiAj (ω
0)

ω0−z (2.127)

we can write for the retarded response,

χRAiAj (ω) = limη→0 χAiAj (z)|z=ω+iη (2.128)
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and for the advanced one,

χAAiAj (ω) = limη→0 χAiAj (z)|z=ω−iη. (2.129)

Using the above results, it is easy to see that χRAiAj (ω) is analytic in the upper half
plane, while χAAiAj (ω) is analytic in the lower-half plane. One can even explicitly
see from the equation (2.126) for the function which is analytic in the upper-half
plane χRAiAj (ω) that its poles in the lower half frequency plane are just below the
real axis, a distance η along the imaginary direction. The residue at a given pole
will depend on the value of χ00AiAj at the corresponding value of the real coordinate
of the pole.

Définition 3 Equations such as (2.127) are called spectral representations.

Remarque 12 Why spectral representation: The reason for this name is that, as
we discuss in the next section below, χ00AiAj (ω

0) contains information on dissipation
or, alternatively, on the spectrum of excitations. Hence, in that kind of equations,
the response is expressed in terms of the spectrum of excitations. We will also
have spectral representations for Green’s functions.

χAiAj (z) is a function which is equal to χRAiAj (ω) for z infinitesimally above
the real axis, and to χAAiAj (ω) for z infinitesimally below the real axis. On the
real axis of the complex z plane χAiAj (z) has a cut whenever χ

00
AiAj

(ω) 6= 0 sinceh
χAiAj (ω + iη)− χAiAj (ω − iη)

i
= 2iχ00AiAj (ω). (2.130)

So much for taking the Fourier transform of a response which is so simple
looking in its ordinary time version.(2.70) Time-reversal invariance (2.89) and
Hermiticity in Eq.(2.108) imply, for two operators with the same signature under
time-reversal, that χ00AiAj (ω

0) is a real function. Hence, from the mathematical
identity for principal part Eq.(2.118) and from the spectral representation (2.127)
we have, for two hermitian operators Ai, Aj with the same signature under time
reversal, that

Im
h
χRAiAj (ω)

i
= χ00AiAj (ω) (2.131)

so that from the spectral representation we recover the first of the Kramers-Krönig
relation (2.114). The other one can be derived following the same route as in
the simpler derivation, namely apply

R
dω
π

1
ω−ω0+iη on both sides of the spectral

representation. For two hermitian operators Ai, Aj with opposite signatures under
time reversal Eqs.(2.89) and (2.108) imply that χ00AiAj (ω

0) is purely imaginary. In
this case,

Re
h
χRAiAj (ω)

i
= −iχ00AiAj (ω) . (2.132)

Remarque 13 Kramers-Kronig and time reversal: The Kramers Krönig rela-
tions do not depend on these subtleties of signatures under time-reversal. How-
ever the relation between real and imaginary parts of the response and commutator
Eq.(2.131) does. If we can compute either the real or imaginary part of the re-
sponse, the Kramers Krönig relations give us the part we do not know. In any
case, everything is in χ00AiAj (ω).
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2.3.4 Positivity of ωχ00(ω) and dissipation

We want to show that the key function of the previous discussion, namely χ00AiAj (ω)
contains all the information on the dissipation. Since stability of a thermodynamic
system implies that an external applied field of any frequency must do work the
dissipation must be positive, which in turns means, as we now demonstrate, that
ωχ00AiAj (ω) is a positive-definite matrix.
Since the change in the energy of the system due to the external perturbation

is given by the perturbation Hamiltonian Eq.(2.25), this means that the power
dissipated by the external world is

dW

dt
=
dδH(t)
dt

= −
Z
d3rAi(r)

dai(r,t)

dt
= −Ai dai(t)

dt
. (2.133)

In the last equality, we have used our short-hand notation and included position
in the index i. The integral over r then becomes a sum over i which is not written
explicitly since we take the convention that repeated indices are summed over.
Taking the expectation value in the presence of the external perturbation, we find

dW

dt
= − [hAii+ hδAii] dai(t)

dt
(2.134)

where hAii is the equilibrium expectation value, and hδAii the linear response.
Taking the total energy absorbed over some long period of time T , the condition
for the dissipated energy to be positive is,

W = −
Z T/2

−T/2
dt hδAi(t)i dai(t)

dt
> 0. (2.135)

For hδAii we have written explicitly all the time dependence in the operator in-
stead. Taking T → ∞ and getting help from Parseval’s theorem, the last result
may be written,

−
Z
dω

2π
hδAi(ω)i iωai(−ω) >0. (2.136)

Finally, linear response theory gives

−
Z
dω

2π
ai(−ω)χRAiAj (ω)iωaj(ω) > 0 (2.137)

Changing dummy indices as follows, ω → −ω, i → j, j → i and adding the new
expression to the old one, we obtain the requirement,

W = −1
2

Z
dω

2π
ai(−ω)

h
χRAiAj (ω)− χRAjAi(−ω)

i
iωaj(ω) > 0. (2.138)

Calling the spectral representation (2.128) to the rescue, we can writeh
χRAiAj (ω)− χRAjAi(−ω)

i
=

Z
dω0

π

χ00AiAj (ω
0)

ω0 − (ω + iη) −
Z
dω0

π

χ00AjAi(ω
0)

ω0 − (−ω + iη) .
(2.139)

We know from the fact that χ00AiAj is a commutator that (2.106) χ00AiAj (ω) =
−χ00AjAi(−ω). Using this identity and the change of variables ω0 → −ω0 in the last
integral, we immediately have thath

χRAiAj (ω)− χRAjAi(−ω)
i
=

Z
dω0

π
χ00AiAj (ω

0)
·

1

ω0 − ω − iη +
1

−ω0 + ω − iη
¸

(2.140)
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= 2iχ00AiAj (ω). (2.141)

Substituting all this back into the last equation for the dissipated energy, and
using the fact that since the applied field is real, then ai(−ω) =a∗i (ω), we getZ

dω

2π
a∗i (ω)

h
χ00AiAj (ω)ω

i
aj(ω) > 0. (2.142)

This is true whatever the time-reversal signature of the operators Ai, Aj . Further-
more, since we can apply the external field at any frequency, we must have

a∗i (ω)
h
χ00AiAj (ω)ω

i
aj(ω) > 0 (2.143)

for all frequencies. This is the definition of a positive-definite matrix. Going to
the basis where χ00AiAj is diagonal, we see that this implies that all the eigenvalues
are positive. Also, when there is only one kind of external perturbation applied,

χ00AiAi(ω)ω > 0. (2.144)

We have seen that for Hermitian operators with the same signature under time
reversal, χ00AiAi(ω) is a real and odd function of frequency so the above equation is
satisfied. The positive definiteness of χ00AiAj (ω)ω by itself however does not suffice
to prove that χ00AiAi(ω) is an odd function of frequency.
One can check explicitely that χ00AiAi(ω) contains spectral information about

excited states by doing backwards the steps that lead us from Fermi’s golden rule
to correlation functions.

2.3.5 Fluctuation-dissipation theorem

This very useful theorem relates linear response to equilibrium fluctuations mea-
sured in scattering experiments. It takes the form,

SAiAj (ω) =
2~

1−e−β~ωχ
00
AiAj

(ω) (2.145)

where the “structure factor” or correlation function is defined by,

SAiAj (t) ≡ hAi(t)Aji− hAii hAji = h(Ai(t)− hAii) (Aj(0)− hAji)i (2.146)

≡ hδAi(t)δAji . (2.147)

We have already encountered the charge structure factor in the context of inelas-
tic neutron scattering. Clearly, the left-hand side of the fluctuation-dissipation
theorem Eq.(2.145) is a correlation function for dissipation while the right-hand
side contains the dissipation function χ00 just discuss. This is a key theorem of
statistical physics.
To prove the theorem, it suffices to trivially relate the definitions,

χ00AiAj (t) =
1

2~
h[Ai(t), Aj ]i = 1

2~
h[δAi(t), δAj ]i = 1

2~
¡
SAiAj (t)− SAjAi(−t)

¢
(2.148)

then to use the key identity,

SAjAi(−t) = SAiAj (t− i~β) . (2.149)
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This kind of periodicity of equilibrium correlation functions will be used over and
over in the context of Green’s functions. It will allow to define Fourier expansions
in terms of so-called Matsubara frequencies. The proof of the identity simply
uses the definition of the time evolution operator and the cyclic property of the
trace. More specifically, using the cyclic property of the trace, time-translation
invariance follows, and

SAjAi(−t) = Z−1Tr
£
e−βHδAj(−t)δAi

¤
= Z−1Tr

£
e−βHδAjδAi(t)

¤
(2.150)

To reverse the order of δAi and δAj , it suffices to use the cyclic property, so that

SAjAi(−t) = Z−1Tr
£
δAi(t)e

−βHδAj
¤
. (2.151)

Simple manipulations and Heisenberg’s representation for the time-evolution of
the operators gives,

SAjAi(−t) = Z−1Tr
£
e−βHeβHδAi(t)e−βHδAj

¤
(2.152)

= Z−1Tr
£
e−βHδAi(t− i~β)δAj

¤
= SAiAj (t− i~β). (2.153)

This is precisely what we wanted to prove. The rest is an exercise in Fourier
transforms,Z

dteiωtSAiAj (t− i~β) =
Z
dteiω(t+i~β)SAiAj (t) = e

−β~ωSAiAj (ω). (2.154)

To prove the last result, we had to move the integration contour from t to t +
i~β, in other words in the imaginary time direction. Because of the convergence
factor e−βH in the traces, expectations of any number of operators of the type
eiHtAe−iHt are analytic in the imaginary time direction for −i~β < t < i~β,
hence it is permissible to displace the integration contour as we did. Fourier
transforming the relation between χ00AiAj (t) and susceptibility,(2.148) one then
recovers the fluctuation-dissipation theorem (2.145).
A few remarks before concluding.

Remarque 14 Alternate derivation: Formally, the Fourier transform gives the
same result as what we found above if we use the exponential representation of the
Taylor series,

SAiAj (t− i~β) = e−i~β
∂
∂tSAiAj (t).

Remarque 15 Relation to detailed balance: The Fourier-space version of the pe-
riodicity condition (2.149) is a statement of detailed balance:

SAjAi(−ω) = e−β~ωSAiAj (ω) . (2.155)

Indeed, in one case the energy ~ω is absorbed in the process, while in the other case
it has the opposite sign (is emitted). This is one way of seeing the basic physical
reason for the existence of the fluctuation-dissipation theorem: Even though the
response apparently had two different orders for the operators, the order of the op-
erators in thermal equilibrium can be reversed if we use the fluctuation-dissipation
theorem.

Remarque 16 Physical explanation of fluctuation-dissipation theorem: Physi-
cally, the fluctuation-dissipation theorem is a statement that the return to equi-
librium is governed by the same laws, whether the perturbation was created by an
external field or by a spontaneous fluctuation.
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2.3.6 Sum rules

All the many-body Physics of the response or scattering experiments is in the cal-
culation of unequal-time commutators. These commutators in general involve the
time evolution of the systems and thus they are non-trivial to evaluate. However,
equal-time commutators are easy to evaluate in general using the usual commu-
tation relations. Equal-time corresponds to integral over frequency as seen from
Fourier space. Hence the name sum rules. We will not in general be able to
satisfy all possible sum-rules since this would mean basically an exact solution
to the problem, or computing infinite-order high-frequency expansion. In brief,
sum-rules are useful to

• Relate different experiments to each other.
• Establish high frequency limits of correlation functions.
• Provide constraints on phenomenological parameters or on approximate the-
ories.

Thermodynamic sum-rules.

Suppose we compute the linear response to a time-independent perturbation. For
example, compute the response of the magnetization to a time-independent mag-
netic field. This should give us the susceptibility. Naturally, we have to leave the
adiabatic switching-on, i.e. the infinitesimal η. In general then,

δ hAi(ω = 0)i = χRAiAj (ω = 0)aj(ω = 0). (2.156)

Returning to the notation where q is explicitly written,

δ hAi(q,ω = 0)i = χRAiAj (q,ω = 0)aj(q,ω = 0). (2.157)

Using the spectral representation (2.127) and the usual relation between iη and
principal parts, Eq.(2.118), we also have,

χRAiAj (q,ω = 0) =

Z ∞
−∞

dω

π

χ00AiAj (q,ω)

ω − iη = P
Z ∞
−∞

dω

π

χ00AiAj (q,ω)

ω
. (2.158)

There is no contribution from the imaginary part. Indeed, as long as the thermo-
dynamic derivatives involve operators which have the same symmetry under time
reversal, then χ00AiAj (q,ω) is odd, as proven at the end of the section on symmetry
properties, so that χ00AiAj (q,ω = 0) = 0. Note that in practice, the principal part
in the above equation is not necessary since χ00AiAj (q,ω) usually vanishes linearly
in ω for small ω. To be completly general however, it is preferable to keep the
principal part.
Recalling that the thermodynamic derivatives are in general for uniform (q =

0) applied probes, the above formula become,

lim
q→0

χRAiAj (q,ω = 0) =
∂Ai
∂aj
≡ χAiAj . (2.159)

χAiAj=limq→0
R∞
−∞

dω
π

χ00AiAj (q,ω)

ω . (2.160)

This is called a thermodynamic sum-rule. As an example, consider the density n
response. It obeys the so-called compressibility sum rule,

lim
q→0

χRnn(q,ω = 0) = lim
q→0

Z ∞
−∞

dω

π

χ00nn(q,ω)
ω

=

µ
∂n

∂µ

¶
T,V

(2.161a)

As usual, a few remarks are in order:
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Remarque 17 Order of limits: It is extremely important to note that for ther-
modynamic sume rules, the ω → 0 limit is taken first, before the q→ 0 limit. The
other limit describes transport properties as we shall see.

Remarque 18 Thermodynamic sum-rule and moments: Thermodynamic sum-
rules are in a sense the inverse first moment over frequency of χ00AiAj (q,ω) (the
latter being analogous to the weight). Other sum-rules are over positive moments,
as we now demonstrate.

Alternate derivation: Here is another way to derive the thermodynamic sum
rules. First note that thermodynamic variables involve conserved quantities,
namely quantities that commute with the Hamiltonian. Take for example N,
the total number of particles. Since N commutes with the Hamiltonian, in the
grand-canonical ensemble we have the classical result

hNNi− hNi2 = 1

β

µ
∂n

∂µ

¶
T,V

By definition,

hNNi− hNi2 =
Z ∞
−∞

dω

2π
SNN (ω) (2.162)

Using the general fluctuation-dissipation theorem, we now relate this quantity to
χ00NN (ω) as follows. Because nq for q = 0 is simply the total number of particles
N and hence is conserved, hnq=0 (t)nq=0i is time independent. In frequency
space then, this correlation function is a delta function in frequency. For such a
conserved quantity, the fluctuation-dissipation theorem Eq.(2.145) then becomes

SNN (ω) = lim
ω→0

2~
1− e−β~ω χ

00
NN (ω) =

2

βω
χ00NN (ω) (2.163)

from which we obtain what is basically the thermodynamic sum-rule Eq.(2.161a)

hNNi− hNi2 =

Z ∞
−∞

dω

2π
SNN (ω) (2.164a)

=

Z ∞
−∞

dω

π

χ00NN (ω)
βω

=
1

β

µ
∂n

∂µ

¶
T,V

(2.164b)

This is then the classical form of the fluctuation-dissipation theorem. In this form,
the density fluctuations are related to the response (∂n/∂µ)T,V (itself related to
the compressibility).

Moments, sum rules, and high-frequency expansions.

Odd derivatives of χ00AiAj at equal-time are easy to compute and provide us with
moments:Z ∞

−∞

dω

π
ωnχ00AiAj (ω) =

µ
i
∂

∂t

¶n ·Z ∞
−∞

dω

2π
e−iωt2χ00AiAj (ω)

¸
t=0

(2.165)

=
1

~

¿·µ
i
∂

∂t

¶n
Ai(t), Aj(0)

¸À
t=0

=
1

~

¿···
Ai(t),

H

~

¸
,
H

~

¸
..., Aj(0)

¸À
t=0
(2.166)

which may all easily be computed through n equal-time commutations with the
Hamiltonian.
Suppose the spectrum of excitations is bounded, as usually happens when

the input momentum q is finite. Then, χ00AiAj (ω
0) = 0 for ω0 > D where D is
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some large frequency. Then, for ω > D, we can expand the denominator since
the condition ω0/ω ¿ 1 will always be satisfied. This gives us a high-frequency
expansion,

χRAiAj (q,ω) =
R∞
−∞

dω0
π

χ00AiAj (q,ω
0)

ω0−ω−iη (2.167)

≈P∞n=0 −1ω2n

R∞
−∞

dω0
π (ω0)2n−1 χ00AiAj (q,ω

0) (2.168)

where we have explicitly taken into account the fact that only odd moments of
χ00AiAj do not vanish because it is an odd function. Clearly, in the ω → ∞ limit,
the susceptibilities in general scale as 1/ω2, a property we will use later in the
context of analytic continuations.

The f sum-rule as an example.

When the potential-energy part of the Hamiltonian commutes with the density
operator, while the kinetic-energy part is that of free electrons (not true for tight-
binding electrons) we find thatR∞

−∞
dω
π ωχ00nn(q,ω) =

nq2

m . (2.169)

This is the f sum-rule. It is valid for an arbitrary value of the wave vector q. It is a
direct consequence of the commutation-relation between momentum and position,
and has been first discussed in the context of electronic transitions in atoms. The
proof is as follows. We first use the above results for momentsZ ∞

−∞

dω

π
ωχ00nn(q,ω) =

i

~V
¿·

∂nq(t)

∂t
, n−q(t)

¸À
(2.170)

= − 1

~2V h[[H,nq(t)] , n−q(t)]i (2.171)

In the first equality, we have also used translational invariance to write,Z
d (r− r0) e−iq·(r−r0)f(r− r0) = 1

V
Z
dre−iq·r

Z
dr0e−iq·r

0
f(r− r0) (2.172)

where V is the integration volume. The computation of the equal-time commutator
is self-explanatory,

nq =

Z
dre−iq·r

X
α

δ(r− rα) =
X
α

e−iq·rα (2.173)

£
pxβ , nq

¤
=
~
i

"
∂

∂xβ
,
X
α

e−iq·rα
#
= −~qxe−iq·rβ (2.174)

Assuming that the interactions commute with the density operator, and using
[p · p, n] = p [p, n] + [p, n]p we have

[H,nq(t)] =
X
β

"
p2β
2m
,nq

#
=

1

2m

X
β

¡
pβ ·

¡−~qe−iq·rβ¢+ ¡−~qe−iq·rβ¢ · pβ¢
(2.175)

[[H,nq(t)] , n−q(t)] = − 1
m

NX
β=1

~2q2e−iq·rβeiq·rβ = −~
2q2N

m
(2.176)

which proves the result (2.169) when substituted in the expression in terms of
commutator (2.171) with n ≡ N/V. The result of the commutators is a number
not an operator, so the thermodynamic average is trivial in this case! (Things will
be different with tight-binding models.)
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2.4 Kubo formula for the conductivity

A very useful formula in practice is Kubo’s formula for the conductivity. The
general formula applies to frequency and momentum dependent probes so that
it is of more general applicability than only DC conductivity. It is used in prac-
tice to make predictions about light scattering experiments as well as microwave
measurements. At the end of this section we will see that conductivity is simply
related to dielectric constant by macroscopic electrodynamics. This explains the
wide applicability of the Kubo formula. We will see that the f−sum rule can be
used to obtain a corresponding sum rule on the conductivity that is widely used in
practice, for example in infrared light scattering experiments on solids. On a more
formal basis, the general properties of the Kubo formula will allow us, following
Kohn, to better define what is meant by a superconductor, an insulator and a
metal.
After a general discussion of the coupling of light to matter, we discuss in turn

longitudinal and transverse response, exposing the consequences of gauge invari-
ance. After a brief application to the definition of superconductors, metals and
insulators, we make the connection between conductivity and dielectric constant.

2.4.1 Response of the current to external vector and scalar potentials

Continuing with our first-quantization point of view, let the current operator be,
for particles of charge e,

j(r) =
e

2m

X
α

(δ(r− rα)pα + pαδ(r− rα)) . (2.177)

Given the fact that [rβ ,pα] = i~δα,β there is an ambiguity in the position of the
δ function with respect to the momentum operator: We can have pαδ(r− rα) or
δ(r− rα)pα. The symmetrized form is chosen. This is the current which will come
out naturally in the coupling to the electromagnetic field. Our discussion follows
that of Baym[5]. In the presence of an electromagnetic field, observable quantities
must be invariant under the gauge transformation

A→ A+∇Λ (2.178)

φ→ φ− 1
c

∂Λ

∂t
(2.179)

Ψ→ eieΛ/~cΨ (2.180)

where the last transformation is the transformation for a one-body Schrodinger
wave function. The coupling of a particle of charge e is obtained then by the
substitution

pα =
~
i
∇α → ~

i
∇α − e

c
A(rα). (2.181)

The expression for the current operator jA(r) to linear order in the vector potential
becomes

jA(r) = j(r)− e
2

mc

X
α

A(rα)δ(r− rα) = j(r)−
e

mc
A(r)ρ(r) (2.182)

where we have defined the charge density as before ρ(r) =en(r). Clearly the
current jA(r) in Eq.(2.182) is gauge invariant.
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The kinetic-energy operator is also modified by the addition of the vector
potential. In a general gauge,

− ~
2

2m
∇2α → −

~2

2m
∇2α−

e~
2mci

(A(rα) ·∇α +∇α ·A(rα))+
e2

2mc2
A2(rα). (2.183)

This means that to linear order in the vector potential, the change in the Hamil-
tonian is

δH(t) = −
X
α

e~
2mci

(A(rα) ·∇α +∇α ·A(rα)) = −
1

c

Z
drA(r,t) · j(r). (2.184)

We have allowed the semi-classical external field to depend on time.

Remarque 19 Our definition of the current-density operator Eq.(2.177) auto-
matically takes care of the relative position of the vector potential and of the gra-
dients in the above equation.

It is easier to add an ordinary scalar potential! The modification is then only
in the Hamiltonian:

δH(t) =
Z
drφ(r,t)ρ(r). (2.185)

Using the explicit expression for the current Eq.(2.182) and our linear-response
formulae, we have that the general expression for the response is

δ hjµ(q,ω)i =
h
χRjµjν (q,ω)− ne2

m δµν

i
Aν(q,ω)

c − χRjµρ(q,ω)φ(q,ω) . (2.186)

There is a sum over the repeated indices ν. The term proportional to −ne2m δµν
in this expression, called the diamagnetic term, comes from the last term in the
expression for the gauge invariant current Eq.(2.182). Since the density operator
there is already multiplied by the vector potential, its average can be taken for
the equilibrium ensemble where the average density is independent of position.
The formula Eq.(2.186) may be used to compute the response to an arbitrary

external electromagnetic field since as usual,

E = −1
c

∂A

∂t
−∇φ (2.187)

B = ∇×A. (2.188)

2.4.2 Kubo formula for the transverse response

When we study the response to applied fields whose direction is perpendicular
to the direction of q, we say that we are studying the transverse (or selenoidal)
response. In this case, q ·E(q,ω)=0. The scalar potential contributes only to the
longitudinal component of the field (along with the longitudinal contribution from
the vector potential) since the gradient is always along q. We can thus disregard
for the moment the contribution from the scalar potential and leave it for our study
of the longitudinal response, where we will study in detail the question of gauge
invariance. The magnetic field is always transverse since ∇ ·B =∇ ·∇×A =0.
Let us decompose the vector potential into a transverse and a longitudinal part.
This is easily done by using the unit vector bq = q/ |q|

AL ≡ bqbq ·A ≡bq (bq ·A) (2.189)
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AT ≡
³←→
I −bqbq´ ·A. (2.190)

In the last equation,
←→
I is the vector notation for δµν . We introduce the following

notation for the multiplication of tensors with vectors,

(←→σ ·A)µ =
X
ν

σµνAν . (2.191)

The transverse and longitudinal parts of a tensor are obtained as follows,

←→
σT (q,ω) =

³←→
I −bqbq´ ·←→σ (q,ω) · ³←→I −bqbq´ (2.192)

←→
σL(q,ω) = bqbq ·←→σ (q,ω) · bqbq (2.193)

To simplify the notation, we take the current and applied electric field in the
y direction, and the spatial dependence in the x direction. This is what happens
usually in a wire made of homogeneous and isotropic material in the presence of
the skin effect. This is illustrated in Fig.(2-2).

y

x
z

j (x)
y

E y

Figure 2-2 Application of a transverse electric field: skin effect.

Then the conductivity defined by δ hjy(qx,ω)i ≡ σyy(qx,ω)Ey(qx,ω) follows
from the relation between current and vector potential Eq.(2.186) and the relation
Ey(qx,ω) = i(ω + iη)Ay(qx,ω)/c between vector potential and electric field.

σyy(qx,ω) =
1

i(ω+iη)

h
χRjyjy(qx,ω)− ne2

m

i
(2.194)

In writing the relation between transverse electric field and vector potential, we
used the trick explained in the context of Kramers-Kronig relations which amounts
to using ω + iη because the field is adiabatically switched on.

2.4.3 Kubo formula for the longitudinal response

When q is in the direction of the electric field, we say that we are considering the
longitudinal (or potential) response. Using the consequences of charge conserva-
tion on the response functions χ00, it is possible to rewrite the expression which
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involves both scalar and vector potential Eq.(2.186) in a way that makes the re-
sponse look explicitly invariant under gauge transformations. As usual current
conservation and gauge invariance are intimately related!

∂ρ(r, t)

∂t
= −∇ · j(r, t) (2.195)

∂ρ(q, t)

∂t
= −iq · j(q, t) (2.196)

Take q in the x direction to be specific. Some gymnastics on the susceptibility in
terms of commutator gives,

∂χRjxρ(qx, t)

∂t
= δ(t)

i

~V h[jx(qx,0), ρ(−qx, 0)]i+θ(t)
i

~V (−iqx) h[jx(qx,0), jx(−qx,−t)]i .
(2.197)

The equal-time commutator is calculated from the f sum rule. First use the
definition of χ00jxρ(qx,ω)

i

~V h[jx(qx,0), ρ(−qx, 0)]i = i
Z
dω

π
χ00jxρ(qx,ω) (2.198)

then current conservation

= i

Z
dω

π

ω

qx
χ00ρρ(qx,ω) (2.199)

and finally the f sum rule Eq.(2.169) to rewrite the last expression as

= iqx
ne2

m
(2.200)

Substituting back in the expression for the time derivative of the current-charge
susceptibility Eq.(2.197) and Fourier transforming in frequency, we have

−i(ω + iη)χRjxρ(q,ω) = iqx ne
2

m − iqxχRjxjx(q,ω) . (2.201)

Using this in the general formula for the response of the current Eq.(2.186) the
longitudinal linear response function can be written in terms of the gauge invariant
electric field in two different ways:

δ hjx(qx,ω)i = 1

i(ω + iη)

·
χRjxjx(qx,ω)−

ne2

m

¸µ
i(ω + iη)Ax(qx,ω)

c
− iqxφ(qx,ω)

¶
(2.202)

=

·
1

iqx
χRjxρ(qx,ω)

¸µ
i(ω + iη)Ax(qx,ω)

c
− iqxφ(qx,ω)

¶
. (2.203)

Hence, replacing the gauge-invariant combination of potentials by the field,

Ex(qx,ω) =
i(ω + iη)Ax(qx,ω)

c
− iqxφ(qx,ω) (2.204)

we find the following Kubo formulae for the longitudinal conductivity δ hjx(qx,ωi ≡
σxx(qx,ω)Ex(qx,ω)

σxx(qx,ω) =
1

i(ω+iη)

h
χRjxjx(qx,ω)− ne2

m

i
=
h
1
iqx

χRjxρ(qx,ω)
i
. (2.205)

Using gauge invariance and the f−sum rule, the above result for the longitudinal
response will soon be rewritten in an even more convenient manner.
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Further consequences of gauge invariance and relation to f sum-rule.

The electric and magnetic fields, as well as all observable quantities are invariant
under gauge transformations,

A→ A+∇Λ (2.206)

φ→ φ− 1
c

∂Λ

∂t
(2.207)

Let φ = 0. Then

δ hjx(qx,ω)i =
·
χRjxjx(qx,ω)−

ne2

m

¸
Ax(qx,ω)

c
(2.208)

Doing a gauge transformation with Λ(x, t) independent of time (ω = 0) does
not induce a new scalar potential (φ = 0). The response to this pure gauge
field through the vector potential should better be zero since it corresponds
to zero electric field. This will be the case ifh

χRjxjx(qx, 0)− ne2

m

i
= 0 . (2.209)

This can be proven explicitly by using the spectral representation

χRjxjx(qx, 0) =

Z
dω0

π

χ00jxjx(qx,ω
0)

ω0
(2.210)

conservation laws,

=

Z
dω0

π

χ00jxjx(qx,ω
0)

ω0
=

Z
dω0

π

ω0χ00ρρ(qx,ω0)
q2x

(2.211)

and the f -sum rule (2.169)

=
1

q2x

Z
dω0

π
ω0χ00ρρ(qx,ω

0) =
ne2

m
= χRjxjx(qx, 0). (2.212)

The form R
dω0
π

χ00jxjx(qx,ω
0)

ω0 = ne2

m (2.213)

of the above result, obtained by combining Eqs.(2.209) and (2.210) will be
used quite often below.

Another possibility is to let A =0. Then, the general Kubo formula (2.186)
gives

δ hjx (q,ω)i = −χRjxρ(q,ω)φ(q,ω). (2.214)

If we let Λ(x, t) be independent of x, (q =0) then the vector potential remains
zero (A =0). Again, the response to this pure gauge field through the scalar
potential must be zero, hence

χRjxρ(0,ω) = 0 . (2.215)

That this is true, again follows from current conservation since

χRjxρ(0,ω) =

Z
dω0

π

χ00jxρ(0,ω
0)

ω0 − ω − iη (2.216)
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and

χ00jxρ(0,ω
0) =

Z
dteiωt

1

2~V
¿·Z

drjµ(r, t),

Z
dr0ρ(r0)

¸À
= 0 (2.217)

where the last equality follows from the fact that the total charge
R
dr0ρ(r0) =

eN is a conserved quantity. In other words it commutes with the density
matrix, which allows, using the cyclic property of the trace, to show that
the commutator of eN with any operator vanishes.

Remarque 20 Both results Eq.(2.209) and Eq.(2.215) are consistent with the
general relation found between both types of correlation functions Eq.(2.201). It
suffices to take the q→ 0 limit assuming that χRjxjx(qx,ω) is finite or diverges less
slowly than 1/qx to prove Eq.(2.215) and to take ω → 0 assuming that χRjµρ(qx,ω)
is finite or diverges less slowly than 1/ω to prove Eq.(2.209).

Longitudinal conductivity sum-rule and an alternate expression for the
longitudinal conductivity.

The expression for the longitudinal conductivity

σxx(qx,ω) =
1

i(ω + iη)

·
χRjxjx(qx,ω)−

ne2

m

¸
(2.218)

can be written in an even more convenient manner by using our previous results
Eq.(2.213) obtained from the f−sum rule and the spectral representation for the
current-current correlation function

σxx(qx,ω) =
1

i(ω + iη)

"Z
dω0

π

χ
00
jxjx

(qx,ω
0)

ω0 − ω − iη −
Z
dω0

π

χ
00
jxjx

(qx,ω
0)

ω0

#
(2.219)

=
1

i(ω + iη)

"Z
dω0

π

χ
00
jxjx

(qx,ω
0)(ω + iη)

ω0 (ω0 − ω − iη)

#
(2.220)

σxx(qx,ω) =
1
i

·R
dω0
π

χ
00
jxjx

(qx,ω
0)

ω0(ω0−ω−iη)

¸
(2.221)

From this formula, we easily obtain with the usual identity for principal parts,
Eq.(2.118)

Reσxx(qx,ω) =
χ
00
jxjx

(qx,ω)

ω (2.222)

from which we obtain the conductivity sum ruleR∞
−∞

dω
2π Re [σxx(qx,ω)] =

R∞
−∞

dω
2π

χ
00
jxjx

(qx,ω)

ω = ne2

2m =
ω2p
8π (2.223)

directly from the f−sum rule Eq.(2.213). In the above expression, ω2p is the plasma
frequency. Using the fact that the real part of the conductivity is an even function
of ω, as follows from the fact that χ

00
jxjx

(qx,ω) is odd, the above formula is often
written in the form of an integral from 0 to ∞.
Remarque 21 Alternate expression: There is no principal part in the integrals
appearing in the last expression. An equivalent but more cumbersome expression
for the longitudinal conductivity, namely,

σxx(qx,ω) = P 1
iω

h
χRjxjx(qx,ω)− ne2

m

i
− πδ(ω)

h
χRjxjx(qx,ω)− ne2

m

i
(2.224)

is obtained from Eq.(2.218) by using the expression for principal parts. It is also
possible to prove the optical-conductivity sum-rule from this starting point.
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Remarque 22 Practical use of sum rule: The n that appears in the conductivity
sum rule is the full electronic density. In pratical calculations for experiment, one
stops integrating at a finite frequency, which is smaller than the binding energy
of core electrons. These electrons are then frozen, and the appropriate plasma
frequency is calculated with the free electronic density in the conduction band.

Remarque 23 The case of interactions in lattice models: The f−sum rule is
particularly useful because it gives a result that is independent of interactions. We
will see later that for models on a lattice, this is not quite true anymore.

Drude weight and zero frequency conductivity

In everything that preceded, the magnitude of q was arbitrary. Let us now look
at the response for a uniform, or very long wavelength field, i.e. qx → 0. It is
important to notice that this is the proper way to compute the DC conductivity:
Take the q→ 0 limit, before the ω → 0 limit. In the opposite limit the response
vanishes as we saw from gauge invariance (2.209). Physically, transport probes
dynamical quantities. A DC measurement can be seen as the zero frequency limit
of a microwave experiment for example. By taking the q→ 0 limit first, we ensure
that we are looking at an infinite volume, where energy levels can be arbitrarely
close in energy. Then only can we take the zero frequency limit and still get
absorption when the state is metallic. Otherwise the discrete nature of the energy
states would not allow absorption in the zero frequency limit.
In the correct limit, the above formulas (2.222) and (2.224) for conductivity

give us either the simple formula,

Re [σxx(0,ω)] =
χ00jxjx(0,ω)

ω
(2.225)

or the more complicated-looking formula

Re [σxx(0,ω)] = P
χ00jxjx(0,ω)

ω
− πδ(ω)

·
Re
£
χRjxjx(0,ω)

¤− ne2
m

¸
(2.226)

Note that since the conductivity sum rule is satisfied for abitrary qx, it is also
satisfied here. It is also easy to prove by directly integrating the last equation as
we have just done in the last section. The coefficient of the delta function at zero
frequency δ(ω) is called the Drude weight D:

D = π limω→0
h
ne2

m −Re
£
χRjxjx(0,ω)

¤i
. (2.227)

Remarque 24 Alternate derivation: To be reassured that the Drude weight would
also come out from the first expression for the conductivity Eq.(2.225), it suffices
to show that both expressions are equal, namely that

χ00jxjx(0,ω)
ω

− P χ00jxjx(0,ω)
ω

= −πδ(ω)
·
Re
£
χRjxjx(0,ω)

¤− ne2
m

¸
(2.228)

To show this, one first notes that given the definition of principal part, the differ-
ence on the left-hand side can only be proportional to a delta function. To prove
the equality of the coefficients of the delta functions on both sides, it then suffices
to integrate over frequency. One obtainsZ ∞

−∞

dω

π

χ00jxjx(0,ω)
ω

− P
Z ∞
−∞

dω

π

χ00jxjx(0,ω)
ω

= −
·
Re
£
χRjxjx(0,ω)

¤− ne2
m

¸
(2.229)

an expression that is clearly correct, as can be shown by using the spectral repre-
sentation (or Kramers-Kronig representation) of the current-current correlation
function and the f−sum rule Eq.(2.213).
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Remarque 25 Alternate form: While the Drude weight is the strength of the delta
function response in the real part of the conductivity, one can see immediately from
the general expression for the longitudinal conductivity, Eq.(2.218), that it can also
be extracted from the imaginary part,

D = π lim
ω→0

ω Im [σxx(0,ω)] (2.230)

2.4.4 Metals, insulators and superconductors

For free electrons, the qx → 0 conductivity is a delta function at zero-frequency
whose Drude weight is D = πne2/m.

Proof: Write Newton’s equation of motion for the current,

∂j (q = 0,t)

∂t
=
ne2

m
E (q = 0,t) (2.231)

j (q = 0,ω) = − 1

i (ω + iη)

ne2

m
E (q = 0,ω) (2.232)

then the conductivity has only a Drude contribution (free acceleration).

Re
j (q = 0,ω)

E (q = 0,ω)
= Reσ (q = 0,ω) = π

ne2

m
δ (ω) (2.233)

For interacting electrons, the current of a single particle is no longer a conserved
quantity and there is a contribution from π limω→0Re

£
χRjxjx(0,ω)

¤
. The rest of the

weight is at finite frequency. Hence, the criterion given by Kohn[6] for a system to
be a metal is that it has a non-zero Drude weight(2.227), or in other words a finite
DC conductivity. In a realistic situation where impurities or inelastic processes
outside the electronic system are present, the situation becomes more complicated
because the δ function is broadened.
Kohn’s criterion[6] to have an insulator is that it has a vanishing DC conduc-

tivity (or equivalently D = 0). This is the case whenever

lim
ω→0

Re
£
χRjxjx(0,ω)

¤
= lim

ω→0
P
Z
dω0

π

χ00jxjx(0,ω
0)

ω0 − ω
=
ne2

m
(2.234)

Recalling the result obtained from the f−sum rule (or equivalently from gauge
invariance), (2.213)

χRjxjx(qx, 0) =

Z
dω0

π

χ00jxjx(qx,ω
0)

ω0
=
ne2

m
(2.235)

this means that a system is an insulator only when the order of limits can be
inverted:

lim
ω→0

lim
qx→0

Re
£
χRjxjx(qx,ω)

¤
= lim
qx→0

lim
ω→0

Re
£
χRjxjx(qx,ω)

¤
. (2.236)

This occurs in particular when there is a gap ∆. In this case, then χ
00
jxjx

(qx,ω) = 0
for all qx as long as ω < ∆. In particular, there can be no contribution from zero
frequency since χ

00
jxjx

(qx, 0) = 0 so that the principal part integral and the full
integral are equal.
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Remarque 26 Gapless insulators: The condition of having a gap is sufficient but
not necessary to have an insulator. There are examples where there is no gap in
the two-particle excitations but there is a vanishing DC conductivity. [7]

Finally, superconductors are an interesting case. While gauge invariance (or
f−sum rule) implies (2.209) that·

χRjxjx(qx, 0)−
ne2

m

¸
= 0. (2.237)

there is no such principle that forces the transverse response to vanish. Indeed,
gauge transformations (2.178) are always longitudinal. Hence, it is possible to
have, ·

χRjyjy(qx, 0)−
ne2

m

¸
= −ne

2

m
(2.238)

A superconductor will indeed have such a non-vanishing “transverse Drude weight”.

Proof: Assume this is the case. Then we will show that the system exhibits
perfect screening of magnetic fields (the Meissner effect). This is done by
starting from the general formula for the response to a transverse electro-
magnetic field (2.186)

δ
­
jTµ (q,ω)

®
=

·³
χRjµjν (q,ω)

´T
− ne

2

m
δµν

¸
ATν (q,ω)

c
.

To simplify the discussion, we take a simple case where the q dependence
of the prefactor can be neglected in the zero-frequency limit, (we keep the
zeroth order term in the power series in q),

δ
­
jTµ (q,0)

®
= −nse

2

m

ATµ (q, 0)

c
. (2.239)

We have written ns to emphasize that this quantity is in general different
from n. This quantity, ns is called the superfluid density. The above equation
is the so-called London equation. Taking the curl on both sides of the Fourier
transformed expression,

∇× δ hj(r,ω=0)i = −nse
2

m

B(r,ω=0)

c
(2.240)

and then employing Maxwell’s equation ∇×B(r,ω=0) = 4πj(r,ω = 0)/c as
well as ∇× (∇×B) = ∇ (∇ ·B)−∇2 (B) with ∇ ·B =0 the last equation
takes the form,

∇2 (B) = 4πnse
2

mc2
B (2.241)

whose solution in the half-plane geometry shown in figure (2-3) is,

By(x) = By(0)e
−x/λL

with the London penetration depth

λ−2L =
4πnse

2

mc2
. (2.242)

In the case where ns = n, which often occurs at zero temperature, then

c2 = ω2pλ
2
L. (2.243)

The magnetic field is completely expelled from a superconductor. This is
perfect diamagnetism.
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Figure 2-3 Penetration depth in a superconductor.

Why are the transverse and longitudinal zero-frequency responses different in
a superconductor? This can happen only if

lim
qx→0

χRjxjx(qx, 0,ω = 0) 6= lim
qy→0

χRjxjx(0, qy,ω = 0) (2.244)

or in other words

lim
qx→0

Z
dt

Z
dre−iqxxχRjxjx(r,ω = 0) 6= lim

qy→0

Z
dt

Z
dre−iqyyχRjxjx(r,ω = 0).

(2.245)
This occurs in a superconductor because long-range order leads to χRjxjx(r,ω = 0)
which does not decay fast enough for the integral to be uniformly convergent. More
on this in a later chapter. In an ordinary metal there is no such long-range order
and both limits are identical so that the London penetration depth is infinite.
In all cases ·

χRjxjx(qx, 0)−
ne2

m

¸
= 0 (2.246)

by gauge invariance (f−sum rule) Eq.(2.209). The difference between a metal,
an insulator and a superconductor may be summarized as follows. There are two
limits which are relevant. The Drude weight (2.227)

D = π lim
ω→0

·
ne2

m
−Re £χRjxjx(0,ω)¤¸ (2.247)

and the transverse analog of the f−sum rule,

DS = π limqx→0
h
ne2

m − χRjyjy(qx, 0)
i

(2.248)

As we just saw, contrary to its longitudinal analog, DS is not constrained to vanish
by gauge invariance. It is instead related to the inverse penetration depth in a
superconductor. The table summarizes the results.

Remarque 27 Definition of superconductor: A superconductor can unambigu-
ously be defined by the non-vanishing of DS . Indeed, a superconductor has a gap
to single-particle excitations, like an insulator, and it has a delta response in the
longitudinal direction at zero wave vector, like a metal. On the other hand, neither
metal nor insulators have a non-zero DS .

Remarque 28 Non-standard superconductors: Note that superconductors can be
gapless in the presence of magnetic impurities, and they can also have resistance
in the so-called mixed-state.
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D DS
Metal D 0
Insulator 0 0
Superconductor D DS

Table 2.1 Difference between metal, insulator and superconductor, as seen from the
limiting value of correlation functions

2.4.5 Conductivity sum rules

The optical conductivity sum rule Eq.(2.223) that we have derived up to now was
for the longitudinal case. With a finite wave vector probe, this sum rule can be
writtenZ ∞
−∞

dω

2π
Re [σxx(qx,ω)] =

Z ∞
−∞

dω

2π

χ
00
jxjx

(qx,ω)

ω
=
1

2
χRjxjx(qx, 0) =

ne2

2m
(2.249)

where the last expression follows from gauge invariance Eq.(2.209). In the trans-
verse case, such as light in infrared experiments, which is also a finite wave vector
probe, one finds by contrast,Z ∞

−∞

dω

2π
Re [σyy(qx,ω)] =

Z ∞
−∞

dω

2π

χ
00
jyjy

(qx,ω)

ω
=
1

2
χRjyjy(qx, 0) (2.250)

and we cannot use gauge invariance to deduce the value of χRjyjy(qx, 0). In anything
except a superconductor however, there is uniform convergence of the integrals in
Eq.(2.245). The integrals become equal and the transverse conductivity obeys the
same sum rule as the longitudinal one.
In a superconductor by contrast, we can use the expression for DS , Eq.(2.248)

to write

limqx→0
R∞
−∞

dω
2π Re [σyy(qx,ω)] =

ne2

2m − DS

2π =
(n−ns)e2

2m (2.251)

The missing spectral weight, compared with the longitudinal sum rule, goes into a
delta function response at zero frequency that is in turn related to the superfluid
density ns or, equivalently, to the London penetration depth λL that we defined
in the previous subsection.
To see explicitly the zero-frequency delta function response at finite wave-

vector in a superconductor, the form Eq.(2.194) is more convenient since from it
we can write the real part of the conductivity in the form

Reσyy(qx,ω) = P 1
ω

h
χ00jyjy (qx,ω)

i
− πδ (ω)

·
ReχRjyjy (qx, 0)−

ne2

m
(̧2.252)

= P χ00jyjy(qx,ω)

ω
+DSδ (ω) (2.253)

Remarque 29 Other manifestation of delta function response: Note that in the
imaginary part of the conductivity, the existence of a non-zero DS has observable
consequences at finite frequency since the delta function in the real part gives a
long 1/ω tail in the imaginary part. More specifically,

Imσyy(qx,ω) =
1

ω

·
ne2

m
−ReχRjyjy(qx,ω)

¸
− πδ (ω)χ00jyjy(qx,ω) (2.254)

=
DS
π

1

ω
(2.255)
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2.4.6 Relation between conductivity and dielectric constant

The relation between dielectric constant and conductivity is a matter of macro-
scopic electromagnetism. The dielectric constant is basic to optical measurements,
hence it will be useful to relate it to correlation functions that we can compute
later.
Let us consider a translationally invariant system, so that it suffices to consider

the Fourier-space version of Maxwell’s equations

iq ·E =4πρ (2.256)

iq×E = i (ω + iη)
c

B (2.257)

iq ·B =0 (2.258)

iq×B =4π
c
j− i (ω + iη)

c
E. (2.259)

Transverse dielectric constant.

Using the definition of transverse conductivity, the last of Maxwell’s equations
reads,

iq×B =4π
c

←→
σT ·E− i (ω + iη)

c
E. (2.260)

Using the second Maxwell equation on the left-hand side, as well as iq ·E = 0 for
transverse response and q× (q×E) = q (q ·E)− q2E, we have

q2E =
4πi (ω + iη)

c2

←→
σT ·E+(ω + iη)

2

c2
E ≡(ω + iη)

2

c2

←→
²T E (2.261)

where the last equality is the definition of the dielectric tensor. If there was no
coupling to matter, the electric field would have the usual pole for light ω = cq.
In general then, ←→

²T (q,ω) = 1 +
4πi

(ω + iη)

←→
σT (2.262)

In the simple case where the dielectric tensor is diagonal, it is related to the
dielectric constant n and the attenuation constant κ through

√
² = n+ iκ. Using

the expression for the conductivity in terms of response function, we have that

←→
²T (q,ω) =

³
1− ω2p

(ω+iη)2

´←→
I + 4π

(ω+iη)2

³←→
χRjj(q,ω)

´T
. (2.263)

Remarque 30 Bound charges: When one can separate the charges into bound
and free in the calculation of

←→
χRjj(q,ω), the contribution of the bound charges to

4π
(ω+iη)2

←→
χRjj(q,ω) is usually included with the 1 and called,

←→
²T bound.

Remarque 31 Transverse current and plasmons: The transverse current-current
correlation function does not contain the plasmon pole since transverse current
does not couple to charge. (One can check this explicitly in diagrammatic calcu-
lations: The correlation function between charge and transverse current vanishes
in a homogeneous system because the wave-vector for the charge and the vector
for the current direction are orthogonal, leaving no possibility of forming a scalar.
The equilibrium expectation value of a vector vanishes in a homogenous system.
In fact it vanishes even in less general situations which are not enumerated here.)
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Remarque 32 Electromagnetic field and plasmon: One can see from the equa-
tion for the electric field (2.261) that in general the electromagnetic field does
see the plasmon (negative dielectric constant for ω < ωp in Eq.(2.263) means no
propagation below the plasma frequency).

Longitudinal dielectric constant.

Let the system be subjected to some external charge ρe(q,ω). The electric field
depends on the total charge, including the induced one

iq ·E =4π (ρe + δ hρi) . (2.264)

The longitudinal dielectric constant is defined by

iq·
←→
²L ·E =4πρe. (2.265)

With a longitudinal applied field, this means that

¡
²L
¢−1

=
ρe + δ hρi

ρe
. (2.266)

The linear response to an external charge can be computed from the response to
the scalar potential it induces

φe(q,ω) =
4π

q2
ρe(q,ω). (2.267)

As above, linear response to

δH(t) =
Z
drρ (r)φe (r,t) (2.268)

is given by
δ hρ(q,ω)i = −χRρρ(q,ω)φe(q,ω) (2.269)

so that simple substitution in the equation for
¡
²L
¢−1

gives,

1
²L(q,ω) = 1− 4π

q2 χ
R
ρρ(q,ω) . (2.270)

Remarque 33 Density response and plasmon: The density-density correlation
function appearing there still contains the plasmon pole.

The longitudinal dielectric constant is simply related to the cross section for
inelastic electron scattering encountered at the beginning of this Chapter. Indeed,
the fluctuation-dissipation theorem gives us

Sρρ(q,ω) =
2~

1− e−β~ω Im
£
χRρρ(q,ω)

¤
= − 2~

1− e−β~ω
q2

4π
Im

·
1

²L(q,ω)

¸
. (2.271)

The following properties of the dielectric constants are worthy of interest

Remarque 34 Kramers-Kronig: ²T (q,ω) and 1
²L(q,ω) − 1 obey Kramers-Krönig

relations since they are causal. Since they are expressed in terms of correlation
functions, they also obey sum rules which follow simply from those already derived,
in particular the f−sum rule.

Remarque 35 ²L(q,ω) 6= ²T (q,ω) in general
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Looking in what follows at the case ω << cq, we assume that ∇×E = −1c ∂B∂t ≈
0. Then there are simple things to say about the significance of the poles and zeros
of the dielectric constant.

Remarque 36 Collective transverse excitations: The poles of ²T are at the col-
lective transverse excitations. Indeed, let us look since ∇ ·D =0 (no free charge)
is garanteed by the fact the excitation is transverse, while ∇× E =0 implies zero
electric field in a transverse mode. Nevertheless, DT 6=0 can occur even if the elec-
tric field is zero when ²T =∞. The corresponding poles are those of the transverse
part of χRjj(q,ω).

Remarque 37 Collective longitudinal excitations: The zeros of ²L locate the lon-
gitudinal collective modes since

¡
²L
¢−1

= ρe+δhρi
ρe

= ∞ corresponds to internal

charge oscillations. Alternatively, DL = 0 as required by the no-free-charge con-
straint ∇ · D =0 but nevertheless EL 6= 0 is allowed if ²L = 0. (∇ × E =0 is
automatic in a longitudinal mode). The corresponding collective modes are also
the poles of χRρρ(q,ω).
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3. INTRODUCTION TO GREEN’S
FUNCTIONS. ONE-BODYSCHRÖDINGER
EQUATION

We now know that correlation functions of charge, spin, current etc... allow us to
predict the results of various experiments. In quantum mechanics, all these quan-
tities, such as charge, spin, current, are bilinear in the Schrödinger field Ψ(r, t).
What about correlation functions of the field Ψ(r, t) itself? First of all, they are
certainly necessary from a theoretical point of view to get a full description of
the system. But more than that, they are related to experiment, more specifi-
cally to photoemission experiments for example. We will come back to this later.
At this point, it suffices to say that if we do experiments where we actually in-
ject or extract a single electron, then we need to know the correlation function
for a single Ψ field. These correlation functions are called Green’s functions, or
propagators. They share a lot of the general properties of correlation functions:
Kramers-Kronig relations, sum rules, high-frequency expansions... But there are
also important differences as will become clearer in later chapters.
One can read on this subject in several books[1][2] [3][4]. Here we introduce

Green’s functions in the simple context of the one-body Schrödinger equation.
This will help us, in particular, to develop an intuition for the meaning of Feynman
diagrams and of the self-energy in a familiar context. Impurity scattering will be
discussed in detail after we discuss definitions and general properties.
From now on, we work in units where ~ = 1.

3.1 Definition of the propagator, or Green’s func-
tion

The main idea of perturbation theory is to prepare a state Ψ0(r0, t0) and to let it
evolve adiabatically in the presence of the perturbation into the new eigenstate
Ψ(r, t). Let us then show that the evolution of Ψ(r, t) is governed by a propagator,
then, later in this chapter, we develop perturbation theory for the propagator.
Let t = 0 be the time at which the Schrödinger and Heisenberg pictures coin-

cide. Then
Ψ(r, t) = hr| e−iHt |ΨHi . (3.1)

If instead of knowing the Heisenberg wave function |ΨHi we known the initial
value of the Schrödinger wave function

|Ψ0(t0)i = e−iHt0 |ΨHi (3.2)

we can write the wave functionΨ(r, t) in terms of the initial state in the Schrödinger
picture

Ψ(r, t) = hr| e−iH(t−t0) |Ψ0(t0)i . (3.3)
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To rewrite the same thing in terms of the initial wave function,

Ψ0(r
0, t0) = hr0| Ψ0 (t0)i (3.4)

it suffices to use a complete set of states

Ψ(r, t)θ (t− t0) =
Z
dr0 hr| e−iH(t−t0) |r0i hr0| Ψ0 (t0)i θ (t− t0) (3.5)

where the θ (t− t0) is added to make causality explicit. This last equation may be
rewritten as

Ψ(r, t)θ (t− t0) = i
Z
dr0GR (r,t; r0, t0)Ψ0(r0, t0) (3.6)

if we introduce the following definition of the retarded Green’s function in the
position representation

GR (r,t; r0, t0) = −i hr| e−iH(t−t0) |r0i θ (t− t0) . (3.7)

This may look like a useless exercise in definitions, but in fact there are many
reasons to work with the retarded Green’s function GR (r,t; r0, t0).

• GR (r,t; r0, t0) does not depend on the initial condition Ψ0(r0, t0).
• GR (r,t; r0, t0) contains for most purposes all the information that we need.
In other words, from it one can extract wave-functions, eigenenergies etc...
Obviously, the way we will want to proceed in general is to express all ob-
servables in terms of the Green’s function so that we do not need to explicitly
return to wave functions. These functions provide an alternate formulation
of quantum mechanics.

• GR (r,t; r0, t0) is the analog of the Green’s function used in the general context
of differential equations (electromagnetism for example).

• Perturbation theory for GR (r,t; r0, t0) can be developed in a natural manner.
• GR (r,t; r0, t0) is generalizable to the many-body context where it keeps the
same Physical interpretation (but not exactly the same mathematical defin-
ition).

Définition 4 GR (r,t; r0, t0) is called a propagator, (or Green’s function), since
it gives the wave function at any time, as long as the initial condition is given.
In other words, it propagates the initial wave function, like Huygens wavelets de-
scribe the propagation of a wave as a sum of individual contributions from point
scatterers.

3.2 Information contained in the one-body propa-
gator

It is very useful to work with the Fourier transform in time ofGR (r,t; r0, t0) because
it contains information about the energy spectrum

GR (r, r0;ω) = −i
Z ∞
0

d (t− t0) eiω(t−t0) hr| e−iH(t−t0) |r0i e−η(t−t0). (3.8)
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In this expression, we have used the θ (t− t0) and the usual trick of adiabatic
turning on to be able to define the Fourier transform of the θ function. Insert in
this equation a complete set of energy eigenstates

H |ni = En |ni (3.9)

hn| e−iH(t−t0) |mi = e−iEn(t−t0)δn,m (3.10)

to obtain for the Green’s function

GR (r, r0;ω) = −i
X
n

hr| ni
Z ∞
0

dtei(ω+iη−En)t hn |r0i (3.11)

or using Ψn (r) = hr| ni

GR (r, r0;ω) =
P
n

hr|nihn |r0i
ω+iη−En =

P
n

Ψn(r)Ψ
∗
n(r

0)
ω+iη−En (3.12)

=
P
n hr| ni hn| 1

ω+iη−En |ni hn |r0i = hr| 1
ω+iη−H |r0i .

From this form, one can clearly see that

• The poles of GR (r, r0;ω) are at the eigenenergies.

• The residue at the pole is related to the corresponding energy eigenstate.

• This is the analog of what will be called later a Lehmann representation.

3.2.1 Operator representation.

The last equation may be seen as the position representation of the general oper-
ator bGR(ω) = 1

ω+iη−H (3.13)

which is also called the resolvent operator. In other words,

GR (r, r0;ω) = hr| bGR(ω) |r0i .
In real time, the corresponding expression is

bGR (t) = −ie−iHtθ (t) (3.14)

The advanced propagator is

bGA (t) = ie−iHtθ (−t) (3.15)

bGA(ω) = 1
ω−iη−H (3.16)
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3.2.2 Relation to the density of states

The density of states is an observable which may be found directly from the Green’s
function. The one-particle density of states is defined by

ρ(E) =
P
n δ (E −En) =

X
n

Z
dr hn |ri hr| ni δ (E −En) (3.17)

= − 1
π

R
dr ImGR (r, r;E) (3.18)

which can be rewritten in a manner which does not refer to the explicit represen-
tation (such as |ri above)

ρ(E) = − 1
πTr

h
Im bGR (E)i . (3.19)

The quantity

ρ(r,E) = − 1
π
ImGR (r, r;E) (3.20)

is called the local density of states, a quantity relevant when there is no transla-
tional invariance.

3.2.3 Spectral representation, sum rules and high frequency expansion

Green’s functions have many formal properties that are analogous to those of
response functions. We discuss some of them here.

Spectral representation and Kramers-Kronig relations.

Returning to the explicit representation in energy eigenstates, (3.12), it can be
written in a manner which reminds us of the spectral representation

GR (r, r0;ω) =
X
n

Ψn (r)Ψ
∗
n (r

0)
ω + iη −En =

Z
dω0

2π

P
nΨn (r)Ψ

∗
n (r

0) 2πδ (ω0 −En)
ω + iη − ω0

(3.21)

=
R
dω0
2π

A(r,r0;ω0)
ω+iη−ω0 =

R
dω0
2π

−2 ImGR(r,r0;ω0)
ω+iη−ω0 =

R
dω0 ρ(r,r

0;ω0)
ω+iη−ω0 (3.22)

which defines the spectral weight

A (r, r0;ω0) =
X
n

Ψn (r)Ψ
∗
n (r

0) 2πδ (ω0 −En) (3.23)

for the one-particle Green’s functions. Note that in momentum space we would
have, for a translationally invariant system,

GR (k;ω) =
R
dω0
2π

A(k;ω0)
ω+iη−ω0 (3.24)

with
A (k;ω0) = −2 ImGR (k;ω0) (3.25)

A (k;ω0) =
X
n

Ψn (k)Ψ
∗
n (k) 2πδ (ω

0 −En) (3.26)

=
X
n

hk| ni hn |ki 2πδ (ω0 −En) . (3.27)
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Remarque 38 Assumptions in relating A to ImGR : It is only in the presence of
a time-reversal invariant system that the Schrödinger wave functions Ψn (r) can
always be chosen real. In such a case, it is clear that we are allowed to write
A (r, r0;ω0) = −2 ImGR (r, r0;ω0) as we did in Eq.(3.22).
Remarque 39 Analogies with ordinary correlation functions. Contrary to the
spectral representation for correlation functions introduced earlier, there is dω0

2π

instead of dω0
π . Furthermore, the denominator involves ω + iη − ω0 instead of

ω0−ω−iη. Apart from these differences, it is clear that A (k;ω0) here is analogous
to χ00 (k;ω0) for correlation functions.

Analyticity in the upper half-plane implies Kramers-Kronig relations as before.
In fact, the spectral representation itself leads immediately to

Re
£
GR (r, r0;ω)

¤
= P

Z
dω0

π

Im
£
GR (r, r0;ω0)

¤
ω0 − ω

. (3.28)

The other reciprocal Kramers-Kronig relation follows as before.

Im
£
GR (r, r0;ω)

¤
= −P

Z
dω0

π

Re
£
GR (r, r0;ω0)

¤
ω0 − ω

(3.29)

Sum rules

As before, the imaginary part, here equal to the local density of states, obeys sum
rulesZ

dω0

2π

¡−2 ImGR (r, r0;ω0)¢ = Z dω0

2π

X
n

Ψn (r)Ψ
∗
n (r

0) 2πδ (ω0 −En) (3.30)

=
X
n

Ψn (r)Ψ
∗
n (r

0) = δ (r− r0) (3.31)

so that Z
d (r− r0)

Z
dω0

2π

¡−2 ImGR (r, r0;ω0)¢ = 1. (3.32)

More sum rules are trivially derived. For example,R
dr
R
dω0
2π ω

0 ¡−2 ImGR (r, r;ω0)¢ = Z dr

Z
dω0ω0ρ(r,ω0) =

Z
dr
X
n

EnΨn (r)Ψ
∗
n (r)

(3.33)

=
R
dr hr|H |ri . (3.34)

In operator form, all of the above results are trivialR
dω
2πω

nTr
h
−2 Im

³ bGR´i = Z dω

2π
ωnTr

·
−2 Im

µ
1

ω + iη −H
¶¸

(3.35)

=
R
dωωnTrδ (ω −H) =Tr(Hn)

Evaluating the trace in the position representation, we recover previous results.
Special cases includeZ

dr

Z
dω0

2π
(ω0)n

¡−2 ImGR (r, r;ω0)¢ = Z dr hr|Hn |ri (3.36)Z
dk

(2π)3

Z
dω0

2π
(ω0)n

¡−2 ImGR (k,k;ω0)¢ = Z dk

(2π)3
hk|Hn |ki

Remarque 40 Recall that in the case of sum rules for χ00, there was also an
implicit trace since we were computing equilibrium expectation values.
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High frequency expansion.

Once we have established sum rules, we can use them for high frequency expan-
sions. Consider the spectral representation in the form

GR (k,k;ω) =

Z
dω0

2π

−2 ImGR (k,k;ω0)
ω + iη − ω0

. (3.37)

Then for ω sufficiently large that ImGR (k,k;ω) = 0 (see remark below), the
Green’s function becomes purely real and one can expand the denominator so
that at asymptotically large frequencies,

GR (k,k;ω) ≈
∞X
n=0

1

ωn+1

Z
dω0

2π
(ω0)n

¡−2 ImGR (k,k;ω0)¢ (3.38)

Integrating on both sides and using sum rules, we obtain,Z
dk

(2π)
3G

R (k,k;ω) ≈
∞X
n=0

1

ωn+1

Z
dk

(2π)
3 hk|Hn |ki (3.39)

or in more general terms,

Tr
h bGR (ω)i ≈ ∞X

n=0

1

ωn+1
Tr (Hn) (3.40)

which is an obvious consequence of the high-frequency expansion of (3.13)

bGR(ω) = 1

ω + iη −H (3.41)

Remarque 41 ImGR (k,k;ω) = 0 at high frequency. Indeed consider the relation
of this quantity to the spectral weight Eq.(3.25) and the explicit representation of
the spectral weight Eq.(3.27). Only high energy eigenstates can contribute to the
high-frequency part of ImGR (k,k;ω) = 0. The contribution of these high-energy
eigenstates is weighted by matrix elements hn |ki. It is a general theorem that the
higher the energy, the larger the number of nodes in hn|. Hence, for |ki fixed, the
overlap hn |ki must vanish in the limit of infinite energy.
Remarque 42 The leading high-frequency behavior is in 1/ω, contrary to that of
correlation functions which was in 1/ω2.

3.2.4 Relation to transport and fluctuations

The true many-body case is much more complicated, but for the single-particle
Schrödinger equation, life is easy. We work schematically here to show that, in
this case, transport properties may be related to single-particle propagators in a
simple manner. This example is taken from Ref.[1].
Let Sρρ (k,ω) be the charge structure factor for example.

Sρρ (k,ω) =
1

V
Z
dteiωt

­
ρk(t)ρ−k

®
=
1

V
Z
dteiωt

­
eiHtρke

−iHtρ−k
®
. (3.42)

The real-time retarded propagator wasbGR (t) = −ie−iHtθ (t) (3.43)
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while the advanced propagator was

bGA (t) = ie−iHtθ (−t) .
The charge structure factor is then expressed in terms of the propagators

Sρρ (k,ω) =
−1
V
Z
dteiωt

D³ bGR (−t)− bGA (−t)´ ρk ³ bGR (t)− bGA (t)´ ρ−kE .
(3.44)

Because of the θ functions, bGR (−t) bGR (t) = 0.
Remarque 43 Alternate proof: We can also see this in the Fourier transform
version

Sρρ (k,ω) =
−1
V
Z
dω0

2π

D³ bGR (ω0)− bGA (ω0)´ ρk ³ bGR (ω0 + ω)− bGA (ω0 + ω)
´
ρ−k

E
.

(3.45)
Integrals such as

R
dω0
2π G

R (ω0)GR (ω0 − ω) vanish because poles are all in the same
half-plane.

The only terms left then are

Sρρ (k,ω) =
1
V
R
dω0
2π

D bGR (ω0) ρk bGA (ω0 + ω) ρ−k + bGA (ω0) ρk bGR (ω0 + ω) ρ−k
E

(3.46)
In a specific case, to compute matrix elements in the energy representation, one
recalls that

GR(n, n0;E) = hn| 1

E −H + iη
|n0i = δnn0

1

E −En + iη (3.47)

GA(n, n0;E) = hn| 1

E −H − iη |n
0i (3.48)

3.2.5 Green’s functions for differential equations

The expression for the propagator (3.6)

Ψ(r, t)θ (t− t0) = i
Z
dr0GR (r,t; r0, t0)Ψ0(r0, t0) (3.49)

clearly shows that it is the integral version of the differential equation which evolves
the wave function. In other words, it is the inverse of the differential operator for
Ψ(r, t). That may be seen as follows

i
∂

∂t
[Ψ(r, t)θ (t− t0)] = iδ (t− t0)Ψ(r, t) + iθ (t− t0) ∂

∂t
Ψ(r, t) (3.50)

= iδ (t− t0)Ψ(r, t) +Hθ (t− t0)Ψ(r, t). (3.51)

Replacing Ψ(r, t)θ (t− t0) in by its expression in terms of propagator, we obtain

i
∂

∂t

·
i

Z
dr0GR (r,t; r0, t0)Ψ0(r0, t0)

¸
= (3.52)

δ (t− t0) i
Z
dr0δ3 (r− r0)Ψ0(r0, t0) +H

·
i

Z
dr0GR (r,t; r0, t0)Ψ0(r0, t0)

¸
(3.53)
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and since the equation is valid for arbitrary initial condition Ψ0(r0, t0), then£
i ∂∂t −H

¤
GR (r,t; r0, t0) = δ (t− t0) δ3 (r− r0) . (3.54)

This is indeed the definition of the Green’s function for the Schrödinger equation
seen as a differential equation.

Remarque 44 Historical remark: Green was born over two centuries ago. At age
35, George Green, the miller of Nottingham, published his first and most important
work: “An Essay on the Applications of Mathematical Analysis to the Theory of
Electricity and Magnetism” dedicated to the Duke of Newcastle. It is in trying
to solve the differential equations of electromagnetism that Green developed the
propagator idea. Ten years after his first paper, he had already moved from the
concept of the static three-dimensional Green’s function in electrostatics to the
dynamical concept. Green had no aristocratic background. His work was way
ahead of his time and it was noticed mainly because of the attention that Kelvin
gave it.

We can do the same manipulations in operator form. Recalling that

bGR (t) = −ie−iHtθ (t) (3.55)

then the differential equation which is obeyed is·
i
∂

∂t
−H

¸ bGR (t) = δ (t) (3.56)

which takes exactly the form above, (3.54) if we write the equation in the position
representation and use the completeness relation

R
dr |ri hr| = 1 a few times.

Formally, we can invert the last equation,

bGR (t) = £i ∂∂t −H¤−1 δ (t) (3.57)

which is meaningless unless we specify that the boundary condition is thatGR (−∞) =
0. This should be compared with Eq.(3.13).

Remarque 45 Boundary condition in time vs pole location in frequency space:
From the equation for the propagator (3.54) it appears that one can add to GR (r,t; r0, t0)
any solution of the homogeneous form of the differential equation (right-hand side
equal to zero). The boundary condition that GR (r,t; r0, t0) vanishes for all t−t0 < 0
and at t − t0 → ∞ (the iη) makes the solution unique. Indeed, for a first-order
equation, one boundary condition suffices. In frequency space, this moves the poles
away from the real axis.

3.3 Perturbation theory for one-body propagator

Feynman diagrams in their most elementary form appear naturally in perturbation
theory for a one-body potential. We will also be able to introduce notions such as
self-energy and Dyson equation. As an example, we will treat in more details the
propagation of an electron in a random potential.
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3.3.1 General starting point for perturbation theory.

If we can diagonalize H, then we know the propagatorbGR (ω) = 1
ω−H+iη (3.58)

from the identities we developed above,

GR(n, n0;E) = hn| 1

E −H + iη
|n0i = δnn0

1

E −En + iη (3.59)

GR (r, r0;ω) =
X
n

Ψn (r)Ψ
∗
n (r

0)
ω + iη −En (3.60)

We want to develop perturbation methods to evaluate the propagator in the
case where one part of the Hamiltonian, say H0 can be diagonalized while the
other part, say V , cannot be diagonalized in the same basis. The easiest manner
to proceed (when V is independent of time) is using the operator methods that
follow. First, write

(ω + iη −H0 − V ) bGR (ω) = 1. (3.61)

Putting the perturbation V on the right-hand side, and usingbGR0 (ω) = 1

ω + iη −H0 (3.62)

we have ³ bGR0 (ω)´−1 bGR (ω) = 1 + V bGR (ω) . (3.63)

Multiplying by bGR0 (ω) on both sides, we write the equation in the formbGR (ω) = bGR0 (ω) + bGR0 (ω)V bGR (ω) . (3.64)

In scattering theory, this is the propagator version of the Lippmann-Schwinger
equation. Perturbation theory is obtained by iterating the above equation. Stop-
ping the iteration at an arbitrary point may however lead to misleading results,
as we shall discuss in the following section.
But before this, we point out that perturbation theory here can be seen as

resulting from the following matrix identity,

1
X+Y =

1
X − 1

XY
1

X+Y (3.65)

To prove this identity, multiply by X + Y either from the left or from the right.
For example

1

X + Y
(X + Y ) =

1

X
X +

1

X
Y − 1

X
Y

1

X + Y
(X + Y ) = 1 (3.66)

3.3.2 Feynman diagrams for a one-body potential and their physical interpretation.

The Lippmann Schwinger equation Eq.(3.64) may be represented by diagrams.
The thick line stands for bGR (ω) while the thin line stands for bGR0 (ω) and the
dotted line with a cross represents the action of V .
Iterating the basic equation (3.64), one obtains the seriesbGR (ω) = bGR0 (ω) + bGR0 (ω)V bGR0 (ω) + bGR0 (ω)V bGR0 (ω)V bGR0 (ω) + ... (3.67)

which we represent diagrammatically by Fig.(3-1). Physically, one sees that the full
propagator is obtained by free propagation between scatterings off the potential.
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Figure 3-1 Diagrammatic representation of the Lippmann-Schwinger equation for
scattering.

Diagrams in position space

To do an actual computation, we have to express the operators in some basis. This
is simply done by inserting complete sets of states. Using the fact that the potential
is diagonal in the position representation, hr1|V |r2i = δ (r1 − r2) hr1|V |r1i, we
have that

hr| bGR(ω) |r0i = hr| bGR0 (ω) |r0i+Z dr1

Z
dr2 hr| bGR0 (ω) |r1i hr1|V |r2i hr2| bGR0 (ω) |r0i+...

(3.68)

= hr| bGR0 (ω) |r0i+ Z dr1 hr| bGR0 (ω) |r1i hr1|V |r1i hr1| bGR0 (ω) |r0i+ ... (3.69)

Remarque 46 Physical interpretation and path integral: Given that hr| bGR(ω) |r0i
is the amplitude to propagate from hr| to |r0i, the last result may be interpreted
as saying that the full propagator is obtained by adding up the amplitudes to go
with free propagation between hr| and |r0i, then with two free propagations and one
scattering at all possible intermediate points, then with three free propagations and
two scatterings at all possible intermediate points etc... The Physics is the same
as that seen in Feynman’s path integral formulation of quantum mechanics.

One can read off the terms of the perturbation series from the diagrams above
by using the following simple diagrammatic rules which go with the following figure
(3-2).

• Let each thin line with an arrow stand for hr| bGR0 (ω) |r0i . One end of the
arrow represents the original position r while the other represents the final
position r0 so that the line propagates from r to r0. Strictly speaking, from
the way we have defined the retarded propagator in terms of propagation of
wave functions, this should be the other way around. But the convention we
are using now is more common.

• The X at the end of a dotted line stands for a potential hr1|V |r2i =
δ (r1 − r2) hr1|V |r1i.

• Diagrams are built by attaching each potential represented by an X to the
end of a propagator line and the beginning of another propagator line by a
dotted line.

• The intersection of a dotted line with the two propagator lines is called a
vertex.

• There is one dummy integration variable R dr1 over coordinates for each
vertex inside the diagram.

• The beginning point of each continuous line is hr| and the last point is |r0i.
These coordinates are not integrated over.
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Figure 3-2 Iteration of the progagator for scattering off impurities.

• The propagator is obtained by summing all diagrams formed with free prop-
agators scattering off one or more potentials. All topologically distinct pos-
sibilities must be considered in the sum. One scattering is distinct from two
etc...

Diagrams in momentum space

Since the propagator for a free particle is diagonal in the momentum space rep-
resentation, this is often a convenient basis to write the perturbation expan-
sion in (3.67). Using complete sets of states again, as well as the definition
hk| bGR0 (ω) |k0i = GR0 (k,ω) hk| k0i = GR0 (k,ω) (2π)

3
δ (k− k0) we have that for

a particle with a quadratic dispersion law, or a Hamiltonian H0 = p2/2m

GR0 (k,ω) =
1

ω + iη − k2

2m

. (3.70)

In this basis, the perturbation series becomes

hk| bGR (ω) |k0i = GR0 (k,ω) hk| k0i+ Z dk1

(2π)
3G

R
0 (k,ω) hk|V |k1i hk1| bGR (ω) |k0i .

(3.71)
Solving by iteration to second order, we obtain,

hk| bGR (ω) |k0i = GR0 (k,ω) hk| k0i+GR0 (k,ω) hk|V |k0iGR0 (k0,ω) (3.72)

+

Z
dk1

(2π)
3G

R
0 (k,ω) hk|V |k1iGR0 (k1,ω) hk1|V |k0iGR0 (k0,ω) + ... (3.73)

The diagrams shown in the following figure Fig.(3-3) are now labeled differently.
The drawing is exactly the same as well as the rule of summing over all topologi-
cally distinct diagrams.
However,
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Figure 3-3 Feynman diagrams for scattering off impurities in momentum space
(before impurity averaging).

• Each free propagator has a label k,ω. One can think of momentum k flowing
along the arrow.

• Each dotted line now has two momentum indices associated with it. One
for the incoming propagator, say k, and one for the outgoing one, say k00.
The potential contributes a factor hk|V |k00i. One can think of momentum
k− k00 flowing along the dotted line, and being lost into the X.

• One must integrate R dk00

(2π)3
over momenta not determined by momentum

conservation. If there are n potential scatterings, there are n− 1 momenta
to be integrated over.

3.3.3 Dyson’s equation, irreducible self-energy

Suppose we truncate the perturbation expansion to some finite order. For example,
consider the truncated series for the diagonal element hk| bGR (ω) |ki
hk| bGR (ω) |ki = GR0 (k,ω) hk| ki+GR0 (k,ω) hk|V |kiGR0 (k,ω) hk| ki (3.74)

Stopping this series to any finite order does not make much sense for most cal-
culations of interest. For example, the above series will give for hk| bGR (ω) |ki
simple and double poles at frequencies strictly equal to the unperturbed energies,
while we know from the spectral representation that hk| bGR (ω) |ki should have
only simple poles at the true one-particle eigenenergies. Even more disturbing, we
know from Eqs.(3.25) and (3.27) that the imaginary part of the retarded Green’s
function should be negative while these double poles lead to positive contributions.
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These positive contributions come from the fact that

Im
1¡

ω + iη − k2

2m

¢2 = − ∂

∂ω
Im

1

ω + iη − k2

2m

(3.75)

= π
∂

∂ω
δ

µ
ω − k2

2m

¶
(3.76)

This derivative of a delta function can be positive or negative depending from
which side it is approached, a property that is more easy to see with a Lorentzian or
Gaussian representation of the delta function. Clearly, the perturbation expansion
truncated to any finite order does not seem very physical. It looks as if we are
expanding in powers of

hk|V |kiGR0 (k,ω) =
hk|V |ki

ω + iη − k2

2m

(3.77)

a quantity which is not smal for ω near the unperturbed energies k2

2m .
If instead we consider the infinite series

hk| bGR (ω) |ki = GR0 (k,ω) hk| ki+GR0 (k,ω) hk|V |kiGR0 (k,ω) hk| ki (3.78)

+GR0 (k,ω) hk|V |kiGR0 (k,ω) hk|V |kiGR0 (k,ω) hk| ki+ ... (3.79)

which may be generated by

hk| bGR (ω) |ki = GR0 (k,ω) hk| ki+GR0 (k,ω) hk|V |ki hk| bGR (ω) |ki (3.80)

then things start to make more sense since the solution

hk| bGR (ω) |ki = hk| ki¡
GR0 (k,ω)

¢−1 − hk|V |ki (3.81)

has simple poles corresponding to eigenenergies shifted from k2

2m to k2

2m + hk|V |ki
as given by ordinary first-order perturbation theory for the energy. To get the
first-order energy shift, we needed an infinite-order expansion for the propagator.
However, the simple procedure above gave hk| bGR (ω) |ki that even satisfies the
first sum rule

R
dω
2πTr

h
−2 Im

³ bGR (ω)´i = Tr
£
H0
¤
= 1 as well as the secondR

dω
2πωTr

h
−2 Im

³ bGR´i = Tr [H].
Even though we summed an infinite set of terms, we definitely did not take into

account all terms of the series. We need to rearrange it in such a way that it can
be resummed as above, with increasingly accurate predictions for the positions of
the shifted poles.
This is done by defining the irreducible self-energy

P
(k,ω) by the equation

hk| bGR (ω) |ki = GR0 (k,ω) hk| ki+GR0 (k,ω)ΣR (k,ω) hk| bGR (ω) |ki . (3.82)

This is the so-called Dyson equation whose diagrammatic representation is given
in Fig.(3-4) and whose solution can be found algebraically

hk| bGR (ω) |ki = hk| ki¡
GR0 (k,ω)

¢−1 − ΣR (k,ω) . (3.83)

The definition of the self-energy is found in principle by comparing with the
exact result Eq.(3.71) obtained from the Lippmann-Schwinger equation. The al-
gebraic derivation is discussed in the following section, but diagrammatically one
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Figure 3-4 Dyson’s equation and irreducible self-energy.

can see what to do. The self-energy
P
(k,ω) should contain all possible diagrams

which start with an interaction vertex with entering momentum k, and end with
an interaction vertex with outgoing momentum k and never have in the intermedi-
ate states GR0 (k

0,ω) with k0 equal to the value of k we are studying. The entering
vertex and outgoing vertex is the same to first order. One can convince one-self
that this is the correct definition by noting that iteration of the Dyson equation
(3.82) will give back all missing GR0 (k,ω) in intermediate states.P

(k,ω) is called irreducible because a diagram in the self-energy cannot be cut
in two separate pieces by cutting one GR0 (k,ω) with the same k. In the context of
self-energy, one usually drops the term irreducible since the reducible self-energy
does not have much interest from the point of view of calculations.
To first order then,

P
(k,ω) is given by the diagram in Fig.(3-5) whose alge-

braic expression can be read off

ΣR (k,ω) = hk|V |ki . (3.84)

V(0)

Figure 3-5 First-order irreducible self-energy.

This is the first-order shift to the energies we had found above. To second
order, the diagram is given in Fig.(3-6) and its algebraic expression is

ΣR (k,ω) =

Z
k1 6=k

dk1

(2π)
3 hk|V |k1iGR0 (k1,ω) hk1|V |ki . (3.85)

k

(k-k ) (k -k)

|V(k-k )| 2

1

1

1

1

Figure 3-6 Second order irreducible self-energy (before impurity averaging).

Remarque 47 Locator expansion: The choice of H0 is dictated by the problem.
One could take V as the unperturbed Hamiltonian and the hopping as a perturba-
tion. One then has the “locator expansion”.
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3.4 Formal properties of the self-energy

From the Dyson equation (3.82), the self-energy is analytic in the upper half-
plane since hk| bGR (ω) |ki itself is. Analyticity in the upper half-plane means that
ΣR (k,ω) obeys Kramers-Kronig equations analogous to those found before for
response functions,

Re
£
ΣR (r, r0;ω)− ΣR (r, r0;∞)¤ = P Z dω0

π

Im
£
ΣR (r, r0;ω0)

¤
ω0 − ω

. (3.86)

Im
£
ΣR (r, r0;ω)

¤
= −P

Z
dω0

π

Re
£
ΣR (r, r0;ω0)− ΣR (r, r0;∞)¤

ω0 − ω
(3.87)

One motivation for the definition of the self-energy is that to compute the shift
in the energy associated with k, we have to treat exactly the free propagation with
GR0 (k,ω).
The self-energy itself has a spectral representation, and obeys sum rules. To

find its formal expression, let us first define projection operators:

P = |ki hk| ; Q = 1− P =
Z

dk0

(2π)
3 |k0i hk0|− |ki hk| (3.88)

with the usual properties for projection operators

P2 = P ; Q2 = Q ; P +Q = 1 (3.89)

The following manipulations will illustrate methods widely used in projection op-
erator techniques.[5]
Since H0 is diagonal in this representation, we have that

PGR0 (k,ω)Q = QGR0 (k,ω)P = 0 (3.90)

We will use the above two equations freely in the following calculations.
We want to evaluate the full propagator in the subspace |ki. Let us thus

project the Lippmann-Schwinger equation

P bGRP = P bGR0 P+P bGR0 V bGRP = P bGR0 P+P bGR0 V P bGRP+P bGR0 VQ bGRP. (3.91)
To close the equation, we need Q bGRP, which can also be evaluated,

Q bGRP = Q bGR0 V bGRP = Q bGR0 V P bGRP +Q bGR0 VQ bGRP (3.92)

Q bGRP = 1

1−Q bGR0 VQQ bGR0 V P bGRP. (3.93)

Substituting in the previous result, we find

P bGRP = P bGR0 P + P bGR0 V
"
1 +

1

1−Q bGR0 VQQ bGR0 V
#
P bGRP (3.94)

P bGRP = P bGR0 P + P bGR0 PV
"
1 +

1

1−Q bGR0 VQQ bGR0 V P
#
P bGRP (3.95)

This means that the self-energy operator is defined algebraically by

bΣR = PV P + PVQ 1

1−Q bGR
0 QVQ

Q bGR0 QV P . (3.96)

This is precisely the algebraic version of the diagrammatic definition which we gave
before. The state k corresponding to the projection P never occurs in intermediate
states, but the initial and final states are in P.
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Remarque 48 Self-energy as a response function: Spectral representation, sum
rules and high frequency expansions could be worked out from here. In particular,
the first-order expression for the self-energy suffices to have a propagator which
satisfies the first two sum rules. Note that we could continue the process started
here and decide that for the self-energy we will take into account exactly the prop-
agation in a given state and project out everything else. This eventually generates
a continued fraction expansion.[5]

Remarque 49 High-frequency behavior of self-energy and sum rules: Given the
1/ω high-frequency behavior of bGR0 , one can see that the infinite frequency limit
of the self-energy is a constant given by PV P = |ki hk|V |ki hk| and that the next
term in the high-frequency expansion is PVQ 1

ωQV P as follows from the high-
frequency behavior of bGR0 . We will see in the interacting electrons case that the
Hartree-Fock result is the infinite-frequency limit of the self-energy.

Remarque 50 Projection vs frequency dependence: By projecting out in the sub-
space |ki hk|, we have obtained instead of the time-independent potential V , a
self-energy ΣR which plays the role of an effective potential which is diagonal in
the appropriate subspace, but at the price of being frequency dependent. This is
a very general phenomenon. In the many-body context, we will want to remove
instantaneous two-body potentials to work only in the one-body subspace. When
this is done, a frequency dependent self-energy appears: it behaves like an effec-
tive frequency dependent one-body potential. This kind of Physics is beyond band
structure calculations which always work with a frequency independent one-body
potential.

3.5 Electrons in a random potential: Impurity aver-
aging technique.

We treat in detail the important special case of an electron being scattered by a
random distribution of impurities. This serves as a model of the residual resistivity
of metals. It is the Green’s function version of the Drude model for elastic impurity
scattering. One must however add the presence of the Fermi sea. When this is
done in the many-body context, very little changes compared with the derivation
that follows. The many-body calculation will also allow us to take into account
inelastic scattering. We start by discussing how to average over impurities, and
then we apply these results to the averaging of the perturbation series for the
Green’s function.

3.5.1 Impurity averaging

Assume that electrons scatter from the potential produced by uniformly distrib-
uted impurities

VC (r) =

NiX
i=1

v (r−Ri) (3.97)

where each of the Ni impurities produces the same potential v but centered at a
different positionRi. We have added the index C to emphasize the fact that at this
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point the potential depends on the actual configuration of impurities. We want
to work in momentum space since after averaging over impurities translational
invariance will be recovered. This means that the momentum representation will
be the most convenient one for the Green’s functions.

VC (q) =

Z
dre−iq·r

NiX
i=1

v (r−Ri) =

NiX
i=1

e−iq·Ri

Z
dre−iq·(r−Ri)v (r−Ri)

(3.98)

= v (q)

NiX
i=1

e−iq·Ri (3.99)

We assume that the impurities are distributed in a uniform and statistically
independent manner (The joint probability distribution is a product of a factor 1/V
for each impurity). Denoting the average over impurity positions by an overbar,
we have for this distribution of impurities,

VC (q) = v (q)

NiX
i=1

³
e−iq·Ri

´
= v (q)

NiX
i=1

1

V
Z
dRie

−iq·Ri = v (q)
Ni
V (2π)

3
δ (q)

(3.100)

= niv (0) (2π)
3 δ (q) (3.101)

where ni is the impurity concentration. We will also need to consider averages of
products of impurity potentials,

VC (q)VC (q0) = v (q) v (q0)
NiX
i=1

e−iq·Ri

NiX
j=1

e−iq0·Rj . (3.102)

To compute the average, we need to know the joint probability distribution for
having an impurity at site i and an impurity at site j. The most simple-minded
model takes no correlations, in other words, the probability is the product of prob-
abilities for a single impurity, which in the present case were uniform probability
distributions. (This is not such a bad approximation in the dilute-impurity case).
So for i 6= j, we write

NiX
i=1

NiX
j 6=i

e−iq·Rie−iq0·Rj =

NiX
i=1

NiX
j 6=i

³
e−iq·Ri e−iq0·Rj

´
=

¡
N2
i −Ni

¢
V2 (2π)3 δ (q) (2π)3 δ (q0) .

(3.103)
When i = j however, we are considering only one impurity so that

NiX
i=1

e−iq·Rie−iq0·Ri =ni (2π)
3 δ (q+ q0) . (3.104)

Gathering the results, and using the result that for a real potential |v (q)|2 =
v (q) v (−q) we find

VC (q)VC (q0) =

¡
N2
i −Ni

¢
V2

³
v (0) (2π)

3
δ (q)

´³
v (0) (2π)

3
δ (q0)

´
+ni |v (q)|2 (2π)3 δ (q+ q0) .

(3.105)
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3.5.2 Averaging of the perturbation expansion for the propagator

Let us return to the perturbation expansion in momentum space to second order
Eq.(3.73).Using

hk|VC |k0i =
Z
dr hk|riVC (r) hr|k0i = VC

¡
k− k0¢ (3.106)

and hk| k0i = (2π)3 δ ¡k− k0¢, we rewrite the perturbation expansion and average
it,

hk| bGR (ω) |k0i = GR0 (k,ω) (2π)3 δ ¡k− k0¢+GR0 (k,ω)VC ¡k− k0¢GR0 (k0,ω)
(3.107)

+

Z
dk1

(2π)3
GR0 (k,ω)VC (k− k1)GR0 (k1,ω)VC

¡
k1−k0

¢
GR0 (k

0,ω) + ... (3.108)

Using what we have learned about impurity averaging, this is rewritten as,

hk| bGR (ω) |k0i = ©
GR0 (k,ω) +G

R
0 (k,ω) [niv (0)]G

R
0 (k,ω)

+GR0 (k,ω) [niv (0)]G
R
0 (k,ω) [niv (0)]G

R
0 (k,ω)

−GR0 (k,ω)
·
ni |v (0)|2 1V

¸
GR0 (k,ω)G

R
0 (k,ω)

+GR0 (k,ω)

Z
dk1

(2π)
3G

R
0 (k1,ω)

h
ni |v (k− k1)|2

i
GR0 (k,ω) +...} (2π)3 δ

¡
k− k0¢
(3.109)

Recalling the relation between discrete sums and integrals,Z
dk1

(2π)3
=
1

V
X
k1

(3.110)

we see that the term with a negative sign above removes the k = k1 term from
the integral. We are thus left with the series

hk| bGR (ω) |k0i = ©
GR0 (k,ω) +G

R
0 (k,ω) [niv (0)]G

R
0 (k,ω)

+GR0 (k,ω) [niv (0)]G
R
0 (k,ω) [niv (0)]G

R
0 (k,ω)

+GR0 (k,ω)

ÃZ
k1 6=k

dk1

(2π)
3G

R
0 (k1,ω)

h
ni |v (k− k1)|2

i!
GR0 (k,ω) +...} (2π)3 δ

¡
k− k0¢

(3.111)
The diagrams corresponding to this expansion are illustrated in Fig.(3-7)
The diagrammatic rules have changed a little bit. Momentum is still conserved

at every vertex, but this time,

• No momentum can flow through an isolated X (in other words, at the vertex
the momentum continues only along the line.)

• A factor [niv (0)] is associated with every isolated X.
• Various X can be joined together, accounting for the fact that in different
X the impurity can be the same.
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Figure 3-7 Direct iterated solution to the Lippmann-Schwinger equation after
impurity averaging.

• When various X are joined together, some momentum can flow along the
dotted lines. Each dotted line has a factor v (k− k1) associated with it,
with the momentum determined by the momentum conservation rule (which
comes from the fact that if in

R
drf1 (r) f2 (r) f3 (r) we replace each function

by its Fourier representation, the integral
R
dr will lead to a delta function

of the Fourier variables, i.e. k1 + k2 + k3 = 0.)

• The overall impurity concentration factor associated with a single X linking
many dotted lines, is ni, however many dotted lines are associated with it.

• There is an integral over all momentum variables that are not purely deter-
mined by the momentum conservation.

Once again, one cannot truncate the series to any finite order since this leads
to double poles, triple poles and the other pathologies discussed above. One must
resum infinite subsets of diagrams. Clearly, one possibility is to write a self-energy
so that

hk| bGR (ω) |k0i = hk| k0i¡
GR0 (k,ω)

¢−1 − ΣR (k,ω) . (3.112)

If we take the diagrams in Fig.(3-8) for the self-energy, expansion of the last
equation for the Green’s function, or iteration of Dyson’s equation in diagrammatic
Fig.(3-4), regive the terms discussed above in the straightforward expansion since
the algebraic expression for the self-energy we just defined is

ΣR (k,ω) = [niv (0)] +
R
k1 6=k

dk1
(2π)3

h
ni |v (k− k1)|2

i
GR0 (k1,ω) . (3.113)

Remarque 51 Energy shift: This self-energy gives us the displacements of the
poles to linear order in the impurity concentration and to second order in the
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Figure 3-8 Second-order irreducible self-energy in the impurity averaging technique.

impurity potential. The displacement of the poles is found by solving the equation

E =
k2

2m
+Re

£
ΣR (k, E)

¤
. (3.114)

Remarque 52 Lifetime: Taking the Fourier transform to return to real time, it
is easy to see that a constant imaginary self-energy corresponds to a life-time, in
other words to the fact that the amplitude for being in state k “leaks out” as other
states become populated. One can check explicitly that the formula found for the
life-time by taking the imaginary part of the self-energy corresponds to what would
be obtained from Fermi’s Golden rule.

Remarque 53 Self-energy and sum rules: One can check that this self-energy
is explicitly analytic in the upper half-plane and that the corresponding Green’s
function satisfies the first sum rule

R
dω
2πTr

h
−2 Im

³ bGR (ω)´i = Tr £H0
¤
= 1 as

well as the second
R
dω
2πωTr

h
−2 Im

³ bGR´i = Tr [H]. However, at this level of
approximation, none of the other sum rules are satisfied because the second and
higher moments of a Lorentzian are not defined.

Remarque 54 Average self-energy and self-averaging: We could have obtained
precisely the same result by directly averaging the self-energies (3.84)(3.85) de-
fined in the previous subsection (3.82). Indeed, since the rule there was that
GR0 (k,ω) could not occur in the intermediate states, impurity averaging of the
second-order diagram (3.85) would have given only the correlated contributionR
k1 6=k

dk1
(2π)3

h
ni |v (k− k1)|2

i
GR0 (k1,ω). A GR0 (k,ω) in the intermediate state

would be necessary to obtain a contribution [niv (0)]
2. It is possible to average

directly the self-energy in the Dyson equation Eq.(3.82) only if hk| bGR (ω) |ki is it-
self not a random variable. What the present demonstration shows is that indeed,
forward scattering, i.e. hk| bGR (ω) |k0i with k = k0, is a self-averaging quantity, in
other words, its fluctuations from one realization of the disorder to another may
be neglected. Forward scattering remains coherent.

Remarque 55 Correlations in the impurity distribution: If we had taken into
account impurity-impurity correlations in the joint average (3.103),

NiX
i=1

NiX
j 6=i

e−iq·Rie−iq0·Rj , (3.115)

then we would have found that instead of two delta functions leading eventu-
ally to forward scattering only, (2π)3 δ

¡
k− k0¢, off-diagonal matrix elements of

hk| bGR (ω) |k0i would have been generated to order n2i by the Fourier transform of
the impurity-impurity correlation function. In other words, correlations in the im-
purity distribution lead to coherent scattering off the forward direction. In optics,
this effect is observed as laser speckle pattern.
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Remarque 56 Strong impurity potential: It is easy to take into account the scat-
tering by a single impurity more carefully in the self-energy. The set of diagrams
in Fig.(3-9) are all first-order in impurity concentration. Their summation cor-
responds to summing the full Born series. In other words, the summation would
correspond to replacing the Born cross section entering the expression for the
imaginary part of the Green’s function by the full T-matrix expression. The cross
section for the impurity is then evaluated beyond the Born approximation. This is
important when the phase shifts associated with scattering from the impurity are
important.

+ + + ...

Figure 3-9 Taking into account multiple scattering from a single impurity.

Remarque 57 Irreversibility and infinite volume limit: We have proven that the
poles of the Green’s function are infinitesimally close to the real axis. In particular,
suppose that |ni labels the true eigenstates of our one-body Schrödinger equation
in the presence of the impurity potential. Then, our momentum space Green’s
function will be given by Eq.(3.12)

GR (k,k;ω) =
X
n

hk| ni hn |ki
ω + iη −En (3.116)

− 1
π
Im
£
GR (k,k;ω)

¤
=
X
n

hk| ni hn |ki δ (ω −En) . (3.117)

In the case we are considering here, k is no longer a good quantum number. Hence,
instead of a single delta function, the spectral weight − 1

π Im
£
GR (k,k;ω)

¤
contains

a sum of delta functions whose weight is determined by the projection of the true
eigenstate on k states. However, if we go to the infinite volume limit, or equiva-
lently assume that the level separation is smaller than η, the discrete sum over n
can be replaced by an integral, and we obtain a continuous function for the spectral
weight. As long as the Green’s function has discrete poles, the Fourier transform
in time of GR is an oscillatory function and we have reversibility (apart from the
damping η). Going to the infinite volume limit, (level spacing goes to zero before
η), we obtained instead a continuous function of frequency instead of a sum over
discrete poles. The Fourier transform of this continuous function will in general
decay in time. In other words, we have obtained irreversibility by taking the infinite
volume limit before the η → 0 limit.

Remarque 58 Origin of poles far from the real axis: In the case of a continuous
spectral weight, when we start to do approximations there may appear poles that
are not infinitesimally close to the real axis. Indeed, return to our calculation of
the imaginary part of the self-energy above. If we write

− 1
π
Im
£
GR (k,k;ω)

¤
=
1

π

− Im £ΣR (k,ω)¤¡
ω − k2

2m −Re [ΣR (k,ω)]
¢2
+ (Im [ΣR (k,ω)])

2

(3.118)
then there are many cases, such as the one of degenerate electrons scattering off
impurities, where for small ω we can approximate Im

¡
ΣR (k,ω)

¢
by a constant and
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Re
£
ΣR (k,ω)

¤
by a constant plus a linear function of frequency. Then GR (k,k;ω)

has a single pole, far from the real axis. In reality, we see from the spectral repre-
sentation Eq.(3.24) that this single pole is the result of the contribution of a series
of poles near the real axis, each of which gives a different residue contribution to
the spectral weight. (In the impurity problem, k is not a good quantum number
anymore so that several of the true eigenstates En entering the spectral weight
Eq.(3.27) have a non-zero projection hk| ni on momentum eigenstates hk| .) It is
because the spectral weight here is approximated by a Lorentzian that the resulting
retarded Green’s function looks as if it has a single pole. It is often the case that
the true Green’s function is approximated by functions with a few poles that are
not close to the real axis. This can be done not only for the Green’s function, but
also for general response functions. These poles far from the real axis should be
seen as arising from the approximate form of the spectral weight.

3.6 Other perturbation resummation techniques: a
preview

The ground state energy may be obtained by the first sum rule. But in the more
general case, one can develop a perturbation expansion for it. The corresponding
diagrams are a sum of connected diagrams. The so-called “linked cluster theorem”
is a key theorem that will come back over and over again.
Given the expression we found above for the density-density correlation, the

reader will not be surprised to learn that the diagrams to be considered are, before
impurity averaging, of the type illustrated in Fig.(3-10). The density operators
act at the far left and far right of these diagrams.

+ ...

Figure 3-10 Some diagrams contributing to the density-density correlation function
before impurity averaging.

After impurity averaging, we obtain for example diagrams of the form illus-
trated in Fig.(3-11)
Subset of diagrams corresponding to dressing internal lines with the self-energy

can be easily resummed. The corresponding diagrams are so-called skeleton dia-
grams. The first two diagrams in Fig.(3-11) could be generated simply by using
lines that contain the full self-energy. The diagrams that do not correspond to
self-energy insertions, such as the last on in Fig.(3-11), are so-called vertex cor-
rections.
Subsets of vertex corrections that can be resummed correspond to ladders or

bubbles. Ladder diagrams, illustrated in Fig.(3-12) correspond to the so-called
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+

+ ...

Figure 3-11 Some of the density-density diagrams after impurity averaging.

Bethe-Salpeter equation, or T-matrix equation. They occur in the problem of
superconductivity and of localization.

...= + +

= +

Figure 3-12 Ladder diagrams for T-matrix or Bethe-Salpeter equation.

The bubbles illustrated in Fig.(3-13) are useful especially for long-range forces.
They account for dielectric screening, and either renormalize particle-hole excita-
tions or give new collective modes: excitons, plasmons, spin wave, zero sound and
the like.
Finally, self-consistent Hartree-Fock theory can be formulated using skeleton

diagrams, as illustrated in Fig.(3-14). The self-consistency contained in Hartree-
Fock diagrams is crucial for any mean-field type of approximation, such as the
BCS theory for superconductivity and Stoner theory for magnetism.
Parquet diagrams sum bubble and ladder simultaneously. They are essential if

one wants to formulate a theory at the two-particle level which satisfies fully the
antisymmetry of the many-body wave-function. In diagrammatic language, this
is known as crossing symmetry.
We come back on all these notions as in the context of the “real” many-body

problem that we now begin to discuss.
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+  ...

Figure 3-13 Bubble diagrams for particle-hole exitations.

=

+ +

Figure 3-14 Diagrammatic representation of the Hartree-Fock approximation.
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4. FINITE TEMPERATURE FOR-
MALISM

We are now ready to start working with the real many-body problem. This chapter
will be rather formal but we will make the link with the previous chapter and also
we will try to do applications as soon as possible in the following chapter.
When there is more than one particle and they are identical, the wave function

say ψ (x1, x2, x3) is not arbitrary. If we want particles to be indistinguishable, all
coordinates should be equivalent. This means in particular that if x1 takes any
particular value, say a and x2 takes another value, say b, then we expect that
ψ (a, b, x3) = ψ (b, a, x3) . But that is not the only possibility since the only thing
we know for sure is that if we exchange twice the coordinates of two particles
then we should return to the same wave function. This means that under one
permutation of two coordinates (exchange), the wave function can not only stay
invariant, or have an eigenvalue of +1 as in the example we just gave, it can also
have an eigenvalue of −1. These two cases are clearly the only possibilities and
they correspond respectively to bosons and fermions.
When dealing with many identical particles, a basis of single-particle states is

most convenient. Given what we just said however, it is clear that a simple direct
product such as |α1i ⊗ |α2i cannot be used without further care because many-
particle states must be symmetrized or antisymmetrized depending on whether we
deal with Bosons or Fermions. For example, for two fermions an acceptable wave
function would have the form

√
2
−1 hr1|⊗ hr1| [|α1i⊗ |α2i− |α2i⊗ |α1i] . Second

quantization allows us to take into account these symmetry or antisymmetry prop-
erties in a straightforward fashion. To take matrix elements directly between wave
functions would be very cumbersome.
The single-particle basis state is a complete basis that is used most often. Note

however that a simple wave-function such as

ψ (x, y) = (x− y)Ne−|x−y|/a (4.1)

for two electrons in one dimension, with N and a constants, is a perfectly ac-
ceptable antisymmetric wave function. To expand it in a single-particle basis
state however requires a sum over many (in general an infinite number of) anti-
symmetrized one-particle states.
The plan then is as follows. Starting with a short summary of important

results of second quantization, we will then motivate the definition of the Green’s
function in the many-body context by analogy with what we just saw. Then, we
return to perturbation theory to show that it is most natural to work in imaginary
time. This leads us to the Matsubara Green’s function. We show that if we know
this Green’s function, we also happen to know the retarded one, as well as all
the one-body quantities of physical interest. We will once more spend some time
on the interpretation of the spectral weight, develop some formulas for working
with the Fourier series representation of the imaginary time functions (Matsubara
frequencies). This should put us in a good position to start doing perturbation
theory, which is all based on Wick’s theorem. Hence, we will spend some time
proving this theorem as well as the very general linked-cluster theorem that is very
useful in practice.
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4.1 Main results from second quantization

We want to write one- and two-body operators in a way which is independent of
the number of particles present in the system.
Choose a complete set of normalized one-body wave functions. Following

Negele and Orland[1] we introduce the antisymmetrized (symmetrized) many-body
state

|α1α2...αN} (4.2)

In this state, one particle is put in the one-body state whose label is α1, another
one in the one-body state whose label is α2, until the N 0th particle. The resulting
state is symmetrized if we have bosons, and antisymmetrized if we have fermions.
A normalized basis may be obtained from

|α1α2...αN i = 1pQ
α nα!

|α1α2...αN}

With N -particles, the quantity

hr1r2...rN | α1α2...αN i (4.3)

is proportional to a Slater determinant if we have fermions, and to a permanent
if we have bosons.
Creation operators a†α add a particle in the one-body state α and antisym-

metrize (symmetrize) the resulting many-body state. The adjoints remove a par-
ticle and antisymmetrize (symmetrize). They are destruction, or annihilation,
operators. A normalized many-body state made up of single-particle states can
then be written in the form

|α1α2...αN i = 1pQ
α nα!

a†α1a
†
α2 . . . a

†
αN |0i (4.4)

Given their definition, the creation-annihilation operators obey the following al-
gebra
for fermions n

aα, a
†
β

o
≡ aαa†β + a†βaα = δα,β (4.5)

{aα, aβ} ≡ aαaβ + aβaα = 0 (4.6)n
a†α, a

†
β

o
≡ a†αa†β + a†βa†α = 0 (4.7)

for bosons h
aα, a

†
β

i
≡ aαa†β − a†βaα = δα,β (4.8)

[aα, aβ ] ≡ aαaβ − aβaα = 0 (4.9)h
a†α, a

†
β

i
≡ a†αa†β − a†βa†α = 0 (4.10)

Given a unitary transformation from a basis labeled by α and one labeled by µ,
the operators transform as follows,

aα =
X
µ

hα |µi cµ (4.11)

a†α =
X
µ

c†µ hµ |αi . (4.12)
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The inverse transformations are easy to derive using the completeness and or-
thogonality relations. It is easy to check that the new operators obey the above
commutation or anticommutation relations. When this is the case, it is said that
one is dealing with a canonical transformation.
For either fermions or bosons, the operator which gives the number of particles

in state α is bnα = a†αaαbnα |α1α2...αN} = nα |α1α2...αN} (4.13)

where nα is the number of particles in state α.

4.1.1 One-body operators

The matrix elements of an arbitrary one-body operator bU (in the N−particle case)
may thus be computed in the many-body basis made of one-body states where bU
is diagonal bU |αi = Uα |αi = hα|U |αi |αi (4.14)

In this basis, one sees that the effect of the one-body operator is to produce the
same eigenvalue, whatever the particular order of the states on which the first-
quantized operator acts. This allows us to rewrite,

bU |α1α2...αN} = Ã NX
i=1

Uαi

!
|α1α2...αN} =

X
α

Uαbnα |α1α2...αN} (4.15)

where now the sum in
P

α Uαbnα extends over the complete set of one-body states
and makes no reference to the total number of particles nor to whether we are
dealing with bosons of fermions. Note that in first quantization the sum extends
over all particle coordinates whereas in second quantization it extends over states.
Using the change of basis formula explained above, we have that

bU =Pα Uαbnα =Pα hα|U |αi a†αaα =
P

λµ hλ|U |µi a†λaµ (4.16)

Let us give examples in the position and momentum representation. But first
a definition of states and normalization.

Définition 5 In this strange, but commonly used, basis where we take continuum
notation for space and discrete notation for momentum, we have the conventionsX

k

|ki hk| = 1 =
Z
dr |ri hr|

hr |ki = 1√V e
ik·r (4.17)

hk |ri = 1√V e
−ik·r (4.18)

From these definitions, we have that hr |r0i is normalized in the continuum while
hk |k0i is normalized as a discrete set of states

hr |r0i =
X
k

hr |ki hk |r0i = 1

V
X
k

eik·(r−r
0) =

Z
dk

(2π)3
eik·(r−r

0) = δ (r− r0)
(4.19)

hk |k0i =
Z
dr hk |ri hr |k0i = 1

V
Z
dre−ir·(k−k

0) = δk,k0 (4.20)

MAIN RESULTS FROM SECOND QUANTIZATION 87



Exemple 6 Example of one-body operator: Taking discrete values of momentum,
as on a lattice, we have

ψ (r) =
X
k

hr |ki ck (4.21)

ψ† (r) =
X
k

c†k hk |ri (4.22)

The momentum operators obey the algebra of a discrete set of creation operators.
Taking fermions as an example,n

ck, c
†
k0

o
= δk,k0 ; {ck, ck0} =

n
c†k, c

†
k0

o
= 0 (4.23)

while the position space creation-annihilation operators obeyn
ψ (r) ,ψ† (r0)

o
=
P

k

P
k0 hr |ki

n
ck, c

†
k0

o
hk |r0i =Pk hr |ki hk |r0i = hr |r0i = δ (r− r0)

(4.24)

{ψ (r) ,ψ (r0)} =
n
ψ† (r) ,ψ† (r0)

o
= 0 (4.25a)

A one-body scattering potential in the continuum would be represented by

bU = R drU (r)ψ† (r)ψ (r) (4.26)

which looks similar to the usual Schrödinger average. Similarly, the kinetic energy
operator in the momentum representation becomes

bT =X
k

hk| k
2

2m
|ki c†kck =

X
k

Z
dr

Z
dr0ψ† (r) hr |ki hk| k

2

2m
|ki hk |r0iψ (r0)

(4.27)

=
1

V
X
k

Z
dr

Z
dr0ψ† (r) eik·(r−r

0) k
2

2m
ψ (r0) (4.28)

=
1

V
X
k

Z
dr

Z
dr0ψ† (r)

µ
− 1

2m
∇2
¶
eik·(r−r

0)ψ (r0) . (4.29)

Performing the k summation and using partial integration assuming that every-
thing vanishes at infinity or is periodic, we obtain,

bT = ¡− 1
2m

¢ R
drψ† (r)

¡∇2ψ (r)¢ = 1
2m

R
dr∇ψ† (r) ·∇ψ (r) . (4.30)

4.1.2 Two-body operators.

A two-body operator involves the coordinates of two particles. An example is the
Coulomb potential. In the basis where a two-body operator is diagonal, we have
that bV |αi⊗ |βi = Vαβ |αi⊗ |βi (4.31)

In this basis, one sees that again the eigenvalue does not depend on the order in
which the states are when the first-quantized operator acts

bV |α1α2...αN} =
1
2

NX
i=1

NX
j 6=i

Vαiαj

 |α1α2...αN} (4.32)
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If |αii 6= |αji, then the number of times that Vαiαj occurs in the double sum is
equal to nαinαj . However, when |αii = |αji, then the number of times that Vαiαj
occurs is equal to nαi(nαi − 1) because we are not counting the case j = i in the
sum. In general then,

1

2

NX
i=1

NX
j 6=i

Vαiαj →
1

2

X
α

X
β

Vαβ (bnαbnβ − δαβbnα) (4.33)

Defining
ζ = −1 for fermions (4.34)

ζ = 1 for bosons (4.35)

we can rewrite bnαbnβ − δαβbnα in terms of creation and annihilation operators in
such a way that the form is valid for both fermions and bosons

bnαbnβ − δαβbnα = a†αaαa†βaβ − δαβa
†
αaα = a

†
αζa

†
βaαaβ = a

†
αa

†
βaβaα (4.36)

Second quantized operators are thus written in the simple form

bV = 1

2

X
α

X
β

Vαβa
†
αa

†
βaβaα ≡

1

2

X
α

X
β

(αβ|V |αβ) a†αa†βaβaα (4.37)

where
|αβ) ≡ |αi⊗ |βi . (4.38)

Under unitary transformation to an arbitrary basis we have

bV = 1
2

P
λ

P
µ

P
ν

P
ρ (λµ|V |νρ) a†λa†µaρaν . (4.39)

Remarque 59 Note the inversion in the order of ρ and ν in the annihilation
operators compared with the order in the matrix elements (This could have been
for the creation operator instead).

Définition 7 When a series of creation and annihilation operators are placed
in such an order where all destruction operators are to the right, one calls this
“normal order”.

Exemple 8 In the case of a potential, such as the Coulomb potential, which acts
on the densities, we have

bV = 1
2

R
dx
R
dyv (x− y)ψ† (x)ψ† (y)ψ (y)ψ (x) . (4.40)

4.1.3 Second quantized operators in the Heisenberg picture

In the previous section, we showed how to translate one- and two-body operators in
the Schrödinger picture into the language of second quantization. The Heisenberg
picture is defined as usual. In this section, we derive a few useful identities and
study the case of quadratic Hamiltonians as an example.
In the Heisenberg picture

ck (t) = e
i bHtcke−i bHt ; c†k (t) = e

i bHtc†ke−i bHt (4.41)
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It is easy to compute the time evolution in the case where the Hamiltonian is
quadratic in creation and annihilation operators. Take for examplebH =

X
k

²kc
†
kck (4.42)

The time evolution may be found from the Heisenberg equation of motion, which
follows from differentiating the definition of the Heisenberg operators

i
∂ck (t)

∂t
=
h
ck (t) , bHi . (4.43)

To evaluate the commutator, we note that since bH commutes with itself,h
ck (t) , bHi = hck (t) , ei bHt bHe−i bHti = "ck (t) , ei bHtÃX

k0
²k0c

†
k0ck0

!
e−i bHt

#
(4.44)

=

"
ck (t) ,

ÃX
k0
²k0c

†
k0 (t) ck0 (t)

!#
=
X
k0
²k0
h
ck (t) , c

†
k0 (t) ck0 (t)

i
. (4.45)

Commutator identities: The following are very useful identities to get equa-
tions of motions, and in general equal-time commutators.

[A,BC] = ABC −BCA = ABC −BAC +BAC −BCA (4.46)

[A,BC] = [A,B]C +B [A,C] (4.47)

[A,BC] = {A,B}C −B {A,C} (4.48)

The first commutator identity is familiar from elementary quantum mechan-
ics. The last one can be memorized by noting that it behaves as if the B
had anticommuted with the A.

The above identities can then be used to evaluate the needed commutator
either for fermionsh

ck (t) , c
†
k0 (t) ck0 (t)

i
=
n
ck (t) , c

†
k0 (t)

o
ck0 (t) + 0 = δk,k0ck (t) (4.49)

or for bosonsh
ck (t) , c

†
k0 (t) ck0 (t)

i
=
h
ck (t) , c

†
k0 (t)

i
ck0 (t) + 0 = δk,k0ck (t) (4.50)

in either case then, the equation of motion becomes

i
∂ck (t)

∂t
=
h
ck (t) , bHi = ²kck (t) (4.51)

whose solution is
ck (t) = e

−i²ktck (4.52)

Taking the adjoint,

c†k (t) = c
†
ke
i²kt . (4.53)

If we had been working in a basis where bH was not diagonal, then repeating
the steps above,

i
∂aα (t)

∂t
=
h
aα (t) , bHi =X

β,γ

hβ| bH |γi haα (t) , a†β (t) aγ (t)i =X
γ

hα| bH |γi aγ (t)
(4.54)

whose solution is found by diagonalizing, integrating, and changing back the basis.
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4.2 Motivation of the definition of the second quan-
tized Green’s function GR

When the Hamiltonian is quadratic in creation-annihilation operators, in other
words when we have a one-body problem, the retarded single-particle Green’s
function we are about to define does reduces to the Green’s function we studied in
the one-body Schrödinger equation. Its actual definition is however better suited
for many-body problems as we shall see in the present section.
Consider the definition we had before

GR (r,t; r0, t0) = −i hr| e−iH(t−t0) |r0i θ (t− t0) . (4.55)

Since in second-quantization the operator ψ† (r) creates a particle at point r, the
following definition seems natural

GR (r,t; r0, t0) = −i hGS|ψ (r) e−iH(t−t0)ψ† (r0) |GSi θ (t− t0) (4.56)

In this expression, |GSi is a many-body vacuum (ground-state). Choosing appro-
priately the zero of energy, H |GSi = 0 |GSi = 0 so that the above result could
be written

GR (r,t; r0, t0) = −i hGS|ψ (r,t)ψ† (r0, t0) |GSi θ (t− t0) . (4.57)

This is not quite what we want except in the case where there is a single parti-
cle propagating. Indeed, to keep the physical definition of the propagator, it is
convenient to have at time t = t0 + 0+

GR
¡
r,t+ 0+; r0, t

¢
= −iδ (r− r0) (4.58)

reflecting the fact that the wave-function does not have the time to evolve in an
infinitesimal time. However, in the present case, the many-body vacuum |GSi is
a linear combination of Slater determinants,

|GSi =
Z
dr1...

Z
drNΨ (r1...rN )ψ

† (r1) ...ψ† (rN ) |0i (4.59)

where Ψ (r1...rN ) reduces to the Schrödinger wave function and |0i is a real vac-
uum. This means that hGS|ψ (r,t)ψ† (r0, t) |GSi is not in general a delta function.
This is a manifestation of the fact that we have a many-body problem and that
particles are indistinguishable.
Nevertheless, we can recover the desired simple initial condition Eq.(4.58) even

in the Many-Body case by adopting the following definition, which in a way takes
into account the fact that not only electrons, but also holes can now propagate:

GR (r,t; r0, t0) = −i hGS|
n
ψ (r,t) ,ψ† (r0, t0)

o
|GSi θ (t− t0) ; for fermions

(4.60)

GR (r,t; r0, t0) = −i hGS|
h
ψ (r,t) ,ψ† (r0, t0)

i
|GSi θ (t− t0) ; for bosons

(4.61)
This is the zero-temperature definition. At finite temperature, the ground-state
expectation value is replaced by a thermodynamic average. Hence we shall in
general work with

Définition 9

GR (r,t; r0, t0) = −i
Dn

ψ (r,t) ,ψ† (r0, t0)
oE

θ (t− t0) ; for fermions (4.62)
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GR (r,t; r0, t0) = −i
Dh
ψ (r,t) ,ψ† (r0, t0)

iE
θ (t− t0) ; for bosons (4.63)

These definitions have the desired property that at t = t0 + 0+, we have that
GR (r,t+ 0+; r0, t) = −iδ (r− r0) as follows from commutation or anti-commutation
relations

Remarque 60 Analogies: This definition is now analogous to χR = 2iχ”θ (t− t0)
which we had in linear response. The imaginary part of the Green’s function will
again be a commutator or an anticommutator and hence will obey sum-rules.

Remarque 61 Green’s function as a response function: Physically, this definition
makes obvious that the Green’s function is the response to an external probe which
couples linearly to creation-annihilation operators. In the case of fermions, the
external probe has to be an anticommuting number (a Grassmann variable, as we
shall discuss later).

4.2.1 Examples with quadratic Hamiltonians:

When the Hamiltonian is quadratic in creation-annihilation operators, the equa-
tion of motion obeyed by this Green’s function is the same as in the one-body
case. An example of quadratic Hamiltonian is that for free particles

hr|H |r1i = −∇
2

2m
hr |r1i = −∇

2

2m
δ (r− r1) . (4.64)

In the general second quantized case, we write

bH =

Z
dr1

Z
dr2ψ

† (r2,t) hr2|H |r1iψ (r1,t) (4.65)

We give two calculations of the Green’s function, one directly from the definition
and one from the equations of motion (Schrödinger’s equation).

Calculation from the definition. For a quadratic Hamiltonian, one can also
compute directly the Green’s function from its definition since, if |ni is an
eigenbasis, φn (r) = hr |ni, hn0|H |ni = Enδn,n0

ψ (r,t) =
X
n

hr |ni an (t) =
X
n

e−iEnt hr |ni an =
X
n

e−iEntφn (r) an

(4.66)n
ψ (r,t) ,ψ† (r0, 0)

o
=
X
n

X
m

e−iEntφn (r)
©
an, a

†
m

ª
φ∗m (r

0) =
X
n

e−iEntφn (r)φ
∗
n (r

0)

(4.67)

GR (r,t; r0, 0) = −i
Dn

ψ (r,t) ,ψ† (r0, 0)
oE

θ (t) = −i
X
n

e−iEntφn (r)φ
∗
n (r

0) θ (t)

(4.68)

GR (r, r0;ω) =
Z
dtei(ω+iη)t (−i)

X
n

e−iEntφn (r)φ
∗
n (r

0) θ (t) =
X
n

φn (r)φ
∗
n (r

0)
ω + iη − En
(4.69)

Calculation from the equations of motion In general, the equation of mo-
tion can be obtained as follows

i
∂

∂t
GR (r,t; r0, t0) = i

∂

∂t

h
−i
Dn

ψ (r,t) ,ψ† (r0, t0)
oE

θ (t− t0)
i

(4.70)
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=
Dn

ψ (r,t) ,ψ† (r0, t0)
oE

δ (t− t0) + i
Dnh bH,ψ (r,t)i ,ψ† (r0, t0)oE θ (t− t0)

(4.71)
Following the steps analogous to those in Eq.(4.49) above, using the anti-
commutation relations Eqs.(4.24)(4.25a) it is clear thath bH,ψ (r,t)i = −Z dr1 hr|H |r1iψ (r1,t) (4.72)

so that

i
∂

∂t
GR (r,t; r0, t0) (4.73)

= δ (r− r0) δ (t− t0)− i
Z
dr1 hr|H |r1i

Dn
ψ (r1,t) ,ψ

† (r0, t0)
oE

θ (t− t0)

= δ (r− r0) δ (t− t0) +
Z
dr1 hr|H |r1iGR (r1,t; r0, t0) (4.74)

This last expression may be rewritten asZ
dr1 hr| i ∂

∂t
− bH |r1iGR (r1,t; r0, t0) = δ (r− r0) δ (t− t0) (4.75)

= hr |r0i δ (t− t0) (4.76)

where we recognize the equation (3.54) found in the previous Chapter. For-
mally then

hr|
µ
i
∂

∂t
− bH¶GR (t−t0) |r0i = hr |r0i δ (t− t0) (4.77)

so that the operator form of the Green’s function is the same as that found
before, namely bGR (t−t0) = µi ∂

∂t
− bH¶−1 δ (t− t0) (4.78)

It is convenient to rewrite the result for the equation of motion Eq.(4.75) in
the following form that is more symmetrical in space and time.Z

dr1

Z
dt1 hr| i ∂

∂t
− bH |r1i δ (t− t1)GR (r1,t1; r0, t0) = δ (r− r0) δ (t− t0)

(4.79)
We may as well let time play a more important role since in the many-body
case it will be essential, as we have already argued in the context of the
frequency dependence of the self-energy. The inverse of the Green’s function
in this notation is just like above,

GR (r,t; r1, t1)
−1
= hr| i ∂

∂t
− bH |r1i δ (t− t1) . (4.80)

Seen from this point of view, the integrals over time and space are the
continuum generalization of matrix multiplication. The delta function is
like the identity matrix.

Définition 10 The following short-hand notation is often used

GR (1, 10) ≡ GR (r,t; r0, t0) (4.81)

GR
¡
1, 1
¢−1

GR
¡
1, 10

¢
= δ (1− 10) (4.82)

where the repeated index stands for an integral.
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4.3 Interaction representation and time-ordered prod-
uct

Perturbation theory in the many-body case is less trivial than in the one-body
case. Whereas the Lippmann-Schwinger equation was written down for a single
frequency, in the many-body case time and frequency dependence are unavoidable.
To construct perturbation theory we will follow the same steps as those used in
the derivation of linear response theory in Chapter 2. The only difference is that
we will write a formally exact solution for the evolution operator in the interaction
representation instead of using only the first order result. The important concept
of time-ordered product comes out naturally from this exercise.
The plan is to recall the Heisenberg and Schrödinger pictures, and then to

introduce the interaction representation in the case where the Hamiltonian can be
written in the form

H = H0 + V (4.83)

where
[H0, V ] 6= 0 (4.84)

Let us begin. We assume that H is time independent. Typical matrix elements
we want to compute are of the form

hi| e−βHψH (t)ψ†H (t0) |ii (4.85)

We do not write explicitly indices other than time to keep the notation simple.
Recall the Heisenberg and Schrödinger picture

ψH (t) = e
iHtψSe

−iHt (4.86)

We define the time evolution operator

U (t, 0) = e−iHt (4.87)

so that

ψH (t) = U (0, t)ψSU (t, 0) (4.88)

Because from now on we assume time-reversal symmetry, we will always make the
replacement

U† (t, 0) = U (0, t) (4.89)

as we just did. The differential equation for the time-evolution operator is

i
∂U (t, 0)

∂t
= HU (t, 0) (4.90)

With the initial condition U (0, 0) = 1 it has U (t, 0) = e−iHt as its solution. It
obeys the semi-group property

U (t, t0) = U (t, 0)U (0, t0) = e−iH(t−t
0) (4.91)

U−1 (t, 0) = U (0, t) (4.92)

U (t0, t0) = 1 (4.93)

for arbitrary t0
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We are now ready to introduce the interaction representation. In this repre-
sentation, the fields evolve with the unperturbed Hamiltonian

bψ (t) = eiH0tψSe
−iH0t (4.94)

Note that we now use the caret (hat) to mean “interaction picture”. We hope this
change of notation causes no confusion. To introduce these interaction represen-
tation fields in a general matrix element,

hi| e−βHψH (t)ψ†H (t0) |ii = hi| e−βHU (0, t)ψSU (t, 0)U (0, t0)ψ†SU (t0, 0) |ii
(4.95)

it suffices to notice that it is easy to remove the extra eiH0t coming from the
replacement of ψS by e

−iH0tbψ (t) eiH0t simply by including them in the definition
of the evolution operator in the interaction representation

bU (t, 0) = eiH0tU (t, 0) (4.96)

bU (0, t) = U (0, t) e−iH0t (4.97)bU (t, 0) bU (0, t) = bU (0, t) bU (t, 0) = 1 (4.98)

With these definitions, we have that our general matrix element takes the form

hi| e−βHψH (t)ψ†H (t0) |ii = hi| e−βH bU (0, t) bψ (t) bU (t, 0) bU (0, t0) bψ† (t0) bU (t0, 0) |ii
(4.99)

The purpose of the exercise is evidently to find a perturbation expansion for the
evolution operator in the interaction representation. It will be built starting from
its equation of motion

i
∂ bU (t, 0)

∂t
= eiH0t (−H0 +H)U (t, 0) = eiH0tV

¡
e−iH0teiH0t

¢
U (t, 0)

(4.100)
Since a general operator is a product of ψ fields, it will also evolve with time in
the same way so it is natural to define the interaction representation for V as well.
Our final result for the equation of motion for bU (t, 0) is then

i
∂ bU (t, 0)

∂t
= bV (t) bU (t, 0)

Multiplying on the right by bU (0, t0) we have a more general equation
i∂
bU(t,t0)
∂t = bV (t) bU (t, t0) (4.101)

Remarque 62 Difficulties associated with the fact that we have non-commuting
operators: The solution of this equation is not e−i

R bV (t)dt.We will see momentarily
how the real solution looks formally like an exponential while at the same time
being very different from it. To write the solution as a simple exponential is wrong
because it assumes that we can manipulate bU (t, t0) as if it was a number. In
reality it is an operator so that ∂ bU(t,t0)

∂t
bU (t, t0)−1 6= ∂

∂t ln
bU (t, t0) . Indeed, note

the ambiguity in writing the definition of this derivative: Should we write

∂

∂t
ln bU (t, t0) = lim

∆t→0
bU (t, t0)−1 hbU (t+∆t, t0)− bU (t, t0)i /∆t

or
lim
∆t→0

hbU (t+∆t, t0)− bU (t, t0)i bU (t, t0)−1 /∆t ? (4.102)
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The two limits cannot be identical since in general

lim
∆t→0

hbU (t+∆t, t0) , bU (t, t0)−1i 6= 0. (4.103)

because bU (t, t0) is made up of operators such as V and e−iH0t that do not commute
with each other.

To solve the equation for the evolution operator Eq.(4.101), it is more con-
venient to write the equivalent integral equation that is then solved by iteration.
Integration on both sides of the equation and use of the initial condition Eq.(4.93)
gives immediately Z t

t0

∂ bU (t0, t0)
∂t0

dt0 = −i
Z t

t0

dt0 bV (t0) bU (t0, t0) (4.104)

bU (t, t0) = 1− iZ t

t0

dt0 bV (t0) bU (t0, t0) (4.105)

Solving by iteration, we find

bU (t, t0) = 1− iZ t

t0

dt0 bV (t0) bU (t0, t0) = (4.106)

= 1− i
Z t

t0

dt0 bV (t0) + (−i)2 Z t

t0

dt0 bV (t0)Z t0

t0

dt00 bV (t00) (4.107)

+(−i)3
Z t

t0

dt0 bV (t0) Z t0

t0

dt00 bV (t00)Z t”

t0

dt000 bV (t000) + ... (4.108)

Suppose t > t0 and consider a typical term in this series. By suitably defining a
contour C and time-ordering operator along this contour Tc, it can be rearranged
as follows

(−i)3
Z t

t0

dt0 bV (t0)Z t0

t0

dt00 bV (t00) Z t”

t0

dt000 bV (t000) (4.109)

= (−i)3 1
3!
Tc

·Z
C

dt1 bV (t1)Z
C

dt2 bV (t2) Z
C

dt3 bV (t3)¸ (4.110)

where

• C is a contour that is here just a real line segment going from t0 to t.

• Tc is the “time-ordering operator”. It places the operator which appear later
on the contour C to the left. For the time being, Tc orders operators that are
bosonic in nature. A generalization will appear soon with fermionic Green’s
functions.

• The 1
3! comes from the fact that for a general bV (t1) bV (t2) bV (t3) there are

3! ways of ordering the operators. All these possible orders appear in the
integrals on the left-hand side of the last equation. The operator Tc always
orders them in the order corresponding to the left-hand side, but this means
that the integral on the left-hand side appears 3! times on the right-hand
side, hence the overall factor of 1

3! .

• A product of operators on which Tc acts is called a time-ordered product.
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One also needs bU (0, t). In this case, with t > 0, the operators at the earliest
time are on the left. This means that the contour on which the Tc is defined is
ordered along the opposite direction.
A general term of the series may thus be written as

bU (t, t0) = ∞X
k=0

(−i)k 1
k!
Tc

"µZ
C

dt1 bV (t1)¶k# (4.111)

which we can in turn write in the convenient notation

bU (t, t0) = Tc hexp³−i RC dt1 bV (t1)´i (4.112)

where the contour is as defined above. We can check the limiting case [H0, V ] = 0.
Then bV is independent of time and we recover the expected exponential expression
for the time evolution operator.
The definition of the time-ordering operator is extremely useful in practice not

only as a formal device that allows the time evolution to still look like an expo-
nential operator (which is explicitly unitary) but also because in many instances it
will allow us to treat operators on which it acts as if they were ordinary numbers.
In the zero-temperature formalism, the analog of bU (t, t0) is the so-called S

matrix. The time-ordering concept is due to Feynman and Dyson.

Remarque 63 Non-quadratic unperturbed pieces: It is important to notice that
in everything above, H0 does not need to be quadratic in creation-annihilation
operators. With very few exceptions however,[2] it is quadratic since we want the
“unperturbed” Hamiltonian to be easily solvable. Note that the case where H0 is
time dependent can also be treated but in this case we would have an evolution
operator U0 (t, 0) instead of e−iH0t. The only property of the exponential that we
really use in the above derivation is the composition law obeyed by time-evolution
operators in general, namely U0 (t, t0)U0 (t0, t00) = U0 (t, t00) .

Remarque 64 The general case of time-dependent Hamiltonians: The problem
we just solved for the time evolution in the interaction picture Eq.(4.101) is a
much more general problem that poses itself whenever the Hamiltonian is time-
dependent.

4.4 Kadanoff-BaymandKeldysh-Schwinger contours

While we have discussed only the time evolution of the operators in the interaction
representation, it is clear that we should also take into account the fact that the
density matrix e−βH should also be calculated with perturbative methods. The
results of the previous section can trivially be extended to the density matrix by
a simple analytic continuation t→ −iτ . In doing so in the present section, we will
discover the many advantages of imaginary time for statistical mechanics.
Let us define evolution operators and the interaction representation for the

density matrix in basically the same way as before

e−βH = U (−iβ, 0) = e−iH0(−iβ) bU (−iβ, 0) = e−βH0 bU (−iβ, 0) (4.113)

The solution of the imaginary time evolution equation

i
∂ bU (it00, 0)
∂ (it00)

= bV (it00) bU (it00, 0)
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is then bU (−iβ, 0) = Tc ·expµ−iZ
C

d (it00) bV (it00)¶¸ (4.114)

where
t00 ≡ Im (t) (4.115)

bV (it00) = e−t00H0V et
00H0 (4.116)

and the contour C now proceeds from t00 = 0 to t00 = −β.
Overall now, the matrix elements that we need to evaluate can be expressed in

such a way that the trace will be performed over the unperturbed density matrix.
Indeed, using our above results, we find

hi| e−βHψH (t)ψ+H (t0) |ii = hi| e−βH0 bU (−iβ, 0) bU (0, t) bψ (t) bU (t, 0) bU (0, t0) bψ+ (t0) bU (t0, 0) |ii
(4.117)

We want to take initial states at a time t0 so that in practical calculations where
the system is out of equilibrium we can choose t0 = −∞ where we can assume that
the system is in equilibrium at this initial time. Hence, we are here considering
a more general case than we really need but that is not more difficult so let us
continue. Take

|ii = bU (0, t0) |i (t0)i (4.118)

then we have

hi| e−βH = hi (t0)| bU (t0, 0) e−βH = hi (t0)| ¡e−βH0eβH0
¢ ¡
eiH0t0e−iHt0

¢
e−βH

(4.119)
= hi (t0)| e−βH0eiH0(t0−iβ)e−iH(t0−iβ) = hi (t0)| e−βH0 bU (t0 − iβ, 0) (4.120)

This allows us to write an arbitrary matrix element entering the thermodynamic
trace as the evolution along a contour in complex time

hi| e−βHψH (t)ψ†H (t0) |ii = hi (t0)| e−βH0 bU (t0 − iβ, 0) bU (0, t) bψ (t) bU (t, 0) bU (0, t0) bψ† (t0) bU (t0, 0) |ii
= hi (t0)| e−βH0 bU (t0 − iβ, t0) bU (t0, t) bψ (t) bU (t, t0) bψ† (t0) bU (t0, t0) |i (t0)i (4.121)
How would we evaluate the retarded Green’s function in practice using this

approach? Take the case of fermions. It is convenient to define G> (t− t0) and
G< (t− t0) by

G> (t− t0) = −i
D
ψH (t)ψ

†
H (t

0)
E

(4.122)

G< (t− t0) = i
D
ψ†H (t

0)ψH (t)
E

(4.123)

in such a way that

GR (t− t0) = −i
Dn

ψH (t) ,ψ
†
H (t

0)
oE

θ (t− t0) ≡ £G> (t− t0)−G< (t− t0)¤ θ (t− t0)
(4.124)

To evaluate G> (t− t0) for example, we would expand the evolution operators
such as bU (t0, t0) as a power series in bV , each power of bV being associated with an
integral of a time ordered product that would start from t0 to go to the creation

operator bψ† (t0) , then go to the destruction operator bψ (t) until it returns to t0−iβ.
This contour is illustrated in Fig.(4-1). It is this contour that determines the order
of the operators, so that even if t0 is a larger number than t, as illustrated on the
right panel of this figure, the operator bψ (t) always occur after bψ† (t0) on the
contour, i.e. bψ (t) is on the left of bψ† (t0) in the algebraic expression. The parts
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Im(t)

Re(t)
t (t’)

(t)

ψ

ψ

+
0

t 0 −  βi

Im(t)

Re(t)
t

(t’)(t) ψψ
+

0

t 0 −  βi

^

^ ^ ^

Figure 4-1 Kadanoff-Baym contour to compute G> (t− t0) .

of the contour that follow the real axis are displaced slightly along the imaginary
direction for clarity.

We will see momentarily that it is possible to avoid this complicated con-
tour to make calculations of equilibrium quantities. However, in non-equilibrium
situations, such contours are unavoidable. In practice however, what is used
by most authors is the Keldysh-Schwinger contour that is obtained by insert-

ing bU (t0,∞) bU (∞, t0) = 1 next to bψ† (t0) in the algebraic expression Eq.(4.121).
In practice this greatly simplifies the calculations since the contour, illustrated in
Fig.(4-2), is such that integrals always go from −∞ to ∞. To specify if a given
creation or annihilation operator is on the upper or the lower contour, a simple
2× 2 matrix suffices since there are only four possibilities..

Im(t)

Re(t)
t (t’)

(t)

ψ

ψ

+
0

t 0 −  βi

^

^

Figure 4-2 Keldysh-Schwinger contour.

In the next section, we introduce a simpler contour that is extremely more
convenient for systems in equilibrium, and hence for linear response.
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4.5 Matsubara Green’s function and its relation to
usual Green’s functions. (The case of fermions)

In thermodynamic equilibrium the time evolution operator as well as the density
matrix are exponentials of H times a complex number. To evaluate these opera-
tors perturbatively, on needs to calculate time-ordered products along a contour
in the complex time domain that is relatively complicated, as we saw in the pre-
vious section. In the present section, we introduce a Green’s function that is itself
a time-ordered product but along the imaginary time axis only, as illustrated in
Fig.(4-3) below. This slight generalization of the Green’s function is a mathemat-
ical device that is simple, elegant and extremely convenient since the integration
contour is now simple. For thermodynamic quantities, since only equal-time cor-
relation functions are needed, it is clear that evaluation in imaginary time or in
real time should be equivalent since only t = 0 is relevant. More generally, for
time-dependent correlation functions we will see that in frequency space the ana-
lytic continuation to the physically relevant object, namely the retarded function,
is trivial. Also, the same tricks apply not only to Green’s functions but also to
general response functions such as the density-density correlation function.
After introducing the so-called Matsubara Green’s function itself, we will study

its properties. First, using essentially the same trick as for the fluctuation-dissipation
theorem for correlation functions, we prove that these functions are antiperiodic
in imaginary time. This allows us to expand these functions in a Fourier series.
The spectral representation and the so-called Lehman representation then allow
us to make a clear connection between the Matsubara Green’s function and the
retarded function through analytic continuation. As usual, the spectral represen-
tation also allows us to do high-frequency expansions. We give specific examples
of Matsubara Green’s functions for non-interacting particles and show in general
how to treat their Fourier series expansions, i.e. how to do sums over Matsubara
frequencies.

4.5.1 Definition

The Matsubara Green’s function is defined by

G (r, r0; τ − τ 0) = −
D
Tτψ (r,τ)ψ

† (r0, τ 0)
E

(4.125)

= −
D
ψ (r,τ)ψ† (r0, τ 0)

E
θ (τ − τ 0) +

D
ψ† (r0, τ 0)ψ (r,τ)

E
θ (τ 0 − τ) (4.126)

The definition of Ref.([3]) has an overall minus sign difference with the definition
given here.

Définition 11 The last equation above defines the time ordering operator for
fermions. It is very important to notice the minus sign associated with interchang-
ing two fermion operators. This time-ordering operator is thus a slight generaliza-
tion of the time-ordering operator we encountered before. There was no minus sign
in this case associated with the interchange of operators. The time-ordering oper-
ator for bosonic quantities, such as V that appeared in the perturbation expansion,
will never have a minus sign associated with the exchange of bosonic operators.
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We still need to specify a few things. First, the thermodynamic average is in
the grand-canonical ensemble

hOi ≡ Tr
£
e−β(H−µN)O¤

Tr
£
e−β(H−µN)

¤ (4.127)

with µ the chemical potential and N is the total number of particle operator, while
the time evolution of the operators is defined by

ψ (r,τ) ≡ eτ(H−µN)ψS (r) e−τ(H−µN) (4.128)

ψ† (r,τ) ≡ eτ(H−µN)ψ+S (r) e−τ(H−µN) (4.129)

For convenience, it is useful to define

K ≡ H − µN (4.130)

Several points should attract our attention:

• The correspondence with the real time evolution operators e−iHt is done by
noting that

τ = − Im (t) (4.131)

or, in general for complex time

τ = it

• Strictly speaking, we should use ψ (r,−iτ) if we want the symbol ψ (r,t) for
t complex to mean the same thing as before. That is why several authors
write bψ (r,τ) for the Matsubara field operator. We will stick with ψ (r,τ)
since this lack of rigor does not usually lead to confusion. We have already
given enough different meanings tob in previous sections! Furthermore, this
type of change of “confusion” in the notation is very common in Physics.
For example, we should never write f (k) to denote the Fourier transform of
f (r) .

• ψ† (r,τ) is not the adjoint of ψ (r,τ). However, its analytic continuation
τ → it is the adjoint of ψ (r,t).

• Using as usual the cyclic property of the trace, it is clear that G depends
only on τ − τ 0 and not on τ or τ 0 separately.

• It suffices to define the Matsubara Green’s function G (r, r0; τ) in the interval
−β ≤ τ ≤ β. We do not need it outside of this interval. The perturbation

expansion of bU (−iβ, 0) = Tc

h
exp

³
− R

C
dτ bV (τ)´i evidently necessitates

that we study at least the interval 0 ≤ τ ≤ β but the other part of the
interval, namely −β ≤ τ ≤ 0 is also necessary if we want the time ordering
operator to lead to both of the possible orders of ψ and ψ†: namely ψ† to
the left of ψ and ψ† to the right of ψ. Both possibilities appear in GR. If
we had only τ > 0, only one possibility would appear in the Matsubara
Green’s function. We will see however in the next section that, in practice,
antiperiodicity allows us to trivially take into account what happens in the
interval −β ≤ τ ≤ 0 if we know what happens in the interval 0 ≤ τ ≤ β.

• The last contour considered in the previous section for bU (−iβ, 0) = Tc hexp³− RC dτ bV (τ)´i
tells us that the time-ordering operator Tτ orders along the contour (Im (t) = −β) >
(Im (t0) = β) which corresponds to (τ = β) > (τ 0 = −β). The present con-
tour is illustrated in Fig.(4-3).
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Im(t)

Re(t)
(0)

(τ)

ψ

ψ

+̂

^

τ = −β

τ = β

Figure 4-3 Contour for time ordering in imaginary time. Only the time difference is
important. The contour is translated slightly along the real-time axis for clarity.

Remarque 65 Role of extra chemical potential in time evolution: The extra
chemical potential in the evolution operator eτ(H−µN) is convenient to make all
operators, including the density matrix, evolve in the same way. It corresponds to
measuring energies with respect to the chemical potential as we will see with the
Lehman representation below. The extra e−τµN disappears for equal-time quanti-
ties (thermodynamics) and in the calculation of expectation values hO+(t)O (t0)i
for operators O which are bilinear in fermions at equal time. Indeed one has
O+(t) = eiHtO+e−iHt = ei(H−µN)tO+e−i(H−µN)t. When Wick’s theorem is used
to computes expectation values, the creation annihilation-operator evolve then as
above. In any case, the addition of the chemical potential in the evolution operator
just amounts to measuring the single-particle energies with respect to the chemical
potential.

4.5.2 Antiperiodicity and Fourier expansion (Matsubara frequencies)

Suppose τ < 0. Then

G (r, r0; τ) = ­ψ+ (r0, 0)ψ (r,τ)® (4.132)

Using the cyclic property of the trace twice, as in the demonstration of the
fluctuation-dissipation theorem it is easy to show that

G (r, r0; τ) = −G (r, r0; τ + β) ; τ < 0 (4.133)

This boundary condition is sometimes known as the Kubo-Martin-Schwinger (KMS)
boundary condition.

Proof: Let
e−βΩ ≡ Tr £e−βK¤ (4.134)
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then

G (r, r0; τ) = eβΩTr £e−βKψ+ (r0) ¡eKτψ (r) e−Kτ
¢¤

(4.135)

The cyclic property of the trace then tells us that

G (r, r0; τ) = eβΩTr £¡eKτψ (r) e−Kτ
¢
e−βKψ+ (r0)

¤
(4.136)

= eβΩTr
£¡
e−βKeβK

¢ ¡
eKτψ (r) e−Kτ

¢
e−βKψ+ (r0)

¤
(4.137)

=
­
ψ (r,τ + β)ψ+ (r0, 0)

®
(4.138)

= −G (r, r0; τ + β) (4.139)

The last line follows because given that−β < τ , we necessarily have τ+β > 0
so that the other θ function must be used in the definition of the Matsubara
Green’s function.

If τ > 0, the above arguments can be repeated to yield

G (r, r0; τ − β) = −G (r, r0; τ) ; τ > 0 (4.140)

However, for τ > 0 note that

G (r, r0; τ) 6= −G (r, r0; τ + β) ; τ > 0 (4.141)

While G (r, r0; τ + β) for τ > 0 is well defined, we never need this function. So we
restrict ourselves to the interval −β ≤ τ ≤ β described in the previous section.
One can take advantage of the antiperiodicity property of the Green’s function

in the interval −β ≤ τ ≤ β to expand it in a Fourier series that will automatically
guaranty that the crucial antiperiodicity property is satisfied. More specifically,
we write

G (r, r0; τ) = 1
β

P∞
n=−∞ e

−iknτG (r, r0; ikn) (4.142)

where the so-called Matsubara frequencies for fermions are odd, namely

kn = (2n+ 1)πT =
(2n+1)π

β ; n integer (4.143)

The antiperiodicity property will be automatically fulfilled because e−iknβ =
e−i(2n+1)π = −1.
The expansion coefficients are obtained as usual for Fourier series of antiperi-

odic functions from

G (r, r0; ikn) =
R β
0
dτeiknτG (r, r0; τ) (4.144)

Note that only the τ > 0 region of the domain of definition is needed, as promised.

Remarque 66 Domain of definition of the Matsubara Green’s function: The
value of G (r, r0; τ) given by the Fourier series (4.142) for τ outside the inter-
val −β < τ < β, is in general different from the actual value of Eq.(4.125)
G (r, r0; τ − τ 0) = − ­Tτψ (r,τ)ψ+ (r0, τ 0)®. Indeed, to define a Fourier series one
extends the function defined in the interval −β < τ < β so that it is periodic
in τ outside this interval with a period 2β. The true function G (r, r0; τ − τ 0) =
− ­Tτψ (r,τ)ψ+ (r0, τ 0)® has an envelope that is, instead, exponential outside the
original interval. We will see an explicit example in the case of the free particles.
In perturbation expansions, we never need G (r, r0; τ) outside the interval where the
series and the true definition give different answers. To avoid mathematical incon-
sistencies, it is nevertheless preferable in calculations to do Matsubara frequency
sums before any other integral!
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4.5.3 Spectral representation, relation between GR and G and analytic continuation

By analogy with what we have done previously for response functions χ, it is
useful to introduce the spectral representation for the retarded Green’s function.
We obtain explicitly G (r, r0; ikn) by integration in the complex plane and find that
is trivially related to GR (r, r0;ω) .
As before, we have

GR (r, r0; t) = −i
Dn

ψ (r,t) ,ψ† (r0, 0)
oE

θ (t) (4.145)

but this time, the evolution operator is defined to take into account the fact that
we will work in the grand-canonical ensemble. By analogy with the definition of
the Matsubara operators, we now have

K = H − µN
ψ (r,t) ≡ eitKψS (r) e−itK (4.146)

ψ† (r,t) ≡ eitKψ+S (r) e−itK (4.147)

We now proceed by analogy with the response functions. On the left we show
the definitions for response functions, an on the right the analogous definitions for
response functions. Let

GR (r, r0; t) = −iA (r, r0; t) θ (t) ; χRij (t) = 2iχ
00
ij (t) θ (t) (4.148)

where the spectral weight is defined by

A (r, r0; t) ≡ ­©ψ (r,t) ,ψ+ (r0, 0)ª® ; χ00ij (t) = h[Ai (r,t) , Aj (r0, 0)]i (4.149)

Then taking the Fourier transform, one obtains the spectral representation

GR (r, r0;ω) =
R∞
−∞

dω0
2π

A(r,r0;ω0)
ω+iη−ω0 ; χRij (ω) =

Z ∞
−∞

dω0

π

χ00ij (ω
0)

ω0 − (ω + iη) (4.150)

The spectral weight will obey sum-rules, like χ00 did. For exampleR∞
−∞

dω0
2π A (r, r

0;ω0) =
­©
ψ (r,0) ,ψ+ (r0, 0)

ª®
= δ (r− r0) (4.151)

From such sum rules, a high-frequency expansion can easily be found as usual.
But that is not our subject for now.
To establish the relation between the Matsubara Green’s function and the

retarded one, consider

G (r, r0; τ) = − ­ψ (r,τ)ψ+ (r0, 0)® θ (τ) + ­ψ+ (r0, 0)ψ (r,τ)® θ (−τ) (4.152)

G (r, r0; ikn) =
Z β

0

dτeiknτG (r, r0; τ) (4.153)

=

Z β

0

dτeiknτ
£− ­ψ (r,τ)ψ+ (r0, 0)®¤ (4.154)

Assume that kn > 0. Then, as illustrated in Fig.(4-4), we can deform the contour
of integration within the domain of analyticity along Re (t) = Im (τ) > 0. (The
analyticity of

­
ψ (r,τ)ψ+ (r0, 0)

®
in that domain comes from e−βH in the trace.

You will be able to prove this later by calculating G (r, r0; τ) with the help of the
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Im(t) = - Re(τ)

Re(t) = Im(τ)

Re(τ) = −β

∞

Re(τ) = β

τ = it

Figure 4-4 Deformed contour used to relate the Matsubara and the retarded Green’s
functions.

spectral representation Eq.(4.161) and tricks for evaluating sums on Matsubara
frequencies). For Im (τ) =∞ there will be no contribution from the small segment
since eiknτ becomes a decaying exponential. The integral becomes

G (r, r0; ikn) = (4.155)Z t=∞

t=0

d (it)
£− ­eiKtψS (r) e−iKtψ+S (r0)®¤ eikn(it)

+

Z t=0

t=∞
d (it)

h
−
D
eiK(t−iβ)ψS (r) e

−iK(t−iβ)ψ+S (r
0)
Ei
e(ikn)i(t−iβ)

In the last integral, we then use the results

e(ikn)i(−iβ) = e(ikn)β = −1 (4.156)Z 0

∞
= −

Z ∞
0

(4.157)h
−
D
eiK(t−iβ)ψS (r) e

−iK(t−iβ)ψ†S (r
0)
Ei
=
h
−
D
eβKeiKtψS (r) e

−iKte−βKψ†S (r
0)
Ei

(4.158)
It then suffices to cancel the left most eβK with the density matrix and to use the
cyclic property of the trace to obtain for the integrand of the last integral,

=
h
−
D
ψ† (r0, 0)ψ (r,t)

Ei
(4.159)

Overall then, the integral in Eq.(4.155) is equal to

G (r, r0; ikn) = −i
Z ∞
0

dt
Dn

ψ (r,t) ,ψ† (r0, 0)
oE
ei(ikn)t (4.160)

G (r, r0; ikn) =
R∞
−∞

dω0
2π

A(r,r0;ω0)
ikn−ω0 (4.161)

All that we assumed was that kn > 0. Thus, ikn → ω + iη with η > 0 is
consistent with the hypothesis and allows us to deform the contour as advertized.
Comparing the formula for G (r, r0; ikn) for kn > 0 with the expression for the
retarded Green’s function(4.150), we see that analytic continuation is possible.

GR (r, r0;ω) = limikn→ω+iη G (r, r0; ikn) (4.162)
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If we had started with kn < 0, analytic continuation ikn → ω− iη to the advanced
Green’s function would have been possible.

Remarque 67 Connectedness and periodicity: For a general correlation function,
similar spectral representations can also be defined for connected functions (see
below) so that periodicity or anti-periodicity can be defined.

4.5.4 Spectral weight and rules for analytical continuation

In this section, we summarize what we have learned for the analytic properties of
the Matsubara Green’s function and we clarify the rules for analytic continuation.[4]
The key result for understanding the analytical properties of G is the spectral

representation Eq.(4.161)

G (r, r0; ikn) =
Z ∞
−∞

dω0

2π

A (r, r0;ω0)
ikn − ω0

(4.163)

The spectral weight A (r, r0;ω0) was discussed just in the previous subsection (See
also Eq.(4.227)).
The Matsubara Green’s function and the retarded functions are special case of

a more general function defined in the complex frequency plane by

G (r, r0; z) =
R∞
−∞

dω0
2π

A(r,r0;ω0)
z−ω0 (4.164)

This function is analytic everywhere except on the real axis. Physically interesting
special cases are

G (r, r0; ikn) = G (r, r0; ikn)
GR (r, r0;ω) = lim

η→0
G (r, r0;ω + iη) (4.165)

GA (r, r0;ω) = lim
η→0

G (r, r0;ω − iη) (4.166)

The function G (r, r0; z) has a jump on the real axis given by

A (r, r0;ω0) = i limη→0 [G (r, r0;ω + iη)−G (r, r0;ω − iη)] (4.167)

A (r, r0;ω0) = i
£
GR (r, r0;ω)−GA (r, r0;ω)¤

In the special case where A (r, r0;ω0) is real (which is almost always the case in
practice since we consider r = r0 or k = k0), we have

A (r, r0;ω0) = −2 ImGR (r, r0;ω) (4.168)

like we have often used in the one-body case.
The previous results are summarized in Fig.(4-5) which displays the analytic

structure of G (r, r0; z) . This function is analytical everywhere except on the real
axis where it has a branch cut leading to a jump Eq.(4.167) in the value of the
function as we approach the real axis from either the upper or lower complex half-
plane. The limit as we come from the upper half-plane is equal to GR (r, r0;ω)
whereas from the lower half-plane it is equal to GA (r, r0;ω) . The Matsubara
Green’s function is defined only on a discrete but infinite set of points along the
imaginary frequency axis.
The problem of finding GR (r, r0;ω) along the real-time axis from the knowl-

edge of the Matsubara Green’s function is a problem of analytical continuation.
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Im(z)

Re(z)

G(z) = G (ω)R

G(z) = G (ω)A

G(z) = (iω )n

Figure 4-5 Analytical structure of G(z) in the complex frequency plane. G(z)
reduces to either GR (ω) , GA (ω) or G (iωn) depending on the value of the complex
frequency z. There is a branch cut along the real axis.

Unfortunately, G (z = ikn) does not have a unique analytical continuation be-
cause there is an infinite number of analytical functions that have the same value
along this discrete set of points. For example, suppose we know G (z = ikn) , then
G (z)

¡
1 +

¡
eβz + 1

¢¢
has the same value as G (z) for all points z = ikn because

eiknβ + 1 = 0. Baym and Mermin[5], using results from the theory of complex
functions, have obtained the following result.

Théorème 12 If

1. G (z) is analytical in the upper half-plane

2. G (z) = G (ikn) for all Matsubara frequencies

3. limω→∞ zG (z) = cst

then the analytical continuation is unique and

GR (r, r0;ω) = lim
ikn→ω+iη

G (r, r0; ikn) (4.169)

The key point is the third one on the asymptotic behavior at high frequency.
That this is the correct asymptotic behavior at high frequency follows trivially from
the spectral representation Eq.(4.164) as long as we remember that the spectral
weight is bounded in frequency. The non-trivial statement is that this asymptotic
behavior suffices to make the analytical continuation unique. In practice this rarely
poses a problem. The simple replacement ikn → ω+ iη suffices. Nevertheless, the
asymptotic behavior reflects a very fundamental property of the physical system,
namely the anticommutation relations! It is thus crucial to check that it is satisfied.
More on the meaning of the asymptotic in subsection (4.5.7).

4.5.5 Matsubara Green’s function in momentum space and non-interacting case

We first present the definition of the Matsubara Green’s function in momentum
space since this is where it will be diagonal. With our definition of momentum
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and real space second quantized operators, and our normalization for momentum
eigenstates Eq.(4.17) we have

G (r, r0; τ − τ 0) = −
D
Tτψ (r,τ)ψ

† (r0, τ 0)
E
= −

*
Tτ
X
k

hr |ki ck (τ)
X
k0
c†k0 (τ

0) hk0 |r0i
+

(4.170)

hr |ki hk0 |r0i = 1

V e
ik·r−ik0·r0 =

1

V e
i(k−k0)·

³
r0+r
2

´
+i
³
k+k0
2

´
·(r−r0) (4.171)

Assuming space translation invariance, we can integrate over the center of mass

coordinate 1
V
R
d
³
r0+r
2

´
= 1. Since

1

V
Z
d

µ
r0 + r
2

¶
e
i(k−k0)·

³
r0+r
2

´
=
1

V (2π)
3 δ
¡
k− k0¢ = δk,k0 (4.172)

we are left with

G (r, r0; τ − τ 0) = −
*
Tτ
1

V
X
k0
ck0 (τ) c

†
k0 (τ

0) eik
0·(r−r0)

+
(4.173)

G (k; τ − τ 0) =
Z
d (r− r0) e−ik·(r−r0)

"
−
*
Tτ
1

V
X
k0
ck0 (τ) c

†
k0 (τ

0) eik
0·(r−r0)

+#
(4.174)

G (k; τ − τ 0) = −
D
Tτck (τ) c

†
k (τ

0)
E

(4.175)

which could have been guessed from the start! Our definitions of Fourier trans-
forms just make this work.

Remarque 68 Momentum indices and translational invariance: Note that the
conservation of total momentum corresponding to translational invariance corre-
sponds to the sum of the momentum indices of the creation-operation operators
being equal to zero. The sign of momentum is counted as negative when it appears
on a creation operator.

Example of non-interacting particles

For non-interacting particles let us consider a quadratic diagonal Hamiltonian

K0 =
X
k

(²k − µ) c+k ck ≡
X
k

ζkc
+
k ck (4.176)

The result for the Green’s function may be obtained either directly from the
definition or by integrating the equations of motion. Both ways of obtaining
the simple result

G0 (k; ikn) = 1
ikn−ζk (4.177)

are instructive, so let us do both. Assuming for one moment that the above result
is correct, our rules for analytic continuation then immediately give us the retarded
function

GR (k;ω) = 1
ω+iη−ζk (4.178)

that has precisely the form we expect from our experience with the one-body case.
The only difference with the one-body case is in the presence of the chemical
potential in ζk.
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From the definition To evaluate the Green’s function from its definition, we
need ck (τ) . That quantity may be obtained by solving the Heisenberg equations
of motion,

∂ck
∂τ

= [K0, ck] = −ζkck (4.179)

The anticommutator was easy to evaluate using our standard trick Eq.(4.48). The
resulting differential equation is easy to integrate given the initial condition on
Heisenberg operators. We obtain,

ck (τ) = e
−ζkτck (4.180)

so that substituting in the definition,

G0 (k; τ) = −
­
Tτck (τ) c

+
k

®
= −e−ζkτ £­ckc+k ® θ (τ)− ­c+k ck® θ (−τ)¤ (4.181)

using the standard result from elementary statistical mechanics,­
c+k ck

®
= f (ζk) =

1

eβζk + 1
(4.182)

and
­
ckc

+
k

®
= 1− ­c+k ck® we obtain
G0 (k; τ) = −e−ζkτ [(1− f (ζk)) θ (τ)− f (ζk) θ (−τ)] . (4.183)

Remarque 69 Inadequacy of Matsubara representation outside the domain of de-
finition: We see here clearly that if τ < 0 the equality

G0 (k; τ + β) = −G0 (k; τ) (4.184)

is satisfied because e−ζkβ (1− f (ζk)) = f (ζk) . On the other hand,
G0 (k; τ + 3β) 6= G0 (k; τ + β) (4.185)

as we might have believed if we had trusted the expansion

G0 (k; τ) = 1

β

∞X
n=−∞

e−iknτG0 (k; ikn)

outside its domain of validity! The conclusion is that as long as the Matsubara
frequency representation is used to compute functions inside the domain −β < τ <
β, it is correct. The perturbation expansion of the interaction picture does not force
us to use Green’s functions outside this domain, so the Matsubara representation
is safe!

Remarque 70 Alternate evaluation of time evolution: We could have obtained
the time evolution also by using the identity

eACeA = C + [A,C] +
1

2!
[A, [A,C]] +

1

3!
[A, [A, [A,C]]] + . . . (4.186)

that follows from expanding the exponential operators. This is less direct.

Remarque 71 Appearance of G0 (k; τ) : It is instructive to plot G0 (k; τ) as a
function of imaginary time. In some energy units, let us take β = 5, and then
consider three possible values of ζk. First ζk = 0.2, i.e. for a value of momentum
above the Fermi surface, then a value right at the Fermi surface, ζk = 0 and finally
a value ζk = −0.2 corresponding to a momentum right below the Fermi surface.
These cases are illustrated respectively in Figs.(??) to (??). Note that the jump
at τ = 0 is always unity, reflecting the anticommutation relations. What is meant
by antiperiodicity also becomes clear. The extremal values near ±β and ±0 are
simply related to the occupation number, independently of interactions.
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G0 (p, τ ) for a value of momentum above the Fermi surface.
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G0 (p, τ ) for a value of momentum at the Fermi surface.
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G0 (p, τ ) for a value of momentum below the Fermi surface.
Let us continue with the derivation of the Matsubara frequency result G0 (k; ikn).

G0 (k; ikn) =
Z β

0

dτeiknτG0 (k; τ) = − (1− f (ζk))
Z β

0

dτeiknτe−ζkτ (4.187)

= − (1− f (ζk))
eiknβe−ζkβ − 1
ikn − ζk

(4.188)

= − (1− f (ζk))
−e−ζkβ − 1
ikn − ζk

=
1

ikn − ζk
(4.189)

The last equality follows because

(1− f (ζk)) =
eζkβ

eζkβ + 1
=

1

e−ζkβ + 1
(4.190)

We thus have our final result Eq.(4.177) for non-interacting particles.
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From the equations of motion In complete analogy with the derivation in
subsection (4.2.1) we can obtain the equations of motion in the quadratic case.

∂

∂τ
G0 (k; τ) = − ∂

∂τ

D
Tτck (τ) c

†
k

E
(4.191)

= −δ (τ)
Dn
ck (τ) , c

†
k

oE
−
¿
Tτ

µ
∂

∂τ
ck (τ)

¶
c†k

À
(4.192)

Using the equal-time anticommutation relations as well as the Heisenberg equa-
tions of motion for free particles Eq.(4.179) the above equation becomes,

∂

∂τ
G0 (k; τ) = −δ (τ) + ζk

D
Tτck (τ) c

†
k

E
(4.193)

so that the equation of motion for the Matsubara propagator is¡
∂
∂τ + ζk

¢G0 (k; τ) = −δ (τ) (4.194)

To obtain the Matsubara-frequency result, we only need to integrate on both sides
using the general expression to obtain Fourier coefficients Eq.(4.144)Z β−

0−

·µ
∂

∂τ
+ ζk

¶
G0 (k; τ)

¸
eiknτdτ = −1 (4.195)

so that integrating by parts,

eiknτ G0 (k; τ)|β
−

0− − iknG0 (k; ikn) + ζkG0 (k; ikn) = −1 (4.196)

Note that we had to specify that the domain of integration includes 0. The inte-
grated term disappears because of the KMS boundary conditions (antiperiodicity)
Eq.(4.133). Indeed, antiperiodicity implies that

eiknτ G0 (k; τ)|β
−

0− = −G0
¡
k;β−

¢− G0 ¡k; 0−¢ = 0 (4.197)

Eq.(4.196) for the Matsubara Green’s function then immediately gives us the de-
sired result Eq.(4.177).

4.5.6 Sums over Matsubara frequencies

In doing practical calculations, we will have to become familiar with sums over
Matsubara frequencies. When we have products of Green’s functions, we will use
partial fractions in such a way that we will basically always have to evaluate sums
such as

T
X
n

1

ikn − ζk
(4.198)

where T = β−1.We have however to be careful since the result of this sum is
ambiguous. Indeed, returning back to the motivation for these sums, recall that

G (k;τ) = T
X
n

e−iknτ

ikn − ζk
(4.199)

We already know that the Green’s function has a jump at τ = 0. In other words,·
lim
τ→0+

G (k;τ) = − ­ckc+k ®¸ 6= · lim
τ→0−

G (k;τ) = ­c+k ck®¸ (4.200)
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This inequality in turn means that

T
X
n

e−ikn0
−

ikn − ζk
6= T

X
n

e−ikn0
+

ikn − ζk
6= T

X
n

1

ikn − ζk
(4.201)

The sum does not converge uniformly in the interval including τ = 0 because the
1/n decrease for n → ∞ is too slow. Even if we can obtain a finite limit for the
last sum by combining positive and negative Matsubara frequencies, what makes
physical sense is only one or the other of the two limits τ → 0±.

Remarque 72 The jump, limτ→0− G (k;τ) − limτ→0+ G (k;τ) is always equal to
unity because of the anticommutation relations. The slow convergence in 1/ikn is
thus a reflection of the anticommutation relations and will remain true even in the
interacting case. If the (ikn)

−1 has a coefficient different from unity, the spectral
weight is not normalized and the jump is not unity. This will be discussed shortly.

Let us evaluate the Matsubara frequency sums in a few special cases. Consid-
ering again the case of fermions we will show that

T
P
n
e−ikn0

−

ikn−ζk =
1

eβζk+1
= f (ζk) = G0 (k;0−) (4.202)

T
P
n
e−ikn0

+

ikn−ζk =
−1

e−βζk+1 = −1 + f (ζk) = G0 (k;0+) (4.203)

Obviously, the non-interacting Green’s function has the correct jump G0 (k;0−)−
G0 (k;0+) = 1
Proof: [6]To perform the sum over Matsubara frequencies, the standard trick is

to go to the complex plane. The following function

−β 1

eβz + 1
(4.204)

has poles for z equal to any fermionic Matsubara frequency: z = ikn.Its
residue at these poles is unity since for

z = ikn + δz (4.205)

we have

−β 1

eβz + 1
= −β 1

eiknβ+βδz + 1
= −β 1

−1eβδz + 1 (4.206)

lim
z−ikn→0

δz

·
−β 1

eβz + 1

¸
= 1 (4.207)

Similarly the following function has the same poles and residues:

lim
z−ikn→0

δz

·
β

1

e−βz + 1

¸
= 1 (4.208)

To evaluate the τ = 0+ case by contour integration, we use the Cauchy’s
theorem on the contour C1, which is a sum of circles going counterclockwise
around the points where z is equal to the Matsubara frequencies. Using
Eq.(4.207) this allows us to establish the equality

1

β

X
n

e−ikn0
−

ikn − ζk
= lim

η→0+
− 1

2πi

Z
C1

dz

eβz + 1

eηz

z − ζk
(4.209)
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This contour can be deformed, as illustrated in Fig.(4-6), into C2 + C3 (go-
ing through C01) with no contribution from the semi-circles at Re (z) = ±∞
because 1

eβz+1
insures convergence when Re (z) > 0, and eηz insures con-

vergence when Re (z) < 0. With the deformed contour C2 + C3, only the
contribution from the pole in the clockwise direction is left so that we have
proven the identity (4.203).To evaluate the 0− case we use the same contour

Im(z)

Re(z)

C’1
X

C2
C3

Figure 4-6 Evaluation of fermionic Matsubara frequency sums in the complex plane.

but with the other form of auxiliary function Eq.(4.208). We then obtain,

1

β

X
n

e−ikn0
+

ikn − ζk
= lim

η→0+
1

2πi

Z
C1

dz

e−βz + 1
e−ηz

z − ζk
(4.210)

This contour can be deformed into C2 + C3 with no contribution from the
semi-circles at Re (z) = ±∞ because this time e−ηz insures convergence
when Re (z) > 0, and 1

e−βz+1 when Re (z) < 0. Again, from C2 + C3, only
the contribution from the pole in the clockwise direction survives so that we
have proven the identity (4.202).

4.5.7 Asymptotic behavior of G (k;ikn) and Σ (k;ikn)

As usual, the high-frequency asymptotic properties of the Green’s function are
determined by sum rules. From the spectral representation(4.161), we obtain, for
the general interacting case

lim
ikn→∞

G (k; ikn) = lim
ikn→∞

Z ∞
−∞

dω0

2π

A (k;ω0)
ikn − ω0

(4.211)

= lim
ikn→∞

1

ikn

Z ∞
−∞

dω0

2π
A (k;ω0) = lim

ikn→∞
1

ikn

­©
ck, c

+
k

ª®
= lim
ikn→∞

1

ikn
(4.212)

Defining the self-energy as usual

G (k; ikn) = 1

ikn − ζk − Σ (k, ikn)
(4.213)

the correct asymptotic behavior for the Green’s function implies that the self-
energy at high frequency cannot diverge: It must go to a constant independent of
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frequency
lim

ikn→∞
Σ (k, ikn) = cst. (4.214)

We will see later that the value of this constant is in fact given correctly by the
Hartree-Fock approximation.
The converse of the above result[10] for the Green’s function, is that if

lim
ikn→∞

G (k; ikn) = lim
ikn→∞

1

ikn

then that is all that is needed to obtain an approximation for the Green’s function
which obeys the anticommutation relation:

G ¡k;0−¢− G ¡k;0+¢ = ­c+k ck®+ ­ckc+k ® = 1 (4.215)

Proof :It suffices to notice that

G ¡k;0−¢− G ¡k;0+¢ = 1

β

X
n

h
e−ikn0

− − e−ikn0+
i
G (k;ikn) (4.216)

We can add and subtract the asymptotic behavior to obtain,

1

β

X
n

·³
e−ikn0

− − e−ikn0+
´µ
G (k;ikn)− 1

ikn

¶¸
+
1

β

X
n

³
e−ikn0

− − e−ikn
´ 1

ikn

(4.217)
In the first sum, G (k;ikn)− 1

ikn
decays faster than 1

ikn
so that the convergence

factors are not needed for the sum to converge. This means that this first
sum vanishes. The last sum gives unity, as we easily see from the previous
section. This proves our assertion.

Remarque 73 High-frequency expansion for the Green’s function and sum-rules:
The coefficients of the high-frequency expansion of G (k; ikn) in powers of 1/ikn
are obtained from sum rules on the spectral weight, in complete analogy with what
we have found in previous chapters. The fact that A (k,ω) falls fast enough to
allow us to expand under the integral sign follows from the fact that all frequency
moments of A (k,ω) , namely

R
dωωnA (k,ω) , exist and are given by equal-time

commutators. Explicit expressions for A (k,ω) in terms of matrix elements, as
given in Subsection(4.6.3) below, show physically why A (k,ω) falls so fast at
large frequencies. As an example, to show that the coefficient of the 1/ikn term
in the high frequency expansion is equal to

R∞
−∞

dω0
2π A (k;ω

0) it is sufficient thatR∞
−∞

dω0
2π |ω0A (k;ω0)| exists.[8] This can be seen as follows,

iknG (k; ikn)−
Z ∞
−∞

dω0

2π
A (k;ω0) =

Z ∞
−∞

dω0

2π
A (k;ω0)

µ
ikn

ikn − ω0
− 1
¶
(4.218)

=

Z ∞
−∞

dω0

2π
A (k;ω0)

ω0

ikn − ω0
(4.219)

≤
Z ∞
−∞

dω0

2π

¯̄̄̄
A (k;ω0)

ω0

ikn − ω0

¯̄̄̄
(4.220)

≤
¯̄̄̄
1

ikn

¯̄̄̄ Z ∞
−∞

dω0

2π
|A (k;ω0)ω0| (4.221)

If the integral exists then, it is a rigorous result that

lim
ikn→∞

iknG (k; ikn) =
Z ∞
−∞

dω0

2π
A (k;ω0) (4.222)
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This is an important result. It suggests that approximate theories that give 1 as the
coefficient of (ikn)

−1 in the high frequency expansion have a normalized spectral
weight. However[8] the above proof assumes that there is indeed a spectral repre-
sentation for G (k; ikn) . A Green’s function for a theory that is not causal fails to
have a spectral representation. If a spectral representation is possible, the analyti-
cally continued approximate GR (k,ω) is necessarily causal. Approximate theories
may not be causal. This failure of causality may reflect a phase transition, as we
will see later, or may simply be a sign that the approximation is bad. As an exam-
ple, suppose that we obtain G (k; ikn) = (ikn − ia)−1 . This has the correct high-
frequency behavior but its analytical continuation does not satisfy causality. It has
no spectral representation. On the other hand, G (k; ikn) = (ikn + (kn/ |kn|) ia)−1
has a Lorentzian as a spectral weight and is causal. It may also occur that the
approximate theory may have

R∞
−∞

dω0
2π A (k;ω

0) = 1 but A (k;ω0) < 0 for some
range of ω0. This unphysical result may again signal that the approximate theory
fails because of a phase transition or because it is a bad approximation.

4.6 Physical meaning of the spectral weight: Qua-
siparticles, effective mass, wave function renor-
malization, momentum distribution.

To discuss the Physical meaning of the spectral weight, we first find it in the
non-interacting case, then write a formal general expression, the Lehman repre-
sentation, that allows us to see its more general meaning. After our discussion
of a photoemission experiment, we will be in a good position to understand the
concepts of quasiparticles, wave-function renormalization, effective mass and mo-
mentum distribution. We will even have a first look at Fermi liquid theory, and
see how it helps us to understand photoemission experiments.

4.6.1 Spectral weight for non-interacting particles

The general result for the spectral weight in terms of the Green’s function Eq.(4.167)
gives us for non-interacting particles

A0 (k,ω) = i

·
1

ω + iη − ζk
− 1

ω − iη − ζk

¸
(4.223)

= 2πδ (ω − ζk) (4.224)

In physical terms, this tells us that for non-interacting particles in a translationally
invariant system, a single excited particle or hole of momentum k added to an
eigenstate is an true excited eigenstate located an energy ω = ζk above or below
the Fermi level. In the interacting case, the Lehman representation will show us
clearly that what we just said is the correct interpretation
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4.6.2 Lehman representation

For a general correlation function, not necessarily a Green’s function, one estab-
lishes the connection between Matsubara functions and retarded functions by using
the Lehman representation. This representation is also extremely useful to extract
the physical significance of the poles of correlation functions so this is why we in-
troduce it at this point. We have already seen examples of Lehman representation
in the one-body case when we wrote in Eq.(4.69),

GR (r, r0;ω) =
X
n

φn (r)φ
∗
n (r

0)
ω + iη −En

Let us consider the more general many-body case, starting from the Matsubara
Green’s function. It suffices to insert a complete set of energy eigenstates between
each field operator in the expression for the spectral weight

A (r, r0; t) ≡ ­©
ψ (r,t) ,ψ+ (r0, 0)

ª®
(4.225)

= eβΩ
X
m,n

h
hn| e−βKeiKtψS (r) e−iKt |mi hm|ψ†S (r0) |ni

+ hn| e−βKψ†S (r0) |mi hm| eiKtψS (r) e−iKt |ni
i

We now use e−iKt |ni = e−iKnt |ni with Kn = En−µN if there are N particles in
the initial state|ni . In the first term above, hn| has one less particle than |mi while
the reverse is true in the second term. Taking the Fourier transform

R
dteiω

0t we
have

A (r, r0;ω0) = eβΩ × (4.226)X
mn

h
e−βKn hn|ψS (r) |mi hm|ψ†S (r0) |ni 2πδ (ω0 − (Em − µ−En))

+ e−βKn hn|ψ†S (r0) |mi hm|ψS (r) |ni 2πδ (ω0 − (En − µ−Em))
i

One can interpret Physically the spectral weight as follows. It has two pieces,
the first one for excited states with one more particle, and the second one for
excited states with one more hole. Photoemission experiments (See Einstein’s
Nobel prize) access this last piece of the spectral weight, while Bremsstrahlung
inverse spectroscopy (BIS) experiments measure the first piece.1 Excited particle
states contribute to positive frequencies if their excitation energy is larger than
the chemical potential, Em −En > µ and to negative frequencies otherwise. Zero
frequency means that the excitation energy is equal to the chemical potential.
In other words, every excited single-particle or single-hole state corresponds to a
delta function in the spectral weight whose weight depends on the overlap between
initial states with one more particle at r0 or one more hole at r, and the true excited
states. The spectral representation Eq.(4.161) immediately tells us that the poles
of the single-particle Green’s functions are at the same position as delta functions
in the spectral weight, in other words they are at the excited single-particle or
single-hole states.
Doing changes of dummy summation indices we can arrange so that it is always

hn| that has one less particle. Then,

A (r, r0;ω0) = eβΩ
P
mn

¡
e−βKn + e−βKm

¢ hn|ψS (r) |mi hm|ψ†S (r0) |ni 2πδ (ω0 − (Km −Kn))

(4.227)
1To be more specific, these experiments add or remove particles in momentum, not position

eigenstates. The only change that this implies in the discussion above is that ψ(†)S (r) should be

replaced by c(†)p .
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Substituting in the spectral representation Eq.(4.161) we have,

G (r, r0; ikn) = eβΩ
P

mn

¡
e−βKm + e−βKn

¢ hn|ψS(r)|mihm|ψ†S(r0)|ni
ikn−(Em−En−µ) (4.228)

This is the Lehman representation. It tells us how to interpret the poles of the
analytically continued G (r, r0; ikn) .
Remarque 74 Standard way of proving analytical continuation formula: The
standard way of proving that GR (ω) = limikn→ω+iη G (ikn) is to first find the
Lehman representation for both quantities.

4.6.3 Probabilistic interpretation of the spectral weight

For a different representation, for example for momentum, we have[7] in the trans-
lationally invariant case, by analogy with the above result for the spectral weight
Eq.(4.227)

A (k,ω0) = eβΩ
P
mn

¡
e−βKm + e−βKn

¢ |hn| ck |mi|2 2πδ (ω0 − (Km −Kn))

(4.229)
The overlap matrix element |hn| ck |mi|2 that gives the magnitude of the delta
function contribution to the spectral weight represents the overlap between the
initial state with one more particle or hole in a momentum eigenstate and the
true excited one-particle or one-hole state. The last equation clearly shows that
A (k,ω0) / (2π) is positive and we already know that it is normalized to unity,Z

dω0

2π
A (k,ω0) =

Dn
ck, c

†
k

oE
= 1 (4.230)

Hence it can be interpreted as the probability that a state formed from a true eigen-
state |ni either by adding a particle in a single-particle state k, namely c†k |ni (or
adding a hole ck |ni in a single-particle state k) is a true eigenstate whose en-
ergy is ω above or below the chemical potential. Clearly, adding a particle or
a hole in a momentum eigenstate will lead to a true many-body eigenstate only
if the momentum of each particle is individually conserved. This occurs only in
the non-interacting case, so this is why the spectral weight is then a single delta
function. In the more general case, many energy eigenstates will have a non-zero
overlap with the state formed by simply adding a particle or a hole in a momen-
tum eigenstate. While particle-like excitations will overlap mostly with positive ω
eigenstates, they can also overlap negative ω eigenstates. In an analogous manner,
hole-like eigenstates will be mostly at negative ω. Let us see how this manifests
itself in a specific experiment.

Remarque 75 Energy vs momentum in an interacting system: It is clear that in
an interacting system one must distinguish the momentum and the energy vari-
ables. The energy variable is ω. Knowing the momentum of a single added electron
or hole is not enough to know the added energy. This added energy would be k2/2m
only in the case of non-interacting electrons.

Remarque 76 Physical reason for high-frequency fall-off: The explicit expression
for the spectral weight Eq.(4.229) suggests why the spectral weight falls off fast
at large frequencies for a given k,as we have discussed in Subsection(4.5.7). A
state formed by adding one particle (or one hole) of momentum k should have
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exponentially small overlap with the true eigenstates of the system that have one
more particle (or hole) but an arbitrarily large energy difference ω with the initial
state.

4.6.4 Angle-resolved photoemission spectroscopy (ARPES) on a Fermi liquid com-
pound.

In a photoemission experiment, a photon ejects an electron from a solid. This is
nothing but the old familiar photoelectric effect. In the angle resolved version of
this experiment (ARPES), the energy and the direction of the outgoing electron
are measured. This is illustrated in Fig.(4-7). The outgoing electron energy can
be measured. Because it is a free electron, this measurement gives the value of the
wave vector through k2/2m. Using energy conservation, the energy of the outgoing
electron is equal to the energy of the incident photon Eph, minus the work function
W plus the energy of the electron in the system, ω, measured relative to the Fermi
level.

e
Photon

= E   + ω + µ - W k
2m

2

k

ph

Figure 4-7 Schematic representation of an angle-resolved photoemission experiment.

The energy of the electron in the system ω will be mostly negative. The value
of k|| may be extracted by simple geometric considerations from the value of k.
Since in this experiment there is translational invariance only in the direction
parallel to the plane, this means that in fact it is only the value of k|| that is
conserved. Hence, it is only for layered systems that we really have access to
both energy ω and total momentum k|| of the electron when it was in the system.
Without going into details of the assumptions going into the derivation, Fermi’s
golden rule suggests, (see first section of Chapter 2) that the cross section for
ejecting an electron of momentum k|| and energy ω (measured with respect to µ)
is proportional to

∂2σ

∂Ω∂ω
∝

X
mn

e−βKm
¯̄hn| ck|| |mi¯̄2 δ (ω + µ− (Em −En)) (4.231)X

mn

e−βKm
¯̄hn| ck|| |mi¯̄2 δ (ω − (Km −Kn)) (4.232)

∝
Z
dteiωt

D
c†k||ck|| (t)

E
(4.233)
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which is “half” of the spectral weight (the mostly negative-energy part). More
specifically, we can rewrite this result in terms of the spectral weight as follows,

∂2σ

∂Ω∂ω
∝ f (ω)A ¡k||,ω¢ (4.234)

Proof: The most direct and simple proof is from the Lehman representation
Eq.(4.229). To get a few more general results aboutG<

¡
k||,ω

¢
andG>

¡
k||,ω

¢
we

present the following alternate proof. The cross section is proportional to
the Fourier transform of G<

¡
k||,ω

¢
as defined in Eq.(4.123).

∂2σ

∂Ω∂ω
∝ −iG< ¡k||,ω¢ (4.235)

One can relate G< and G> to the spectral weight in a very general way
through the Fermi function. This is done using the usual cyclic property of
the trace (fluctuation-dissipation theorem). FromD

ck|| (t) c
†
k||

E
= Z−1Tr

h
e−βK

¡
eiKtck||e

−iKt¢ c†k||i (4.236)

= Z−1Tr
h¡
eβKe−βK

¢
c†k||e

−βK ¡eiKtck||e−iKt¢i(4.237)
=

D
c†k||ck|| (t+ iβ)

E
(4.238)

one finds by simple use of definitions and change of integration variables,

A
¡
k||,ω

¢
=

Z
dteiωt

D
c†k||ck|| (t) + ck|| (t) c

†
k||

E
(4.239)

=

Z
dteiωt

D
c†k||ck|| (t)

E
+

Z
dteiω(t+iβ−iβ)

D
c†k||ck|| (t+ iβ)

E
=

¡
1 + eβω

¢ Z
dteiωt

D
c†k||ck|| (t)

E
(4.240)

= f (ω)−1
¡−iG< ¡k||,ω¢¢ (4.241)

Substituting in Eq.(4.235) proves Eq.(4.234). Note that since

A
¡
k||,ω

¢
= −i £G< ¡k||,ω¢−G> ¡k||,ω¢¤ (4.242)

we also have the result

iG>
¡
k||,ω

¢
= (1− f (ω))A ¡k||,ω¢ (4.243)

The theoretical formula for the photoemission cross-section Eq.(4.234) neglects
processes where energy is transferred from the outgoing electron to phonons or
other excitations before it is detected (multiple scattering of outgoing electron).
Such processes are referred to as “inelastic background”.
The state of technology and historical coincidences have conspired so that the

first class of layered (quasi-two-dimensional) compounds that became available
for ARPES study around 1990 were high temperature superconductors. These
materials have properties that make them non-conventional materials that are not
yet understood using standard approaches of solid-state Physics. Hence, people
started to look for two-dimensional materials that would behave as expected from
standard models. Such a material, semimetallic TiTe2 was finally found around
1992. For our purposes, quasi-to-dimensional just means here that the Fermi
velocity perpendicular to the planes is much smaller than the Fermi velocity in
the planes. The results of this experiment[11] appear in Fig.(4-8).
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Figure 4-8 ARPES spectrum of 1− T − TiTe2, after R. Claessen, R.O. Anderson,
J.W. Allen, C.G. Olson, C. Janowitz, W.P. Ellis, S. Harm, M. Kalning, R. Manzke,
and M. Skibowski, Phys. Rev. Lett 69, 808 (1992).
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We have to remember that the incident photon energy is 21.2eV while the
variation of ω is on a scale of 200meV so that, for all practical purposes, the
momentum vector in Fig.(4-7) is a fixed length vector. Hence, the angle with
respect to the incident photon suffices to define the value of k||. Each curve in
Fig.(4-8) is for a given k||, in other words for a given angle measured from the
direction of incidence of the photon. The intensity is plotted as a function of the
energy of the outgoing electron. The zero corresponds to an electron extracted
from the Fermi level. Electrons with a smaller kinetic energy come from states
with larger binding energy. In other words, each of the curves above is basically
a plot of the hole-like part of A

¡
k||,ω

¢
. From band structure calculations, one

knows that the angle θ = 14.750 corresponds to the Fermi level (marked kF on the
plot) of a Ti− 3d derived band. It is for this scattering angle that the agreement
between experiment and Fermi liquid theory is best (see Sec.(4.6.6) below). The
plots for angles θ < 14.750 corresponds to wave vectors above the Fermi level.
There, the intensity is much smaller than for the other peaks. For θ = 130,
the experimental results are scaled up by a factor 16. The intensity observed for
wave-vectors above the Fermi wave vector comes from the overlap of particle-like
excitations with eigenstates below the Fermi surface, a phenomenon we alluded to
in the previous section.
The energy resolution is 35meV. Nevertheless, it is clear that the line shapes

are larger than the energy resolution: Clearly the spectral weight is not a delta
function and the electrons in the system are not free particles. Nevertheless,
there is a definite maximum in the spectra whose position changes with k||. It
is tempting to associate the width of the line to a lifetime. In other words, a
natural explanation of these spectra is that the electrons inside the system are
“quasiparticles” whose energy disperses with wave vector and that have a lifetime.
We try to make these concepts more precise below.

4.6.5 Quasiparticles[9]

For a general interacting system, the one-particle Green’s function takes the form,

GR (k,ω) =
1

ω + iη − ζk −
PR

(k,ω)
(4.244)

The corresponding spectral weight is,

A (k,ω) = −2 ImGR (k,ω) (4.245)

=
−2 ImPR

(k,ω)³
ω − ζk −Re

PR
(k,ω)

´2
+
³
Im
PR

(k,ω)
´2 (4.246)

If the imaginary part of the self-energy, the scattering rate, is not too large and
varies smoothly with frequency, the spectral weight will have a maximum whenever

ω − ζk −ReΣR (k,ω) = 0 (4.247)

Let Ek − µ be the value of ω for which this equation is satisfied. Ek is so-
called quasiparticle energy. This energy is clearly in general different from the
results of band structure calculations that are usually obtained by neglecting the
frequency dependence of the self-energy. Expanding ω− ζk−ReΣR (k,ω) around
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the maximum energy, we find

ω − ζk −ReΣR (k,ω) ≈
Ã
1− ∂ReΣR (k,ω)

∂ω

¯̄̄̄
Ek−µ

!
(ω −Ek + µ) + . . . (4.248)

If we define the “quasiparticle weight” or square of the wave function renormal-
ization by

Zk =
1

1− ∂
∂ω ReΣ

R(k,ω)|
ω=Ek−µ

(4.249)

then in the vicinity of the maximum, the spectral weight takes the following simple
form in the vicinity of the Fermi level, where the peak is sharpest

A (k,ω) ≈ 2πZk
1

π

−Zk Im
PR

(k,ω)

(ω −Ek + µ)2 +
³
Zk Im

PR
(k,ω)

´2 + inc (4.250)
= 2πZk

"
1

π

Γk (ω)

(ω −Ek + µ)2 + (Γk (ω))2
#
+ inc (4.251)

The last equation needs some explanation. First, it is clear that we have defined
the scattering rate

Γk (ω) = −Zk ImΣR (k,ω) (4.252)

Second, the quantity in square brackets looks, as a function of frequency, like a
Lorentzian. At least if we can neglect the frequency dependence of the scattering
rate. The integral over frequency of the square bracket is unity. Since A (k,ω) /2π
is normalized to unity, this means both that

Zk ≤ 1 (4.253)

and that there are additional contributions to the spectral weight that we have
denoted inc in accord with the usual terminology of “incoherent background”.
The equality in the last equation holds only if the real part of the self-energy is
frequency independent.
It is also natural to ask how the quasiparticle disperses, in other words, what is

its effective Fermi velocity compared with that of the bare particle. Let us define
the bare velocity by

vk = ∇kζk (4.254)

and the renormalized velocity by

v∗k = ∇kEk (4.255)

Then the relation between both quantities is easily obtained by taking the gradient
of the quasiparticle equation Eq.(4.247)

∇k
£
Ek − µ− ζk −ReΣR (k, Ek − µ) = 0

¤
(4.256)

v∗k − vk −∇kReΣR (k, Ek − µ)−
∂ReΣR (k,ω)

∂ω

¯̄̄̄
Ek−µ

v∗k = 0 (4.257)

The last equation is easily solved if we can write that k dependence of ΣR as
a function of ζk instead, something that is always possible for spherical Fermi
surfaces. In such a case, we have

v∗k = vk
1+ ∂

∂ζk
ReΣR(k,Ek−µ)

1− ∂
∂ω ReΣ

R(k,ω)|
ω=Ek−µ

(4.258)
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In cases where the band structure has correctly treated the k dependence of the
self-energy, or when the latter is negligible, then the renormalized Fermi velocity
differs from the bare one only through the famous quasiparticle renormalization
factor. In other words, v∗k = Zkvk. The equation for the renormalized velocity
is also often written in terms of a mass renormalization instead. Indeed, we will
discuss later the fact that the Fermi wave vector kF is unmodified by interactions
for spherical Fermi surfaces (Luttinger’s theorem). Defining then m∗v∗kF = kF =
mvkF means that our equation for the renormalized velocity gives us

m
m∗ = limk→kF

1+ ∂
∂ζk

ReΣR(k,Ek−µ)
1− ∂

∂ω ReΣ
R(k,ω)|

ω=Ek−µ
(4.259)

4.6.6 Fermi liquid interpretation of ARPES

Let us see how to interpret the experiments of the previous subsection in light
of the quasiparticle model just described. First of all, the wave vectors studied
are all close to the Fermi surface as measured on the scale of kF . Hence, every
quantity appearing in the quasiparticle spectral weight Eq.(4.251) is evaluated
for k = kF so that only the frequency dependence of the remaining quantities is
important. The experiments were carried out at T = 20K where the resistivity
has a T 2 temperature dependence. This is the regime dominated by electron-
electron interactions, where so-called Fermi liquid theory applies. What is Fermi
liquid theory? It would require more than the few lines that we have to explain
it, but roughly speaking, for our purposes, let us say that it uses the fact that
phase space for electron-electron scattering vanishes at zero temperature and at
the Fermi surface, to argue that the quasiparticle model applies to interacting
electrons. Originally the model was developed for liquid 3He, hence the name
Fermi Liquid. It is a very deep theory that in a sense justifies all the successes
of the almost-free electron picture of electrons in solids. We cannot do it justice
here. A simple way to make its main ingredients plausible,[10] is to assume that
near the Fermi surface, at frequencies much less than temperature, the self-energy
is i) analytic and ii) has an imaginary part that vanishes at zero frequency.
Let us define real and imaginary parts of the retarded self-energy by

ΣR = Σ0 + iΣ00 (4.260)

Our two hypothesis imply that Σ00 has the Taylor expansion

Σ00 (kF ;ω) = αω − γω2 + . . . (4.261)

The imaginary part of the retarded self-energy must be negative to insure that
the retarded Green’s function has poles in the lower half-plane. This means that
we must have α = 0 and γ > 0. Fermi liquid theory keeps only the leading term

Σ00 = −γω2

We will verify for simple models that this quadratic frequency dependence is rig-
orously correct in d ≥ 3. The real part is then obtained from the Kramers-Kronig
relation Eq.(3.86), or from the spectral representation,

lim
ω→0

[Σ0 (kF ;ω)− Σ0 (kF ;∞)] = lim
ω→0

P
Z
dω0

π

Σ00 (kF ;ω0)
ω0 − ω

(4.262)

= P
Z
dω0

π

Σ00 (kF ;ω0)
ω0

+ ω

"
P
Z
dω0

π

Σ00 (kF ;ω0)
(ω0)2

#
+ . . .
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The first term is the value of the real-part of the self-energy at zero-frequency. This
constant contributes directly to the numerical value of the chemical potential (the
Hartree-Fock shift Σ0 (kF ;∞) does not suffice to evaluate the chemical potential).
The second term in the last equation tells us that

∂

∂ω
Σ0 (kF ,ω)

¯̄̄̄
ω=0

=

"
P
Z
dω0

π

Σ00 (kF ;ω0)
(ω0)2

#
(4.263)

Since Σ00 = −γω2 the integral exists and is negative, hence
∂

∂ω
Σ0 (k,ω)

¯̄̄̄
ω=0

< 0 (4.264)

This in turn means that the corresponding value of ZkF is less than unity, as we
had concluded in Eqs.(4.249) and (4.253) above. In summary, the analyticity hy-
pothesis along with the vanishing of Σ00 (0) implies the existence of quasiparticles.
The solid lines in Fig.(4-8) are two-parameter fits that also take into account

the wave vector and energy resolution of the experiment.[11] One parameter is
Ek − µ while the other one is γ0, a quantity defined by substituting the Fermi
liquid approximation in the equation for damping Eq.(4.252)

ΓkF (ω) = ZkF γω
2 = γ0ω2. (4.265)

Contrary to Ek, the damping parameter γ0 is the same for all curves. The solid-line
fits are obtained with γ0 = 40eV −1 (β0 on the figure). The fits become increasingly
worse as one moves away from the Fermi surface, as expected. It is important to
notice, however, that even the small left-over weight for wave-vectors above the
Fermi surface

¡
θ < 14.750

¢
can be fitted with the same value of γ. This weight is

the tail of a quasiparticle that could be observed at positive frequencies in inverse
photoemission experiments (so-called BIS). The authors compared the results of
their fits to the theoretical estimate,[12] γ = 0.067ωp/ε

2
F . Using ωp = 18.2eV,

εF = 0.3eV and the extrapolated value of ZkF obtained by putting
2 rs = 10 in

electron gas results,[13] they find γ0 < 5 (eV )−1 while their experimental results
are consistent with γ0 = 40 ± 5 (eV )−1 . The theoretical estimate is almost one
order of magnitude smaller than the experimental result. This is not so bad
given the crudeness of the theoretical model (electron gas with no lattice effect).
In particular, this system is a semimetal so that there are other decay channels
than just the one estimated from a single circular Fermi surface. Furthermore,
electron gas calculations are formally correct only for small rs while there we have
rs = 10. Also, there are worse cases: theoretical estimates for high-temperature
superconductors are two orders of magnitude smaller than the observed result.[11]

Remarque 77 Asymmetry of the lineshape: The line shapes are asymmetrical,
with a tail at energies far from the Fermi surface (large binding energies). This
is consistent with the fact that the “inverse lifetime” ΓkF (ω) = ZkF γω

2 is not a
constant, but is instead larger at larger binding energies.

Remarque 78 Failure of Fermi liquid at high-frequency: Clearly the Fermi liquid
expression for the self-energy fails at large frequencies since we know from its spec-
tral representation that the self-energy goes to a frequency-independent constant at
large frequency.

Remarque 79 Destruction of quasiparticles by critical fluctuations in two di-
mensions: Note that it is only if Σ00 vanishes fast enough with frequency that it

2rs is the average electron spacing expressed in terms of the Bohr radius.
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is correct to expand the Kramers-Kronig expression in powers of the frequency
to obtain Eq.(4.263). When Σ00 (ω) vanishes slower than ω2, then Eq.(4.263) for
the slope of the real part is not valid. The integral does not converge uniformly
and it is not possible to interchange the order of differentiation and integration.
In such a case it is possible to have the opposite inequality for the slope of the
real part ∂

∂ωΣ
0 (k,ω)

¯̄
ω=0

> 0. This does not lead to any contradiction, such as
ZkF > 1, because there is no quasiparticle solution at ω = 0 in this case. This
situation occurs for example in two dimensions when classical thermal fluctuations
create a pseudogap in the normal state before a zero-temperature phase transition
is reached.[14]

4.6.7 Momentum distribution in an interacting system

In an interacting system, momentum is not a good quantum number so
D
c†kck

E
is

not equal to the Fermi distribution. On the other hand,
D
c†kck

E
can be computed

from the spectral weight. Indeed,D
c†kck

E
= lim

τ→0−

h
−
D
Tτck (τ) c

†
k

Ei
= lim

τ→0−
G (k,τ) (4.266)

To compute the latter quantity from the spectral weight, it suffices to use the
spectral representation Eq.(4.161)

lim
τ→0−

G (k,τ) = T lim
τ→0−

∞X
n=−∞

e−iknτG (r, r0; ikn)

= T lim
τ→0−

∞X
n=−∞

e−iknτ
Z ∞
−∞

dω0

2π

A (k,ω0)
ikn − ω0

(4.267)

Using the result Eq.(4.202) found above for the sum over Matsubara frequencies,
we are left withD

c†kck
E
= limτ→0− G (k,τ) =

R∞
−∞

dω0
2π f (ω

0)A (k,ω0) (4.268)

with f (ω0) the Fermi-Dirac distribution.
This means that the momentum distribution is a Fermi-Dirac distribution only

if the spectral weight is a delta function. This occurs for free particles or, more
generally if the real-part of the self-energy is frequency independent since, in this
case, the Kramers-Kronig relations imply that the imaginary part of the self-energy
vanishes so that Eq.(4.246) for the spectral weight gives us a delta function.

Remarque 80 Jump of the momentum distribution at the Fermi level: Even ifD
c†kck

E
is no-longer a Fermi-Dirac distribution in an interacting system, neverthe-

less at zero-temperature in a system subject only to electron-electron interaction,

there is a jump in
D
c†kck

E
at the Fermi level. The existence of this jump can be

seen as follows. At zero temperature, our last result gives usD
c†kck

E
=

Z 0

−∞

dω0

2π
A (k,ω0) (4.269)
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Let us take the quasiparticle form Eq.(4.251) of the spectral weight with the Fermi
liquid expression Eq.(4.265) for the scattering rate. The incoherent background
varies smoothly with k and hence cannot lead to any jump in occupation number.
The quasiparticle piece on the other hand behaves when k→ kF , or in other words
when Ek−µ→ 0, as ZkF δ (ω). At least crudely speaking. When Ek−µ→ 0−, this
delta function is inside the integration domain hence it contributes to the integral,
while when Ek − µ → 0+ the delta function is outside and does not contribute to
the integral. This means that there is a big difference between these two nearby
wave vectors, namely

lim
k→k−f

D
c†kck

E
− lim
k→k+f

D
c†kck

E
= Zk

F
(4.270)

In the above argument, we have done as if Γk (ω) was frequency independent and
infinitesimally small in Eq.(4.251). This is not the case so our argument is rather
crude. Nevertheless, if one uses the actual frequency-dependent forms and does
the frequency integral explicitly, one can check that the above conclusion about the
jump is true (although less trivial).

Remarque 81 Fermi surface and interactions: The conclusion of the previous
remark is that even in an interacting system, there is a sharp Fermi surface as
in the free electron model. For simplicity we have discussed the spinless case. A
qualitative sketch of the zero-temperature momentum distribution in an interacting
system appears in Fig.(4-9). Since momentum of a single particle is not a good
quantum number anymore, some states above the Fermi momentum are now occu-
pied while others below are empty. Nevertheless, the Fermi surface is unaffected.

Zp
F

1

0 pp
F

Figure 4-9 Qualitative sketch of the zero-temperature momentum distribution in an
interacting system.

4.7 Three general theorems

Risking to wear your patience out, we still have to go through three general the-
orems used repeatedly in Many-Body theory. Wick’s theorem forms the basis ot
the diagram technique in many-body theory. The linked-cluster theorems, or cu-
mulant expansions, are much more general theorems that are also necessary to set
up the machinery of diagrams. Finally, we prove a variational principle for the free
energy that allows us to give a physical meaning to Hartree-Fock theory as the
best one-body Hamiltonian for any given problem. This variational principle is
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useful for ordinary system, but also becomes indispensable when there is a broken
symmetry.

4.7.1 Wick’s theorem

Wick’s theorem allows us to compute arbitrary correlation functions of any Hamil-
tonian that is quadratic in Fermion or Boson operators. That is clearly what we
need to do perturbation theory, but let us look in a bit more details at how this
comes about. We will need to compute in the interaction picture

G (τ) = −
Tr
h
e−βH0Tτ

³bU (β, τ) bψ (τ) bU (τ , 0) bψ† (0)´i
Tr
h
e−βH0Tτ bU (β, 0)i (4.271)

Because bU (τ , 0) always contains an even number of fermions, it can be commuted
with creation-annihilation operators without paying the price of minus signs so
that

G (τ) = −Tr
h
e−βH0Tτ

³ bU(β,0)bψ(τ)bψ†(0)´i
Tr[e−βH0Tτ bU(β,0)] (4.272)

More specifically the evolution operator is,

bU (β, 0) = Tτ hexp³− R β0 dτ1 bV (τ1)´i (4.273)

Expanding this evolution operator to first order in the numerator of the Green’s
function one obtains

−Tr
h
e−βH0Tτ

³bψ (τ) bψ† (0)´i+ Z β

0

dτ1Tr
h
e−βH0Tτ

³bV (τ1) bψ (τ) bψ† (0)´i
(4.274)

where in the case of a two-body interaction (Coulomb for example), bV (τ1) contains
four field operators.
Wick’s theorem allows us to evaluate expectation values such as those above.

More generally, it allows us to compute expectation values of creation-annihilation
operators such as, D

ai (τ i) aj (τ j) a
†
k (τk) a

†
l (τ l)

E
0

(4.275)

as long as the density matrix e−βH0 is that of a quadratic Hamiltonian.
Note that since quadratic Hamiltonians conserve the number of particles, ex-

pectation values vanish when the number of creation operators does not match
the number of destruction operators.

Lemme 13 If H0 = ε1a
†
1a1 + ε2a

†
2a2 then

D
a1a

†
1a2a

†
2

E
=
D
a1a

†
1

ED
a2a

†
2

E
.

Proof: To understand what is going on, it is instructive to study first the problem
where a single fermion state can be occupied. Then

D
a1a

†
1

E
=
Tr
h
e−βH0a1a

†
1

i
Tr [e−βH0 ]

(4.276)

=
h0| a1a†1 |0i+ e−β²1 (h0| a1) a1a†1

³
a†1 |0i

´
h0| a1a†1 |0i+ e−β²1 (h0| a1)

³
a†1 |0i

´ =
1

1 + e−β²1
(4.277)
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For two fermion states 1, 2, then the complete set used to evaluate the trace
is

|0i |0i , a†1 |0i |0i , |0i a†2 |0i , a†1 |0i a†2 |0i (4.278)

so that D
a1a

†
1

E
=

1

1 + e−β²1
1 + e−β²2

1 + e−β²2
=

1

1 + e−β²1
(4.279)

The last result will remain true for an arbitrary number of fermion states,
in other wordsD

a1a
†
1

E
=

1

1 + e−β²1

Q
m6=1 1 + e

−β²mQ
m6=1 1 + e−β²m

=
1

1 + e−β²1
. (4.280)

Furthermore,D
a1a

†
1a2a

†
2

E
=

1

1 + e−β²1
1

1 + e−β²2

Q
m6=1,2 1 + e

−β²mQ
m6=1,2 1 + e−β²m

(4.281)

=
1

1 + e−β²1
1

1 + e−β²2
(4.282)

=
D
a1a

†
1

ED
a2a

†
2

E
(4.283)

Théorème 14 Any expectation value such as
D
ai (τ i) aj (τ j) a

†
k (τk) a

†
l (τ l)

E
0
cal-

culated with a density matrix e−βK0 that is quadratic in field operators can be com-

puted as the sum of all possible products of the type
D
aj (τ j) a

†
k (τk)

E
0

D
ai (τ i) a

†
l (τ l)

E
0

that can be formed by pairing creation an annihilation operators. For a given term
on the right-hand side, there is a minus sign if the order of the operators is an odd
permutation of the order of operators on the left-hand side.

Proof: It is somewhat pretentious to call a proof the plausibility argument that we
give below, but let us go ahead anyway. The trick to prove the theorem([15])
is to transform the operators to the basis where H0 is diagonal, to evaluate
the expectation values, then to transform back to the original basis. Let
Greek letters stand for the basis where H0 is diagonal. Using the formula
for basis changes, we have, (with an implicit sum over Greek indices)D

ai (τ i) aj (τ j) a
†
k (τk) a

†
l (τ l)

E
0
= (4.284)

hi| αi hj| βi
D
aα (τ i) aβ (τ j) a

†
γ (τk) a

†
δ (τ l)

E
0
hγ| ki hδ| li (4.285)

We already know from Eq.(4.180) that

aα (τ i) = e
−ζατiaα ; a†α (τ i) = a

†
αe

ζατ i (4.286)

so that D
ai (τ i) aj (τ j) a

†
k (τk) a

†
l (τ l)

E
0

(4.287)

= hi| αi e−ζατi hj| βi e−ζβτj
D
aαaβa

†
γa
†
δ

E
0
eζγτk hγ| ki eζδτ l hδ| li (4.288)

What we need to evaluate then are expectation values of the typeD
aαaβa

†
γa
†
δ

E
0
. (4.289)

Evaluating the trace in the diagonal basis, we see that we will obtain a non-
zero value only if indices of creation and annihilation operators match two

128 FINITE TEMPERATURE FORMALISM



by two or are all equal. Suppose β = γ, α = δ and α 6= β. Then, as in the
lemma D

aαaβa
†
βa

†
α

E
0
=
­
aαa

†
α

®
0

D
aβa

†
β

E
0

(4.290)

If instead, β = δ, α = γ and α 6= β, thenD
aαaβa

†
αa

†
β

E
0
= −

D
aαaβa

†
βa

†
α

E
0
= − ­aαa†α®0 Daβa†βE0 . (4.291)

The last case to consider is α = β, β = δ, α = γ­
aαaαa

†
αa

†
α

®
0
= 0. (4.292)

All these results, Eqs.(4.290)(4.291) and the last equation can be combined
into one formulaD

aαaβa
†
γa
†
δ

E
0
=
­
aαa

†
α

®
0

D
aβa

†
β

E
0
(δα,δδβ,γ − δα,γδβ,δ) (4.293)

which is easiest to remember as follows,

D
aαaβa

†
γa
†
δ

E
=

*
↓
aαaβ
↑
a†γ
↑

↓
a†δ

+
+

*
↓
aαaβ
↑

↓
a†γa

†
δ
↑

+
(4.294)

in other words, all possible pairs of creation and annihilation operators must
be paired (“contracted”) in all possible ways. There is a minus sign if an
odd number of operator exchanges (transpositions) is necessary to bring the
contracted operators next to each other on the right-hand side (In practice,
just count one minus sign every time two operators are permuted). Substi-
tuting Eq.(4.293) back into the expression for the original average expressed
in the diagonal basis Eq.(4.288) we haveD

ai (τ i) aj (τ j) a
†
k (τk) a

†
l (τ l)

E
0

(4.295)

=
D
ai (τ i) a

†
l (τ l)

E
0

D
aj (τ j) a

†
k (τk)

E
0
−
D
ai (τ i) a

†
k (τk)

E
0

D
aj (τ j) a

†
l (τ l)

E
0

(4.296)
By induction (not done here) one can show that this result generalizes to the
expectation value of an arbitrary number of creation-annihilation operators.

Définition 15 Contraction: In the context of Wick’s theorem, we call each factorD
ai (τ i) a

†
k (τk)

E
0
on the right-hand side, a “contraction”.

Since Wick’s theorem is valid for an arbitrary time ordering, it is also valid for
time-ordered products so that, for exampleD

Tτ

h
ai (τ i) aj (τ j) a

†
k (τk) a

†
l (τ l)

iE
0
= (4.297)

D
Tτ

h
ai (τ i) a

†
l (τ l)

iE
0

D
Tτ

h
aj (τ j) a

†
k (τk)

iE
0
−
D
Tτ

h
ai (τ i) a

†
k (τk)

iE
0

D
Tτ

h
aj (τ j) a

†
l (τ l)

iE
0
.

(4.298)
The only simplification that occurs with time-ordered products is the following.
Note that, given the definition of time-ordered product, we haveD

Tτ

h
ai (τ i) a

†
k (τk)

iE
0
= −

D
Tτ

h
a†k (τk) ai (τ i)

iE
0

(4.299)
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Indeed, the left-hand side and right-hand side of the above equation are, respec-
tivelyD

Tτ

h
ai (τ i) a

†
k (τk)

iE
0
=

D
ai (τ i) a

†
k (τk)

E
0
θ (τ i − τk)−

D
a†k (τk) ai (τ i)

E
0
θ (τk − τ i)(4.300)

−
D
Tτ

h
a†k (τk) ai (τ i)

iE
0
= −

D
a†k (τk) ai (τ i)

E
0
θ (τk − τ i) +

D
ai (τ i) a

†
k (τk)

E
0
θ (τ i − τk)(4.301)

In other words, operators can be permuted at will inside a time-ordered product, in
particular inside a contraction, as long as we take care of the minus-signs associated
with permutations. This is true for time-ordered products of an arbitrary number
of operators and for an arbitrary density matrix.
On the other hand, if we apply Wick’s theorem to a product that is not time

ordered, then we have to remember thatD
ai (τ i) a

†
k (τk)

E
0
6= −

D
a†k (τk) ai (τ i)

E
0

(4.302)

as we can easily verify by looking at the special case τk = τ i or by going to a
diagonal basis. We can anticommute operators at will to do the “contractions”

but they cannot be permuted inside a contraction
D
ai (τ i) a

†
k (τk)

E
0
.

In practice, we will apply Wick’s theorem to time-ordered products. In nu-
merical calculations it is sometimes necessary to apply it to objects that are not
time-ordered.

4.7.2 Linked cluster theorems

Suppose we want to evaluate the Green’s function by expanding the time-ordered
product in the evolution operator Eq.(4.273). The expansion has to be done both
in the numerator and in the denominator of the general expression for the average
Eq.(4.271). This is a very general problem that forces us to introduce the notion
of connected graphs. A generalization of this problem also occurs if we want to
compute the free-energy from

lnZ = ln
³
Tr
h
e−βH0 bU (β, 0)i´ = ln³Z0 DbU (β, 0)E

0

´
(4.303)

= ln

Ã*
Tτ

"
exp

Ã
−
Z β

0

dτ1 bV (τ1)!#+
0

!
+ lnZ0 (4.304)

In probability theory this is like computing the cumulant expansion of the char-
acteristic function. Welcome to linked cluster theorems.
These problems are special cases of much more general problems in the theory

of random variables which do not even refer to specific Feynman diagrams or to
quantum mechanics. The theorems, and their corollary that we prove below, are
amongst the most important theorems used in many-body Physics or Statistical
Mechanics in general.

Linked cluster theorem for normalized averages

Consider the calculation of ­
e−f(x)A (x)

®­
e−f(x)

® (4.305)
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where the expectation hi is computed over a multivariate probability distribution
function for the variables collectively represented by x. The function f (x) is
arbitrary, as is the function A (x). Expanding the exponential, we may write­

e−f(x)A (x)
®­

e−f(x)
® =

P∞
n=0

1
n! h(−f (x))nA (x)iP∞

n=0
1
n! h(−f (x))ni

(4.306)

When computing a term of a given order n, such as 1
n! h(−f (x))nA (x)i, we may

always write

1

n!
h(−f (x))nA (x)i =

∞X
`=0

∞X
m=0

δn,m+`
1

n!

n!

`!m!

D
(−f (x))`A (x)

E
c
h(−f (x))mi

(4.307)

where the subscript c on the average means that none of the terms in
D
(−f (x))`A (x)

E
c

can be factored into lower order correlation functions, such as for example
D
(−f (x))`

E
hA (x)i

or
D
(−f (x))`−1

E
h(−f (x))A (x)i etc... The combinatorial factor corresponds to

the number of ways the (−f (x))n can be grouped into a group of ` terms and a
group of n − ` terms, the δn,m+` Kronecker delta function ensuring that indeed
m = n − `. Using the last equation in the previous one, the sum over n is now
trivially performed with the help of δn,m+` and one is left with

­
e−f(x)A (x)

®­
e−f(x)

® =

P∞
`=0

P∞
m=0

1
m!`!

D
(−f (x))`A (x)

E
c
h(−f (x))miP∞

n=0
1
n! h(−f (x))ni

(4.308)

The numerator can now be factored so as to cancel the denominator which proves
the theorem

Théorème 16 Linked cluster theorem for normalized averages:

he−f(x)A(x)i
he−f(x)i =

P∞
`=0

1
`!

D
(−f (x))`A (x)

E
c
=
­
e−f(x)A (x)

®
c

(4.309)

This result can be applied to our calculation of the Green’s function since
within the time-ordered product, the exponential may be expanded just as an ordi-

nary exponential, and the quantity which plays the role of (−f (x)), namely
³
− R β

0
dτ bV (τ)´

can be moved within the Tτ product without costing any additional minus sign.

Linked cluster theorem for characteristic functions or free energy

We now wish to show the following general theorem for a multivariate probability
distribution.

Théorème 17 Linked cluster theorem (cumulant expansion).

ln
­
e−f(x)

®
=
P∞
n=1

1
n! h(−f (x))nic =

­
e−f(x)

®
c
− 1 (4.310)

The proof is inspired by Enz[16]. When f (x) = ik · x, the quantity ­e−ik·x®
is called the characteristic function of the probability distribution. It is the gener-
ating function for the moments. The quantities on the right-hand side, which as
above are connected averages, are usually called cumulants in ordinary probability
theory and ln

­
e−ik·x

®
is the generating function for the cumulant averages.
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Proof: To prove the theorem, we introduce first an auxiliary variable λ

∂

∂λ

D
e−λf(x)

E
=
D
e−λf(x) [−f (x)]

E
(4.311)

We can apply to the right-hand side the theorem we just provedD
e−λf(x) [−f (x)]

E
=
D
e−λf(x) [−f (x)]

E
c

D
e−λf(x)

E
(4.312)

so that
1­

e−λf(x)
® ∂

∂λ

D
e−λf(x)

E
=

¿
∂

∂λ
e−λf(x)

À
c

. (4.313)

Integrating both sides from 0 to 1, we obtain

ln
D
e−λf(x)

E
|10 =

D
e−f(x)

E
c
− 1 (4.314)

QED

Exemple 18 It is instructive to check the meaning of the above result explicitly
to second order

ln
D
e−λf(x)

E
≈ ln

¿
1− λf (x) +

1

2
(λf (x))2

À
≈
µ
− hλf (x)i+ 1

2

D
(λf (x))2

E¶
−1
2
hλf (x)i2

(4.315)D
e−λf(x)

E
c
− 1 ≈ − hλf (x)ic +

1

2

D
(λf (x))

2
E
c

(4.316)

so that equating powers of λ, we find as expected,D
(f (x))

2
E
c
=
D
(f (x))

2
E
− hf (x)i2 . (4.317)

The above results will help us in the calculation of the free energy since we
find

F = −T ln
h
Z0

D
Tτ

h
e−

R β
0
dτ bV (τ)iE

0

i
= −T

∞X
n=1

1

n!

*
Tτ

"
−
Z β

0

dτ bV (τ)#n+
0c

−T lnZ0
(4.318)

F = −T lnZ = −T
hD
Tτ

h
e−

R β
0
dτ bV (τ)iE

0c
− 1
i
− T lnZ0. (4.319)

the subscript 0 stands for averages with the non-interacting density matrix. The
above proof applies to our case because the time-ordered product of an exponential
behaves exactly like an ordinary exponential when differentiated, as we know from
the differential equation that leads to its definition.

4.7.3 Variational principle and application to Hartree-Fock theory

It is legitimate to ask if there is a one-body Hamiltonian, in other words an
effective Hamiltonian with a time-independent potential, whose solution is as close
as possible to the true solution. To address this question, we also need to define
what we mean by “as close as possible”. The answer to both of these queries
is provided by the variational principle for thermodynamic systems. We discuss
below how Hartree-Fock theory comes out naturally from the variational principle.
Also, it is an unavoidable starting point when there is a broken symmetry, as we
will discuss more fully in a later chapter.
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Thermodynamic variational principle for classical systems

One can base the thermodynamic variational principle for classical systems on the
inequality

ex ≥ 1 + x (4.320)

which is valid for all x, whether x > 0, or x < 0. This inequality is a convexity
inequality which appears obvious when the two functions are plotted. We give two
proofs.

Proof 1: ex is a convex function, i.e. d2ex/d2x ≥ 0 for all values of x. At x = 0
the functions ex and 1+x as well as their first derivatives are equal. Since a
straight line tangent to a convex curve at a point cannot intersect it anywhere
else, the theorem is proven.QED

Algebraically, the proof goes as follows.

Proof 2: The equality occurs when x = 0. For x ≤ −1, ex ≥ 0 while 1 + x < 0,
hence the inequality is satisfied. For the remaining two intervals, notice that
ex ≥ 1 + x is equivalent to

∞X
n=2

1

n!
xn ≥ 0. (4.321)

For x ≥ 0, all terms in the sum are positive so the inequality is trivially
satisfied. In the only remaining interval, −1 < x < 0, the odd powers of x in
the infinite-sum version of the inequality are less than zero but the magnitude
of each odd power of x is less than the magnitude of the preceding positive
power of x, so the inequality (4.321) survives. QED

Moving back to our initial purpose, let eH0 be a trial Hamiltonian. Then take
e−β(

eH0−µN)/Z0 as the trial density matrix corresponding to averages hie0. We will
use the above inequality Eq.(4.320) to prove that

−T lnZ ≤ −T lnZe0 +
D
H − eH0Ee0 (4.322)

This inequality is a variational principle because eH0 is arbitrary, meaning that
we are free to parametrize it and then to minimize with respect to the set of
all parameters to find the best one-particle Hamiltonian in our Physically chosen
space of Hamiltonians.

Proof Our general result for the free energy in terms of connected terms, Eq.(4.319),
is obviously applicable to classical systems. The simplification that occurs
there is that since all operators commute, we do not need to worry about
the time-ordered product, thus witheV = H − eH0 (4.323)

we have

F = −T lnZ = −T
·D
e−β eV Ee0,c − 1

¸
− T lnZe0. (4.324)

Using our basic inequality Eq.(4.320) for e−β eV we immediately obtain the
desired result

F ≤ −T
D
−β eV Ee0,c + Fe0 (4.325)

which is just another way of rewriting Eq.(4.322).
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Thermodynamic variational principle for quantum systems

For quantum systems, the general result Eq.(4.322) applies but it is more difficult
to prove because there is in general no basis that diagonalizes simultaneously

each and every term in the expansion of Tτ exp
h
− R β

0
dτ eV (τ)i . If eV was not time

dependent, as in the classical case, then matters would be different since eV n would
be diagonal in the same basis as eV and one could apply our inequality Eq.(4.320)
in this diagonal basis and prove the theorem. The proof of the variational principle
in the quantum case is thus more complicated because of the non-commutation of
operators. As far as I know, the proof is due to Feynman.[17].

Proof: First, let

H (α) = eH0 + α
³
H − eH0´ (4.326)

= eH0 + αeV (4.327)

then
H (0) = eH0 (4.328)

and
H (1) = H (4.329)

The exact free energy corresponding to H (α) is then written as F (α) . If
for any α we can prove that ∂2F (α) /∂α2 ≤ 0 then the function F (α) is
concave downward and we can write

F (1) ≤ F (0) + ∂F (α)

∂α

¯̄̄̄
α=0

(4.330)

as illustrated in Fig.(4-10). Eq.(4.330) is the variational principle that we

0
α

1

F(α)
F(1)

F(0)

F(0) + ∂ α
∂ α

α
α

F( )

=0

Figure 4-10 Geometrical significance of the inequalities leading to the quantum
thermodynamic variational principle.

want Eq.(4.322). Indeed, let us compute the first derivative of F (α) by going
to the interaction representation where eH0 plays the role of the unperturbed
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Hamiltonian and use the result for F in terms of connected graphs Eq.(4.319)
to obtain

∂F (α)

∂α

¯̄̄̄
α=0

=
∂

∂α

n
−T

hD
Tτ

h
e−α

R β
0
dτ( bH(τ)− eH0)

iE
e0c − 1

io
α=0

(4.331)

= T

*Z β

0

dτ
³ bH (τ)− eH0´+e0 (4.332)

=
D
H − eH0Ee0 (4.333)

The second line follows simply by expanding the time-ordered product to
first order while the last line follows if we use the cyclic property of the trace
to eliminate the imaginary-time dependence of the Hamiltonian. All that we
have to do now is to evaluate the second derivative ∂2F (α) /∂α2 ≤ 0 for an
arbitrary value of α. This is more painful and will occupy us for the rest of
this proof. It is important to realize that this concavity property of the free-
energy is independent on the form of the Hamiltonian in general and of the
interactions in particular, as long as the Hamiltonian is time-independent.
The generalization to the time-dependent case is not obvious. The second
derivative may be evaluated by going to the interaction representation where

H (α) is the unperturbed Hamiltonian and γ
³
H − eH0´ is the perturbation.

Then,

F (α+ γ) = −T
·D
Tτ

h
e−γ

R β
0
dτ( bH(τ)− eH0)

iE
α,c
− 1
¸
− T lnZ (α) (4.334)

and the second derivative of F (α) may be obtained from the second-order
term in γ in the above expression. Note that the average is taken with
the density matrix exp (H (α)− µN) /Z (α) . Expanding the exponential to
second order in γ and returning to our definition of eV Eq.(4.327) we find

F (α+ γ) = F (α) + γ
DeV E

α
− 1
2
γ2

 1
β

*
Tτ

"
−γ

Z β

0

dτ eV (τ)#2+
α,c

+ . . .
F (α+ γ) = F (α) +

∂F (α)

∂α
+
1

2
γ2

∂2F (α)

∂α2
+ . . .(4.335)

so that the second derivative, using the expression we found above for the
second cumulant Eq.(4.317) is,

∂2F (α)

∂α2
= − 1

β

*
Tτ

Ã−Z β

0

dτ eV (τ)!2
+

α,c

(4.336)

= − 1
β

*
Tτ

Ã−Z β

0

dτ eV (τ)!2
+

α

+
1

β

*Z β

0

dτ eV (τ)+2
α

This is where we need to roll up our sleeves and do a bit of algebra. Using
the cyclic property of the trace and the definition of time-ordered product,
we can rewrite the above result as follows,

∂2F (α)

∂α2
= −2 1

β

*Z β

0

dτ eV (τ)Z τ

0

dτ 0 eV (τ 0)+
α

+ β
DeV E2

α
(4.337)
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Let us work a bit on the first term by going to the basis where H (α) is
diagonal. We obtain, using also the cyclic property of the trace,*Z β

0

dτ eV (τ)Z τ

0

dτ 0 eV (τ 0)+
α

(4.338)

=
1

Z (α)

X
m,n

e−Knβ

Z β

0

dτ

Z τ

0

dτ 0eKn(τ−τ 0)e−Km(τ−τ 0)
¯̄̄
hn| eV |mi¯̄̄2

=
1

Z (α)

X
m6=n

e−Knβ

Z β

0

dτe(Kn−Km)τ
e(Km−Kn)τ

0

Km −Kn

¯̄̄̄
¯
τ

0

¯̄̄
hn| eV |mi¯̄̄2

+
1

Z (α)

X
n

e−Knβ

Z β

0

dττ
¯̄̄
hn| eV |ni¯̄̄2 (4.339)

=
1

Z (α)

X
m6=n

e−Knβ

Z β

0

dτ
1− e(Kn−Km)τ

Km −Kn

¯̄̄
hn| eV |mi¯̄̄2 (4.340)

+
β2

2Z (α)

X
n

e−Knβ
¯̄̄
hn| eV |ni¯̄̄2(4.341)

The first term on the right-hand side is easily evaluated as follows

1

Z (α)

X
m6=n

e−Knβ

"
β

Km −Kn
+
e(Kn−Km)β − 1
(Km −Kn)

2

# ¯̄̄
hn| eV |mi¯̄̄2

=
β

Z (α)

X
m6=n

e−Knβ

¯̄̄
hn| eV |mi¯̄̄2
Km −Kn

(4.342)

where we have used the fact that the term with the denominator (Km −Kn)
2

goes into minus itself under a change of dummy summation variables m←→
n. Substituting all we have done in the expression for the second derivative
Eq.(4.337) we finally obtain

∂2F (α)

∂α2
= − 2

Z (α)

X
m6=n

e−Knβ

¯̄̄
hn| eV |mi¯̄̄2
Km −Kn

(4.343)

−β


P
n e
−Knβ

¯̄̄
hn| eV |ni¯̄̄2

Z (α)
−
ÃP

n e
−Knβ hn| eV |ni
Z (α)

!2
The terms on the last line gives a negative contribution, as can be seen from
the Cauchy-Schwarz inequality"X

n

|an|2
#"X

n

|bn|2
#
≥
¯̄̄̄
¯X
n

anbn

¯̄̄̄
¯
2

(4.344)

when we substitute

an =

s
e−Knβ

Z (α)
(4.345)

bn =

s
e−Knβ

Z (α)
hn| eV |ni (4.346)
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This allows us to prove that the sign of the second derivative is negative for
any α. It suffices to rewrite the first term in Eq.(4.343) in the form

− 2

Z (α)

X
m6=n

e−Knβ

¯̄̄
hn| eV |mi¯̄̄2
Km −Kn

= − 1

Z (α)

X
m6=n

e−Knβ − e−Kmβ

Km −Kn

¯̄̄
hn| eV |mi¯̄̄2

(4.347)
and to use the Cauchy-Schwartz inequality to obtain

∂2F (α)

∂α2
≤ − 1

Z (α)

X
m6=n

e−Knβ − e−Kmβ

Km −Kn

¯̄̄
hn| eV |mi¯̄̄2 ≤ 0 (4.348)

QED

It is useful to note that in the language of density matrices, ρ0 = e
−β( eH0−µN)/Z0

the variational principle Eq.(4.322) reads,

−T lnZ ≤ Tr [ρ0 (H − µN)] + TTr [ρ0 ln ρ0] (4.349)

which looks as if we had the function (E − µN)− TS to minimize, quite a satis-
factory state of affairs.

Application of the variational principle to Hartree-Fock theory

Writing down the most general one-body Hamiltonian with orthonormal eigen-
functions left as variational parameters, the above variational principle leads to
the usual Hartree-Fock eigenvalue equation. Such a general one-body Hamiltonian
would look like

eH0 =X
α

Z
dxφ∗α (x)

µ
−∇

2

2m

¶
φα (x) c

+
α cα (4.350)

with φα (x) as variational wave-functions. In the minimization problem, one must
add Lagrange multipliers to enforce the constraint that the wave-functions are not
only orthogonal but also normalized.
In a translationally invariant system, the one-body wave functions will be plane

waves usually, so only the eigenenergies need to be found. This will be done in
the following chapter.
It does happen however that symmetry is spontaneously broken. For example,

in an anti-ferromagnet the periodicity is halved so that the Hartree-Fock equa-
tions will correspond to solving a 2× 2 matrix, even when Fourier transforms are
used. The matrix becomes larger and larger as we allow more and more general
non-translationally invariant states. In the extreme case, the wave functions are
different on every site! This is certainly the case in ordinary Chemistry with small
molecules or atoms!
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5. THE COULOMB GAS

The electron gas with long-range forces and a neutralizing background, also known
as the jellium model, is probably the first challenge that was met by many-body
theory in the context of Solid State physics. In this chapter, we assume that the
uniform neutralizing background has infinite inertia. In the following chapter we
will allow it to move, in other words to support sound waves, or phonons. In
subsequent chapters we will consider electron-phonon interactions and see how
these eventually lead to superconductivity.

The main physical phenomena to account for here in the immobile background,
are screening and plasma oscillations, at least as far as collective modes are con-
cerned. The surprises come in when one tries to understand single-particle prop-
erties. Hartree-Fock theory is a disaster since it predicts that the effective mass of
the electron at the Fermi level vanishes. The way out of this paradox will indicate
to us how important it is to take screening into account.

We will start by establishing the rules for Feynman diagrams in an interacting
electron gas, and then start to do calculations. We discuss first the density oscil-
lations, where we will encounter screening and plasma oscillations. This will allow
us to discuss the famous Random Phase Approximation (RPA). Then we move on
to single particle properties and end with a general discussion of what would be
needed to go beyond RPA. The electron gas is discussed in detail in a very large
number of textbooks. The discussion here is brief and incomplete.

5.1 Feynman rules for two-body interactions

We have already encountered Feynman diagrams in the discussion of the impurity
problem in the one-particle context. As we will see, perturbation theory is obtained
simply by using Wick’s theorem. This generates an infinite set of terms. Diagrams
are a simple way to represent and remember the various terms that are generated.
Furthermore, associating specific algebraic quantities and integration rules with
the various pieces of the diagrams, allows one to write the explicit expression for a
given term without returning to Wick’s theorem. In case of doubt though, Wick’s
theorem is what should be used. The specific rules will depend on the type of
interaction considered. This is described in a number of books. ([3],[2]).
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5.1.1 Hamiltonian and notation

The Hamiltonian we consider is the following. Note that we now introduce spin
indices denoted by Greek indices:

K = H − µN = H0 + V + Vn − µN (5.1)

H0 =
1

2m

X
σ1

Z
dx1∇ψ†σ1 (x1) ·∇ψσ1 (x1) (5.2)

V =
1

2

X
σ1,σ2

Z
dx1

Z
dx2v (x1−x2)ψ†σ1 (x1)ψ†σ2 (x2)ψσ2 (x2)ψσ1 (x1)

Vn = −
X
σ1

Z
dx1

Z
dx2v (x1−x2)ψ†σ1 (x2)ψσ1 (x2)n0 (5.3)

The last piece, Vn represents the interaction between a “neutralizing background”
of the same uniform density n0 as the electrons. The potential is the Coulomb
potential

v (x1−x2) = e2

|x1−x2| (5.4)

Let us say we want to compute the one-body Green’s function in the interaction
representation

Gσ1σ2 (x1, τ1;x2, τ2) = −
Tr
h
e−βK0Tτ

³bU (β, τ1) bψσ1 (x1, τ1) bU (τ1, τ2) bψ†σ2 (x2, τ2) bU (τ2, 0)´i
Tr
h
e−βK0 bU (β, 0)i

= −
Tr
h
e−βK0Tτ

³bU (β, 0) bψσ1 (x1, τ1) bψ†σ2 (x2, τ2)´i
Tr
h
e−βK0 bU (β, 0)i (5.5)

We do not write explicitly the interaction with the neutralizing background since
it will be obvious later when it comes in. Then, the evolution operator is

bU (β, 0) = Tτ "expÃ−Z β

0

dτ1 bV (τ1)!#

Note that by definition of the interaction representation,

bV (τ1) = eK0τ1

"
1

2

X
σ1,σ2

Z
dx1

Z
dx2v (x1−x2)ψ†σ1 (x1)ψ†σ2 (x2)ψσ2 (x2)ψσ1 (x1)

#
e−K0τ1

(5.7)
Inserting everywhere the identity operator e−K0τ1eK0τ1 this can be made to have
a more symmetrical form

bU (β, 0) = Tτ

"
exp

Ã
−1
2

X
σ1,σ2

Z β

0

dτ1

Z
dx1

Z
dx2 ×

v (x1−x2) bψ†σ1 (x1,τ1) bψ†σ2 (x2,τ1) bψσ2 (x2,τ1) bψσ1 (x1,τ1)´i(5.8)
This can be made even more symmetrical by defining the potential,

Vσ1,σ2 (x1, τ1;x2, τ2) =
e2

|x1−x2|δ (τ1 − τ2) (5.9)
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The right-hand side is independent of spin. In addition to being more symmetrical,
this definition has the advantage that we can introduce the short-hand notation

V (1, 2) (5.10)

where
(1) = (x1, τ1;σ1) (5.11)

The evolution operator now systematically involves integrals over time space and
a sum over spin indices, so it is possible to further simplify the notation by intro-
ducing Z

1

=

Z β

0

dτ1

Z
dx1

X
σ1=±1

(5.12)

and
ψ (1) = bψσ1 (x1, τ1) (5.13)

Note that we have taken this opportunity to remove hats on field operators. It
should be clear that we are talking about the interaction representation all the
time when we derive Feynman’s rules.
With all these simplifications in notation, the above expressions for the Green’s

function Eq.(5.5) and the time evolution operator Eq.(5.8) take the simpler looking
form

G (1, 2) = −Tr[e
−βK0Tτ(U(β,0)ψ(1)ψ†(2))]
Tr[e−βK0U(β,0)]

(5.14)

U (β, 0) = Tτ

h
exp

³
−12

R
1

R
2
V (1, 2)ψ† (1)ψ† (2)ψ (2)ψ (1)

´i
(5.15)

5.1.2 In position space

We now proceed to derive Feynman’s rules in position space. Multiplying nu-
merator and denominator of the starting expression for the Green’s function by
1/Tr

£
e−βH0

¤
we can use the linked cluster theorem in Subsection(4.7.2) to argue

that we can forget about the power series expansion of the evolution operator in
the denominator, as long as in the numerator of the starting expression Eq.(5.14)
only connected terms are kept. The perturbation expansion for the Green’s func-
tion thus takes the form

G (1, 2) = −
D
Tτ

³
U (β, 0)ψ (1)ψ† (2)

´E
0,c

(5.16)

The average is over the unperturbed density matrix and only connected terms are
kept. A typical term of the power series expansion thus has the form

− 1
n!

¿
Tτ

·µ
−1
2

Z
10

Z
20
V (10, 20)ψ† (10)ψ† (20)ψ (20)ψ (10)

¶n
ψ (1)ψ† (2)

¸À
0,c

(5.17)
To evaluate averages of this sort, it suffices to apply Wick’s theorem. Since this
process becomes tedious and repetitive, it is advisable to do it once in such a way
that simple systematic rules can be extracted that will allow us to write from the
outset the simplest expression for a term of any given order. The trick is to write
down diagrams and rules both to build them and to associate with them algebraic
expressions. These are the Feynman rules.
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Wick’s theorem tells us that a typical average such as Eq.(5.17) is decomposed
into a sum of products of single particle Green’s function. Let us represent a
Green’s function by a straight line, as in Fig.(5-1). Following the convention of
Ref.([4]) the arrow goes from the left most to the right most label of the corre-
sponding Green’s function. Going from the creation to the annihilation operator
might have been more natural and would have lead us to the opposite direction
of the arrow, as for example in Ref.([5]). Nevertheless it is clear that it suffices to
stick to one convention. In any case, contrary to older diagrammatic perturbation
techniques, with Feynman diagrams the arrow represents the propagation of either
and electron or a hole and the direction is irrelevant. The other building block
for diagrams is the interaction potential which is represented by a dotted line. To
either end of the dotted line, we have a Green’s function that leaves and one that
comes in, corresponding to the fact that there is one ψ and one ψ† attached to
any given end of a dotted line. The arrow heads in Fig.(5-1) just reminds us of
this. They are not really part of the dotted line. Also, it does not matter whether
the arrows come in from the top or from the bottom, or from left or right. It is
only important that each end of the dotted line is attached to one incoming and
one outgoing line.

1 2

G  (1,2) V (1’,2’)

1’ 2’

Figure 5-1 Basic building blocks of Feynman diagrams for the electron gas.

Let us give an example of how we can associate contractions and diagrams.
For a term with n = 1, a typical term would be

−
¿
Tτ

·
−1
2

Z
10

Z
20
V (10, 20)ψ

1

† (10)ψ
2

† (20)ψ
3
(20)ψ

2
(10)ψ

1
(1)ψ

3

† (2)
¸À

0,c

(5.18)

We have marked by a the same number every operator that belongs to the same
contraction. The corresponding algebraic expression is

−1
2

Z
10

Z
20
V (10, 20)G (1, 10)G (10, 20)G (20, 2) (5.19)

and we can represent it by a diagram, as in Fig.(5-2)Clearly, exactly the same

1 2

G  (1,1’) V (1’,2’)

1’ 2’

G  (2’,2)

Figure 5-2 A typical contraction for the first-order expansion of the Green’s function.
THe Fock term.

contribution is obtained if the roles of the fields at the points 10 and 20 above are
interchanged. More specifically, the set of contractions

−
¿
Tτ

·
−1
2

Z
10

Z
20
V (10, 20)ψ

2

† (10)ψ
1

† (20)ψ
2
(20)ψ

3
(10)ψ

1
(1)ψ

3

† (2)
¸À

0,c

(5.20)
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gives the algebraic expression

−1
2

Z
10

Z
20
V (10, 20)G (20, 10)G (1, 20)G (10, 2) (5.21)

which, by a change of dummy integration variable, 10 ↔ 20 gives precisely the
same contribution as the previous term.
We need to start to be more systematic and do some serious bookkeeping.

Let us draw a diagram for each and every one of the possible contractions of this
first order term. This is illustrated in Fig.(5-3). A creation operator is attached
to point 2 while a destruction operator is attached to point 1. At either end of
the interaction line, say at point 10, is attached one creation and one annihilation
operators. We must link every destruction operator with a creation operator in
all possible ways, as illustrated in the figure. The diagrams marked A and B are
disconnected diagrams, so they do not contribute. On the other hand, by changing
dummy integration variables, it is clear that diagrams C and D are equal to each
other, as diagrams E and F are. The algebraic expressions for diagrams E and
F are those given above, in Eqs.(5.19)(5.21). In other words, if we had given
the rule that only connected and topologically distinct diagrams contribute and
that there is no factor of 1/2, we would have written down only diagram C and
diagram E and obtained correctly all the first order contributions. Two diagrams
are topologically distinct if they cannot be transformed one into the other by
“elastic” changes that do not cut Green’s functions lines.

1

2

1’ 2’
A

B

C D

E F

Figure 5-3 All possible contractions for the first-order contribution to the Green’s
function. A line must start at point 1 illustrated in the box on the left, and one line
must end at 2. Lines must also come in and go out on either side of the dotted line.

For a general diagram of order n in the interaction, there are n interaction
lines and 2n + 1 Green’s functions. To prove the last statement, it suffices to
notice that the four fermion fields attached to each interaction line correspond to
four “half lines” and that the creation and annihilation operators corresponding
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to the “external” points 1 and 2 that are not integrated over yield one additional
line. Consider two connected diagram of order three say, as in Fig.(5-4). The
two diagrams there are clearly topologically equivalent, and they also correspond
precisely the same algebraic expression as we can see by doing the change of
dummy integration variables 30 ↔ 50 and 40 ↔ 60. In fact, for any given topology,
we can find 3! × 23 contractions that lead to diagrams with the same topology.
The 3! corresponds to the number of ways of choosing the interaction lines to
which four fermion lines attach, and the 23 corresponds to the fact that for every
line there are two ends that one can interchange. For a diagram of order n, there
are thus 2nn! contractions that all have the same topology and that cancel the
1/ (2nn!) coming from the expansion of the exponential and the 1/2 in front of
each interaction V (10, 20) .

1’ 2’

3’

5’

4’

6’

1’ 2’

3’

5’

4’

6’

Figure 5-4 Two topologically equaivalent diagrams of order 3.

From what precedes then, it is clear that we can find all contributions for
G (1, 2) to order n by the following procedure that gives rules for drawing diagrams
and for associating an algebraic expression to them.

1. Draw two “external” points, labeled 1 and 2 and n dotted lines with two
ends (vertices). Join all external points and vertices with lines, so that each
internal vertex has a line that comes in and a line that comes out while
one line comes in external point 2 and one line comes out of point 1. The
resulting diagrams must be i) Connected, ii) Topologically distinct (cannot
be deformed one into the other).

2. Label all the vertices of interaction lines with dummy variables representing
space, imaginary time and spin.

3. Associate a factor G (1, 2) to every line going from a vertex or external point
labeled 1 to a vertex or external point labeled 2.

4. Associate a factor V (10, 20) to every dotted line between a vertex labeled 10

and a vertex labeled 20.

5. Integrate on all internal space, imaginary time and spin indices associated
with interaction vertices. Notice that spin is conserved at each interaction
vertex, as we can explicitly see from the original form of the interaction
potential appearing in, say, Eq.(5.8). (And now the last two rules that we
have not proven yet)

6. Associate a factor (−1)n (−1)F to every diagram. The parameter n is the
order of the diagram while F is the number of closed fermion loops.

7. Associate to every fermion line joining two of the vertices of the same inter-
action line (Fig.(5-5)) the factor

G ¡1, 2+¢ ≡ lim
η→0

Gσ1,σ2 (x1, τ1;x2, τ1 + η) (5.22)
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This rule must be added because otherwise the rules before are ambiguous
since the Coulomb potential is instantaneous (at equal time) and Green’s
functions have two possible values at equal time. So it is necessary to specify
which of these values it takes.

Figure 5-5 Pieces of diagrams for which lead to equal-time Green’s functions and
for which it is necessary to specify how the τ → 0 limit is taken.

Proof of the overall sign of a Feynman diagram

To prove the rule concerning the overall sign of a Feynman diagram, consider the
expression for a n0th order contribution before the contractions. We leave out the
factors of V and other factors to concentrate on field operators, their permutations
and the overall sign.

− (−1)n
¿
Tτ

·Z
10

Z
20
. . .

Z
2n−1

Z
2n

ψ† (10)ψ† (20)ψ (20)ψ (10) . . . (5.23)

. . .ψ† (2n− 1)ψ† (2n)ψ (2n)ψ (2n− 1)ψ (1)ψ† (2)
iE

0,c
(5.24)

This expression can be rearranged as follows without change of sign by permuting
one destruction operator across two fermions in each group of four fermion fields
appearing in interactions

− (−1)n
¿
Tτ

·Z
10

Z
20
. . .

Z
2n−1

Z
2n

³
ψ†
¡
10+
¢
ψ (10)

´³
ψ†
¡
20+
¢
ψ (20)

´
. . .

. . .
³
ψ†
³
(2n− 1)+

´
ψ (2n− 1)

´³
ψ†
³
(2n)+

´
ψ (2n)

´
ψ (1)ψ† (2)

iE
0,c
(5.25)

We have grouped operators with parenthesis to illustrate the appearance of density
operators, and we have added plus signs as superscripts to remind ourselves of the
original order when we have two fields at equal time. By the way, this already
justifies the equal-time rule Eq.(5.22) mentioned above. To clear up the sign
question, let us now do contractions, that we will identify as usual by numbers
under each creation-annihilation operator pair. We just make contractions in series
so that there is a continuous fermion line running from point 1 to point 2 without
fermion loops. More specifically, consider the following contractions

− (−1)n
¿
Tτ

·Z
10

Z
20
. . .

Z
2n−1

Z
2n

ψ
2n

† ¡10+¢ψ
1
(10)ψ

1

† ¡20+¢ψ
2
(20) . . .

2
(5.26)

. . .
2n−2

ψ
2n−2

†
³
(2n− 1)+

´
ψ

2n−1
(2n− 1) ψ

2n−1
†
³
(2n)+

´
ψ

2n+1
(2n) ψ

2n
(1) ψ

2n+1

† (2)
¸À

0,c

Not taking into account the − (−1)n already in front of the average, the contrac-
tions labeled 1 to 2n− 1 give a contribution

(−1)2n−1 G (10, 20)G (2030) . . .G (2n− 1, 2n) (5.27)

where the overall sign comes from the fact that the definition of G has the cre-
ation and annihilation operators in the same order as they appear in the above
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contractions, but an overall minus sign in the definition. For the contraction la-
beled 2n one must do an even number of permutation to bring the operators in
the order ψ (1)ψ† (10+) so one obtains a factor −G (1, 10+) . Similarly, accounting
for the new position of ψ† (10+) , an even number of permutations is necessary to
bring to operators in the order ψ (2n)ψ† (2) so that an overall factor −G (2n, 2) is
generated. The overall sign is thus

− (−1)n (−1)2n−1 (−1)2 = (−1)n (5.28)

In the contractions we have just done there is no closed fermion loop, as illustrated
in Fig.(5-6) for the special case where 2n = 4.

1 1’ 2’ 3’ 4’ 2

Figure 5-6 Example of a contraction without closed fermion loop.

Now all we need to show is that whenever we interchange two fermion operators
we both introduce a minus sign and either form or destroy a closed fermion loop.
The first part of the statement is easy to see. Consider,D

Tτ

h
ψ† (10)

³
ψ†ψψ . . .ψ

´
ψ† (2)

iE
0,c

(5.29)

Suppose we want to compare two sets of contractions that differ only by the
fact that two creation operators (or two annihilation operators) interchange their
respective role. In the time-ordered product above, bringing ψ† (10) to the left of
ψ† (2) produces a sign (−1)p where p is the number of necessary permutations.
Then, when we take ψ† (2) where ψ† (10) was, we create an additional factor of
(−1)p+1 because ψ† (2) has to be permuted not only with the operators that were
originally there but also with ψ† (10) that has been brought to its left. The overall
sign is thus (−1)2p+1 = −1, which is independent of the number of operators
originally separating the fields. Clearly there would have been something wrong
with the formalism if we had not obtained this result. Diagrammatically, if we start
from the situation in Fig.(5-6) and interchange the role of two creation operators,
as in Fig.(5-7), then we go from a situation with no fermion loops to one with one
fermion loop. Fig.(5-8) illustrates the case where we interchange another pair of
creation operators and clearly there also a fermion loop is introduced. In other
words, by interchanging two creation operators (or two annihilation operators) we
break the single fermion line, and the only way to do this is by creating a loop
since internal lines cannot end at an interaction vertex. This completes the proof
concerning the overall sign of a diagram.

Spin sums

A remarks is in order concerning spin. In a diagram without loops, as in Fig.(5-
6), there is a single spin label running from one end of the diagram to the other.
Every time we introduce a loop, there is now a sum over the spin of the fermion
in the loop. In the special case where V (1, 2) is independent of the spins at the
vertices 1 and 2, as is the case for Coulomb interactions, then it is possible to
simply disregard spin and add the rule that there is a factor of 2 associated with
every fermion loop.
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1 1’ 2’ 3’ 4’ 2

1 1’ 2’ 3’ 4’ 2

1 1’ 3’ 4’ 2

2’

Figure 5-7 Creation of loops in diagrams by interchange of operators: The role of
the two creation operators indicated by ligth arrows is interchanged, leading from a
diagram with no loop, as on top, to a diagram with one loop. The diagram on the
bottom is the same as the one in the middle. It is simply redrawn for clarity.

1 1’ 2’ 3’ 4’ 2

1 1’

2’ 3’

4’ 2

Figure 5-8 Interchange of two fermion operators creating a fermion loop.
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5.1.3 In momentum space

Starting from our results for Feynman’s rule in position space, we can derive
the rules in momentum space.[8] First introduce, for a translationally and spin
rotationally invariant system, the definition

Gσ (k) =
Z
d (x1 − x2)

Z β

0

d (τ1 − τ2) e
−ik·(x1−x2)eikn(τ1−τ2)Gσ (1− 2) (5.30)

In this expression, kn is a fermionic Matsubara frequency and the Green’s function
is diagonal in spin indices σ1 and σ2. For clarity then, we have explicitly written
a single spin label. For the potential we define

Vσ,σ0 (q) =

Z
d (x1 − x2)

Z β

0

d (τ1 − τ2) e
−iq·(x1−x2)eiqn(τ1−τ2)Vσ,σ0 (1− 2)

(5.31)
where qn is, this time, a bosonic Matsubara frequency, in other words

qn = 2nπT (5.32)

with n and integer. Again we have explicitly written the spin indices even if
Vσ,σ0 (1− 2) is independent of spin. The spin σ is the same as the spin of the two
propagators attaching to the vertex 1 while σ0 is the same as the spin of the two
propagators attaching to the vertex 2.

Remarque 82 General spin-dependent interaction: In more general theories,
there are four spin labels attached to interaction vertices. These labels corre-
spond to those of the four fermion fields. Here the situation is simpler because
the interaction not only conserves spin at each vertex but is also spin independent.

To find the Feynman rules in momentum space, we start from the above po-
sition space diagrams and we now write G (1− 2) and V (1− 2) in terms of their
Fourier-Matsubara transforms, namely

Gσ (1− 2) =
Z

d3k

(2π)
3T

∞X
n=−∞

eik·(x1−x2)e−ikn(τ1−τ2)Gσ (k) (5.33)

Vσ,σ0 (1− 2) =
Z

d3q

(2π)
3T

∞X
n=−∞

eiq·(x1−x2)e−iqn(τ1−τ2)Vσ,σ0 (q) (5.34)

Then we consider an internal vertex, as illustrated in Fig.(5-9), where one has to

q

k

k

1

2

Figure 5-9 A typical interaction vertex and momentum conservation at the vertex.

do the integral over the space-time position of the vertex, 10. Note that because
V (1− 2) = V (2− 1) , we are free to choose the direction of q on the dotted line
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at will. Leaving aside the spin coordinates, that behave just as in position space,
the integral to perform isZ
dx01

Z β

0

dτ 01e
i(k1−k2+q)·x01e−i(k1,n−k2,n+qn)τ

0
1 = (2π)3 δ (k1 − k2 + q)βδ(k1,n−k2,n),qn

(5.35)
The last delta is a Kronecker delta. Indeed, the sum of two fermionic Matsubara
frequencies is a bosonic Matsubara frequency since the sum of two odd numbers is
necessarily even. This means that the integral over τ 01 is equal to β if k1,n−k2,n+
qn = 0 while it is equal to zero otherwise because exp (i (k1,n − k2,n + qn) τ 01)is
periodic in the interval 0 to β. The conclusion of this is that momentum and
Matsubara frequencies are conserved at each interaction vertex. In other words,
the sum of all wave vectors entering an interaction vertex vanishes. And similarly
for Matsubara frequencies. This means that a lot of the momentum integrals
and Matsubara frequency sums that occur in the replacements Eqs.(5.33) and
(5.34) can be done by simply using conservation of momentum and of Matsubara
frequencies at each vertex.
The Feynman rules for the perturbation expansion of the Green’s function in

momentum space thus read as follows.

1. For a term of order n, draw all connected, topologically distinct diagrams
with n interaction lines and 2n + 1 oriented propagator lines, taking into
account that at every interaction vertex one line comes in and one line comes
out.

2. Assign a direction to the interaction lines. Assign also a wave number and
a discrete frequency to each propagator and interaction line, conserving mo-
mentum and Matsubara frequency at each vertex.

3. To each propagator line, assign

G0σ (k) = 1
ikn−(εk−µ) (5.36)

(We have to remember that the propagator is independent of spin but still
carries a spin label that is summed over.)

4. To each interaction line, associate a factor Vσ,σ0 (q) , with iqn a bosonic
Matsubara frequency. Note that each of the spin labels is associated with
one of the vertices and that it is the same as the spin of the fermion lines
attached to it.

5. Perform an integral over wave vector and a sum over Matsubara frequency,
namely

R
d3k
(2π)3

T
P∞
n=−∞ for each momentum and frequency that is not fixed

by conservation at the vertex.

6. Sum over all spin indices that are not fixed by conservation of spin.

7. Associate a factor (−1)n (−1)F where F is the number of closed Fermion
loops to every diagram of order n.

8. For Green’s functions whose two ends are on the same interaction line, as
in Fig.(5-5), associate a convergence factor eiknη before doing the sum over
Matsubara frequency kn. (This corresponds to the choice G (1, 2+) in the
position-space rules above).

The remark done at the end of the previous section concerning spin sums also
applies here.
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5.1.4 Feynman rules for the irreducible self-energy

As in the one-body case that we studied in a preceding chapter, straight pertur-
bation theory for the Green’s function is meaningless because

• It involves powers of G0σ (k) and hence the analytically continued function
has high order poles at the same location as the unperturbed system whereas
the Lehman representation tells us that the interacting Green’s function has
simple poles.

• High order poles can lead to negative spectral weight.[7] For example, the
first order contribution to the spectral weight A (k) = −2 ImGR would be
given by a term proportional to

−2 Im
Ã

1

(ω + iη − (εk − µ))2
!

= 2 Im
∂

∂ω

µ
1

ω + iη − (εk − µ)
¶

= −2π ∂

∂ω
δ (ω − (εk − µ)) (5.37)

The derivative of the delta function can be infinitely positive or negative.

As before, the way out of this difficulty is to resum infinite subsets of diagrams
and to rewrite the power series as

Gσ (k) = G0σ (k) + G0σ (k)Σσ (k)Gσ (k) (5.38)

or
Gσ (k) = 1

(G0σ (k))−1 − Σσ (k)
(5.39)

This is the so-called Dyson equation. The iterative solution of this equation

Gσ (k) = G0σ (k) + G0σ (k)Σσ (k)G0σ (k) + G0σ (k)Σσ (k)G0σ (k)Σσ (k)G0σ (k) + . . .

clearly shows that all diagrams that can be cut in two pieces by cutting one fermion
line G0σ (k) will automatically be generated by Dyson’s equation. In other words,
we define the one-particle irreducible self-energy by the set of diagrams that are
generated by Feynman’s rules for the propagator but that, after truncating the
two external fermion lines, cannot be cut in two disjoint pieces by cutting a G0σ (k)
line. As an example, the diagram on the left of Fig.(5-10) is one-particle reducible
and hence does not belong to the one-particle irreducible self-energy, but the two
diagrams on the right of this figure do.

Remarque 83 Terminology: To be shorter, one sometimes refers to the one-
particle irreducible self-energy using the term “proper self-energy”. In almost
everything that follows, we will be even more concise and refer simply to the self-
energy. We will mean one-particle irreducible self-energy. The other definitions
that one can give for the self-energy do not have much interest in practice.

5.1.5 Feynman diagrams and the Pauli principle

Since operators can be anticommuted at will in a time-ordered product at the
price of a simple sign change, it is clear that whenever there are two destruction
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k k-q

k’+q

q q

k’

q q’

k-q

k-q-q’

k-q’σ

σ’σ’

σ

σσ

Figure 5-10 Diagram on the left is one-particle reducible, and hence is not an
acceptable contribution to the self-energy. The two diagrams on the right however are
acceptable contributions to the one-particle irreducible self-energy. In these diagrams,
k is the external momentum and Matsubara frequency label while σ is the external
spin label. There is a sum over the variables k0, q and q0 and over the spin σ0.

operators or two creation operators for the same state, the contraction should
vanish. This is just the Pauli principle. On the other hand, if we look at a
self-energy diagram like the middle one in Fig.(5-10) there are contributions that
violate the Pauli principle. Indeed, suppose we return to imaginary time but stay
in momentum space. When we perform the sum over wave vectors and over spins
in the closed loop, the right-going line with label k0+q in the loop will eventually
have a value of k0 and of spin such that it represents the same state as the bottom
fermion line. Indeed, when k0+q = k− q and spins are also identical, we have two
fermion lines in the same state attached to the same interaction line (and hence
hitting it at the same time) with two identical creation operators. Similarly we
have two identical destruction operators at the same time attached to the other
interaction line. This means that this contribution should be absent if the Pauli
principle is satisfied. What happens in diagrams is that this contribution is exactly
canceled by the diagram where we have exchanged the two right-going lines, in
other words the last diagram on this figure. Indeed, this diagram has opposite sign,
since it has one less fermion loop, and the special case q = q0 precisely cancels the
unwanted contribution from the middle graph in Fig.(5-10). That this should
happen like this is no surprise if we return to our derivation of Wick’s theorem.
We considered separately the case where two fermions were in the same state and
we noticed that if we applied Wick’s theorem blindly, the Pauli violating terms
would indeed add up to zero when we add up all terms.
The important lesson of this is that unless we include all the exchange graphs,

there is no guarantee in diagrammatic techniques that the Pauli principle will be
satisfied. We are tempted to say that this does not matter so much because it is
a set of measure zero but in fact we will see practical cases in short-range models
where certain approximate methods do unacceptable harm to the Pauli principle.

5.2 Collective modes and dielectric function

The main physical quantity we want to compute and understand is the longitudinal
dielectric constant. Indeed, we have seen in the chapter on correlation functions
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that inelastic electron scattering Eq.(2.271) measures

Snn(q,ω) =
2

1− e−βω Im
£
χRρρ(q,ω)

¤
= − 2

1− e−βω
q2

4π
Im

·
1

²L(q,ω)

¸
. (5.40)

The longitudinal dielectric constant itself is given by Eq.(2.270)

1
²L(q,ω) = 1− 4π

q2 χ
R
ρρ(q,ω) . (5.41)

The physical phenomenon of screening will manifest itself in the zero-frequency
limit of the longitudinal dielectric constant, εL (q,0) . Plasma oscillations on the
other hand should come out from the finite frequency zeros of this same function
εL (q,ω) = 0, as we expect from our general discussion of collective modes.
We will start this section by a discussion of the Lindhard function, namely

χRnn(q,ω) for the free electron gas. We will interpret the poles of this function.
Then we introduce interactions with a simple physical discussion of screening and
plasma oscillations. A diagrammatic calculation in the so-called Random phase
approximation (RPA) will then allow us to recover in the appropriate limiting
cases the phenomena of screening and of plasma oscillations.

5.2.1 Definitions and analytic continuation

We want the Fourier transform of the density-density response function. First
note that

nq ≡
Z
d3re−iq·rn (r) =

X
σ=±1

Z
d3re−iq·rψ†σ (r)ψσ (r) (5.42)

=
1³√V´2

X
σ

Z
d3re−iq·r

X
k

X
k0
eik

0·re−ik·rc†k,σck0,σ (5.43)

=
X
σ

X
k

c†k,σck+q,σ (5.44)

As before, V is the quantization volume of the system. We can obtain the retarded
density-density response function from

χRnn(q,ω) = limiqn→ω+iη χnn(q, iqn) (5.45)

with iqn a bosonic Matsubara frequency, as required by the periodic boundary
condition obeyed by the Matsubara density response in imaginary time. The
above two functions are defined by

χnn(q, iqn) =

Z
d3re−iq·(r−r

0)
Z β

0

dτeiqnτ hTτ [δn (r,τ) δn (r0, 0)]i (5.46)

=
1

V
Z β

0

eiqnτ hTτ [δnq (τ) δn−q (0)]i dτ (5.47)

χRnn(q,ω) =
1

V
Z ∞
−∞

eiωt i h[δnq (t) , δn−q (0)]i θ (t) dt (5.48)

Analytic continuation for density response To prove the analytic continu-
ation formula for the density response Eq.(5.45), one can simply use the
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Lehman representation or deform the integration contour in the Matsubara
representation, as we did for propagators in Sec.(4.5.3). (See Eqs.(4.160) and
(4.156) in particular). The fact that we have bosonic Matsubara frequencies
means that we will have a commutator in real frequency instead of and anti-
commutator because this time eiqnβ = 1 instead of −1. Furthermore, notice
that whether the retarded density response is defined with n (q,t) or with

δn (q,t) = n (q,t)− hn (q,t)i = n (q,t)− n0 (2π)3 δ (q)

is irrelevant since a constant commutes with any operator. On the other
hand the subtraction is essential in the Matsubara representation to be able
to have an integrand that falls sufficiently fast at large τ . Otherwise, the
q = 0 component that is time independent and has a non-zero average would
not decay with τ and we would not be able to deform the contour.

Remarque 84 The density response function is also called charge susceptibility.

5.2.2 Density response in the non-interacting limit: Lindhard function

To do the calculation in the non-interacting case, it suffices to use Wick’s theorem.

χ0nn(q, iqn) =
1

V
Z β

0

dτeiqnτ
X
σ

X
k

X
σ0

X
k0

(5.49)"*
Tτ

"
c†k,σ
1

(τ) ck+q,σ (τ)
2

c†k0,σ0
2

ck0−q,σ0
1

#+
0

−
D
c†k,σck,σ

E
0

D
c†k0,σ0ck0,σ0

E
0
δq,0

#

Only the contractions indicated survive. The other possible set of contractions is
canceled by the disconnected piece. Using momentum conservation, all that is left
is

χ0nn(q, iqn) = −
1

V
Z β

0

dτeiqnτ
X
σ

X
k

G0σ (k+ q,τ)G0σ (k,−τ) (5.50)

Going to the Matsubara frequency representation for the Green’s functions, and
using again the Kronecker delta that will arise from the τ integration, we are
left with something that looks like what could be obtained from the theorem for
Fourier transform of convolutions

χ0nn(q, iqn) = −
1

V
X
σ

X
k

T
X
ikn

G0σ (k+ q,ikn + iqn)G0σ (k,ikn) (5.51)

where as usual we will do the replacement in the infinite volume limit

1

V
X
k

→
Z

d3k

(2π)3
(5.52)

Remarque 85 Although we have not derived Feynman rules for χnn it is clear
that the last expression could have been written down directly from the diagram in
Fig.(5-11) if we had followed trivial generalizations of our old rules. There is even
an overall minus sign for the closed loop and a sum over wave vectors, Matsubara
frequency and spin inside the loop since these are not determined by momentum
conservation. However, we needed to perform the contractions explicitly to see this.
In particular, it was impossible to guess the overall sign and numerical factors since
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k+q
q

k

q

Figure 5-11 Diagram for non-interacting charge susceptibility. Note that the dotted
lines just indicate the flow of momentum. No algebraic expression is associated with
them.

Feynman’s rules that we have developed were for the Green’s function, not for the
susceptibility. Now that we have obtained the zeroth order term it is clear how
to apply Feynman rules for the terms of the perturbation series. But this is the
subject of another subsection below.

The sums over Matsubara frequency should be performed first and they are
easy to do. The technique is standard. First introduce the notation

ζk ≡ εk − µ (5.53)

then use partial fractions

T
X
ikn

G0σ (k+ q,ikn + iqn)G0σ (k,ikn) = T
X
ikn

1

ikn + iqn − ζk+q

1

ikn − ζk
(5.54)

χ0nn(q, iqn) = −2
Z

d3k

(2π)3
T
X
ikn

·
1

ikn − ζk
− 1

ikn + iqn − ζk+q

¸
1

iqn − ζk+q + ζk

(5.55)
The factor of two comes from the sum over spins. Before the partial fractions,
the terms in the ikn series decreased like (ikn)

−2 so no convergence factor is
needed. After the decomposition in partial fractions, it seems that now we need
a convergence factor to do each sum individually. Using the general results of the
preceding chapter for Matsubara sums, Eqs.(4.202) and (4.203), it is clear that as
long as we take the same convergence factor for both terms, the result is

χ0nn(q, iqn) = −2
Z

d3k

(2π)3
f (ζk)− f

¡
ζk+q

¢
iqn + ζk − ζk+q

(5.56)

independently of the choice of convergence factor.
The retarded function is easy to obtain by analytic continuation. It is the

so-called Lindhard function

χ0Rnn(q,ω) = −2
R

d3k
(2π)3

f(ζk)−f(ζk+q)
ω+iη+ζk−ζk+q (5.57)

This form is very close to the Lehman representation for this response function.
Clearly at zero temperature poles will be located at ω = ζk+q − ζk as long as the
states k and k+ q are not on the same side of the Fermi surface. These poles are
particle-hole excitations instead of single-particle excitations as in the case of the
Green’s function. The sign difference between ζk+q and ζk comes from the fact
that one of them plays the role of a particle while the other plays the role of a
hole.
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Remarque 86 Diagrammatic form of particle-hole excitations: If we return to
the diagram in Fig.(5-11), we should notice the following general feature. If we
cut the diagram in two by a vertical line, we see that it is crossed by lines that
go in opposite directions. Hence, we have a particle-hole excitation. In particle-
particle or hole-hole excitations, the lines go in the same direction and the two
single-particle energies ζk+q and ζk add up instead of subtract.

Remarque 87 Absorptive vs reactive part of the response, real vs virtual excita-
tions: There is a contribution to the imaginary part, in other words absorption, if
for a given k and q energy is conserved in the intermediate state, i.e. if the condi-
tion ω = ζk+q − ζk is realized. If this condition is not realized, the corresponding
contribution is reactive, not dissipative, and it goes to the real part of the response
only. The intermediate state then is only virtual.

Zero-temperature value of the Lindhard function: the particle-hole con-
tinuum

To evaluate the integral appearing in the Lindhard function, which is what Lind-
hard did, it is easier to evaluate the imaginary part first and then to obtain the
real part using Kramers-Kronig. Let us begin

Imχ0Rnn(q,ω) = 2π

Z
d3k

(2π)3
£
f (ζk)− f

¡
ζk+q

¢¤
δ
¡
ω + ζk − ζk+q

¢
(5.58)

= 2π

Z
d3k

(2π)
3 f (ζk)

£
δ
¡
ω + ζk − ζk+q

¢− δ
¡
ω + ζk−q − ζk

¢¤
Doing the replacement f (ζk) = θ (kF − k), going to polar coordinates with q
along the polar axis and doing the replacement εk = k2/2m, we have

Imχ0Rnn(q,ω) =
1

2π

Z kF

0

k2dk

Z 1

−1
d (cos θ)

m

kq

·
δ

µ
ω − εq
kq/m

− cos θ
¶
− δ

µ
ω + εq
kq/m

− cos θ
¶¸

(5.59)
It is clear that this strategy in fact allows one to do the integrals in any spatial
dimension. One finds, for an arbitrary ellipsoidal dispersion[10]

εk =
dX
i=1

k2i
2mi

(5.60)

Imχ0Rnn(q,ω) =

Qd
i=1

¡√
2mi

¢
2dπ(d−1)/2Γ

¡
d+1
2

¢√
εq
×

θ

Ã
µ− (ω − εq)

2

4εq

!"
µ− (ω − εq)

2

4εq

#d−1
2

− θ

Ã
µ− (ω + εq)

2

4εq

!"
µ− (ω + εq)

2

4εq

# d−1
2


The real part is also calculable[10] but we do not quote it here.
The appearance of this function in low dimension is quite interesting. Figures

(5-12)(5-13) and (5-14) show the imaginary part of the Lindhard function in,
respectively, d = 1, 2, 3. The small plots on the right show a cut in wave vector
at fixed frequency while the plots on the left show Imχ0Rnn(q,ω) on the vertical
axis, frequency going from left to right and wave vector going from back to front.
In all cases, at finite frequency it takes a finite wave vector q to have absorption.
If the wave vector is too large however the delta function cannot be satisfied and
there is no absorption either. The one dimensional case is quite special since at
low frequency there is absorption only in a narrow wave vector band. This has a
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profound influence on the interacting case since it will allow room for collective
modes to propagate without absorption. In fact, in the interacting one-dimensional
case the collective modes become eigenstates. This will lead to the famous spin-
charge separation as we will see in later chapters. In two dimensions, there is a
peak at q = 2kF that becomes sharper and sharper as the frequency decreases
as we can more clearly see from the small plot on the right.[10] By contrast, the
three-dimensional function is much smoother, despite a discontinuity in slope at
q = 2kF . The region in q and ω space where there is absorption is referred to as
the particle-hole continuum.
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6.15.15
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Figure 5-12 Imaginary part of the Lindhard function in d = 1 on the vertical axis.
Frequency increases from left to right and wave vector from back to front.
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Figure 5-13 Imaginary part of the Lindhard function in d = 2. Axes like in the d = 1
case.

To understand the existence of the particle-hole continuum and its shape, it
is preferable to return to the original expression Eq.(5.58). In Fig.(5-15) we draw
the geometry for the three-dimensional case.[11] The two “spheres” represent the
domain where each of the Fermi functions is non-vanishing. We have to integrate
over the wave vector k while q is fixed. The energy conservation tells us that all
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Figure 5-14 Imaginary part of the Lindhard function in d = 3. Axes like in the d = 1
case.

wave vectors k located in the plane

ω − q2

2m
=
kq

m
cos θ (5.62)

are allowed. This plane must be inside the left most sphere and outside the right
most one or vice versa (not shown). It cannot however be inside both or outside
both. That is why when the plane intersects the region where both spheres overlap,
the domain of integration becomes an annulus instead of a full circle. When this
occurs, there is a discontinuous change in slope of Imχ0Rnn(q,ω). This occurs when
the vectors k+ q and k are antiparallel to each other and when k is on the Fermi
surface. The corresponding energy is

ωchange =
k2F
2m
− (kF − q)

2

2m
= vF q − εq (5.63)

This line, ωchange (q) , is shown in Fig.(5-16). Clearly the cases q < 2kF and
q > 2kF are also different. The figure (5-15) illustrates the case q < 2kF . In the
latter case, the maximum value of ω is found by letting k+ q and k be parallel
to each other while k sits right on the Fermi surface. This gives

ωmax =
(kF + q)

2

2m
− k2F
2m

(5.64)

= εq + vF q ; q < 2kF (5.65)

The minimum allowed value of ω vanishes since both arrows can be right at the
Fermi surface in the annulus region.

ωmin = 0 ; q < 2kF (5.66)

For the other case, namely q > 2kF the maximum allowed value of ω is exactly
the same as above, but there is now a minimum value, given by the case where
k+ q and k are antiparallel and k is on the Fermi surface

ωmin =
(kF − q)2
2m

− k2F
2m

= εq − vF q; q > 2kF (5.67)

The region in ω and q space where Imχ0Rnn(q,ω) is non-vanishing, the particle-
hole continuum, is illustrated schematically in Fig.(5-16) for positive frequency.
Since Imχ0Rnn(q,ω) is odd in frequency, there is a symmetrical region at ω < 0.
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Figure 5-15 Geometry for the integral giving the imaginary part of the d = 3
Lindhard function. The wave vectors in the plane satisfy energy conservation as well
as the restrictions imposed by the Pauli principle. The plane located symmetrically
with respect to the miror plane of the spheres corresponds to energies of opposite
sign.
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Figure 5-16 Schematic representation of the domain of frequency and wave vector
where there is a particle-hole continuum.
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5.2.3 Expansion parameter in the presence of interactions: rs

In the presence of interactions, it is convenient to define a dimensionless constant
that measures the strength of interactions relative to the kinetic energy. If the
kinetic energy is very large compared with the interaction strength, perturbative
methods may have a chance. In the hydrogen atom, potential and kinetic energy
are comparable. That defines a natural distance for interacting electrons, namely
the Bohr radius. Let us remind ourselves of what this number is. Using the un-
certainty principle, we have ∆k ∼ a−10 so that the kinetic energy can be estimated
as 1/

¡
ma2o

¢
and the value of a0 itself is obtained by equating this to the potential

energy
1

ma2o
=
e2

a0
(5.68)

giving us for the Bohr radius, in standard units,

a0 =
~2

me2
= 0.529× 10−10m ∼ 0.5

0

A (5.69)

It is standard practice to define the dimensionless parameter rs by the equation

4π
3 r

3
s ≡ 1

n0a30
(5.70)

where

n0 =
k3F
3π2

(5.71)

is the density of electrons. Another way to write rs is then

rs ≡
¡
9π
4

¢1/3 1
kF a0

(5.72)

In a way, rs is the average distance between electrons measured in units of the Bohr
radius. Large rs means that the electrons are far apart, hence that the kinetic
energy is small. Using the same uncertainty relation as in the hydrogen atom, this
means that interactions are more important than kinetic energy. Conversely, at
small rs kinetic energy is large compared with interactions and the interactions
are much less important than the kinetic energy. It is natural then to expect that
rs is a measure of the relative strength of the interactions or, if you want, an
expansion parameter. A way to confirm this role of rs is to show that

Potential

Kinetic
∼ e2kF
k2F /2m

∼ me
2

kF
∼ 1

kFa0
∼
µ

1

n0a30

¶1/3
∼ rs (5.73)

These estimates are obtained as follows. The average momentum exchanged in
interactions is of order kF so that e2/r ∼ e2kF should be a sensible value for the
average potential energy while the kinetic energy as usual is estimated from EF .
It may be counterintuitive at first to think that interactions are less important

at large densities but that is a consequence of the uncertainty principle, not a
concept of classical mechanics.

5.2.4 Elementary approaches to screening and plasma oscillations

Thomas-Fermi screening

The elementary theory of screening is the Thomas-Fermi theory.[9] In this ap-
proach, Poisson’s equation is solved simultaneously with the electrochemical equi-
librium equation to obtain an expression for the potential. The screening will not
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occur over arbitrarily short distance because localizing the electron’s wave func-
tions costs kinetic energy. In fact, at very short distance the potential will be
basically unscreened..
Consider Poisson’s equation for our electron gas in the presence of an impurity

charge ρi
−∇2φ (r) = 4π [ρi (r) + δρ (r)] (5.74)

The quantity δρ (r) is the change in charge density of the background produced
by the charged impurity

δρ (r) = ρ (r)− ρ0 = −e [n (r)− n0] (5.75)

We need to find n (r) . Since density and Fermi wave vector are related, kinetic
energy will come in. Assuming that the Fermi energy and the potential both vary
slowly in space, the relation

n (r)

n0
=
k3F (r)

k3F
(5.76)

and electrochemical equilibrium

k2F (r)

2m
+ (−eφ (r)) = EF = k2F

2m
(5.77)

where EF is the value of the Fermi energy infinitely far from the impurity potential,
lead immediately to the relation between density and electrostatic potential

n (r)

n0
=
k3F (r)

k3F
=

·
k2F (r) /2m

k2F /2m

¸3/2
=

·
1− (−eφ (r))

EF

¸3/2
(5.78)

Substituting this back into Poisson’s equation, we have a closed equation for po-
tential

−∇2φ (r) = 4πρi (r)− 4πn0e
·³
1− (−eφ(r))

EF

´3/2
− 1
¸

(5.79)

In general it is important to solve this full non-linear equation because otherwise
at short distances the impurity potential is unscreened φ (r) ∼ 1/r which leads
to unphysical negative values of the density in the linearized expression for the
density,

n (r)

n0
≈
·
1− 3

2

(−eφ (r))
EF

¸
(5.80)

Nevertheless, if we are interested only in long-distance properties, the linear
approximation turns out to be excellent. In this approximation, Poisson’s equation
Eq.(5.79) becomes

−∇2φ (r) = 4πρi (r) +
6πn0e

EF
(−eφ (r)) (5.81)

We could have arrived directly at this equation by posing

−∇2φ (r) = 4π
·
ρi (r)− e

∂n

∂µ
(−eφ (r))

¸
We now proceed to solve this equation, but first let us define

q2TF =
6πn0e

2

EF
= 4πe2 ∂n∂µ (5.82)

Then we can write ¡−∇2 + q2TF ¢φ (r) = 4πρi (r) (5.83)
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whose solution, by Fourier transforms, is

φ (q) = 4πρi(q)
q2+q2TF

(5.84)

The Thomas-Fermi dielectric constant follows immediately since the definition,

φ (q) =
1

εL (q,0)

4πρi (q)

q2
(5.85)

immediately yields, the value of the zero-frequency dielectric constant

εL (q,0) =
q2+q2TF
q2 = 1 +

q2TF
q2 (5.86)

Let us pause to give a physical interpretation of this result. At small distances
(large q) the charge is unscreened since εL → 1. On the contrary, at large distance
(small q) the sreening is very effective. In real space, one finds an exponential
decrease of the potential over a length scale q−1TF , the Thomas-Fermi screening
length. Let us write this length in terms of rs using the definition Eq.(5.70) or
(5.72)

λ2 ≡ q−2TF =
EF

6πn0e2
=
k2F /2m

6πn0e2
=
k2Fa0
12πn0

(5.87)

=
k2Fa

4
0

12π

µ
4π

3
r3s

¶
= a20

Ã
1

9

µ
9π

4

¶2/3!
rs (5.88)

Roughly speaking then, for rs ¿ 1 we have that the screening length

λ ∼ a0√rs (5.89)

is larger than the interelectronic distance a0rs. In this limit our long wavelength
Thomas-Fermi reasoning makes sense. On the other hand, for rs À 1 the screening
length is much smaller than the interelectronic distance. It makes less sense to
think that the free electron Hamiltonian is a good perturbative starting point.
Electrons start to localize.

Plasma oscillations

Plasma oscillations are the density oscillations of a free electron gas. The physics
of this is that because the system wants to stay neutral everywhere, electrostatic
forces will want to bring back spontaneous electronic density fluctuations towards
the uniform state but, because of the electron inertia, there is overshooting. Hence
oscillations arise at a particular natural frequency, the so-called plasma frequency.
In other words, it suffices to add inertia to our previous considerations to see the
result come out.
We give a very simple minded macroscopic description valid only in the limit

of very long wave length oscillations. Suppose there is a drift current

j = −en0v (5.90)

Taking the time derivative and using Newton’s equations,

∂j

∂t
= −en0 ∂v

∂t
= −en0

m
(−eE) (5.91)

we are in a position where one more time derivative

∂2j

∂t2
=
n0e

2

m

∂E

∂t
(5.92)
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and an appeal to the longitudinal part of Maxwell’s fourth equation

0 =
4π

c
j+
1

c

∂E

∂t
(5.93)

should give us the desired result, namely

∂2j

∂t2
= −4πn0e

2

m
j (5.94)

This equation has an oscillatory solution at a frequency ωp

ω2p ≡ 4πn0e
2

m (5.95)

the so-called plasma frequency. Since we know that the longitudinal dielectric
constant vanishes at a collective mode, this gives us another expected limit of this
function

limω→ωp ε
L (q = 0,ω) = a (ω − ωp) (5.96)

where a is an unknown, for the time being, positive constant. The sign is deter-
mined from the fact that the dielectric constant must return to a positive value
equal to unity at very large frequency.

5.2.5 Density response in the presence of interactions

We are now ready to start our diagrammatic analysis. Fig.(5-17) shows all charge
susceptibility diagrams to first order in the interaction. The four diagrams on the
second line take into account self-energy effects on the single-particle properties.
We will worry about this later. Of the two diagrams on the first line, the first one
clearly dominates. Indeed, the dotted line leads to a factor 4π/q2 that diverges at
small wave vectors. On the other hand, the contribution from the other diagram
is proportional to

−2
Z

d3k

(2π)3
T
X
ikn

Z
d3k0

(2π)3
T
X
ik0n

G0σ (k+ q,ikn + iqn)G0σ (k,ikn)×

4π¯̄
k− k0 ¯̄2G0σ (k0+q,ik0n + iqn)G0σ (k0,ik0n) (5.97)

which is a convergent integral with no singularity at q = 0.

Remarque 88 For a very short range potential, namely a wave-vector indepen-
dent potential, the situation would have been completely different since the contri-
bution of the last diagram would have been simply minus half of the contribution
of the first one, the only differences being the additional fermion loop in the first
one that leads to a sign difference and a factor of two for spin. We will come back
on this in our study of the Hubbard model.

Let us thus concentrate on the most important contribution at long wave
lengths namely the first diagram. In addition to being divergent as q → 0, it
has additional pathologies. Indeed, it has double poles at the particle-hole exci-
tations of the non-interacting problem while the Lehman representation shows us
that it should not. This problem sounds familiar. We have encountered it with
the single-particle Green’s function. The problem is thus solved in an analogous
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Figure 5-17 Charge susceptibility diagrams to first order in the interaction

manner, by summing an infinite subset of diagrams. This subset of diagrams is
illustrated in Fig.(5-18). It is the famous random phase approximation (RPA).
One also meets the terminology ring diagrams (in the context of free energy cal-
culations) or, more often, one also meets the name bubble diagrams. The full
susceptibility is represented by adding a triangle to one of the external vertices.
That triangle represents the so-called dressed three point vertex. The reason for
this name will come out more clearly later. The full series, represented schemat-
ically on the first two lines of the figure, may be summed to infinity by writing
down the equation on the last line. This equation looks like a particle-hole ver-
sion of the Dyson equation. The undressed bubble plays the role of an irreducible
susceptibility. It is irreducible with respect to cutting one interaction line.
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Figure 5-18 Bubble diagrams. Random phase approximation.

From our calculation of the susceptibility for non-interacting electrons we know
that Feynman’s rules apply for the diagrams on Fig.(5-18). Each bubble is asso-
ciated with a factor χ0nn(q, iqn), a quantity defined in such a way that it contains
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the minus sign associated with the fermion loop. The dashed interaction lines each
lead to a factor −Vq = −4πe2/q2, the minus sign being associated with the fact
that one more Vq means one higher order in perturbation theory (remember the
(−1)n rule). The sum over bubbles, represented by the last line on Fig.(5-18) is
easy to do since it is just a geometric series. The result is.

χnn(q, iqn) =
χ0nn(q,iqn)

1+Vqχ0nn(q,iqn)
; Vq =

4πe2

q2
(5.98)

The corresponding result for the dielectric constant Eq.(5.41) is

1
²L(q,ω)

= 1− 4πe2

q2 χRnn(q,ω) =
1

1+Vqχ0Rnn(q,ω)
(5.99)

Remarque 89 Irreducible polarization: It is customary to call −χ0Rnn(q,ω) the
first order irreducible polarization

Q(1)R
(q,ω) (Irreducible here means that the

diagrams can be connected at each end to an interaction but cannot be cut in two
by cutting an interaction line).

Using our previous results for the susceptibility of non-interacting particles,
the explicit expression for the real and imaginary parts of the dielectric function
in three dimensions at zero temperature is, for positive frequencies

Re
£
²L(q,ω)

¤ ≡ ²L1 (q,ω) (5.100)

= 1 +
q2TF
q2

(
1

2
+
kF
4q

"Ã
1− (ω − εq)

2

q2v2F

!
ln

¯̄̄̄
ω − vF q − εq
ω + vF q − εq

¯̄̄̄

+

Ã
1− (ω + εq)

2

q2v2F

!
ln

¯̄̄̄
ω + vF q + εq
ω − vF q + εq

¯̄̄̄#)
(5.101)

Im
£
²L(q,ω)

¤ ≡ ²L2 (q,ω) (5.102)

=


π
2

ω
vF q

q2TF
q2 ; ω ≤ vF q − εq

πkF
4q

q2TF
q2

³
1− (ω−εq)2

q2v2F

´
; vF q − εq ≤ ω ≤ εq + vF q

0 ; ω ≥ εq + vF q

 q < 2kF

πkF
4q

q2TF
q2

³
1− (ω−εq)2

q2v2F

´
; εq − vF q ≤ ω ≤ εq + vF q

o
q > 2kF

We now analyze these results to extract five important physical ingredients:
a) There is a particle-hole continuum but the poles are simply shifted from their
old positions instead of becoming poles of high-order. b) There is screening at
low frequency. c) There are Friedel oscillations in space. d) There are plasma
oscillations in time. e) At long wave lengths the plasma oscillations exhaust the
f−sum rule.

Particle-hole continuum

Let us first think of a finite system with M discrete poles to see that these have
been shifted. The spectral representation tells us, using the fact that, χ00nn (q,ω0)
is odd

χ0Rnn(q,ω) =

Z
dω0

π

χ000nn (q,ω0)
ω0 − ω − iη =

Z
dω0

π

ω0χ000nn (q,ω0)
(ω0)2 − (ω + iη)2

=

M/2X
i=1

Ai

u2i − (ω + iη)2
=
B
Q(M/2)−1
i=1

³
(ω + iη)

2 − v2i
´

QM/2
i=1

³
u2i − (ω + iη)2

´ (5.103)
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where Ai > 0 and ui are respectively the residue and the location of each pole.
We have combined the sum of fractions on a common denominator so that the
numerator of the last expression has one less power of (ω + iη)2 . We do not need
to specify the values of B and vi. Using this expression for the non-interacting
susceptibility in the result Eq.(5.98) for the RPA susceptibility we find,

χRnn(q,ω) =
B
Q(M/2)−1
i=1

³
(ω + iη)2 − v2i

´
QM/2
i=1

³
u2i − (ω + iη)2

´
+ VqB

Q(M/2)−1
i=1

³
(ω + iη)

2 − v2i
´ (5.104)

The denominator can be rewritten as a polynomial of the same order as the non-
interacting susceptibility, namely of order M/2 in (ω + iη)2 , but the zeros of this
polynomial, corresponding to the poles of the retarded susceptibility, have shifted.
To find out the location of the poles of the charge excitations, at least qualita-

tively, it suffices to look for the domain where the imaginary part is non vanishing.
Using our RPA result Eq.(5.98) and simple algebra

Im

µ
x+ iy

1 + x+ iy

¶
=

y

(1 + x)2 + y2
(5.105)

we find the following result for the imaginary part

ImχRnn(q,ω) =
Imχ0Rnn(q,ω)

(1 + VqReχ0Rnn(q,ω))
2
+ (Vq Imχ0Rnn(q,ω))

2 (5.106)

In a discrete system Imχ0Rnn(q,ω) would be proportional to a delta function when-
ever there is a pole in the non-interacting susceptibility. The square of this delta
function that appears in the denominator cancels the corresponding delta function
in the numerator, which is another (less clear) way of saying what we have just
shown in full generality above, namely that in the interacting system the poles are
different from those of the non-interacting system. The new poles are a solution
of

1

Vq
+Reχ0Rnn(q,ω) =

1

Vq
+

M/2X
i=1

Ai
u2i − ω2

= 0 (5.107)

The solution of this equation may in principle be found graphically as illustrated
in Fig.(5-19). We have taken the simple caseM = 6 for clarity. In reality,M →∞
and the separation between each discrete pole is inversely proportional to a power
of the size of the system 1/V. The poles of the non-interacting susceptibility are
right on the vertical asymptotes while those of the interacting system are at the
intersection of the horizontal line 1/Vq and of the lines that behave as 1/ (ui − ω)
near every vertical asymptote. Clearly, except for the last two symmetrically
located solutions at large frequency, all the new solutions are very close to those
of the non-interacting system. In other words, the particle-hole continuum is
basically at the same place as it was in the non-interacting system, even though
the residues may have changed. The two solutions at large frequency correspond
to plasma oscillations, as we will see later. They are well separated from the
particle-hole continuum for small q where 1/Vq is very small. However, at large
wave vector it is quite possible to find that the high frequency poles become very
close again to the particle-hole continuum.
Since Im

¡
²L(q,ω)

¢−1
= 1+Vq ImχRnn(q,ω) the zeros of the dielectric constant

are at the same location as the poles of χRnn(q,ω) and, from what we just said,
these poles are located basically in the same (ω,q) domain as the particle-hole
continuum of the non-interacting system, except for possibly a pair of poles. This
situation is illustrated schematically in Fig.(5-20), that generalizes Fig.(5-16)
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Figure 5-19 Graphical solution for the poles of the charge susceptibility in the
interacting system.
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Figure 5-20 Schematic representation of the domain of frequency and wave vector
where there are poles in the charge susceptibility, or zeros in the longitudinal dielectric
function. In addition to the particle-hole continuum, there is a plasma pole.
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Screening

At zero frequency, namely for a static charge perturbation, the imaginary part
of the dielectric constant vanishes, as shown by Eq.(5.102), while the real part
Eq.(5.100) becomes

εL1 (q, 0) = 1 +
q2TF
q2

"
1

2
+
kF
2q

Ã
1− q2

(2kF )
2

!
ln

¯̄̄̄
q + 2kF
q − 2kF

¯̄̄̄#
(5.108)

In the long wave length limit, we recover our Thomas Fermi result Eq.(5.86).
This limit can also be obtained directly by approximating the integral defining
Lindhard function Eq.(5.57) that enters the RPA dielectric function Eqs.(5.99)

lim
q→0

εL1 (q, 0) = lim
q→0

"
1− 2Vq

Z
d3k

(2π)3
f (ζk)− f

¡
ζk+q

¢
ζk − ζk+q

#
(5.109)

=

"
1− 2Vq

Z
d3k

(2π)
3

∂f (ζk)

∂ζk

#
(5.110)

= 1 + Vq
∂

∂µ

"
2

Z
d3k

(2π)3
f (ζk)

#
(5.111)

= 1 +
4πe2

q2
∂n

∂µ
(5.112)

= 1 +
q2TF
q2

(5.113)

The definition of qTF is in Eq.(5.82). The corresponding potential

Veff (r) =

Z
d3q

(2π)3
4πe2

q2 + q2TF
eiq·r ∝ 4πe

2

r
e−rqTF (5.114)

is the screened Coulomb interaction.

Friedel oscillations

If instead of using the limiting Thomas-Fermi form for small wave vectors one does
a more careful evaluation[12] of the Fourier transform of ε1 (q, 0) Eq.(5.108), one
finds

lim
r→∞Veff (r) ∝

cos (2kF )

r3
(5.115)

These oscillations are the real-space manifestation of the discontinuity in slope of
the dielectric function that appears in the logarithm at q = 2kF . These are so-
called Friedel oscillations. They manifest themselves in several ways. For example
they broaden NMR lines and they give rise to an effective interaction JS1·S2
between magnetic impurities whose amplitude J oscillates in sign. This is the so-
called RKKY interaction. The change in sign of J with distance is a manifestation
of Friedel’s oscillations. The Friedel oscillations originate in the sharpness of the
Fermi surface. At finite temperature, where the Fermi surface broadens, they are
damped as e−kF r(∆/EF ) where ∆ is of order T.

Plasmons

We have already suggested in Fig.(5-19) that at small wave numbers, a large
frequency pole far from the particle-hole continuum appears. Let us look at this
parameter range. Taking vF q/ω as a small parameter, the imaginary part of the
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dielectric constant Eq.(5.102) is infinitesimal at the plasmon pole but vanishes
everywhere else in its vicinity. On the other hand the limiting form of the real
part of the dielectric constant may be obtained directly by expanding Eqs.(5.99)
and (5.57). Indeed,

lim
q→0

lim
ω→∞ εL1 (q,ω) = lim

ω→∞

"
1− 2Vq

Z
d3k

(2π)3
f (ζk)− f

¡
ζk+q

¢
ω + ζk − ζk+q

#
(5.116)

= lim
q→0

"
1 + 2Vq

Z
d3k

(2π)
3

f (ζk)− f
¡
ζk+q

¢
ω2

¡
ζk − ζk+q

¢#
(5.117)

= 1 + 2Vq

Z
d3k

(2π)3
f (ζk)− f

¡
ζk+q

¢
ω2

¡
ζk − ζk+q

¢
(5.118)

= 1 +
4Vq
ω2

Z
d3k

(2π)
3 f (ζk)

¡
ζk − ζk+q

¢
(5.119)

To obtain the last expression we did the change of variables k→ −k− q and used
ζk+q = ζ−k−q. The term linear in q vanishes when the angular integral is done
and we are left with

lim
q→0

lim
ω→∞ εL1 (q,ω) = 1−

2Vqn

ω2
q2

2m
= 1− ω2p

ω2
(5.120)

with the value of ω2p defined in Eq.(5.95). One can continue the above approach
to higher order or proceed directly with a tedious Taylor series expansion of the
real part Eq.(5.100) in powers of vF q/ω to obtain

εL1 (q→ 0,ω) = 1− ω2p
ω2
− 3
5

ω2p
ω2
(vF q)

2

ω2
+ . . . (5.121)

Several physical remarks follow directly from this result

• Even at long wave lengths (q → 0) , the interaction becomes unscreened at
sufficiently high frequency. More specifically,

εL1 (q→ 0,ω À ωp)→ 1 (5.122)

• The collective plasma oscillation that we expected does show up. Indeed,
ε1 (q→ 0,ω) = 0 when

0 = ω2 − ω2p −
3

5

ω2p
ω2
(vF q)

2 + . . . (5.123)

ω2 ≈ ω2p +
3

5
(vF q)

2
+ . . . (5.124)

Letting this solution be called ωq we have in the vicinity of this solution
ω ≈ ωq

εL1 (q→ 0,ω) ≈ 1− ω2q
ω2
≈ 2

ωq
(ω − ωq) (5.125)

which is precisely the form we had obtained from macroscopic considerations.
We now know that the unknown constant we had at this time in Eq.(5.96)
has the value a = 2/ωq .
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Fig.(5-21) shows a plot of both the real and the imaginary parts of the dielectric
constant for small wave vector (q ¿ qTF ) . We see that the dielectric constant is
real and very large at zero frequency, representing screening, whereas the vanishing
of the real part at large frequency leads to the plasma oscillations, the so-called
plasmon. Given the scale of the figure, it is hard to see the limiting behavior
ε1 (q,∞) → 1 but the zero crossing is illustrated by the maximum in Im (1/ε) .
There is another zero crossing of ε1 but it occurs in the region where ε2 is large.
Hence this is an overdamped mode.

Figure 5-21 Real and imaginary parts of the dielectric constant and Im (1/ε) as a
function of frequency, calculated for rs = 3 and q = 0.2kF . Shaded plots correspond
to Im (1/ε) . Taken from Mahan op. cit. p.430

f−sum rule

We have not checked yet whether the f−sum rule is satisfied. Let us first recall
that it takes the form,

2

Z ∞
0

dω

π
ωχ00nn (q,ω) =

nq2

m
(5.126)

Using our relation between dielectric constant and density fluctuations Eq.(5.41)
we obtain the corresponding sum rule for the longitudinal dielectric constantZ ∞

0

dω

2π
ω Im

·
1

εL (q→ 0,ω)

¸
= −4πne

2

4m
= −ω

2
p

4
(5.127)

Let us obtain the plasmon contribution to this sum rule by using the approximate
form Eq.(5.125)Z ∞

0

dω

2π
ω Im

"
1

2
ωq
(ω − ωq) + iη

#
= −π

Z ∞
0

dω

2π
ω
¯̄̄ωq
2

¯̄̄
δ (ω − ωq)(5.128)

= −ω
2
q

4
(5.129)
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This means that at q = 0, the plasmon exhaust the f−sum rule. Nothing else is
necessary to satisfy this sum rule. On the other hand, for q 6= 0, one can check
that the particle-hole continuum gives a contribution

−ω
2
p

4
+

ω2q
4
=
3

20
(vF q)

2 (5.130)

as necessary to satisfy the f−sum rule.

Remarque 90 One of the key general problems in many-body theory is to devise
approximations that satisfy conservation laws in general and the f−sum rule in
particular. The RPA is such an approximation. We will discuss this problem in
more details later.

5.3 More formal matters: Consistency relations be-
tween single-particle self-energy, collectivemodes,
potential energy and free energy

We have found an expression for the density fluctuations that appears correct since
it has all the correct Physics. It was a non-trivial task since we had to sum an
infinite subset of diagrams. We will see that it is also difficult to obtain the correct
expression for the self-energy without a bit of physical hindsight. We might have
thought that the variational principle would have given us a good starting point
but we will see that in this particular case it is a disaster. The following theorems
will help us to understand why this is so and will suggest how to go around the
difficulty.
We thus go back to some formalism again to show that there is a general

relation between self-energy and charge fluctuations. We will have a good approx-
imation for the self-energy only if it is consistent with our good approximation for
the density fluctuations. We also take this opportunity to show how to obtain the
self-energy since just a few additional lines will suffice.

5.3.1 Consistency between self-energy and density fluctuations

We start from the equations of motion for the Green’s function. We need first
those for the field operators.

∂ψ (1)

∂τ1
= − [ψ (1) ,K] (5.131)

Using [A,BC] = {A,B}C −B {A,C} and Eq.(5.1) for K we have

∂ψσ1 (x1, τ1)

∂τ1
=
∇21
2m

ψσ1 (x1, τ1) + µψσ1 (x1, τ1) (5.132)

−
X
σ10

Z
dx10v (x1−x10)ψ†σ10 (x10 , τ1)ψσ10 (x10 , τ1)ψσ1 (x1, τ1)
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Remarque 91 We assume that the potential has no q = 0 component because of
the compensating effect of the positive background. The argument for the neutral-
izing background is as follows. If we had kept it, the above equation would have
had an extra term

+n0

·Z
dx10v (x1−x10)

¸
ψσ1 (x1, τ1) (5.133)

The q = 0 contribution of the potential in the above equation of motion gives on
the other hand a contribution

−
·Z

dx10v (x1−x10)
¸ 1
V
Z
dx10

X
σ10

ψ†σ10 (x10 , τ1)ψσ10 (x10 , τ1)

ψσ1 (x1, τ1)
(5.134)

While the quantity in bracket is an operator and not a number, its deviations from
n0 vanish like V−1/2 in the thermodynamic limit, even in the grand-canonical
ensemble. Hence, to an excellent degree of approximation we may say that the
only effect of the neutralizing background is to remove the q = 0 component of
the Coulomb potential. The result that we are about to derive would be different
in other models, such as the Hubbard model, where the q = 0 component of the
interaction potential is far from negligible.

Reintroducing our time-dependent potential Eq.(5.9) the above result can be
written in the shorthand notation

∂ψ (1)

∂τ1
=
∇21
2m

ψ (1) + µψ (1)−
Z
10
ψ† (10)V (1− 10)ψ (10)ψ (1) (5.135)

From this, we can easily find the equation of motion for the Green’s function

G (1, 2) = − ­Tτ £ψ (1)ψ+ (2)¤® (5.136)

namely,µ
∂

∂τ1
− ∇

2
1

2m
− µ

¶
G (1, 2) = −δ (1− 2)+

¿
Tτ

·Z
10
ψ† (10)V (1− 10)ψ (10)ψ (1)ψ† (2)

¸À
(5.137)

where as usual the delta function comes from the action of the time derivative
on the θ functions implicit in the time ordered product. The right-hand side is
not far from what we want. The last term on the right-hand side can be related
to the product of the self-energy with the Green’s function since, comparing the
equation of motion for the Green’s function with Dyson’s equation

G−10 G =1+ΣG (5.138)

we have thatR
100 Σ (1, 1

00)G (100, 2) = −
D
Tτ

hR
10 ψ

† (10)V (10 − 1)ψ (10)ψ (1)ψ† (2)
iE
(5.139)

which, in all generality, can be taken as a definition of the self-energy.
In the limit 2→ 1+ where

1+ ≡ ¡x1, τ1 + 0+;σ1¢ (5.140)

the term on the right-hand side is¿
Tτ

·Z
10
ψ†
¡
1+
¢
ψ† (10)V (10 − 1)ψ (10)ψ (1)

¸À
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Note that we have placed ψ† (2) → ψ† (1+) to the far left of the three fermion
operators ψ† (10)ψ (10)ψ (1) because the potential is instantaneous and these three
fermion operators are all at the same time and in the given order. Recalling the
definition of the average potential energy

2 hV i =
X
σ1

Z
d3x1

Z
10

D
Tτ

h
ψ†
¡
1+
¢
ψ† (10)V (10 − 1)ψ (10)ψ (1)

iE
(5.141)

we directly get from Eq.(5.139) above a relation between self-energy and potential
energy X

σ1

Z
d3x1

Z
10
Σ (1, 10)G ¡10, 1+¢ = 2 hV i (5.142)

We have the freedom to drop the time-ordered product when we recall that the
operators are all at the same time and in the indicated order. Using time-
translational invariance the last result may also be written

R
1

R
10 Σ (1, 1

0)G (10, 1+) = 2 hV iβ = R
1

R
10

D
Tτ

h
ψ† (1+)ψ† (10)V (10 − 1)ψ (10)ψ (1)

iE
(5.143)

Remarque 92 The 1+ on the left-hand side is absolutely necessary for this ex-
pression to make sense. Indeed, taken from the point of view of Matsubara frequen-
cies, one knows that the self-energy goes to a constant at infinite frequency while
the Green’s function does not decay fast enough to converge without ambiguity. On
the right-hand side of the above equation, all operators are at the same time, in
the order explicitly given.

The right-hand side of the last equation is in turn related to the density-density
correlation function. To see this, it suffices to return to space spin and time indices
and to recall that the potential is instantaneous and spin independent so that

2 hV iβ =
Z
10

Z
1

D
ψ†
¡
1+
¢
ψ† (10)V (10 − 1)ψ (10)ψ (1)

E
(5.144)

= −β
X
σ1,σ10

Z
d3x10

Z
d3x1

D
ψ†σ10 (x10) v (x10 − x1)ψσ1 (x1)

E
δσ1,σ10 δ (x10 − x1)

+β
X
σ1,σ10

Z
d3x10

Z
d3x1

D
ψ†σ10 (x10)ψσ10 (x10) v (x10 − x1)ψ

†
σ1 (x1)ψσ1 (x1)

E
= −n0Vβv (0) + β

Z
d3x10

Z
d3x1 hn (x10) v (x10 − x1)n (x1)i (5.145)

where in the last equation we have usedZ
d3x1

X
σ1

D
ψ†σ1 (x1)ψσ1 (x1)

E
= N = n0V (5.146)

Going to Fourier space, we haveZ
d3x10

Z
d3x1 hn (x10) v (x10 − x1)n (x1)i (5.147)

=

Z
d3x10

Z
d3x1v (x10 − x1)χnn (x10 , 0;x10) (5.148)
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=

Z
d3q

(2π)3
Vq

h
lim
τ→0

Vχnn (q, τ)
i

(5.149)

We did not have to take into account the disconnected piece that appears in
Eq.(5.147) but not in χnn (q, τ) because this disconnected piece contributes only
at q = 0 and we have argued that Vq=0 = 0. Note that there is no jump in
χnn (q, τ) at τ = 0 contrary to the case of the single-particle Green’s function.
Substituting back into Eq.(5.145) we have

2 hV iβ =
Z
10

Z
1

D
ψ†
¡
1+
¢
ψ† (10)V (10 − 1)ψ (10)ψ (1)

E
= (5.150)

= βV
−n0v (0) + Z d3q

(2π)
3VqT

X
iqn

χnn (q, iqn)


= βV

Z d3q

(2π)3
Vq

TX
iqn

χnn (q, iqn)− n0


Using invariance under time and space translations, this gives the following relation
between self-energy and density fluctuationsZ

10
Σ (1, 10)G ¡10, 1+¢ = (5.151)

T
X
ikn

Z
d3k

(2π)
3Σ (k,ikn)G (k,ikn) e

iknη (5.152)

=

Z
d3q

(2π)3
Vq

TX
iqn

χnn (q, iqn)− n0
 (5.153)

Remarque 93 In short range models, we need to restore the vq=0 component and
the disconnected piece has to be treated carefully. Also, the spin fluctuations will
come in. This subject is for the chapter on the Hubbard model.

5.3.2 General theorem on free-energy calculations

The diagram rules for the free energy are more complicated than for the Green’s
function. We have seen in the previous chapter the form of the linked-cluster
theorem for the free-energy. It is given by a sum of connected diagrams. However,
in doing the Wick contractions for a term of order n, there will be (n− 1)! identical
diagrams instead of n!. This means that there will be an additional 1/n in front of
diagrams of order n, by contrast with what happened for Green’s functions. This
makes infinite resummations a bit more difficult (but not undoable!).
There is an alternate way of obtaining the free energy without devising new

diagram rules. It uses integration over the coupling constant. This trick is appar-
ently due to Pauli[13]. The proof is simple. First, notice that

− 1
β

∂ lnZ

∂λ
= − 1

β

1

Z

∂Tr
£
e−β(H0+λV−µN)¤

∂λ
=
1

Z
Tr
h
e−β(H0+λV−µN)V

i
=
1

λ
hλV iλ .
(5.154)
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To differentiate the operator, e−β(H0+λV−µN), we have used its definition as a
power series and then taken the derivative with respect to λ. Even if the operator
V does not commute with H0, the cyclic property of the trace allows one to always
put V on the right-hand side so that in the end, the derivative worked out just
as with ordinary number. (Alternatively, one can do the proof in the interaction
representation). The subscript λ in hλV iλ is to remind ourselves that the trace is
taken for a Hamiltonian with coupling constant λ.
The free energy we are interested in is for λ = 1, so

Ω = −T lnZ = −T lnZ0 +
R 1
0
dλ
λ hλV iλ . (5.155)

From a diagrammatic point of view, the role of the integral over λ is to regive the
factor of 1/n for each order in perturbation theory.

Remarque 94 Recall that the free energy in this grand-canonical ensemble is
related to the pressure.

Ω = −PV. (5.156)

The expectation value of the potential energy may be obtained by writing down
directly a diagrammatic expansion, or by using what we already know, namely the
density correlations. Indeed we have shown in the previous section, Eq.(5.150),
how the potential energy may be obtained from density correlations,

Ω = −T lnZ = −T lnZ0 (5.157)

+
V
2

Z 1

0

dλ

λ

*
λ

Z
d3q

(2π)
3Vq

TX
iqn

χnn (q, iqn)− n0
+

λ

Using our previous relation between self-energy and potential energy, Eq.(5.143)
the coupling-constant integration in Eq.(5.155) may also be done with

Ω = −T lnZ0 + T
2

Z 1

0

dλ

λ

Z
d1

Z
d1”Σλ (1, 1”)Gλ

¡
1”, 1+

¢
(5.158)

where the subscript λ reminds oneself that the interaction Hamiltonian must be
multiplied by a coupling constant λ.

5.4 Single-particle properties

We have already mentioned several times our strategy. First we will show the
failure of Hartree-Fock and try to understand the reason for it by returning to
the consistency relations we just derived. Having cured the problem by using the
screened interaction in the calculation, we will discuss the physical interpretation
of the result, including a derivation of the Fermi liquid scattering rate that we
discussed in the previous chapter in the context of photoemission experiments.

5.4.1 Hartree-Fock theory

It is useful to derive the result from the variational principle as well as directly
from a Green’s function point of view. Since Hartree-Fock is sometimes actually
quite good, it is advisable to develop a deep understanding of this approach.
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Variational approach

In Hartree-Fock theory, we give ourselves a trial one-particle Hamiltonian and use
the variational principle to find the parameters. In the electron gas case the true
non-interacting part of the Hamiltonian is

H0 =
X
k,σ

²kc
+
k,σck,σ =

X
k,σ

k2

2m
c+k,σck,σ (5.159)

where the spin-sum is represented by a sum over σ. The interacting part, written
in Fourier space, takes the form

H −H0 = 1

2V
X
k,σ

X
k0,σ0

X
q

c+k,σc
+
k0,σ0Vqck0−q,σ0ck+q,σ (5.160)

with Vq the Fourier transform of the Coulomb potential

Vq =
4πe2

q2
. (5.161)

Electroneutrality leads to Vq=0 = 0 as before. The form of the interaction with all
the proper indices is not difficult to understand when we consider the diagrammatic
representation in Fig.(5-22).All that is needed is the conservation of momentum

qk

k + q

k’

k’ - q’

Figure 5-22 Momentum conservation for the Coulomb interaction.

coming from integrals over all space and translational invariance. The factor of
1/V in front comes from a factor V−1/2 for each change of variable from real-
space to momentum space,

¡V−1/2¢4, and one overall factor of volume V from
translational invariance which is used to eliminate one of the momentum sums
through momentum conservation. Although there are several ways of labeling the
momenta, the above one is convenient. In this notation q is often referred to as
the “transfer variable” while k and k0 are the band variables.
To apply the variational principle, one takes

eH0 =Pk,σe²kc+k,σck,σ (5.162)

with the variational parameter e²k. We then minimize
−T lnZ0 +

D
H − eH0E

0
(5.163)

The partition function for eH0 − µN is computed as usual for non-interacting
electrons

−T lnZ0 = −T ln
Y
k,σ

³
1 + e−β(e²k−µ)´ = −TX

k,σ

ln
³
1 + e−β(e²k−µ)´ . (5.164)

Then the quantity
D
H − eH0E

0
is easily evaluated using Wick’s theorem since eH0

is quadratic in creation-annihilation operators
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D
H − eH0E

0
=
X
k,σ

(²k −e²k)Dc+k,σck,σE
0

(5.165)

+
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X
k0,σ0
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E
0

D
c+k,σck+q,σ
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0
−
D
c+k0,σ0ck+q,σ
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(5.166)
which may be simplified by usingD
c+k0,σ0ck,σ

E
0
= δσ,σ0δk,k0

D
c+k,σck,σ

E
0
≡ δσ,σ0δk,k0f

³eζk´ = 1

eβ(e²k−µ) + 1 (5.167)

to obtainD
H − eH0E

0
=
X
k,σ

(²k −e²k) f ³eζk´− 2 12VX
k

X
q

Vqf
³eζk+q´ f ³eζk´ (5.168)

where the overall factor of 2 comes from what is left of the spin sums. We have
dropped the term that leads to Vq=0.
We can now determine our variational parametere²k by minimizing with respect

to it:

∂

∂e²k
−TX

k,σ

ln
³
1 + e−β(e²k−µ)´

 = 2e−β(e²k−µ)¡
1 + e−β(e²k−µ)¢ = 2f ³eζk´ (5.169)

∂

∂e²k
D
H − eH0E

0
= −2f

³eζk´+∂f
³eζk´
∂e²k

"
2 (²k −e²k)− 1

V
X
q

Vq

³
f
³eζk+q´+ f ³eζk−q´´

#
.

(5.170)
Setting the sum of the last two equations to zero, we see that the coefficient of the
square bracket must vanish. Using Vq = V−q we then have

e²k = ²k − 1

V
X
q

Vqf
³eζk+q´ = ²k − Z d3k0

(2π)
3Vk−k0f

³eζk0´ (5.171)

e²k = ²k − R d3k0

(2π)3
4πe2

|k−k0|2
1

eβ(e²k0−µ)+1 (5.172)

As usual the chemical potential is determined by fixing the number of particles.
Before we evaluate this integral let us obtain this same result from the Green’s
function point of view.

Hartree-Fock from the point of view of Green’s functions and effective
medium theories

We want to do perturbation theory but using this time for the Hamiltonian

H = eH0 + ³H0 − eH0 + V ´ (5.173)

The unperturbed Hamiltonian is now eH0 and we assume that it takes the same
form as Eq.(5.162) above. In addition to the usual perturbation V , there is now
a translationally invariant one-body potential H0 − eH0. One determines the self-
energy in such a way that eH0 becomes the best “effective medium” in the sense
that to first order in

³
H0 − eH0 + V ´ the self-energy calculated in this effective

medium vanishes completely. This is illustrated in Fig.(5-23).
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q = 0

k’

k - k’

+ +

ε  − εk k
~

Σ   =~
q = 0

Figure 5-23 Effective medium point of view for the Hartree-Fock approximation. In
this figure, the propagators are evaluated with the effective medium eH0.
The so-called Hartree diagram (or tadpole diagram) with one loop does not

contribute because it is proportional to Vq=0 = 0. The Hartree term is in a sense
the classical contribution coming from the interaction of the electron with the
average charge density. Because of electroneutrality here it vanishes. The last
diagram on the right of the figure is the Fock term that comes from exchange and
is a quantum effect. Algebraically, Fig.(5-23) gives

eΣ = ²k −e²k +Σ(1) (k) = 0 (5.174)

Using the diagram rules to evaluate the exchange, or Fock, diagram Σ(1) (k) we
get a minus sign because we compute to first order and there is no fermion loop.
Furthermore, we have the eik

0
nη convergence factor. Hence, we obtain for Σ(1) (k)

Σ(1) (k) = −
Z

d3k0

(2π)
3T
X
ik0n

4πe2¯̄
k− k0¯̄2 eG0 (k0, ik0n) eik0nη (5.175)

that we can evaluate using our formula for Matsubara sums. Substituting back
into Eq.(5.174) we get precisely our Hartree-Fock result Eq.(5.172) obtained from
the variational principle.
To close this section, we note that there is another instructive way of rewriting

the last equation for Σ(1) (k) . Using Eq.(5.174) for e²k we can remove all reference
to e²k and write

Σ(1) (k) = − R d3k0

(2π)3
T
P
ik0n

4πe2

|k−k0|2
1

ik0n−(²k−µ)−Σ(1)(k)e
ik0nη (5.176)

This is as if the perturbation expansion for the full Green’s function, illustrated
by a thick arrow in Fig.(5-24), was written in terms of a perturbation series that
involves the full Green’s function itself. Iterating shows that in this approximation
we have a self-energy that resums the infinite subset of diagrams illustrated on
the bottom part of this same figure. One commonly says that all the “rainbow”
diagrams have been summed.In principle this Hartree-Fock Green’s function may
be used in further perturbative calculations. We just have to be careful not to
double-count the diagrams we have already included.

The pathologies of the Hartree-Fock approximation for the electron gas.

To evaluate our expression for the Hartree-Fock self-energy e²k = ²k + Σ
(1) (k)

Eq.(5.172) we need the chemical potential. As usual in the grand-canonical en-
semble, the chemical potential is determined by requiring that we have the correct
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k’

k - k’

+=
k k kk

= +Σ

+ +

Figure 5-24 Hartree-Fock as a self-consistent approximation for the Green’s function.
This self-consistent approximation is equivalent to a self-energy that sums all the
rainbow diagrams illustrated on the bottom part of the figure. The thick line is the
full Green’s function.

density. Let us suppose then that we have a density n. Then

n = 2

Z
d3k

(2π)3
T
X
ikn

eG0 (k, ikn) eiknη (5.177)

= 2

Z
d3k

(2π)3
1

eβ(²k+Σ
(1)(k)−µ) + 1

(5.178)

Let us focus on the zero temperature case. Then the Fermi function is a step
function and the last integral reduces to

n = 2

Z
d3k

(2π)3
θ (kF − |k|) (5.179)

where the chemical potential is given by

²kF +Σ
(1) (kF )− µ = 0 (5.180)

The equation Eq.(5.179) that gives us n tells us that kF is precisely the same as in
the non-interacting case. This is an elementary example of a much more general
theorem due to Luttinger that we will discuss in a later chapter. This theorem
says that the volume enclosed by the Fermi surface is independent of interactions.
Clearly, if µ0 is the value of the chemical potential in the non-interacting system,
then Σ(1) (kF )− µ = −µ0.
The integral to do for the Hartree-Fock self-energy is thus, at zero temperature

Σ(1) (k) = −
Z

d3k0

(2π)
3

4πe2¯̄
k− k0¯̄2 θ (kF − |k|) (5.181)

= −4πe
2

8π3

Z kF

0

(k0)2 dk0
Z 1

−1

2πd (cos θ)

k2 + (k0)2 − 2kk0 cos θ (5.182)

= −e
2

π

Z kF

0

k0
1

−2k ln
Ã¯̄̄̄
¯(k0 − k)2(k + k0)2

¯̄̄̄
¯
!
dk0 (5.183)

We evaluated the integral as a principal part integral because we have argued
that the potential should have no q = 0 component which means

¯̄
k− k0 ¯̄2 6= 0.

Pursuing the calculation, we have

Σ(1) (k) = −e
2

π
kF

·
1 +

1− y2
2y

ln

µ¯̄̄̄
1 + y

1− y
¯̄̄̄¶¸

; y ≡ k

kF
(5.184)
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The function Σ(1) (k) /
³
e2

π kF

´
is plotted in Fig.(??).

Σ(1) (k/kF ) /
³
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π kF

´ -2
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Plot of the Hartree-Fock self-energy at zero temperature.

Since limx→0 x lnx = 0, we have that

Σ(1) (kF ) = −e
2

π
kF (5.185)

The ratio of this term to the zeroth order term, namely the kinetic energy k2F /2m
is of order rs

∝ me
2kF
k2F

∝ 1

kFa0
∝ rs (5.186)

as can be seen using the definitions Eqs.(5.69)(5.72).
Up to here everything seems to be consistent, except if we start to ask about

the effective mass. The plot of the self-energy suggests that there is an anomaly
in the slope at y = 1 (or k = kF ). This reflects itself in the effective mass. Indeed,
using the general formula found in the previous chapter, Eq.(4.259)

m

m∗
= lim
k→kF

1 + ∂
∂ζk

ReΣR (k, Ek − µ)
1− ∂

∂ω ReΣ
R (k,ω)

¯̄
ω=Ek−µ

= 1 +
dk

dζk

∂Σ(1) (k)

∂k

¯̄̄̄
k=kF

(5.187)

we have

∂Σ(1) (k)

∂k

¯̄̄̄
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¶
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1−y

¯̄̄´i
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¯̄̄̄
¯̄
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(5.188)

The problem comes from ln (1− y) . Let us concentrate on the contributions pro-
portional to this term

d

dy

·µ
1

2y
− y
2

¶
ln (1− y)

¸
=

µ
− 1

2y2
− 1
2

¶
ln (1− y)

−
µ
1

2y
− y
2

¶
1

1− y (5.189)

As y → 1 we obtain a singularity from ln (0) = ∞. This corresponds to the
unphysical result m∗ = 0. Already an effective mass smaller than the bare mass
would require explanation since we expect that in general interactions will make
quasiparticles look heavier. But the result obtained here, m∗ = 0, is as close to
ridiculous as one can imagine.
The physical reason for the failure of Hartree-Fock is the following. It is correct

to let the electron have exchange interaction of the type included in rainbow
diagrams do, but it is incorrect to neglect the fact that the other electrons in
the background will also react to screen this interaction. We discuss this in more
details below.

SINGLE-PARTICLE PROPERTIES 181



5.4.2 Curing Hartree-Fock theory: screened interaction in the self-energy

In this subsection we present the solution to the failure of Hartree-Fock that was
found by Gell-Man and Brueckner[14], interpret the results, and compare with
experiments. In particular, we will recover theoretically the Fermi liquid regime,
compute the free energy and compare with experiment.

An approximation for
P
that is consistent with the Physics of screening

We have seen in the previous section Eq.(5.151) that the self-energy is related
to density fluctuations. More specifically, if we multiply the self-energy by the
Green’s function and take the trace, we should have the same thing basically as
we would by multiplying the density by the potential and taking the trace. This
is illustrated schematically for the Hartree-Fock approximation by the diagram
of Fig.(5-25). The diagram on the left is built from the rainbow self-energy of
Fig.(5-24) by multiplying it by a dressed Green’s function. The one on the right is
obtained by taking a single bubble with dressed propagators and multiplying by
a potential. The change of integration variables k− k0 = −q shows trivially that
the diagrams are identical. The extra term that appears on the right-hand side of
the relation between self-energy and density Eq.(5.151) is due to the fact that one
forces the Green’s functions to correspond to a given time order in the self-energy
calculation that is different from the one appearing naturally on the right-hand
side.

k’

k - k’

k

=

k+q

k

q

Figure 5-25 Approximation for the density fluctuations that corresponds to the
Hartree-Fock self-energy.

Remarque 95 Equality (5.151) for the Hartree-Fock approximation. Let us check
just the sums over Matsubara frequencies on both sides of Eq.(5.151) to see that
they are identical. First, the sum on the left hand-side.

T
X
ikn

T
X
ik0n

eiknη

ikn − ζk

eik
0
nη

ik0n − ζk0
= f (ζk) f (ζk0) (5.190)

While the sum on the right-hand side is

T
X
ikn

T
X
iqn

1

ikn − ζk

1

ikn + iqn − ζk0
(5.191)

= T
X
ikn

T
X
qn

·
1

ikn − ζk
− 1

ikn + iqn − ζk0

¸
1

iqn − ζk0 + ζk
(5.192)

= T
X
qn

f (ζk)− f (ζk0)
iqn − ζk0 + ζk

= − [f (ζk)− f (ζk0)]nB (ζk0 − ζk) (5.193)
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where we used, with nB the Bose function

T
X
qn

1

iqn − a = −nB (a) or − nB (a)− 1 (5.194)

The result of the sum depends on the convergence factor but the −1 in the second
possibility does not contribute once the sum over wave vectors are done. We are
thus left only with

− [f (ζk)− f (ζk0)]nB (ζk0 − ζk) = − eβζk0 − eβζk
(eβζk0 + 1) (eβζk + 1)

1

eβ(ζk0−ζk) − 1
= − eβζk

(eβζk0 + 1) (eβζk + 1)
(5.195)

= − (1− f (ζk)) f (ζk0) (5.196)

Eq.(5.190) and the last equation are not strictly equal and that is why it is necessary
to subtract n0 in Eq.(5.190).

Fig.(5-25) shows that the Hartree-Fock approximation corresponds to a very
poor approximation for the density fluctuations, namely one that has no screening,
and no plasma oscillation. Knowing that the RPA approximation for the density
has all the correct properties, it is clear that we should use for the self-energy the
expression appearing in Fig.(5-26). Indeed, in such a case, multiplying Σ by G

k’

k - k’

+ +

+ +      ...

Figure 5-26 Diagrammatic expression for the self-energy in the RPA approximation.

gives a a result, illustrated in Fig.(5-27) that does correspond to multiplying the
RPA expression for the density Fig.(5-18) by Vq and summing over q. These are
the ring diagrams.
Using Feynman’s rules, the corresponding analytical expression is

ΣRPA (k,ikn) = (5.197)

−
Z

d3q

(2π)
3T
X
iqn

Vq
1 + Vqχ0nn (q,iqn)

G0 (k+ q, ikn + iqn)(5.198)

= −
Z

d3q

(2π)
3T
X
iqn

Vq
ε (q, iqn)

G0 (k+ q, ikn + iqn) (5.199)

Comparing with the Hartree-Fock approximation Eq.(5.176) the differences here
are that a) we do not have self-consistency, b) more importantly, the interaction
is screened. This is illustrated diagrammatically in Fig.(5-28) which is analogous
to the diagram for the Hartree-Fock approximation Fig.(5-24) but with a screened
interaction and only the first rainbow diagram, without self-consistency.
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+ +

+ +      ...

Figure 5-27 Ring diagrams for ΣG in the RPA approximation. The same diagrams
are used for the free energy calculation.

=Σ

= +

Figure 5-28 RPA self-energy written in terms of the screened interaction.

Remarque 96 If, instead of summing the whole series in Fig.(5-26) we had
stopped at any finite order, we would have had to deal with divergent integrals.
Indeed, consider expanding the RPA susceptibility to first order in Eq.(5.197).
This corresponds to the diagram with one bubble. The corresponding expression isZ

d3q

(2π)
3T
X
iqn

V 2qχ
0
nn (q,iqn)G0 (k+ q, ikn + iqn)

which is divergent since V 2q is proportional to q
−4 while the integral over q is in

three dimensions only. Higher order bubbles are worse.

Before we extract a few results analytically from this RPA self-energy, let us
look at numerical evaluations of the corresponding integrals.

Single-particle spectral weight

The real-part and the absolute value of the imaginary part of the RPA self-energy
at zero temperature are plotted in Fig.(5-29) as a function of frequency for three
different wave vectors. In the Hartree-Fock approximation, the self-energy was
completely frequency independent. The result here is quite different. There are
several points worth mentioning.

• ImΣ (k,ω = 0) = 0 for all wave vectors. This is true only at zero temper-
ature. This property will play a key role in the derivation of Luttinger’s
theorem later.

• The straight line that appears on the plots is ω−εk. The intersection of this
straight line with ReΣ , which is defined on the figure to contain the chemical
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Figure 5-29 Real and imaginary part of the RPA self-energy for three wave vectors,
in units of the plasma frequency. The chemical potential is included in ReΣ. The
straight line that appears on the plots is ω − εk. Taken from B.I. Lundqvist, Phys.
Kondens. Mater. 7, 117 (1968). rs = 5?

Figure 5-30 RPA spectral weight, in units of the inverse plasma frequency. Taken
from B.I. Lundqvist, Phys. Kondens. Mater. 7, 117 (1968).
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potential, corresponds (in our notation) to the solution of the equation

ω − εk = ReΣ (k,ω)− µ (5.200)

As we argued in the previous chapter Eq.(4.246), this determines the position
of maxima in the spectral weight,

A (k,ω) = −2 ImGR (k,ω) (5.201)

=
−2 ImPR (k,ω)³

ω − ζk −Re
PR

(k,ω)
´2
+
³
Im
PR

(k,ω)
´2 (5.202)

maxima that we identify as quasiparticles. Let us look at the solutions near
ω = 0. These correspond to a peak in the spectral weight Fig.(5-30). At the
Fermi wave vector, the peak is located precisely where the imaginary part
of the self-energy vanishes, hence the peak is a delta function. On the other
hand, away from k = kF , the maximum is located in a region where the
imaginary part is not too large, hence the quasiparticle has a finite lifetime.
Recall that to have the quasiparticle shape described in the previous chapter
Eq.(4.251),

A (k,ω) ≈ 2πZk
"
1

π

Γk (ω)

(ω −Ek + µ)2 + (Γk (ω))2
#
+ inc (5.203)

it is necessary that at the crossing point, the slope of ReΣR (k,ω) be negative
because it is necessary that

Zk =
1

1− ∂
∂ω ReΣ

R (k,ω)
¯̄
ω=Ek−µ

≥ 0 (5.204)

if the previous formula is to make sense. The value of ZkF , namely 0.6, is
indicated on this plot.

• From the previous discussion, we see that the two maxima away from ω = 0
at k = kF do not correspond to quasiparticle solutions. They simply come
from large scattering rates ImΣR.

• For the figure on the right, k = 1.4kF , the peak nearest ω = 0 corresponds
to a quasiparticle solution. Note however that for wave vectors so far from
the Fermi surface, the width of the peak starts to be quite a bit larger. The
maxima further away all occur in regions where ImΣR is large.

• For k = 0.6kF , there seems to be an additional quasiparticle solution, namely
a solution where ∂

∂ω ReΣ
R is negative and ImΣR is not too large, located

at an energy ωp below the main quasiparticle energy. Since the free-electron
band is bounded from below, ImΣR vanishes at sufficiently negative fre-
quency, allowing a new solution to develop when interactions are sufficiently
strong. This solution seems to be the analog of a Hubbard band, to be
discussed later.

Physical interpretation of
P00

In this section, we write the imaginary part of the self-energy in a form that is
easy to interpret physically. The evaluation in the Fermi-liquid limit is given in
the following subsection. Here we want to first show that the imaginary part of
the self-energy defined by

ΣR (k,ω) = Σ0 (k,ω) + iΣ00 (k,ω) (5.205)

186 THE COULOMB GAS



may be written in the form

Σ00 (k,ω) = − m
2|k|

R
d2q⊥
(2π)2

R
dω0
π [nB (ω

0) + f (ω + ω0)]V 2qχ00nn
¡
q⊥, qk,ω0

¢
(5.206)

where qk is the solution of the equation

|k|
m
qk +

q2k
2m

= −
·
ω + ω0 −

µ
k2

2m
− µ+ q2⊥

2m

¶¸
(5.207)

Proof: It is preferable to first rewrite the RPA expression Eq.(5.197) in the fol-
lowing form

ΣRPA (k,ikn) = −
Z

d3q

(2π)3
T
X
iqn

Vq

·
1− Vqχ

0
nn (q,iqn)

1 + Vqχ0nn (q,iqn)

¸
G0 (k+ q, ikn + iqn)

(5.208)

= ΣHF (k) +

Z
d3q

(2π)
3T
X
iqn

£
Vqχ

RPA
nn (q,iqn)Vq

¤G0 (k+ q, ikn + iqn)
(5.209)

The first term, the Hartree-Fock contribution, is the only one that survives
at infinite frequency. The imaginary part comes only from the second term.
It contains a quantity in square brackets that looks like two interaction ver-
tices, Vq coupling to a density propagator χRPAnn (q,iqn). When we consider
interactions with other types of excitations, including with phonons, this
form will reoccur and will be more easily susceptible to generalizations. To
find the imaginary part, let us concentrate on this last expression and use
the spectral representation for χRPAnn . We then have

ΣRPA (k,ikn)−ΣHF (k) =
Z

d3q

(2π)3

Z
dω0

π
T
X
iqn

·
Vq

χ00nn (q,ω
0)

ω0 − iqn Vq

¸
1

ikn + iqn − ζk+q

(5.210)
We cannot perform the analytical continuation ikn → ω+ iη before we have
performed the sum over iqn because, except for iqn = 0, this would neces-
sitate going through the poles at ω = iqn. To do the sum over Matsubara
frequencies, we do the partial fraction decomposition as usual

−T
X
iqn

1

iqn − ω0
1

ikn + iqn − ζk+q
(5.211)

= −T
X
iqn

·
1

iqn − ω0
− 1

ikn + iqn − ζk+q

¸
1

ikn + ω0 − ζk+q
(5.212)

=
£
nB (ω

0) + f
¡
ζk+q

¢¤ 1

ikn + ω0 − ζk+q
(5.213)

Note that for any ikn, the sum ikn+ iqn is a fermionic Matsubara frequency
when iqn is a bosonic one. That is why we obtained a Fermi distribution in
the last term. Substituting back into our expression for the self-energy, the
analytic continuation ikn → ω + iη can be done and we obtain

ΣR (k,ω)−ΣHF (k) =
Z

d3q

(2π)3

Z
dω0

π

£
nB (ω

0) + f
¡
ζk+q

¢¤ Vqχ
00
nn (q,ω

0)Vq
ω + iη + ω0 − ζk+q

(5.214)
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The imaginary part is thus

Σ00 (k,ω) = −π
Z

d3q

(2π)
3

Z
dω0

π
[nB (ω

0) + f (ω + ω0)]V 2qχ
00
nn (q,ω

0) δ
¡
ω + ω0 − ζk+q

¢
(5.215)

Defining q|| by the direction parallel to the wave vector k and calling q⊥ the
other directions, the integral over q|| can be performed. We obtain, assuming
that we are in a region of frequency where the delta function has a solution,
the desired result Eq.(5.206)

Suppose ω > 0. In the zero temperature limit, f (ω + ω0) = θ (−ω − ω0) and
nB (ω

0) = −θ (−ω0) so that the integral over ω0 extends over the interval −ω <
ω0 < 0. At low temperature, the contributions to Σ00 Eq.(5.206) will come mostly
from this same frequency intervel since this is where the combination nB (ω0) +
f (ω + ω0) 6= 0. This immediately allows us to understand why the imaginary
part of the self-energy in Fig.(5-29) above starts to be large when the frequency
becomes of the order of the plasma frequency. This is only when ω is that large
that the contributions from ω0 ≈ ωp in χ00nn can start to contribute. This is where
the quasiparticles can start to absorb or emit plasmons.

Remarque 97 Vanishing of Σ00 at zero temperature: Our general formula for
the imaginary part Eq.(5.206) tells us that at zero temperature Σ00 (k,ω = 0) = 0
for all wave vectors, as we have seen in Fig.(5-29). Mathematically, this is so
because limT→0 [nB (ω0) + f (ω0)] = 0 for all ω0. Physically, it is because phase
space vanishes when we sit right at the chemical potential (ω = 0) .

It is easier to interpret the physical meaning of the imaginary part when we
rewrite the occupation factors in square brackets as follows

nB (ω
0)+ f (ω + ω0) = f (ω + ω0) (1 + nB (ω0))+nB (ω0) (1− f (ω + ω0)) (5.216)

As in the case of density fluctuations before, it is tempting to give the following
interpretation of the lifetime. Take the RPA self-energy diagram appearing on the
first line of Fig.(5-28). If we cut it in two by a vertical line, then there will be
a non-zero contribution to the lifetime if energy is conserved in the intermediate
state. The intermediate state here represents a quasiparticle interacting with a
density fluctuation that is bosonic. Using the delta function, our expression for
Σ00 (k,ω) in Eq.(5.215) becomes

Σ00 (k,ω) = −
Z

d3q

(2π)3
£
nB
¡
ζk+q − ω

¢
+ f

¡
ζk+q

¢¤
V 2q χ

00
nn

¡
q, ζk+q − ω

¢
(5.217)

The physical interpretation becomes clearer when the thermal occupation factors
are rewritten as follows

nB
¡
ζk+q − ω

¢ ¡
1− f ¡ζk+q¢¢+ f ¡ζk+q¢ ¡1 + nB ¡ζk+q − ω

¢¢
(5.218)

= nB
¡
ζk+q − ω

¢ ¡
1− f ¡ζk+q¢¢− f ¡ζk+q¢nB ¡ω − ζk+q

¢
(5.219)

For an incident energy ω and momentum k, one sees that the first occupation
factors may be interpreted as a decay caused by the absorbtion of a phonon of
momentum q and energy ζk+q − ω that scatters the particle into an empty state
of energy ζk+q. The second set of occupation factors may be interpreted as the
absorption of a phonon momentum q and energy ω− ζk+q by a particle of energy
ζk+q that repopulates the state of energy ω and momentum k (hence the minus
sign). This last process can equivalently be looked at as the recombination of the
incident particle with a hole followed by the emission of a phonon.(?)
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Fermi liquid results

Perhaps the best known characteristic of a Fermi liquid is that at frequencies and
temperatures much smaller than the Fermi energy, Σ00R (kF ,ω;T = 0) ∝ ω2 and
Σ00R (kF ,ω = 0;T ) ∝ T 2. To recover this result, valid far from phase transitions,
we start from the above expression Eq.(5.206) for Σ00 but we evaluate it at k = kF
and use vF ≡ kF /m so that

Σ00 (kF ,ω) = − 1
2vF

R
d2q⊥
(2π)2

R
dω0
π [nB (ω

0) + f (ω + ω0)]V 2q χ00nn
¡
q⊥, qk,ω0

¢
(5.220)

where qk is obtained from the solution of

vF qk +
q2k
2m

= −
·
ω + ω0 − q2⊥

2m

¸
(5.221)

The key to understanding the Fermi liquid regime is in the relative width in
frequency of χ00nn (q,ω0) /ω0 vs the width of the combined Bose and Fermi functions.
In general, the function nB (ω0) + f (ω + ω0) depends on ω0 on a scale max (ω, T )
while far from a phase transition, χ00nn (q,ω0) /ω0 is independent of frequency at
low frequency.

Proof: as we can see from the explicit expression for the imaginary part of χ00nn
Eq.(5.106)

lim
ω→0

ImχRnn(q,ω) = lim
ω→0

Imχ0Rnn(q,ω)

(1 + VqReχ0Rnn(q, 0))
2 (5.222)

it suffices that the Lindhard function Imχ0Rnn(q,ω) has the property that
Imχ0Rnn(q,ω)/ω is independent of frequency at low frequency. As expected
from the fact that Imχ0Rnn(q,ω) is odd in frequency, it turns out that Imχ0Rnn(q,ω)
is indeed linear in frequency at low frequency, which proves our point. The
linearity can be explicitly checked from our previous results Eqs.(5.102) and
(5.99).

Hence, at low frequency, we can assume that χ00nn (q,ω0) /ω0 is independent of
frequency in the frequency range over which n (ω0) + f (ω + ω0) differs from zero.
Also, V 2q χ

00
nn (q,ω

0) /ω0 depends on wave vector over a scale that is of order qF as
we can see from Fig.(5-20). Hence, we can neglect the ω and ω0 dependence of the
solution for qk in Eq.(5.221) when we substitute it in our expression for Σ00. One
then finds

Σ00 (kF ,ω) ' −A(kF )2vF

R
dω0
π [n (ω0) + f (ω + ω0)]ω0 = −A(kF )4vF

h
ω2 + (πT )2

i
(5.223)

where the substitution x = eβω allowed the integral to be done exactly[15] and
where

A (kF ) ≡
Z
d2q⊥
(2π)2

lim
ω0→0

V 2qχ
00
nn

¡
q⊥, qk (q⊥, vF ) ;ω0

¢
ω0

(5.224)

The presence of V 2q does not give rise to problems in the integral over q⊥ near
q = 0 because in this region the contribution is canceled by V 2q that appears in
the denominator of the RPA susceptibility Eq.(5.222). The above result Eq.(5.223)
for Σ00 is the well known Fermi liquid result.
There are known corrections to the Fermi liquid self-energy that come from the

non-analytic ω0/vF q behavior of χ00nn (q,ω0) /ω0 near q = 0. In three dimensions[16]
this non-analyticity leads to subdominant ω3 lnω corrections, while in two dimen-
sions it leads to the dominant ω2 lnω behavior.[17][18]
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Remarque 98 Relevance of screened interaction to low-frequency Physics near
the Fermi surface: It can clearly be seen from the above derivation that it is the
low-frequency limit of the screened interaction that gives rise to the damping near
the Fermi surface. This is a key result. If we are interested in properties near the
Fermi surface, screened interactions suffice.

We now just quote without proof some of the results of further calculations
of Fermi liquid parameters. The solution of the quasiparticle equation Eq.(5.200)
gives

Ek = εk − 0.17rs (ln rs + 0.2) kFk
2m

+ cst (5.225)

The effective mass appearing in this expression is now obviously finite and given
by

m∗ =
m

1− 0.08rs (ln rs + 0.2) (5.226)

If we evaluate the scattering rate for ω = Ek − µ we find

Γk (Ek − µ) = 0.25r1/2s

(k − kF )2
2m

(5.227)

Quinn and Ferrell[19] write the following physically appealing form

Γk (ζk)Z
−1
k =

√
3π2

128
ωp

µ
ζk
EF

¶2
(5.228)

The scattering rate is proportional to the plasma frequency, but reduced by an
important phase space factor.
Fig.(5-31) gives the value of the Σ0 and Σ00 evaluated at the frequency corre-

sponding to the quasiparticle position. The important point is that the real-part of
the self-energy is weakly wave vector dependent up to about k = 2kF . The imagi-
nary part on the other hand vanishes as expected on the Fermi surface, while away
from it remains relatively small on the scale of the Fermi energy. This justifies
a posteriori the success of the free electron picture of solids. Note however that
states far from the Fermi surface do have a lifetime, contrary to the predictions of
band structure calculations.

Remarque 99 These results were obtained in the zero-temperature formalism
where by construction the imaginary part of the calculated Green’s function is
equal to the imaginary part of the retarded self-energy above the Fermi surface and
to the imaginary part of the advanced self-energy below the Fermi surface. This
explains the sign change on the figure.

Free energy

Finally, we use our coupling-constant integration formula Eq.(5.155). In the zero
temperature limit, there will be no contribution from entropy and we will obtain
the ground state energy in the RPA approximation

ERPATot (T = 0) = lim
T→0

Ω = lim
T→0

−T ln
Y
k,σ

¡
1 + e−βζk

¢ (5.229)

+
V
2

Z 1

0

dλ

λ

*
λ

Z
d3q

(2π)3
Vq

TX
iqn

χnn (q, iqn)− n0
+

λ


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Figure 5-31 Real and imaginary parts of the self-energy of the causal Green’s
function in the zero-temperature formalism. From L. Hedin and S. Lundqvist, Solid
State Physics 23, 1 (1969).

We have for the sum over Matsubara frequencies

T
X
iqn

χnn (q, iqn) = T
X
iqn

Z
dω0

π

χ00nn (q,ω0)
ω0 − iqn (5.230)

=

Z
dω0

π
nB (ω

0)χ00nn (q,ω
0) (5.231)

In the zero temperature limit,

lim
T→0

Z
dω0

π
nB (ω

0)χ00nn (q,ω
0) = −

Z 0

−∞

dω0

π
χ00nn (q,ω

0) (5.232)

=

Z ∞
0

dω0

π
χ00nn (q,−ω0) (5.233)

= −
Z ∞
0

dω0

π
χ00nn (q,ω

0) (5.234)

so that the expression for the ground state energy becomes

ERPATot (T = 0)

V (5.235)

= 2

Z
k<kF

d3k

(2π)
3

k2

2m
+
V
2

Z
d3q

(2π)
3

Z 1

0

dλ

λ
λVq

·
− Im

Z ∞
0

dω0

π

χ0Rnn (q,ω
0)

1 + λVqχ0Rnn (q,ω
0)
− n0

¸
Note that we have replaced everywhere Vq by λVq as prescribed in the coupling
constant integration trick.

Remarque 100 Role of the coupling constant integration from the point of view
of diagrams: By expanding the RPA expression, we see that what this coupling
constant integration trick does, is give a factor 1/n in front of the corresponding
term of order n in the interaction. As mentioned earlier, if we had developed
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Feynman rules directly for the free energy instead of using the coupling constant
trick, we would have written down closed loop diagrams such as those of Fig.(5-27)
and modified Feynman’s rules to add the rule that there is a factor 1/n for every
topologically different diagram of order n.

The coupling constant integration is easy to performZ 1

0

dλ

λ
λVq

·
− Im

Z ∞
0

dω0

π

χ0Rnn (q,ω
0)

1 + λVqχ0Rnn (q,ω
0)
− n0

¸
= −Vqn0 −

Z ∞
0

dω0

π
Im
©
ln
£
1 + Vqχ

0R
nn (q,ω

0)
¤ª

(5.236)

The rest of the calculation is tedious. One finds[20]

ERPATot (T = 0)

N
=
2.21

r2s
− 0.916

rs
+ 0.0622 ln rs − 0.142 +O (rs, rs ln rs) (5.237)

The first term is the kinetic energy, the second the contribution from the Fock (ex-
change) diagram while the rest is the so-called correlation energy, namely every-
thing beyond Hartree-Fock.

Comparison with experiments

We are finally ready to compare the predictions of this formalism to experiments.
The results shown in the present section are taken from Ref.[21].
The first quantity that comes to mind to compare with experiment is the ef-

fective mass. This quantity can in principle be obtained from cyclotron resonance
or from specific heat measurements. It turns out however that the theoretical
prediction for m∗/m differs from unity by only about 10%. But what makes com-
parisons with experiment for this quantity very difficult is that there are two other
contributions to the effective mass in real materials. First there are band structure
effects. These are small in sodium but large in lithium and many other metals. The
second additional contribution to the effective mass comes from electron-phonon
interactions. We will see in the next chapter that these effects can be quite large.
So we need to wait.
A striking prediction of many body theory is that the size of the jump in

momentum distribution at the Fermi level at zero temperature should be quite
different from unity. Fig.(5-32) illustrates the prediction for sodium at rs = 3.97.
The following Table of expected jumps is from Hedin[13].

rs ZRPA
0 1
1 0.859
2 0.768
3 0.700
4 0.646
5 0.602
6 0.568

(5.238)

Unfortunately even through photoemission we do not have access directly to this
jump in three dimensional materials, as we discussed in the previous chapter.
Another probe that gives indirect access to this jump is Compton scattering. In
Compton scattering, photons are scattered inelastically from all the electrons in the
solid. The contribution from conduction electrons can be extracted by subtraction.
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Figure 5-32 Momentum density in the RPA approximation for an electron gas with
rs = 3.97. From E. Daniel and S.H. Vosko, Phys. Rev. 120, 2041 (1960).

In the so-called “sudden approximation”, the cross section for photon scattering
is proportional to

d2σ

dωdΩ
∝
Z
d3knkδ (ω + εk − εk+q) (5.239)

where ω is the energy and q the wave vector transferred by the photon. Changing
to polar coordinates, we see that

d2σ

dωdΩ
∝

Z
k2dkd (cos θ)nkδ

µ
ω − εq − kq

m
cos θ

¶
(5.240)

∝
Z
kdk

m

q
nkθ (k − |Q|) (5.241)

where
Q ≡ m

q
(εq − ω) (5.242)

In terms of Q, we have
d2σ

dωdΩ
∝ 1
q

Z ∞
|Q|
nkkdk (5.243)

For free electrons, this gives

d2σ

dωdΩ
∝ J (Q) ∝ 1

2q

¡
k2F −Q2

¢
θ (kF −Q) (5.244)

In this case then, the slope is discontinuous at kF = Q as illustrated on the left of
Fig.(5-33). In the interacting case, the change in slope at kF remains theoretically
related to Z. Also, one expects a signal above kF as illustrated on the left of the
figure. Experimental results for sodium, rs = 3.96, are given on the right of the
figure along with the theoretical prediction. This metal is the one closest to the
free electron model. The experimentalists have verified that Q is a good scaling
variable, in other words that the cross section depends mainly on Q. Also, the
existence of a tail above kF is confirmed. However, the agreement with theory is
not excellent.
The experimental results for the mean free path are more satisfactory. Let the

mean free path `k be defined by

1

`k
=
Γk
vk
=

1

τkvk
= − 2

vk
ImΣ (k,ζk) (5.245)
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Figure 5-33 a) Dashed line shows the momentum distribution in Compton scattering
for the non-interacting case while the solid line is for an interacting system. b)
Experimental results in metallic sodium compared with theory, rs = 3.96. Eisenberger
et al. Phys. Rev. B 6, 3671 (1972).

Remarque 101 The factor of 2 is not so easy to explain here, except to say that
if we look at a density perturbation, the scattering rate is twice that appearing in
the single-particle Green functions. We should discuss this in more detail in the
section on Boltzmann transport.

Fig.(5-34) presents the results of experiments on aluminum, rs = 2.07. If one
takes into account only scattering by plasmons one obtains the dashed line. The
full RPA formula, including the contribution from the particle-hole continuum, was
obtained numerically by Lundqvist for rs = 2 and is in excellent agreement with
experiment. We do not show the cross section for inelastic electron scattering since,
as expected from the fact that it is proportional to Im

¡
1/εL

¢
, its only prominent

feature at low momentum transfer is the plasma resonance that is much larger
than the particle-hole continuum, as we saw in the theoretical plot of Fig.(5-21).

5.5 General considerations on perturbation theory
and asymptotic expansions

It is striking that in the end the RPA results, such as those for the ground state
energy Eq.(5.237), the effective mass Eq.(5.226) or the scattering rate Eq.(5.227)
are non-analytic in rs near rs = 0. This often occurs in perturbation theory.
In fact, the perturbation expansion is at best an asymptotic expansion since for
attractive potential at zero temperature the ground state is a superconductor and
not a Fermi liquid. In other words, rs = 0 is a point of non-analyticity since for
rs < 0 there is symmetry breaking. The following simple example taken from
Ref.[23] is instructive of the nature of asymptotic expansions.
Suppose we want to evaluate the following integral

Z (g) =

Z
dx√
2π
e−

x2

2 − g
4x

4

(5.246)
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Figure 5-34 Mean free path of electrons in aluminum (rs = 2.07) as a function of
energy above the Fermi surface. Circles are experimental results of J.C. Tracy, J. Vac.
Sci. Technol. 11, 280 (1974). The dashed line with symbols X was obtained with
RPA for rs = 2 by B.I. Lundqvist Phys. Status Solidi B 63, 453 (1974).

This is an example where the integral does not exist for g < 0 but where we will
try nevertheless to expand in powers of g around g = 0. If we do this then,

Z (g) =
∞X
n=0

gnZn (5.247)

where

Zn =
(−1)n
4nn!

Z
dx√
2π
e−

x2

2 x4n (5.248)

=
(−1)n
4nn!

(4n− 1)!!
2n

(5.249)

with

(4n− 1)!! ≡ (4n− 1) (4n− 3) (4n− 5) . . . 1 (5.250)

=
(4n)!

(4n) (4n− 2) (4n− 4) . . . 2 (5.251)

=
(4n)!

2n (2n)!
(5.252)

Hence, a bound for the error is

Zn =
(−1)n
16nn!

(4n)!

(2n)!
(5.253)

Using Stirling’s formula,
n! ≈

√
2πnn+1/2e−n
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we are left with

Zn ∝ 1√
nπ

µ−4n
e

¶n
(5.254)

The value of each successive term in the power series is illustrated in Fig.(5-35).
Clearly, whatever the value of g, if n is sufficiently large, the higher order terms
start to be larger than the low order ones. This is a characteristic of an asymptotic
series.

Figure 5-35 Asymptotic expansion of Z (g) for different values of g. The residual
error Rnis plotted for the half-integer values. From J.W. Negele and H. Orland, op.
cit. p.56

We can even evaluate the error done when the series is stopped at order n. Let
this error be

Rn =

¯̄̄̄
¯Z (g)−

nX
m=0

gmZm

¯̄̄̄
¯ (5.255)

=

Z
dx√
2π
e−

x2

2

¯̄̄̄
¯e− g

4x
4 −

nX
m=0

(−1)m
4mm!

(gx)
4m

¯̄̄̄
¯ (5.256)

=

Z
dx√
2π
e−

x2

2

¯̄̄̄
¯
∞X

m=n+1

(−1)m
4mm!

(gx)4m
¯̄̄̄
¯ (5.257)

The series in the absolute value is an alternating series and it converges. Hence,
an upper bound for this series is the value of the first term, as may be seen from
the fact that

an+1 − (an+2 − an+3)− (an+4 − an+5)− . . . ≤ an+1 (5.258)

Hence,
Rn ≤ gn+1 |Zn+1| (5.259)

We also plot the error in Fig.(5-35). Clearly, the error starts to grow eventually.
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Despite this terrible behavior of asymptotic expansions they can be quite useful
in practice. For example, for g = 0.01, the precision is 10−10 after 25 terms. This
may be estimated by noting from Eq.(5.254) for the asymptotic value of Zn that
gnZn starts to grow when 4gn becomes of order unity. The minimum error is
then estimated with our formula for Rn. Even quantum electrodynamics is an
asymptotic expansion, but the expansion parameter is α = 1/137. It is thus an
extremely good expansion parameter. Sometimes the asymptotic series may be
resumed, at least partially as in RPA, or mathematical techniques, such as Borel
summation, may be used to extract the non-analytic behavior.

5.6 Beyond RPA: skeleton diagrams, vertex func-
tions and associated difficulties.

It is quite difficult to go beyond RPA while preserving important physical prop-
erties, such as conservation laws, or the f−sum rule. We can illustrate this by
the following simple example. The Lindhard function with bare Green’s function
satisfies conservation laws since it is the charge susceptibility of free electrons.
Suppose that in the presence of interactions, we succeed in computing the exact
one-body Green’s function. Then, it is tempting to compute the density fluctua-
tions using a bubble made up of the exact Green’s functions that we just obtained.
For one-body interactions, as for example in the impurity problem, this would be
the exact result, as we saw in a previous chapter. However, in the case where
two-body interactions are present, this becomes an approximation that violates
charge conservation.
To see this, we will show that the following consequence of charge conservation

is violated[25]
χnn (q = 0,iqn) = 0 ; if iqn 6= 0 (5.260)

To check that this last equation is a consequence of charge conservation, note that
at q = 0 the density operator is the number operator, an operator that commutes
with the Hamiltonian. This means that χnn (q = 0,τ) is independent of imaginary
time, which implies that its only non-vanishing Matsubara frequency component
is qn = 0. Using the spectral representation for the Green’s function and inversion
symmetry in the Brillouin zone, our single dressed bubble calculation for χnn on
the other hand will give us the following expression

χ̃0 (q, iqn) =
2

N

X
k

Z
dω

2π

Z
dω0

2π
A (k,ω)A (k+ q,ω0)

(ω − ω0) (f (ω0)− f (ω))
(ω − ω0)2 + q2n

.

(5.261)
When there are no interactions and A (k,ω) is a delta function, it is clear that
our exact result Eq.(5.260) is satisfied since only ω = ω0 will contribute. Oth-
erwise, the integrand is positive definite so the result is different from zero. To
see that knowing the exact one-body Green’s function in an interacting system is
not enough to know the density fluctuations, it suffices to return to Fig.(5-17).
The diagrams on the bottom may be accounted for by using dressed propagators,
but the diagrams on the first line cannot be. They enter the general category of
vertex corrections, namely diagrams that cannot be included by simply dressing
propagators.
To see another example of how apparently reasonable improvements over RPA

may lead to miserable failures consider the following reasoning. We saw from RPA
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that there are quasiparticles near the Fermi surface. Also, the low-frequency and
small momentum density fluctuations are determined mainly by quantities near
the Fermi surface, as one can check from the Lindhard function. It would thus
be tempting, in a next iteration, to compute the bubbles entering RPA with a
renormalized propagator

Zk
ikn −Ek + µ (5.262)

In practice Zk is in the range 0.5 to 0.7 which means that the dielectric constant
might change from 1−VqGG to 1− 1

4VqGG. That would spoil the agreement that
we had with experiment.
Another way to approach the problem of going beyond the simple perturba-

tive approaches is to start from exact reformulations of perturbation theory. Other
useful guides when one tries to push beyond the simplest perturbative approaches
are conservation laws, known as Ward identities, as well as sum rules and other
exact results such as the relation between ΣG and density fluctuations that we
have introduced in the present chapter. We will come back on these general con-
siderations in a later chapter. For the time being we give two ways to reformulate
the diagrammatic expansion in a formally exact way.
The first reformulation is illustrated in Fig.(5-36). The propagators are fully

dressed. The interaction line must also be dressed, as illustrated on the second
line. The bubble appearing there is called the polarization propagator since it
plays the role of the polarizability in the definition of the dielectric constant. It
is defined as the set of all diagrams that cannot be cut in two pieces by cutting
a single interaction line. The polarization propagator has a bubble with dressed
propagators but this is not enough. We must also include the so-called vertex
corrections. These vertex corrections, represented by the triangle, are illustrated
by the first few terms of their diagrammatic expansion on the last line of the figure.
A vertex correction (irreducible) cannot be cut in two pieces by cutting either a
propagator or an interaction line, and it is attached to the outside world by three
points, two of which are fermionic, and one of which is bosonic (i.e. attaching
to an interaction line). Both in the polarization bubble and in the self-energy,
only one of the vertices is dressed, otherwise that would lead to double counting
as one can easily check by writing down the first few terms. One can also check
by writing down a few terms that vertex corrections on the Hartree diagrams
are indistinguishable from self-energy effects so they are included in the dressed
propagator.
We will see in the next chapter that the theory for electron-phonon interactions

may be written precisely in the form of Fig.(5-36) except for the fact that the inter-
action line becomes replaced by a phonon propagator. In addition a key theorem,
that we shall prove, the so-called Migdal theorem, shows that for electron-phonon
interactions vertex corrections may be neglected. The first two lines of Fig.(5-
36) then form a closed set of equations. Migdal’s theorem is behind the success
of electron-phonon theories, in particular the theory of superconductivity in its
Eliashberg formulation.
For pure electron-electron interactions, vertex corrections may not be ne-

glected. Non-diagrammatic ways of approaching the problem, such as that of
Singwi[24], have proven more successful. We will show algebraically in a later
chapter that perturbation theory for electron-electron interactions may also be
formulated in a way that is diagrammatically equivalent to Fig.(5-37). That is
our second exact reformulation of perturbation theory[25] (there are others). The
triangle now represents the fully reducible vertex, namely diagrams that can be
cut in two by cutting interaction lines or particle-particle pairs or particle-hole
pairs in a different channel. (We will discuss the notion of channel in more de-
tails in a later chapter). The box on the other hand represents all terms that
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Figure 5-36 Exact resummation of the diagrammatic perturbation expansion.
The dressed interaction on the second line involves the one-interaction irreducible
polarisation propagator. The last line gives the first terms of the diagrammatic
expansion for the vertex corrections.

are irreducible with respect to cutting a particle-hole pair of lines in the chosen
channel. To be complete we would need to give a diagrammatic expansion for the
square box but, in practice, the way to make progress with this approach is to
proceed non-perturbatively, namely to parametrize the box in such a way that it
can later be determined by using sum rules and various other exact constraints of
many-body theory, such as the Pauli principle and conservation laws. This will be
discussed in a later chapter.
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Figure 5-37 Exact representation of the full perturbation series. The triangle now
represents the fully reducible vertex whereas the box represents all terms that are
irreducible with respect to cutting a particle-hole pair of lines in the indicated channel.
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