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I. INTRODUCTION

A. Overview

This is the user guide for the program ΩMaxEnt, a tool to perform the analytic con-

tinuation of Matsubara data using the maximum entropy approach. It can treat fermionic

or bosonic data, given as a function of Matsubara frequency or imaginary time, with

either a diagonal or general covariance matrix. It is sufficiently automated to perform

batch calculations with large data sets. The output of the program is the retarded real

frequency function corresponding to the data, with positive spectral function A(ω) =

−2Im[GR(ω)] in the fermionic case, and positive function σ(ω) = −2Im[GR(ω)]/ω in

the bosonic case.

Correlation functions that do not have a spectral function with a definite sign can

also be obtained using the method described in appendix C. Examples of application

of that method can be found in Refs. [1] and [2]. This calculation is automated in

the ΩMaxEnt/TRIQS interface, the python interface between ΩMaxEnt and the TRIQS

library[3].

A specific feature of ΩMaxEnt is the method it uses to find the optimal value of the

entropy weight parameter α. It does not use either the classic approach or Bryan’s, but

instead locates the range of α where only information is fitted and the range where noise

is also fitted. The optimal value is then chosen in the crossover between the two regimes.

The program also offers useful graphical diagnostic tools for assessing the quality of the

results.

In addition, the program uses a cubic spline to model the spectral function and uses

the Matsubara frequency spectral representation of the Green function instead of the

imaginary time version. Those two choices allow to compute the Green function cor-

responding to a given spectral function with high accuracy by a piecewise analytical

integral. The use of a non-uniform grid, combined with a hybrid spline cubic in fre-

https://triqs.github.io/omegamaxent_interface
https://triqs.github.io/triqs/latest/
https://triqs.github.io/triqs/latest/
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quency ω at low |ω| and cubic in 1/(ω − ω0µ) (see section II E for more details) at high

|ω|, and contraints on moments instead of a high Matsubara frequency cutoff also allows

to improve calculation efficiency without losing accuracy. Basically, the code is opti-

mized to ensure that the errors in the results comes from the errors in the data and not

from numerical approximations.

You can obtain results by providing only a data file name to the program. It is however

highly recommended to provide also errors (standard deviation or covariance matrix) if

reliable estimates are available. You can also further improve the results by providing

more information, like some known moments of the spectral function, a default model, or

by providing a frequency grid adapted to the expected structures of the spectral function.

The next two subsection of this introduction present the basic theoretical aspects nec-

essary to understand what you are doing when using this program. Then section II de-

scribes how to use ΩMaxEnt step-by-step. You can execute the program already at the

end of subsection II B to get some preliminary results. The following subsections give

you the possibility to use more information you might possess to improve the result.

Some explanations on how the program works and advices on how to interpret and im-

prove the results are given at the end of the section. Lists of the output figures and

the output files are given in subsections II I and II M, respectively. Finally, section III

presents a list of all the input parameters with a short description of each one.

A detailed description of the algorithms and also benchmarks are presented in Ref.

[4] or [5]. The latest version’s source code and binaries are available on the program’s

main web page and GitHub page.

For simplicity, throughout this guide, the Matsubara data is referred to as the “Green

function” G, but the data can be a correlation function, a self-energy or any Matsubara

function satisfying the conditions given in the next section. The result obtained with the

program is also referred to as the spectral function A, although for bosonic data, it is

actually σ(ω) = A(ω)/ω.

Feel free to use the results obtained with the code in publications. If you do, please

https://www.physique.usherbrooke.ca/MaxEnt/index.php/Main_Page
https://github.com/dbergeron1/OmegaMaxEnt
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cite Ref. [4].

B. Type of data accepted

The program can treat data that can be expressed as

G(iωn) =

∫ ∞
−∞

dω

2π

A(ω)

iωn − ω
(I.1)

or

G(τ) =

∫ ∞
−∞

dω

2π

e−ωτA(ω)

1± e−βω
, (I.2)

where A(ω) > 0 for fermions or σ(ω) = A(ω)/ω > 0 for bosons, and the + and− signs

in the denominator of (I.2) are for fermions and bosons, respectively. The overall sign

on the right-hand side of those expressions can also be different, the program will detect

which convention you are using. It can also treat a self-energy, that has the form

Σ(iωn) = ΣHF +

∫ ∞
−∞

dω

2π

−2Im[ΣR(ω)]

iωn − ω
, (I.3)

where ΣHF is the Hartree-Fock part.

Those expressions are spectral representations which apply very generally. They im-

ply thatG(−iωn) = G∗(iωn) and that Re[G(iωn)] and Im[G(iωn)] behave asymptotically

as 1/ω2
n and 1/(iωn), respectively, as ωn →∞.

The positivity of A(ω) or σ(ω) is an additional constraint necessary for the max-

imum entropy method to be applicable. Assuming the same sign convention as in

(I.1), it implies that sign(Im[G(iωn)]) = −sign(ωn) in the case of fermions and that

Re[G(iωn)] < 0 for bosons. For data which spectral function has no definite sign, see

appendix C for a description of the general procedure.

The program also accepts strictly real (even) bosonic Matsubara frequency data, i.e.,

even data in imaginary time representation, corresponding to a correlation function of
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observables having the same signature under time reversal. In that case, the code takes

into account the fact that Im[GR(ω)], where GR(ω) is the retarded function, is odd and

use the spectral representation

G(iωn) =

∫ ∞
−∞

dω

π

ω

iωn − ω
σ(ω)

= −2

∫ ∞
0

dω

π

ω2

ω2
n + ω2

σ(ω) ,

(I.4)

where σ(ω) = −Im[GR(ω)]/ω, instead of the default representation for bosons,

G(iωn) =

∫ ∞
−∞

dω

2π

ω

iωn − ω
σ(ω) , (I.5)

where σ(ω) = −2Im[GR(ω)]/ω. The output spectrum σ(ω) is then even and half what

is obtained with (I.5).

ΩMaxEnt takes column-wise data files with spaces between the columns. The code

was written using the Armadillo C++ linear algebra library [6], and also accept any

armadillo file type.

C. What the program does

Finding the spectrumA(ω) corresponding to a givenG(iωn) by numerically inverting

expression (I.1) or (I.2) does not work. The errors on A(ω) resulting from the ones on

G(iωn) would be greatly amplified and the result would not make sense. This is what

is called an ill-conditioned problem. Instead, the program uses the maximum entropy

approach, which consists in minimizing

Q = χ2 − αS , (I.6)
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where

χ2 =
∑
mn

(Gm −KmA)T C−1mn (Gn −KnA) , (I.7)

where A is the vector obtained after discretizing ω, Kn is a row vector such that KnA

is an approximation to (I.1), and C is the covariance matrix. S is a differential entropy,

defined as

S = −
∫
dω

2π
A(ω) ln

A(ω)

D(ω)
, (I.8)

where D(ω) is called the default model, and α is a parameter to be determined. The

solution that minimize (I.6) if χ2 is negligible, namely that maximizes the entropy S, is

e−1D(ω), hence the name default model. D(ω) is defined in a way to include what is

known a priori about the spectrum.

The maximum entropy approach is based on Bayesian inference, which consists ba-

sically in using the information you know in advanced about the spectrum to deduce it

from incomplete or noisy data, which alone is not sufficient to obtain acceptable results.

In the present case, the entropy term αS is used to include that information.

To find the optimal value for α, the program first computes the solution to min(χ2 −

αS) for a large range of α. The location of the optimal α can then be found by a simple

analysis of the shape of the function log (χ2) as a function of log(α). The procedure is

described in subsection II J.

Note that if we diagonalize the covariance matrix C, defining

C̃ = U†CU , (I.9)

χ2 can be written

χ2 = (G̃− K̃A)T (G̃− K̃A) , (I.10)
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where

G̃ =
√

C̃−1U†G ,

K̃ =
√

C̃−1U†K .
(I.11)

This form is more useful for practical calculations and analysis of the results.

II. STEP-BY-STEP GUIDE TO ΩMAXENT

A. The parameter files

The program uses two parameter files: OmegaMaxEnt_input_params.dat and Omega-

MaxEnt_other_params.dat. The main parameter file used to control the calculation is

OmegaMaxEnt_input_params.dat. The other parameter file should be modified by ex-

perienced users only, or according to instructions in this guide. The only mandatory

parameter in OmegaMaxEnt_input_params.dat is the data file name on the first line.

Although not recommended, you can obtain results even if all the other fields are left

blank. When a parameter can have the values “yes” or “no”, leaving the field blank or

putting anything else than “yes” corresponds to the default value “no”. The parame-

ters other than the data file name are divided in two sections. The parameters defined

in the section OPTIONAL PREPROCESSING TIME PARAMETERS are used to set

all the variables in the optimization problem. The parameters defined in the section

OPTIONAL MINIMIZATION TIME PARAMETERS control what happens during the

search for the optimal solution to the problem. They can be modified without triggering

the preprocessing. Some of them can be modified during the optimization itself, as

explained in subsection II H.

Before doing your first analytic continuation with ΩMaxEnt, create the two parameter

files by executing the file OmegaMaxEnt. The file OmegaMaxEnt_input_params.dat will

be created with all the fields blank and OmegaMaxEnt_other_params.dat will be created
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with the default values of its parameters. When you define a parameter in OmegaMax-

Ent_input_params.dat, that parameter is printed on the terminal as the program reads

the file. As for the parameters in OmegaMaxEnt_other_params.dat, they are printed out

only if you modify the default value. It is important not to modify any parameter’s name,

namely, any caracter up to ‘:’ on a line. If you define a parameter or modify one’s default

value in one of the two parameter files and this parameter is not printed on screen when

the program reads the file, it means you inadvertently modified its name in the parameter

file and the program cannot find it anymore. If that happens, destroy the file and execute

ΩMaxEnt to create the default version of the missing parameter file.

Unless mentioned otherwise, all the input parameters referred below are defined in

the file OmegaMaxEnt_input_params.dat.

B. Set the input data

Put the input file name on the line “data file”, the first line in OmegaMaxEnt_input_params.dat.

If your data file is not in the same directory as the code, you can set “input directory” in

subsection INPUT FILES PARAMETERS which tells the program where to look first

for your files. If a file is not found in that directory, the program then looks for it in the

current directory.

1. G(iωn) as input

The data is always assumed to be given by columns in the data file, with the first

column being the Matsubara frequency ωn when the input data is G(iωn). By default the

next two columns are assumed to be the real and imaginary parts of G, respectively:

ωn Re[G] Im[G] (II.1)
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If G is not on the 2nd and 3rd columns, write the correct column numbers on the lines

“Re(G) column in data file” and “Im(G) column in data file” in the subsection INPUT

FILES PARAMETERS.

2. Temperature

If the Matsubara frequencies do not have high precision in your data file or if the

first column gives only the frequency indices, set the parameter “temperature” in the

subsection DATA PARAMETERS.

3. G(τ) as input

For a Green function given in imaginary timeG(τ), first set the parameter “imaginary

time data” to “yes” in the subsection DATA PARAMETERS. By default, the columns in

the data file are assumed to be “τ G”. If G is not on the 2nd column, put the correct

column number on the line “column of G(tau) in data file” in subsection INPUT FILES

PARAMETERS. Note that the imaginary time grid must be uniform and go from 0 to

1/T , where T is the temperature in energy units. If the temperature is specified in the

subsection DATA PARAMETERS, the imaginary time grid will be redefined using the

provided temperature. Otherwise, T is assumed to be 1/τmax, where τmax is the last

value of τ in the input file.

To get good results if your data is G(τ), the step ∆τ must be small enough. See

subsection II D 4 for more details.

After the preprocessing stage, the Fourier transforms of G(τ) and the covariance

matrix are saved, in arma_binary format, in directory “Fourier_transformed_data”, cre-

ated in your data directory. If you restart the calculation, the preprocessing will be

faster if you use the Fourier transformed data instead of the original one, especially

if the number of imaginary time points is large. To do so, replace “data file” with
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“Fourier_transform_G.dat”, then, in section DATA PARAMETERS, erase the “yes” at

“imaginary time data”, in section INPUT FILES PARAMETERS, add “Fourier_transformed_data”

to “input directory”, erase your error file name at “error file” (or at “imaginary time co-

variance file”) and set “re-re covariance file” to “covar_ReRe.dat”, “im-im covariance

file” to “covar_ImIm.dat” and “re-im covariance file” to “covar_ReIm.dat” (see section

II C for errors).

4. Bosonic data

If G is bosonic, set the parameter “bosonic data” to “yes” in subsection DATA PA-

RAMETERS.

If G(iωn) is also real (or G(τ) is even, i.e., symmetric with respect to τ = β/2),

set “Im(G) column in data file” to a value ≤ 0. The program will then assume that

Im[GR(ω)] is odd and compute σ(ω) only for ω ≥ 0. In that case, the program also adds

an additional factor of 2 to the kernel, such that the resulting spectrum is half what is

obtained if the data are treated as a general bosonic function. This definition of σ(ω)

coincide with the definition of the optical conductivity Re[σ̃(ω)] = Im[χRjj(ω)]/ω, where

χRjj(ω) is the retarded current-current correlation function. Internally, the program uses

the other sign convention however, so that σ(ω) = −Im[GR(ω)]/ω, which implies that

Re[G(iωn)] < 0. The sign of your data is not important however, as long as Re[G(iωn)]

does not change sign (bosons only). The program will simply change the sign if it does

not correspond to its internal convention.

5. Self-energy

If your data is a self-energy with a frequency-independent part (the Hartree-Fock

term), set parameter “finite value at infinite frequency” to “yes” in section DATA PA-

RAMETERS. During the preprocessing, the program will try to extract the value of the
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constant along with the moments of the spectrum (see section II D for a discussion on

moments). If “display preprocessing figures” is set to “yes” in section PREPROCESS-

ING EXECUTION OPTIONS, you will see the figures of Ginf , M0 and M1 as functions

of a fit frequency. If there are plateaus in those curves (even if they are very noisy), then

your maximum Matsubara frequency is high enough to extract accurately the frequency-

independent part and the moments. In that case there is nothing more to do, the program

will simply subtract that value from the real part of the data, so that representation (I.1)

becomes valid. If you observe plateaus in the curves of Ginf , M0 and M1, but one is

broken at high frequency, namely that the curve ceases to be flat above a certain fre-

quency ωinst, then you probably have too many Matsubara frequencies, which causes a

numerical instability. In that case, discard the frequencies above ωinst by setting “trun-

cation frequency” to ωinst, or smaller, in section DATA PARAMETERS. Of course it is

important not to set that parameter to a value below the flat region, otherwise it will not

be possible to determine Ginf , M0 and M1 anymore.

If your self-energy has a frequency-independent part, but there are no plateaus at all

in the figures of Ginf , M0 and M1, then you have to provide the constant to be subtracted

at “value at infinite frequency”. Note that the code will still attempt to extract it, but the

value subtracted will be the one provided. Make sure the value you use is as accurate as

possible. A small error can have a large impact and degrade the quality of the result. If

you provide a value, even though the frequency cutoff is large enough to extract it, the

figure of Ginf and the value printed in the terminal as “frequency-independant part of

G” will tell you if the value provided is correct. If so, the value computed will be much

smaller than the one you provided.

If the correct frequency-independant part has been subtracted, the data can be treated

the same way as a Green function. However, if you subtracted yourself that constant

numerically, set “finite value at infinite frequency” to “yes” to verify that the value sub-

tracted was accurate enough. Again, the value, computed should be much smaller than

the one you subtracted.
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When the input data is a self-energy, the output “spectrum” is −2Im[ΣR(ω)], where

ΣR(ω) is the retarded self-energy.

Note that, for some types of noisy data, the results can be better if we first perform

the analytic continuation on an artificial Green function

G(iωn) =
1

iωn + µ− Σ(iωn)
, (II.2)

where µ is an adjustable parameter, and then compute the real frequency self-energy

from

ΣR(ω) = ω + µ− 1

GR(ω)
. (II.3)

Although ΣR(ω) should not depend on µ, for real noisy data it will. This parameter

should therefore be chosen such that the ΣR(ω) is stable with respect to variations of µ.

It should also be close to the Hartree-Fock value, so that A(ω) = −2Im[GR(ω)] will be

centered around ω = 0, which will make the MaxEnt calculation easier. The effect of

varying µ is illustrated in this Jupyter notebook tutorial made for the TRIQS interface of

ΩMaxEnt (no TRIQS installation required here).

6. Most basic execution

If you do not have more information than the Green function itself, you can execute

ΩMaxEnt now. See section II H for more details on the execution. If you have more

information or want to learn about other functionalities, follow the next steps or see

section III.

C. Set errors

As mentioned in section I C, the data’s covariance matrix C is used during the calcu-

lation. For a given set of data G(iωn), the accuracy of C actually controls how well the

https://github.com/TRIQS/omegamaxent_interface/blob/2.2.x/tutorials/DFT_DMFT_Analytic_Continuation_of_Sr2RuO4_self_energy.ipynb
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information contained in G can be transferred into the resulting spectrum A(ω). For the

remaining of the guide, unless mentioned otherwise, the term “error” is used in a broad

sense, sometimes meaning the standard deviation of data points or, more generally, re-

ferring to the covariance matrix.

The program can treat the case of a general, non-diagonal, covariance matrix, but you

can simply provide the standard deviation in the case of diagonal covariance.

1. Uncorrelated errors

If the errors on the elements of G are uncorrelated, define the parameter “error file”

in the subsection INPUT FILES PARAMETERS and the correct column numbers on the

lines “Re(G) column in error file” and “Im(G) column in error file” if the input isG(iωn),

or on the line “column of G(τ) error in error file” if the input is G(τ), unless the column

number(s) correspond to the default value(s).

2. Correlated errors

If the errors are correlated between elements ofG and you have the covariance matrix

Cµν
ij =

1

N − 1

N∑
l=1

(
Gµ
il − Ḡ

µ
i

) (
Gν
jl − Ḡν

j

)
(II.4)

where N is the number of sample values for each element Gµ
i , indices µ, ν refer to real

(Re) of imaginary (Im) parts , Gµ
il is the lth sample of Gµ

i , and

Ḡµ
i =

1

N

N∑
l=1

Gµ
il , (II.5)

then, in subsection INPUT FILES PARAMETERS, provide that matrix using the param-

eters “re-re covariance file”, “im-im covariance file” and “re-im covariance file”, if the
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input is G(iωn), or “imaginary time covariance file”, if the input is G(τ). Those files

must contain an equal number of lines and columns.

3. Unknown error

If you do not have an estimate of the covariance matrix for your data, which is usually

the case for non-stochastic data, for example, the best way to use the program is to add

noise of different magnitude to the data and observe, as the magnitude decreases, if the

spectrum converges. Using the line “added noise relative error” in section INPUT FILES

PARAMETERS, you can do so in an automated way by providing a vector of relative

standard deviations of the form “s1 s2 ...”, for example, “1e-3 1e-4 1e-5”. The program

then starts by adding normally distributed noise of constant relative standard deviation

“s1” to the data, before performing the analytic continuation. Then, if the program is in

interactive mode (default mode), and you entered more than one value of added noise

error, it will ask you if you want to proceed with the next value once you stop the current

calculation. If the program is not in interactive mode, it proceeds automatically to the

next value of relative error provided. The results for each value in the vector is stored in

folders with names ending with that value.

The line “added noise relative error” is ignored if you provide an error file or covari-

ance files.

Additional smoothing of the added error can be performed using parameters “Ns-

mooth_errG” and “wgt_min_sm” in file OmegaMaxEnt_other_params.dat. This can

be useful to define a smooth error for very noisy data, for example. Note that, if Ns-

mooth_errG=0 (default value), a minimal smoothing is performed nonetheless, with Ns-

mooth_errG=1, on the error of the real part of fermionic data and on the imaginary part

of bosonic data to ensure that the errors are not too small at frequencies where the data

vanishes or nearly vanishes.

If you provide imaginary time data and you do not have any estimate of the error on
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your imaginary time data, it is better not to provide any error file. If you do, the program

will have to Fourier transform the error to obtain a Matsubara frequency covariance

matrix, which can considerably increase the preprocessing time. Instead, you can let

the program assume a constant diagonal covariance by default, or use the “added noise

relative error” parameter to add diagonal noise to the Fourier transformed data.

4. Basic execution

If you do not have more information, you can execute ΩMaxEnt now. See section II H

for more details on the execution. If you have more information or want to learn about

other functionalities, follow the next steps or see section III.

D. Control how moments are used

The part of the Green function at frequencies ωn > W , where A(|ω| > W ) = 0, can

be expressed as a high frequency expansion, of which the coefficients are the moments

of the spectral function A(ω). However, because of finite precision and noise, the infor-

mation on high order moments is not present in the data. Therefore, the high frequencies

of G(iωn) contain the information about a few moments only. It is thus numerically

equivalent, but computationally more efficient to replace the large number of constraints

corresponding to those high frequencies in the calculation by the few contraints corre-

sponding to those moments.

The moments are also used during the definition of the real frequency grid and the

default model, since they tell us about global properties of the spectrum, among which

the center and the width of the spectrum.
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1. Use ΩMaxEnt to extract moments

If the Matsubara frequency cutoff ωnmax of your data is in the asymptotic part of

G(iωn), namely that the condition ωnmax > W is satisfied, the program can extract

moments from your data by fitting a high frequency expansion to the asymptotic part,

and determine the onset of the asymptotic regime at the same time. Unless you provide

enough moments or real frequency grid parameters, ΩMaxEnt will try to extract them

and use them in the calculation instead of the high frequencies they are extracted from.

When it performs that procedure, if you set the parameter “display preprocessing figures”

to “yes” in subsection PREPROCESSING EXECUTION OPTIONS, you can check for

convergence in the computation of the moments from the figures of the norm M0 and the

first moment M1 plotted as a function of the fit frequency. If there are plateaus in those

curves above a certain frequency, then the values are converged. If you observe plateaus

in the curves but at least one of the plateaus is broken at high frequency, namely that the

curve ceases to be flat above a certain frequency ωinst, then you probably have too many

Matsubara frequencies, which causes a numerical instability. In that case, discard the

frequencies above ωinst by setting “truncation frequency” to ωinst, or smaller, in section

DATA PARAMETERS. Of course it is important not to set that parameter to a value

below the flat region, otherwise it will not be possible for the program to extract the

moments.

In any case, you can force the program to extract the moments by setting “evaluate

moments” to “yes” in subsection COMPUTATION OPTIONS. You can also control how

many moments are used during the computation of the spectrum with the parameter

“maximum moment” in the same subsection. By default, ΩMaxEnt imposes the first 4

moments (including the norm M0) to the spectrum for fermions, and the first 3 moments

for bosons. For example, if you want the program to impose only the norm and the first

moment, set “maximum moment” to 1.

You can also control the maximum frequency to be used in the calculation with the

parameter “Matsubara frequency cutoff” in subsection FREQUENCY GRID PARAME-
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TERS. For example, if you do not have enough frequencies in the asymptotic frequency

range, or your data are very noisy at high frequency, it is probably better to use all the

frequencies instead of the moments by setting “maximum moment” to 0 (if the norm

is known exactly) and “Matsubara frequency cutoff” to a value larger than the last fre-

quency in your data.

2. Norm of the spectrum

If your spectrum is normalized to 1, namely, if the leading high frequency term of

the data is 1/(iωn), you do not have to provide the norm. Also, if you have real bosonic

Matsubara data and have set “Im(G) column in data file” to 0 or less, the norm is auto-

matically assumed to be 0.

If the norm is not 1, you can use “norm of spectral function” in subsection DATA

PARAMETERS to provide it, or let the program extract it from the data by setting “eval-

uate moments” to “yes” in subsection COMPUTATION OPTIONS. It is also better to

set “display preprocessing figures” to “yes” to verify convergence on the figure of M0,

namely that a plateau appears in the curve.

3. Providing moments

If you know some moments of the spectral function with good precision, you can

provide them with their respective errors in subsection DATA PARAMETERS.

If you provide enough moments (first and second for fermions, first for bosons), the

program will not try to extract them from your data. In that case however, it is rec-

ommended to set “evaluate moments” and “display preprocessing figures” to “yes” in

subsection COMPUTATION OPTIONS when running ΩMaxEnt for the first time with a

given set of data. This way, provided that your data has some frequencies in the asymp-

totic part ofG (if so, there will be a plateau in the figures ofM0 andM1), you can verify if
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the moments you provided have values close to the ones extracted, which will be printed

in the terminal. In addition, the program will also print where the asymptotic regime sets

in. This verification step is important to make sure you do not impose wrong moments

to the spectrum, which is worse than not imposing any. When making that verification,

set “preprocess only” to “yes” to prevent the actual calculation from starting.

Once you provided moments, if your Matsubara frequency cutoff is far in the asymp-

totic part of G (there are long plateaus in the figures of M0 and M1 when “evaluate

moments”), set “Matsubara frequency cutoff” in subsection FREQUENCY GRID PA-

RAMETERS to the onset value given by the program. Note that this is done automat-

ically if “evaluate moments” is enabled. If the asymptotic regime is not reached at the

cutoff, you can make sure that all the frequencies are used, whatever the value of “eval-

uate moments” is, by setting “Matsubara frequency cutoff” to a value larger than the

cutoff.

4. G(τ) as input data

If you have imaginary time data, the first two finite momentsM1 andM2 are necessary

to Fourier transform G(τ) before computing the spectrum from the resulting G(iωn)

(with which ΩMaxEnt works internally). Thus in that case either you provide those

moments, or the program extracts them from G(τ). In the latter case, it does so using

a polynomial fit to G(τ) around the boundaries τ = 0 and β. The condition for that fit

to give the correct moments is that ∆τ < 1/W (see introduction of section II D for the

definition of W ), where ∆τ is the imaginary time step. This condition is equivalent to

ωnmax > W . Ideally, ∆τ should be at least a few times smaller than 1/W . Thus, if you

provide G(τ) as the input data and do not know M1 and M2, make sure the imaginary

time step is small enough so that this condition is satisfied. If you do know M1 and M2

with good accuracy, note however that, even though the Fourier transform ofG(τ) will be

accurate, the Fourier transform of the error will not be if ∆τ is not small enough, which
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may degrade the quality of the result. It is thus preferable that the condition ∆τ < 1/W

be well satisfied in any case.

5. Basic execution

You can execute ΩMaxEnt here. See section II H for more details on the execution.

Otherwise, follow the next steps or see section III to learn about other functionalities.

E. Modify the frequency grid

The real frequency grid used by ΩMaxEnt is separated in two different types of grid:

a central dense part, let us call it the main spectral range, where most of the spectral

weight should be found, and two non-uniform high frequency parts, where the step size

increases approximately quadratically with the module of the frequency. Let us address

how to control the grid in the main spectral range first.

By default, the main spectral range is defined as a region of width SW = f_SW_std_omega∗

∆ωstd and centered on SC = M1, where ∆ωstd =
√
M2 −M2

1 (fermionic case) is the

standard deviation of the spectrum (the Mis are the moments of the spectrum) and

f_SW_std_omega is a parameter defined in file OmegaMaxEnt_other_params.dat. The

grid in that region is uniform with a number of frequencies defined in two possible ways:

if there is a sharp and well isolated peak at low frequency, the program can estimate

its width directly from the Matsubara data (see appendix A) and use a step appropriate

to resolve that peak, otherwise, the step is defined as ∆ωstd/Rmin_SW_dw (if ∆ωstd is

known) or SW/(f_SW_std_omega ∗ Rmin_SW_dw), where Rmin_SW_dw is defined in

OmegaMaxEnt_other_params.dat.

The default grid is of course not optimal in many cases, especially for spectra pos-

sessing very broad and very sharp features at the same time. For those cases, ΩMaxEnt

offers a few ways to define a better adapted grid with the parameters of subsection FRE-
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QUENCY GRID PARAMETERS:

1. If parameter “use non uniform grid in main spectral range” is set to “yes”, there

are two possibilities: 1) If parameter “real frequency step” is not defined and no

peak has been detected at ω = 0, the default grid just described is used. 2) If either

parameter “real frequency step” is defined or a narrow peak has been detected at

ω = 0, the program will define a non-uniform grid for the main spectral region.

This grid is defined by first generating, in an automated way, a vector of the form

[
ω0 ∆ω0 ω1 ∆ω1 . . . ωN−1 ∆ωN−1 ωN

]
, (II.6)

where the ωi’s are frequencies delimiting intervals and the ∆ωi’s are the steps

in those intervals. The steps in the intervals are chosen to increase by a fac-

tor of two, starting from the smallest value given by parameter “real frequency

step”, if defined, or wpk/R_peak_width_dw otherwise, around parameter “real

frequency grid origin”, if defined, or ω = 0 otherwise. The ratio of an in-

terval’s length and its step is fixed by parameter R_Dw_dw in file OmegaMax-

Ent_other_params.dat. The width of the main spectral region for this type of grid

is at least equal to parameter “spectral function width”, if defined, or otherwise at

least equal to 2ωas/R_wncutoff_wr, where ωas is the onset Matsubara frequency of

the asymptotic part of the data, or R_SW_wr ∗ SW , whichever is the largest value

(R_wncutoff_wr and R_SW_wr are defined in OmegaMaxEnt_other_params.dat).

Parameter “spectral function center”, if defined, or the first momentM1 otherwise,

is also used to center the main spectral range. Finally, from the vector (II.6) the

program then generates a grid with a step varying smoothly between intervals,

with a hyperbolic tangent shape, using parameter RW_grid, defined in Omega-

MaxEnt_other_params.dat, as the ratio of an interval’s size and the size of the

transition region between its step and the steps in adjacent intervals. This grid is

then used only in the main spectral range.

2. You can define yourself a uniform grid for the main spectral range by setting one
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or more of the parameters “spectral function width”, “spectral function center”

and “real frequency step”. The first two of those parameters are used as SW

and SC (instead of the default ones defined from the moments), which define the

main spectral range [SC − SW/2, SC + SW/2], where the step will be set to

“real frequency step”. The default values given above are used for those of these

parameters that are left blank. You can also make sure that a specific frequency is

included in the grid with the parameter “real frequency grid origin”. This is useful,

for example if the position of a peak is known precisely, to make sure that there

is a grid point at the maximum. If “real frequency grid origin” is not defined, but

“spectral function center” is, the two values will coincide.

3. You can define yourself a non-uniform grid in the main spectral range by setting

the parameter “use parameterized real frequency grid” to “yes” and by providing

a vector of the form (II.6), defining intervals and their respective steps, on the line

“grid parameters”. The ωi’s are the frequencies delimiting the intervals and the

∆ωi’s are the steps in those intervals. The program then generates a grid with a step

varying smoothly (with a hyperbolic tangent shape) between intervals. This grid

is then used only in the main spectral range. Note that it is important not to change

the step too quickly between consecutive intervals. There should not be more

than a factor of three between steps in consecutive intervals, otherwise spurious

structures may appear in the spectrum at the boundaries between intervals. Each

interval should also contain a few tens of points at least (30 is good for a factor

of 2 between consecutive steps) to avoid spurious structures. Finally, you can also

use parameter, RW_grid, defined in OmegaMaxEnt_other_params.dat, to control

the ratio of an interval’s size to the size of the transition region between its step

and the steps in adjacent intervals. A smaller ratio will produce a smoother grid

density. You should keep RW_grid≥ 2.

4. Finally, you can provide your own grid with the parameter “real frequency grid

file”. The grid must be on the first column of the file. Note however that, unless

it is a grid that was previously generated by ΩMaxEnt, it will be used only in
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the main spectral range, which is defined either by the default values of SW and

SC or by “spectral function width” and “spectral function center”. On the other

hand, if the file you provide is a spectrum obtained by the program in a previous

calculation, the whole grid, including the high frequency parts, will be identical to

the provided one.

The grid in the regions outside the main spectral range is always defined in the same

way by the program. Instead of having a uniform step ∆ω, the grid in those regions is

such that ∆u = ui+1 − ui is constant, where ui = 1/(ωi − ω0l) on the left side and

ui = 1/(ωi − ω0r) on the right side. Here, ω0l and ω0r are frequencies determined by

the extrema of the grid, which can be controlled by the parameter f_w_range defined in

file OmegaMaxEnt_other_params.dat. More precisely, f_w_range is the ratio of the total

size of the grid ωmax − ωmin to the width of the main spectral range SW . Note however

that the default value for parameter f_w_range is optimal and should not require any

modification.

F. Modify the default model

By default, the default model is a gaussian of width equal to the standard deviation

∆ωstd =
√
M2 −M2

1 (fermionic case), if M1 and M2 are defined (provided by you

or extracted from the data), or equal to parameter “spectral function width” (subsec-

tion FREQUENCY GRID PARAMETERS), and centered on M1 (fermionic case), or

“spectral function center” (subsection FREQUENCY GRID PARAMETERS) if M1 is

not defined.

If you want to use a different default model, there are two options:

1. You can use the parameters “default model center” (DC), “default model half

width” (DW ) and “default model shape parameter” (DS) in subsection COMPU-

TATION OPTIONS to use a default model that has a generalized normal distribu-



25

tion form. As special cases, if DS = 1, this corresponds to a Laplace distribution,

if DS = 2, it is a gaussian, and as DS →∞, the distribution becomes uniform in

the range [DC−DW,DC+DW ]. It is recommended to set “default model shape

parameter” to a value larger than 1, since for DS ≤ 1, there is a discontinuity in

the derivative at DC, which is not physical in general, except in the presence of a

Van Hove singularity.

2. You can also use your own default model by setting the parameter “default model

file” (subsection COMPUTATION OPTIONS). It is assumed that the first column

is the grid and the second column is the function value. The grid on which your

function is defined can be arbitrary, the program uses cubic splines to interpolate

your function on the active grid, namely the one set previously during preprocess-

ing. If your grid does not extend over the whole active grid, the program will

extend your function with gaussians matching it as smoothly as possible at the

extrema of your grid.

The default model is always normalized to the same value as the spectrum, namely

M0 in the fermionic case, or G(iωn = 0) in the bosonic case.

G. Obtain the retarded function using a Padé approximant

To obtain the retarded function from a Padé approximant, set parameter “compute

Pade result” to “yes” in section COMPUTATION OPTIONS. You can also choose the

number of Matsubara frequencies used for the approximant with parameter “number of

frequencies for Pade”. To select the retarded function, a small positive imaginary part

must be added to the real frequency. You can set its value with parameter “imaginary

part of frequency in Pade”. The default value for that parameter is the 0.01 times the

temperature.
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H. Execution

By default, ΩMaxEnt runs in an interactive loop. You can however disable the inter-

active mode by setting “interactive mode” to “no” in subsection MINIMIZATION EX-

ECUTION OPTIONS. In interactive mode, there are a few ways, given below, to pause

the execution to see the result at a given stage and with a given set of input parameters.

At the pause, the program always asks if you want to continue execution. To do so, sim-

ply press ENTER, or enter anything else than ’y’ to stop. During a pause, you can make

changes to the parameter files. Depending on the type of changes you made, execution

can resume either from the point it halted, or at an earlier stage. If you modify a param-

eter in section OPTIONAL PREPROCESSING TIME PARAMETERS during a pause,

the preprocessing starts over. On the other hand, the parameters in section OPTIONAL

MINIMIZATION TIME PARAMETERS, with the exception of “initialize preprocess-

ing”, can be modified during a pause without triggering the preprocessing when execu-

tion continues. Some parameters in that subsection will however cause the minimization

stage to restart at the initial (highest) α if they are modified, namely “output directory”,

“spectral function sample frequencies”, “initial value of alpha” and “initialize maxent”.

To pause execution, you can use one of the following parameters:

• “preprocess only” (subsection PREPROCESSING EXECUTION OPTIONS),

• “minimum value of alpha” (αmin) (subsection COMPUTATION PARAMETERS),

• “number of values of alpha computed in one execution” (Nαmax) (subsection MIN-

IMIZATION EXECUTION OPTIONS).

The parameter “preprocess only” can be used to do some verifications with input

parameters, and try different values, before starting the actual calculation. For example,

you can verify the values of moments with the ones extracted from the data, or check that

your grid has a reasonable number of frequencies. If “display preprocessing figures” is

enabled (subsection PREPROCESSING EXECUTION OPTIONS), the preprocessing
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stops when a group of figures is displayed, and you have to close them to resume it. This

pause is not the right time to modify the parameter files however, since they will not be

read when execution resumes once the figures are closed. Once you are satisfied with the

input parameters, you can disable “preprocess only” to start computing the spectrum.

The parameters “minimum value of alpha” and “number of values of alpha computed

in one execution” can be used to look at the results at intermediate stages during mini-

mization time, where the spectrum is computed as a function of α. By default, at each

pause during that part of the calculation, the program displays figures showing the results

at the optimal α, if it has been found, and at the last (lowest) value of α computed. A list

of the output figures is given in section II I. Once you have closed all the figures, the pro-

gram asks you if you want to continue execution. You can also choose which groups of

figures are displayed with parameters “show optimal alpha figures”, “show lowest alpha

figures” and “show alpha dependant curves” in subsection DISPLAY OPTIONS.

If you have set “minimum value of alpha” and αmin is reached before the condition

for the calculation to be over is satisfied (see section II N), the program will tell you that

αmin is not small enough and will reduce it by the factor f_alpha_min, defined in file

OmegaMaxEnt_other_params.dat, before asking if you want to continue execution. If

you have set “number of values of alpha computed in one execution”, the spectrum will

be computed for Nαmax values of α each time the calculation is resumed, unless that

parameter is emptied during a pause.

I. Output figures

The following functions are plotted when the execution stops during the minimization

stage:

• log10 (χ2) versus log10 (α) ,

• Relative entropy S versus log10 (α) ,
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• Curvature of log (χ2) vs γ log (α) ,

• Spectral function at the lowest α (αlow): A vs ω ,

• Spectral function at the optimal α (αopt): Aopt vs ω (if αlow < αopt) ,

• Retarded Green function in time.

• Retarded Green function in frequency.

• Spectral function at sample frequencies: A(ωsamp) versus α ,

• Normalized deviation ∆G̃ = G̃in − G̃out versus frequency index n (diagonal co-

variance) or covariance eigenvector index ic (general covariance), at the lowest α

(two figures: real and imaginary parts),

• Normalized deviation ∆G̃opt versus frequency index n (diagonal covariance) or

covariance eigenvector index ic (general covariance), at the optimal α (if αlow <

αopt) (two figures: real and imaginary parts),

• Autocorrelation of ∆G̃ vs ∆n (diagonal covariance) or ∆ic (general covariance)

at the lowest α (two figures: real and imaginary parts),

• Autocorrelation of ∆G̃opt vs ∆n (diagonal covariance) or ∆ic (general covariance)

at the optimal α (if αlow < αopt) (two figures: real and imaginary parts).

In the figure showing the spectrum at αopt, a spectrum at a value of α slightly below

αopt and one at a value slightly above are also plotted. Those two other values of α,

say αopt− and αopt+, delimit the range of the crossover region between the information-

and the noise-fitting regimes. Along with the optimal spectrum, the spectra at αopt− and

αopt+ tell how stable the spectrum is around αopt, and thus how accurate the results are

(see also section II L).

The python scripts used by the program to display the figures are saved in files with

name format OmegaMaxEnt_figs_#.py, where # is one of the numbers in file figs_ind.dat,
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while the data files for the figures are saved in directory OmegaMaxEnt_figs_data. Once

the execution is over, you can thus display the figures without executing the program

again with the command “python OmegaMaxEnt_figs_#.py”. To disable saving the

python scripts and the figures data files, execute the program with the option “-np”.

J. How the optimal α is chosen

If you look at log (χ2) as a function of log (α) for a large enough range of α, you

will notice that there are three regimes in that function. At high α, the entropy term αS

dominates in the quantity Q = χ2 − αS that is minimized with respect to the spectrum

A (see section I C). Thus, χ2 decreases very slowly with α and the spectrum stays close

to default model. We may call this the default model regime. At intermediate values

of α, χ2 decreases rapidly as α decreases. This is the regime where the information

in input data Gin is gradually integrated in the spectrum A(ω) (or Gout = KA) as α

decreases. It is thus an information-fitting regime. Finally, when most of the information

in Gin is already present in A(ω), the noise in Gin starts to be integrated into A(ω), as

∆G = Gin − Gout becomes smaller than the error on Gout. At that point, the rate of

change of χ2 with α decreases rapidly, and becomes very small, in what we may call

the noise-fitting regime. The optimal alpha should clearly be chosen where most of the

information inGin is contained inA(ω) (orGout), but not its noise. It should therefore be

somewhere in the crossover region between the information- and the noise-fitting regime.

The change of decreasing rate of χ2 with α can be identified by a peak in the curvature

of log (χ2) vs log (α). The optimal α, say αopt, can simply be chosen at the highest peak

maximum. However, in some cases, peaks other than the one marking the onset of

the noise-fitting regime may be present in the curvature at values of α larger than αopt.

To avoid choosing those peaks by accident instead of the correct one, one can choose

the optimal α at the highest peak maximum in the curvature of log (χ2) vs γ log (α),

where γ is typically between 0.1 and 0.5, instead. The factor γ increases the ratio of the
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amplitudes of the correct peak and the other peaks located at higher α, which reduces the

probability of choosing the wrong peak. It displaces the position of the crossover peak

maximum toward the noise-fitting region however, but only very slightly if γ is not too

small, so that it barely affects the result.

As will be mentioned in section II M, the spectra are saved for a certain range of α

around the optimal one. Therefore, you can also choose yourself the value of α that you

find the most reasonable from the output figures and use the spectrum saved in the corre-

sponding file instead of the one saved in “optimal_spectral_function_tem#_alpha#.dat”

(see section II M).

If, for some reason, the value of α chosen by the program is not the one you think is

optimal, for example if there are more than one peak in the curvature log (χ2) vs log (α)

in the region where the optimal alpha should be located, you can also choose the region

where the program will search for the optimal α with the parameters “maximum optimal

alpha” and “minimum optimal alpha” in subsection COMPUTATION PARAMETERS.

When the error (standard deviation or covariance) is known precisely, the crossover

region is narrow, and it is clear what is the optimal value. This is because, in that ideal

case, the ratio of ∆G and the error tends to stay comparable at different ωn (or covariance

eigenvector index ic) as α decreases, and thus the noise in Gin starts to be fitted around

the same value of α at all frequencies ωn (ic). On the other hand, if the error is not well

estimated, the crossover region, where both noise and information are fitted at the same

time, becomes wider. The choice of optimal α is then more arbitrary. In that case, the

best solution is of course to improve the error, if that is possible. If not, you can also use

the other output figures to help you choose the α that corresponds to the best compromise

according to your judgement. In particular, in addition to the spectrum itself, the figures

described in subsections II K and II L can help you diagnose more precisely the problems

with the errors, in order to improve it, or help you find the best compromise in the choice

of the optimal α.
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K. Properties of ∆G̃ = G̃in − G̃out at the optimal α

The analytic continuation operation consists essentially in fitting the function G̃out =

K̃A to the input data G̃in, where G̃ is a Green function vector expressed in the eigenbasis

of the covariance matrix, and normalized by the standard deviation in that basis. The

function ∆G̃ = G̃in − G̃out as a function of ωn (or covariance eigenvector index ic) is

very useful to assess the quality of the fit. To have a good fit, that function must satisfy

the two following conditions:

1) ∆G̃ is essentially noise at the optimal α:

When most of the information contained in Gin is also in Gout, but not the noise, ∆G̃

is essentially the noise in Gin at the optimal α. In addition, because ∆G̃ is normalized, it

has a standard deviation of 1. This is what we obtain when the covariance matrix of the

data is accurate. If the error is simply multiplied by an global factor ferr, αopt will simply

be reduced by f 2
err and the standard deviation of ∆G̃ reduced by ferr, but no effect will

be seen on the spectrum at the (new) optimal α. However, if the ratio of the errors in

different frequency ranges is not well estimated, Gout will eventually contain some of the

noise ofGin in a given frequency range, namely ∆G̃ will be smaller than the error in that

range, while not yet containing all the information in another range. ∆G̃ will then have

both noisy regions and structured ones. If that problem is too serious, distorsions appear

in some parts of the spectrum A(ω), although some of the information in Gin does not

yet appear in it. That problem can be reduced by rescaling the errors in one frequency

range with respect to the other. This can be done by multiplying the errors by a smooth

function of frequency.

2) There is no correlations between neighboring frequencies (or ic) of ∆G̃:

Look at the autocorrelation of ∆G̃ as a function of Matsubara index differences ∆n

(or ∆ic) to see if the noise in ∆G̃ is correlated or not between neighboring frequencies.

At the optimal α, the autocorrelation should look like a noisy Kronecker delta function.

The value at the origin is equal to χ2/Nχ2 , where Nχ2 is the number of terms in χ2,
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which should be close to 1 at αopt if the magnitude of the error is correct. In most cases,

the actual error is not very precise, therefore, only the structure of the autocorrelation

really matters.

If you have assumed that the covariance is diagonal, and observe, even though ∆G̃

seems to contain only noise, that the autocorrelation does not have a noisy Kronecker

delta shape for α ≤ αopt, you should use a non-diagonal covariance matrix instead of a

diagonal one.

L. Spectrum at sample frequencies vs α

When the execution stops during minimization, the program also plots the spectrum

at a number of sample frequencies as a function of logα. By default, the program uses

Nwsamp uniformly distributed frequencies in the main spectral region, where Nwsamp

is defined in file OmegaMaxEnt_other_params.dat. To choose the sample frequencies

yourself, use parameter “spectral function sample frequencies” in subsection OUTPUT

FILES PARAMETERS in file OmegaMaxEnt_input_params.dat.

In an ideal case, where the error (standard deviation or covariance) is known precisely,

the curves corresponding to different frequencies have stable, or “quasi-stable”, point

at the same α, which happens to be located in the crossover between the information-

and the noise-fitting regions, where the optimal α (αopt) is chosen using the log (χ2) vs

log(α) curve (see subsection II J). If the error is small enough, the curves are actually

stable around αopt, and eventually have plateaus that overlap around αopt as the error

gets even smaller, which indicates quantitatively accurate results. Otherwise, the curves

are “quasi-stable” at αopt, namely they have either extrema, or inflexion points with a

non-vanishing derivative. Below αopt, in the noise-fitting region, the results eventually

become unstable and the curves can increase or decrease very quickly.

On the other hand, if the error is not well known, there is necessarily some imbalance

between different Matsubara frequency ranges. The result of that imbalance will be
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that the (quasi-)stable points in different real frequency regions of the spectrum will

not be aligned. Those regions will have different “optimal” values of α, and thus there

will be no well defined single optimal α. In that case, if possible, it is preferable to

modify the error to improve balance between frequency ranges. Otherwise, if the value

determined automatically by the program does not appear to be the best, the spectrum

sample frequencies curves, combined with the figures of ∆G̃ and its autocorrelation, can

help you choose a better compromise.

To summarize, the spectrum sample frequencies vs α curves tell you

1. what the optimal α is in a given real frequency range,

2. if the errors are well balanced between different Matsubara frequency regions,

3. if your data is precise enough to have quantitatively accurate results.

M. Output files

You can control how and where the output files are saved with the parameters in

subsection OUTPUT FILES PARAMETERS of section OPTIONAL MINIMIZATION

TIME PARAMETERS of OmegaMaxEnt_input_params.dat. When the minimization

stage starts, the program creates two directories for the output files: OmegaMax-

Ent_output_files and OmegaMaxEnt_final_result, which are located in “output direc-

tory”, if this parameter is defined, else in “input directory” (subsection DATA PARAM-

ETERS), if defined, or in the current directory otherwise.

Typically, the solutions to min(χ2 − αS) are computed for hundreds of values of α

before the optimal spectral function is obtained. The results in a certain range above

and below the optimal α may be useful but the rest of the results are not. By de-

fault, in directory OmegaMaxEnt_output_files, the program saves the results in a range

[10−rαopt, 10rαopt], where r is equal to parameter save_alpha_range defined in file

OmegaMaxEnt_other_params.dat. To define differently the range of α within which
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the results are saved, you can use parameters “maximum alpha for which results are

saved” and “minimum alpha for which results are saved” in subsection OUTPUT FILES

PARAMETERS.

The following files, with their respective formats, are saved in directory OmegaMax-

Ent_final_result:
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optimal_spectral_function.dat spectral function at αopt,

ω Aopt(ω) (fermions),

ω Aopt(ω)/ω (bosons),

real_frequency_Green_function.dat ω Re[GR(ω)] Im[GR(ω)]

real_time_Green_function.dat t Re[GR(t)] Im[GR(t)]

optimal_spectral_function_tem#_alpha#.dat spectral function at αopt,

ω Aopt(ω) (fermions),

ω Aopt(ω)/ω (bosons),

optimal_spectral_functions_tem#_alpha#_#_#.dat spectral functions around αopt,

ω Aopt−(ω) Aopt(ω) Aopt+(ω) ,

ω σopt−(ω) σopt(ω) σopt+(ω) ,

G_opt_tem#_alpha#.dat output Green function at αopt,

ωn Re[G] Im[G],

error_G_opt_tem#_alpha#.dat Normalized output error at αopt,

Re[∆G̃] Im[∆G̃],

moments_optimal_spectrum_tem#_alpha#.dat moments of the spectral function at αopt,

M in
i Mout

i ,

auto_corr_error_G_opt_tem#_alpha#.dat autocorrelation of ∆G̃ at αopt,

∆n ACRe(∆n) ACIm(∆n) (diagonal

covariance)

∆i AC1(∆ic) AC2(∆ic) (general co-

variance)

Asamp_vs_alpha_tem#.dat A(ω) at sample frequencies versus α,

α A(ω1) A(ω2) . . . A(ωN )

sample_freq_tem#.dat sample frequencies of file

Asamp_vs_alpha_tem#.dat,

ω1 ω2 . . . ωN
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and the following files are saved in directory OmegaMaxEnt_output_files :

spectral_function_tem#_alpha#.dat spectral function at a given α,

ω A(ω) (fermions),

ω A(ω)/ω (bosons),

G_out_tem#_alpha#.dat output Green function,

ωn Re[G] Im[G],

error_G_out_tem#_alpha#.dat Normalized output error,

Re[∆G̃] Im[∆G̃],

moments_G_out_tem#_alpha#.dat moments of the spectral function,

M in
i Mout

i ,

chi2_vs_alpha_tem#.dat χ2 versus α,

α χ2,

The opt+ and opt− subscripts for the data in file optimal_spectral_functions_tem#_alpha#_#_#.dat

refer to values of α slightly above and below αopt. Those values delimit the crossover

region between information- and noise-fitting regimes (see also section II I).

N. When is the calculation over

The program assumes that the calculation is over when 1) the optimal α has been

found, and 2) the following condition is satisfied:

min
(
d log(χ2)

dγ log(α)

)
< RMAX_dlchi2_lalpha ∗max

(
d log(χ2)

dγ log(α)

)
, (II.7)
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where RMAX_dlchi2_lalpha and γ = f_scale_lalpha_lchi2 are defined in OmegaMax-

Ent_other_params.dat.

You can also stop the calculation before those condition are satisfied with parameters

“minimum value of alpha” (subsection COMPUTATION PARAMETERS) or “number

of values of alpha computed in one execution” (subsection MINIMIZATION EXECU-

TION OPTIONS). In those cases, the calculation is only paused however, as discussed

in section II H, unless the two conditions above are satisfied.

In any case, the calculation is not over until the lowest α is deep in the noise-fitting

regime. This can be determined easily from the figure of logχ2 versus logα, on which

you should see a plateau at high α, an intermediate region of large slope, and a quasi-

plateau (a region of very small slope) at low α. The latter quasi-plateau should be wide

enough to be sure that it is not just a smaller slope region in the information-fitting

regime. To verify that the lowest α is indeed in the noise-fitting region, see that the

function ∆G̃ versus ωn (or covariance eigenvector index) contains only noise.

O. How to improve the results

With the default settings, the first results you obtain with a given set of data are often

not the best one can obtain. This can be because the default grid is not optimal for the

spectrum, or the default model needs some adjustments, or because the errors used are

not accurate. The first step to improve the results is to define a grid more adapted to the

spectrum using subsection FREQUENCY GRID PARAMETERS. For example, if some

peaks are defined by only a few points, you can either increase the step everywhere in

the main spectral region, or use a non-uniform grid, to improve the resolution of those

peaks. It may also happen that the main spectral region is too narrow and not optimally

aligned with the spectrum. You should adjust it so that it covers all the frequency region

where the spectral weight is located. The rest of the grid should cover only the tails of

the spectrum. See section II E for more details on how to define the grid.
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The default model may also be too wide, too narrow, or misaligned with the spec-

trum. If so, you can modify its parameters in subsection COMPUTATION OPTIONS.

Note however that the default model should stay mostly featureless. The structure in the

spectrum should come from the data and not from the default model.

Finally, if ∆G̃ and its autocorrelation do not have the properties given in section

II K, or the spectrum sample frequencies curves as a function of log(α) do not have the

same (quasi-)stable points (see section II L), then you should improve your errors if it is

possible. Advices on how to improve the error are given in section section II K.

P. Batch calculations

The program can also be used to compute the spectra for large sets of data. To do

so however, you need a shell script that will set automatically the parameters in file

OmegaMaxEnt_input_params.dat, and then launch the program. For example, you can

create a version of OmegaMaxEnt_input_params.dat filled with special symbols that

your script will recognize and replace with parameters read from a file or generated by

a loop. For each set of parameters, the script must create an input file and launch the

program.

For series of calculations, the simplest way to have a good frequency grid is to set

“use non uniform grid in main spectral range” to “yes” (subsection FREQUENCY GRID

PARAMETERS) to let the program define a grid as well adapted to the spectrum as

possible. You could also use the other options in subsection FREQUENCY GRID PA-

RAMETERS. But in any case, you have to use grid parameters adapted to the expected

spectrum. This might be difficult to do manually if the spectra are very different. Let-

ting the program define a non uniform grid the grid automatically is probably the best

option. To control how the non-uniform grid is generated, use the parameters described

in section II E.

For batch calculations, you also have to disable the interactive mode by setting “in-
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teractive mode” to “no” in subsection MINIMIZATION EXECUTION OPTIONS. This

III. LIST OF INPUT PARAMETERS

The following is a complete list of the parameters defined in file OmegaMax-

Ent_input_params.dat with a brief description for each parameter.

A. OPTIONAL PREPROCESSING TIME PARAMETERS

1. DATA PARAMETERS

• bosonic data

Set this parameter to “yes” if your data is bosonic.

• imaginary time data

Set this parameter to “yes” for imaginary time data.

• temperature

If only the Matsubara frequency indices are given in your data file, or if the fre-

quencies are not very precise, you can use this parameter to provide the tempera-

ture. It must be given in energy units (kB = 1).

• finite value at infinite frequency

Set this parameter to “yes” if your data has a frequency-independant part, for ex-

ample in the case of a self-energy, where the constant part is the Hartree-Fock

term.

• value at infinite frequency

If your data has a frequency-independant part, but the maximum frequency is too

small to extract it (smaller than the onset frequency of the asymptotic regime), use
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this parameter to provide that value. Make sure it is as accurate as possible. A

small error can have a large impact and degrade the quality of the result.

• norm of spectral function

If the Green function is not normalized to 1 and you know the norm, you can use

this parameter to provide it. The norm corresponds to the coefficient of 1/(iωn)

in the high frequency expansion of Matsubara functions having the spectral repre-

sentation (I.1). It is recommended to set “evaluate moments” to “yes” (subsection

COMPUTATION OPTIONS) to verify that the provided value is close to the norm

extracted from your data and printed in the terminal.

If the Green function is not normalized to 1 and you do not know the norm, see

subsection II D 2 for instructions.

The program assumes that the norm is known with relative precision err_norm

(default value 10−6), a parameter in file OmegaMaxEnt_other_params.dat.

For real bosonic Matsubara data, the norm is 0. However, in that case, set “Im(G)

column in data file” (subsection INPUT FILES PARAMETERS) to a value ≤ 0

instead, and do not put anything for the norm.

• 1st moment

If you know the first moment of the spectral function, use that parameter to pro-

vide it. The first moment corresponds to the coefficient of 1/(iωn)2 in the high

frequency expansion of of Matsubara functions having the spectral representation

(I.1). It is recommended to set “evaluate moments” to “yes” (subsection COMPU-

TATION OPTIONS) to verify that your value is close to the one extracted from

your data and printed in the terminal.

• 1st moment error

If you provided the first moment, use that parameter to provide its (absolute) error.

Otherwise, the value default_error_M∗∆ωstd will be used, where default_error_M
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is a parameter in file OmegaMaxEnt_other_params.dat and ∆ωstd is the standard

deviation of the spectrum.

• 2nd moment

If you know the second moment of the spectral function, use that parameter to pro-

vide it. The second moment corresponds to the coefficient of 1/(iωn)3 in the high

frequency expansion of of Matsubara functions having the spectral representation

(I.1). It is recommended to set “evaluate moments” to “yes” (subsection COMPU-

TATION OPTIONS) to verify that your value is close to the one extracted from

your data and printed in the terminal.

• 2nd moment error

If you provided the second moment, use that parameter to provide its (absolute) er-

ror. Otherwise, the value default_error_M, defined in OmegaMaxEnt_other_params.dat,

will be used as the relative error.

• 3rd moment

If you know the third moment of the spectral function, use that parameter to pro-

vide it. The third moment corresponds to the coefficient of 1/(iωn)4 in the high

frequency expansion of of Matsubara functions having the spectral representation

(I.1). It is recommended to set “evaluate moments” to “yes” (subsection COMPU-

TATION OPTIONS) to verify that your value is close to the one extracted from

your data and printed in the terminal.

• 3rd moment error

If you provided the third moment, use that parameter to provide its (absolute) error.

Otherwise, the value default_error_M∗∆ω3
std will be used, where default_error_M

is defined in file OmegaMaxEnt_other_params.dat and ∆ωstd is the standard de-

viation of the spectrum.

• truncation frequency
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If you notice a seemingly unstable behavior in the figures ofGinf ,M0 ofM1 (when

“evaluate moments” and “display preprocessing figures” are set to “yes”) at high

fit frequency, namely, if there are some plateaus in the curves but they cease to be

flat above a certain frequency ωinst, set that parameter to ωinst.

2. INPUT FILES PARAMETERS

• input directory

If your data is not in the same directory as the program, use that parameter to set

the input directory. This way, the paths are not required for parameters that are file

names. The directory can be relative to the program’s directory. Note that if the

program does not find a file in the provided directory, it will also look for it in the

current directory. This allows you to use both the current and another directory at

the same time. Just remember that, if files with the same name exist in the current

and the provided directory, the ones in the latter will be used.

• Re(G) column in data file

For Matsubara frequency data, use that parameter if the real part is not on the

second column of your data file.

• Im(G) column in data file

For Matsubara frequency data, use that parameter if the imaginary part is not on

the third column of your data file.

For the bosonic case, if the imaginary part vanishes exactly, set this parameter to a

value ≤ 0. The “spectrum” σ(ω) is then assumed to be even and only the positive

part of the grid is used in the calculation.

• error file

Use this parameter if you have an error file where the error is given by columns.

This is for the case of diagonal covariance. Otherwise, use the covariance file
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parameters.

• Re(G) column in error file

For Matsubara frequency data, use that parameter if an error file is provided and

the error on the real part is not on the second column of the file.

• Im(G) column in error file

For Matsubara frequency data, use that parameter if an error file is provided and

the error on the imaginary part is not on the third column of the file.

• re-re covariance file

For Matsubara frequency data, if you have a covariance matrix, use that parameter

to provide the Re(G)-Re(G) part of the matrix. There must be an equal number of

rows and columns in the file.

• im-im covariance file

For Matsubara frequency data, if you have a covariance matrix, use that parameter

to provide the Im(G)-Im(G) part of the matrix. There must be an equal number of

rows and columns in the file.

• re-im covariance file

For Matsubara frequency data, if you have a covariance matrix, use that parameter

to provide the Re(G)-Im(G) part of the matrix. There must be an equal number of

rows and columns in the file.

• column of G(tau) in data file

For imaginary time data, use that parameter if the function value is not on the

second column of your data file.

• column of G(tau) error in error file

For imaginary time data, if an error file is provided, use that parameter if the error

is not on the second column.
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• imaginary time covariance file

For imaginary time data, use that parameter if you have a covariance matrix.

• added noise relative error

If you do not know the error for your data, you can use that line to add noise

of different magnitudes and see if the spectrum converges as the magnitude de-

creases. Provide a vector of relative standard deviation of the form “s1 s2 ...” and

the analytic continuation will be performed for all values automatically.

3. FREQUENCY GRID PARAMETERS

• Matsubara frequency cutoff

Use this parameter to set the maximum Matsubara frequency to be used during the

calculation. It is however recommended to read subsections II D 1 and II D 3 to

learn how to use it properly.

• spectral function width

You can use this parameter to set the width of the main spectral region, namely,

the dense part of the real frequency grid.

• spectral function center

Use this parameter to set the center of the main spectral region.

• real frequency grid origin

Use this parameter to ensure the grid contains a specific frequency.

• real frequency step

If you are using a uniform grid in the main spectral region, you can use this pa-

rameter to set the step in that region.
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• real frequency grid file

Use that parameter to provide a user-defined frequency grid.

• use non uniform grid in main spectral range

To let the program define a non-uniform frequency grid for the main spectral range,

set this parameter to “yes”.

• use parameterized real frequency grid

To use “grid parameters” on the next line, set this parameter to “yes”.

• grid parameters

Use this line to provide the parameters of a non-uniform grid that will be generated

by the program. The left and right boundaries will define the main spectral region.

• output real frequency grid parameters

Use this parameter to set the output real frequency grid by providing the minimum

frequency, the frequency step, and the maximum frequency, in that order.

4. COMPUTATION OPTIONS

• evaluate moments

If you set this parameter to “yes”, the program will try to extract the spectral func-

tion’s moments from your Matsubara data. Note that, depending on the other input

parameters, the moments may also be extracted even if this option is disabled.

• maximum moment

Use this parameter to set the maximum moment to be imposed to the spectrum.

For example, to impose only the norm and the first moment, set it to 1.

• default model center
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Use this parameter if you want the default model to be centered on a frequency

different than the (normalized) first moment.

• default model half width

Use this parameter if you want the half width of the default model to be different

from the standard deviation.

• default model shape parameter

Use this parameter if you want the default model to be different from a gaussian

(shape parameter= 2). A shape parameter of 1 corresponds to a Laplace distri-

bution and, as the shape parameter increases, the default model becomes closer

to a uniform distribution. A shape parameter > 1 is recommended, so that the

derivative has no singularity.

• default model file

Use this parameter to provide a user-defined default model.

• initial spectral function file

The program uses the default model as the initial spectral function. This is actu-

ally the solution when α is very large. However, if for some reason the program is

interupted (not just paused) before the optimal result was reached, you can use this

parameter and “initial value of alpha” (in subsection COMPUTATION PARAME-

TERS) to restart it at a value of α different from the initial one. This is useful only

if the frequency grid is very large however (Nωn or Nω > 1000) and the calcula-

tion time is long. For numbers of Matsubara and real frequencies in the hundreds,

the calculation is fast and you will not need that option. If you do need it, it may

be useful to read section II M to learn how and where the results are saved.

• compute Pade result

Set this parameter to “yes” to compute the retarded Green function using a Padé

approximant.
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• number of frequencies for Pade

If compute Pade result is enabled, you can use this parameter to choose the number

of frequencies used in the Padé approximant.

• imaginary part of frequency in Pade

Use this parameter to set the imaginary part of the frequency that selects the re-

tarded branch of Green function in the continuation using a Padé approximant.

5. PREPROCESSING EXECUTION OPTIONS

• preprocess only

Set this parameter to “yes” to pause execution at the end of preprocessing. As

long as this parameter is enabled, when resuming execution, the preprocessing

stage restarts if changes were made in section OPTIONAL PREPROCESSING

TIME PARAMETERS during the pause, or else nothing happens. You can disable

that option during the pause to start the actual calculation.

This option, along with “display preprocessing figures”, are very useful to verify

the input parameters – input files, frequency grid, moments, default model, etc —

and modify them if necessary, before starting the actual computation.

• display preprocessing figures

Set this parameter to “yes” to display figures during the preprocessing.

• display advanced preprocessing figures

Set this parameter to “yes” to display the “advanced” figures during preprocess-

ing. Those figures show some intermediate quantities of different preprocessing

operations.

• print other parameters

Set this parameter to “yes” to display the parameters of file OmegaMaxEnt_other_params.dat.
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B. OPTIONAL MINIMIZATION TIME PARAMETERS

1. OUTPUT FILES PARAMETERS

• output directory

Use this parameter if you want to put the two output directories OmegaMax-

Ent_output_files and OmegaMaxEnt_final_result in another directory than the one

provided at “input directory”, or the current directory otherwise.

• output file names suffix

Use this parameter to add a suffix to the names of the output files (see section II M).

For example, you can add parameter values specific to your data to archive your

files more clearly. The suffix you define will be added after the default descriptive

part of the file names, before “tem#”.

• maximum alpha for which results are saved

Use this parameter to choose the range of α for which the results are saved differ-

ently than how it is done by default, as described in section II M.

• minimum alpha for which results are saved

Use this parameter to choose the range of α for which the results are saved differ-

ently than how it is done by default, as described in section II M.

• spectral function sample frequencies

Use this parameter to choose which sample frequencies of the spectrum will be

plotted as a function of α. See section II L for a discussion about that figure.

2. COMPUTATION PARAMETERS

• initial value of alpha
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Use this parameter only if you do not see a plateau at high α in the figure of logχ2

versus logα. Most of the time, the value determined by the program is correct. If

not, set this parameter to a value a few orders of magnitudes larger than the largest

value in the figure, and increase it the same way until you see the plateau.

• minimum value of alpha

Use this parameter to adjust the width of the noise-fitting region, namely the quasi-

plateau at low α in log (χ2) versus log(α), if necessary. This region should cover

at least a few decades, to make sure that the calculation is really over, but not

too many, since it is located below the optimal α, and thus useless to the results

themselves. The program is designed to make sure that this region is wide enough,

so this parameter might be useful mostly to reduce the width of the noise-fitting

region.

• maximum optimal alpha

Use this parameter if the program does not choose the correct peak in the curvature

of logχ2 versus logα, namely, the peak located in the crossover region between

the information- and noise-fitting ranges of α. See subsection II J for a discussion

about this topic.

• minimum optimal alpha

Use this parameter to ignore the peaks below a certain α in the curvature of logχ2

versus logα, in case there are more than one peak in the region where the optimal

α should be chosen.

3. MINIMIZATION EXECUTION OPTIONS

• number of values of alpha computed in one execution

Use this parameter to force a pause once the spectrum has been computed for

a certain number of values of α. The program will display figures showing the
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results at the current stage of the calculation. You can make some changes in

section OPTIONAL MINIMIZATION TIME PARAMETERS without triggering

the preprocessing, except for option “initialize preprocessing”. Once you have

closed the figures, the program will ask you if you want to continue the execution.

If you do, computation will resume at the point it halted.

• initialize maxent

Use this option to restart the minimization stage at the initial value of α after a

pause. Do not forget to disable that option if the execution is paused again before

the calculation is over and you modify the file OmegaMaxEnt_input_params.dat

during the pause, unless you want the minimization stage to start over again.

Note that if you modify either “output directory”, “spectral function sample fre-

quencies” or “initial value of alpha” during a pause, the minimization stage will

also start over.

• initialize preprocessing

Use this option if you want to restart the preprocessing. Note that if you make

modifications in section OPTIONAL PREPROCESSING TIME PARAMETERS,

the preprocessing will also restart.

• interactive mode

To disable interactive mode, set this parameter to “no”. The program will then

execute once and quit. No figures are displayed in this mode.

4. DISPLAY OPTIONS

• display results at each value of alpha

If that option is enabled, the values of Q = χ2 − αS, S and χ2 will be printed in

the terminal at each value of α computed.
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• show optimal alpha figures

Use this parameter if you do not want the program to display the figures corre-

sponding to the optimal α.

• show lowest alpha figures

Use this parameter if you do not want the program to display the figures corre-

sponding to the lowest α.

• show alpha dependant curves

Use this parameter if you do not want the program to display the α-dependant

curves, namely, log (χ2) vs log(α), its curvature, and the spectrum sample fre-

quencies vs log(α).

• reference spectral function file

You can use that parameter to provide a reference spectrum that will be plotted on

the same figures as the spectrum.

Appendix A: How the program estimates the width of a low energy peak

When the spectrum has a low energy peak well isolated from the rest of the spectrum,

its weight, position, and width are obtained with good accuracy from the coefficients of

a Laurent series fitted to the low frequency part of G(iωn). When a narrow low energy

peak is present, but other structures are also present at low energy, the Laurent series ap-

proximation is not strictly valid anymore. However, the fit is often good anyway and the

peak width determined from it has the correct order of magnitude, which is very useful

to define the step at low frequency. The program therefore systematically tries to make

the Laurent series fit and uses the width obtained when the quality of the fit is accept-

able. The parameters std_norm_peak_max, varM2_peak_max and peak_weight_min, all

defined in file OmegaMaxEnt_other_params.dat, are used to determine if the quality of
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the fit sufficient to take the result into account. The parameter R_peak_width_dw, also

defined in OmegaMaxEnt_other_params.dat, defines the ratio of the peak width and the

step at ω = 0.

Appendix B: Other parameters

The following is a complete list of the parameters defined in file OmegaMax-

Ent_other_params.dat.

• Nn_min

Minimum number of Matsubara frequencies. Minimum number of Matsubara fre-

quencies used in χ2, if that number is smaller than the total number of frequencies

provided.

• Nn_max

Maximum number of Matsubara frequencies. Once the asymptotic part has been

removed, if the number of frequencies exceeds that value, a non-uniform Matsub-

ara grid will be used.

• Nw_min

Minimum number of real frequencies.

• Nw_max

Maximum number of real frequencies. The execution is paused and cannot con-

tinue if the number of frequencies exceeds that number. If that happens, you can

either increase that value, or use parameters of subsection FREQUENCY GRID

PARAMETERS in file OmegaMaxEnt_input_params.dat to modify the grid. The

latter option is more efficient and thus recommended.

• Nn_fit_max
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During computation of the moments, maximum number of frequencies used in the

fit of the asymptotic form of the Matsubara function when localizing the asymp-

totic part of the function.

• Nn_fit_fin

During computation of the moments, maximum number of frequencies used in the

final fit of the asymptotic form of the Matsubara function.

• Nn_as_min

Minimum number of frequencies required in the asymptotic region for the com-

puted moments to be used in the calculation.

• Niter_dA_max

Maximum number of iterations in the calculation of the spectrum at a given value

of α using Newton’s method to solve∇Q = 0.

• Nwsamp

Default number of sample frequencies of the spectral function to be plotted (and

saved) as a function of alpha.

• Nsmooth_errG

Smoothing distance for the added noise error. When using parameter “added

noise relative error” in section INPUT FILES PARAMETERS, the error can be

smoothed after it has been defined as a constant times the absolute value of the

data. Nsmooth_errG is the number of frequencies used on each side of a given

frequency used in the smoothing.

• f_SW_std_omega

Ratio of main spectral range and standard deviation of spectrum.

• f_w_range

Ratio of the total real frequency range and the main spectral range.
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• Rmin_SW_dw

Minimum ratio of standard deviation of spectrum and frequency step.

• tol_Ginf

Tolerance on frequency-independant part of data. When “value at infinite fre-

quency” is set, if the ratio of the residual frequency-independant value extracted

from the high-frequency part of the data (at the same time as the moments) and the

provided value is larger than tol_Ginf, a warning is printed in the standard output.

• tol_tem

Tolerance on the relative difference between the temperature extracted from the

first finite Matsubara frequency and the input temperature. A warning is given if

that tolerance is exceeded.

• tol_norm,

Tolerance on the difference between the norm extracted from the asymptotic part

of the data and the provided norm (if applicable). A warning is given if that toler-

ance is exceeded.

• tol_M1

Tolerance on the difference between the first moment extracted from the asymp-

totic part of the data and the provided one (if applicable). A warning is given if

that tolerance is exceeded.

• tol_M2

Tolerance on the difference between the second moment extracted from the asymp-

totic part of the data and the provided one (if applicable). A warning is given if

that tolerance is exceeded.

• tol_M3
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Tolerance on the difference between the third moment extracted from the asymp-

totic part of the data and the provided one (if applicable). A warning is given if

that tolerance is exceeded.

• default_error_G

Default error on the input data. When no error file is provided, a constant error of

default_error_G∗Gmax is used, where Gmax is the maximum absolute value of the

imaginary part of the data, for fermions, or the real part, for bosons.

• err_norm

Relative error on norm.

• default_error_M

Default error on moments.

• tol_mean_C1

Tolerance used to find the onset of the asymptotic region ofG from the fitted norm

as a function of the starting frequency of the fit.

• tol_std_C1

Tolerance used to find the onset of the asymptotic region of G from the standard

deviation of the fitted norm as a function of the starting frequency of the fit.

• tol_rdw

Tolerance used to decide if consecutive frequency intervals are equal. Used to

detect if a frequency grid has been generated by the program.

• Rmin_Dw_dw

Minimum number of steps accepted in a grid interval when using a parameter-

ized real frequency grid (“grid parameters” in subsection FREQUENCY GRID

PARAMETERS of file OmegaMaxEnt_input_params.dat).
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• Rdw_max

Maximum ratio of steps recommended in consecutive grid interval when using a

parameterized real frequency grid (“grid parameters”).

• RW_grid

Ratio of grid interval length and the transition region between intervals in the

parameterized real frequency grid.

• RWD_grid

Width of the transition region of the hyperbolic tangent used to define the param-

eterized real frequency grid.

• minDefM

Minimum value of default model.

• f_alpha_init

Initial ratio of the entropy and the χ2 contributions to the spectrum.

• R_width_ASmin

Width of the minimum entropy spectrum peaks relative to the width of the default

model.

• f_Smin

Ratio of the minimum entropy and the optimal χ2. Used to estimate αmin during

the preprocessing.

• diff_chi2_max

Maximum relative difference between the χ2 of consecutive values of α. If this

ratio is exceeded, the step in log10(α) is decreased.

• tol_int_dA
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Tolerance on consecutive values of the integral of |δA|, where δA is the variation

in the spectrum A between iterations in the Newton’s method used to compute the

spectrum.

• rc2H

Maximum ratio of the penalization parameter and the maximum eigenvalue of the

hessian of χ2. The penalization parameter is used to avoid negative values of the

spectrum.

• fc2

Ratio of the default model and the minimum of the penalization function, which

prevents the spectrum from becoming negative.

• pow_alpha_step_init

Initial value of the step in log10(α).

• pow_alpha_step_min

Minimal value of the step in log10(α).

• chi2_alpha_smooth_range

Length of the part of the curve log10 (χ2) vs γ log10(α) used to compute its local

curvature. γ is the parameter f_scale_lalpha_lchi2.

• f_scale_lalpha_lchi2

γ in the calculation of the curvature of log10(χ
2) vs γ log10(α).

• FNfitTauW

Factor that determines the number of values of τ used in the polynomial fit in the

calculation of the moments from imaginary time data.

• std_norm_peak_max
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For fermions, tolerance on the standard deviation of the low frequency peak weight

as a function of fitting power in the estimation of a low frequency peak width. Used

to decide if there is a well defined peak or not.

• varM2_peak_max

For bosons, relative tolerance on the low frequency peak variance as a function of

fitting power in the estimation of a low frequency peak width. Used to decide if

there is a well defined peak or not.

• peak_weight_min

Minimum value of peak weight to assume a low energy peak is present.

• RMAX_dlchi2_lalpha

Maximum ratio of d log (χ2) /d log(α) at the lowest α, and the maximum value.

Used to determine if α is deep enough in the noise-fitting region.

• f_alpha_min

Factor by which αmin is reduced when estimated to be too high.

• save_alpha_range

Range of α above and below the optimal value for which the results are saved, in

log10 scale. If r =save_alpha_range, the range saved is [10−rαopt, 10rαopt].

• R_peak_width_dw

When a low energy peak is detected and parameter “use non uniform grid in main

spectral range” is set to “yes” (subsection FREQUENCY GRID PARAMETERS),

this parameter is the ratio of the peak width and the frequency grid step around

ω = 0.

• R_wncutoff_wr

When “use non uniform grid in main spectral range” is set to “yes” (subsection

FREQUENCY GRID PARAMETERS), this is the ratio of the onset Matsubara
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frequency of the asymptotic region of the Green function and the main spectral

range maximum frequency absolute value.

• R_Dw_dw

When “use non uniform grid in main spectral range” is set to “yes” (subsection

FREQUENCY GRID PARAMETERS), this is the ratio of a grid interval’s length

and its step.

• R_SW_wr

When “use non uniform grid in main spectral range” is set to “yes” (subsection

FREQUENCY GRID PARAMETERS), but the onset Matsubara frequency of the

asymptotic region of the Green function is unknown (the moments have not been

extracted from the data), this is the ratio of the main spectral range and the standard

deviation of the spectrum (if moments were provided).

• R_wmax_wr_min

When “use non uniform grid in main spectral range” is set to “yes” (subsection

FREQUENCY GRID PARAMETERS), this is the minimum ratio of the grid max-

imum frequency and the main spectral range maximum frequency.

• wgt_min_sm

Smallest relative weight in the smoothing of the added noise error. Relative weight

at the distance “Nsmooth_errG” from a given frequency during smoothing of the

added noise error.

• R_SW_G_Re_w_range

Ratio of the total frequency range and the main spectral region used in the calcu-

lation of the real part of the retarded Green function.

• R_dw_min_dw_dense

Default ratio of the minimal frequency step in the computation grid and the step in

the output grid.
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• R_wKK_SW

Size of the frequency region around ω = 0 where the real part of the retarded

Green function is computed with Kramers-Krönig, divided by the spectral function

width.

• R_sv_min

Minimum ratio of the matrix singular values in the computation of the moments

from G(τ).

Appendix C: Analytic continuation for spectral functions with non-definite sign

Given a correlation function

CAB(τ) = −〈TτA(τ)B〉 , (C.1)

or its Fourier transform CAB(iωn), analytic continuation of that function using the max-

imum entropy method can be done directly only for spectral functions with the property

Im[CR
AB(ω)] < 0 , (C.2)

if A and B are fermion operators, or

Im[CR
AB(ω)]

ω
< 0 , (C.3)

if A and B are boson operators.

However, if Im[CR
AB(ω)] does not satisfy that property, it can still be obtained with

a MaxEnt routine, but only indirectly in that case. The procedure to to do so is the

following:
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First, we define

O = A+ µB† ,

P = A+ iνB† .
(C.4)

where µ and ν are real scalars such that µB and νB have the same dimension as A and

which values are assumed arbitrary in the present demonstration. Thus,

COO†(τ) = −
〈
Tτ (A+ µB†)(τ)(A+ µB†)†

〉
= −

〈
Tτ (A+ µB†)(τ)(A† + µB)

〉
= −

〈
TτA(τ)A†

〉
− µ 〈TτA(τ)B〉 − µ

〈
B†(τ)A†

〉
− µ2

〈
TτB

†(τ)B
〉

COO†(τ) = CAA†(τ) + µCAB(τ) + µCB†A†(τ) + µ2CB†B(τ) ,

(C.5)

and

CPP †(τ) = −
〈
Tτ (A+ iνB†)(τ)(A+ iνB†)†

〉
,

= −
〈
Tτ (A+ iνB†)(τ)(A† − iνB)

〉
,

= −
〈
TτA(τ)A†

〉
+ iν 〈TτA(τ)B〉 − iν

〈
B†(τ)A†

〉
− ν2

〈
TτB

†(τ)B
〉

CPP †(τ) = CAA†(τ)− iνCAB(τ) + iνCB†A†(τ) + ν2CB†B(τ) .

(C.6)

Now, if we define

R(τ) = COO†(τ)− CAA†(τ)− µ2CB†B(τ)

= µ [CAB(τ) + CB†A†(τ)]
(C.7)

and

S(τ) = CPP †(τ)− CAA†(τ)− ν2CB†B(τ)

= −iν [CAB(τ)− CB†A†(τ)] ,
(C.8)
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we have

CAB(τ) =
1

2

[
1

µ
R(τ) + i

1

ν
S(τ)

]
(C.9)

or

CAB(iωn) =
1

2

[
1

µ
R(iωn) + i

1

ν
S(iωn)

]
(C.10)

and thus

CR
AB(ω) =

1

2

[
1

µ
RR(ω) + i

1

ν
SR(ω)

]
. (C.11)

Therefore,

Im[CR
AB(ω)] =

1

2

[
1

µ
Im[RR(ω)] +

1

ν
Re[SR(ω)]

]
, (C.12)

where, from (C.7) and (C.8),

RR(ω) = CR
OO†(ω)− CR

AA†(ω)− µ2CR
B†B(ω) (C.13)

and

SR(ω) = CR
PP †(ω)− CR

AA†(ω)− ν2CR
B†B(ω) . (C.14)

Now, the right-hand sides of (C.7) and (C.8) contain only correlation functions that

satisfy property (C.2) or (C.3) (see Appendix D for the proof) and can thus be treated

directly with a MaxEnt routine. To obtain Im[RR(ω)], it suffices to obtain Im[CR
OO†(ω)],

Im[CAA†(ω)] and Im[CB†B(ω)] separately with the MaxEnt routine and then use (C.13).

If the correlation function has the property CAB(τ) = CB†A†(τ), then S(τ) = 0 and the

problem is solved. Otherwise, to obtain Re[SR(ω)] in (C.12) using (C.14), we need

Re[CPP †(ω)], Re[CAA†(ω)] and Re[CB†B(ω)]. Those functions can be computed using

the Kramers-Krönig relation:

Re[CR
AB(ω)] = P

∫
dω′

π

Im[CR
AB(ω)]

ω′ − ω
, (C.15)

once the imaginary parts have been computed with the MaxEnt routine. Therefore, all

functions necessary to obtain Im[CR
AB(ω)] can be obtained with a maximum entropy



63

routine and a Kramers-Krönig relation.

To summarize, the steps to obtain Im[CR
AB(ω)] are

1. Compute CAB(τ), CB†A†(τ), CAA†(τ) and CB†B(τ), or their Matsubara frequency

counterparts

2. Define the parameters µ and ν and compute COO†(τ), given by (C.5) and CPP †(τ),

given by (C.6), or their Matsubara frequency counterparts

3. Use a maximum entropy routine to compute Im[CR
OO†(ω)], Im[CPP †(ω)]

(
if

CAB(τ) 6= CB†A†(τ)
)
, Im[CAA†(ω)] and Im[CB†B(ω)]

4. If CAB(τ) 6= CB†A†(τ), use the appropriate Kramers-Krönig relation to obtain

Re[CPP †(ω)], Re[CAA†(ω)] and Re[CB†B(ω)]

5. Compute Im[CR
AB(ω)] with (C.12), (C.13) and (C.14)

In practice, the stability of the result will depend on the values of µ and ν. Those

values must therefore be varied to find a region of the (µ, ν) space where the result is

stable [1].

This method was originally published in Ref. [1], including an example of application

on the calculation of the “anomalous” part of the Green function in superconductivity.

Another example of application on the calculation of thermoelectric (Seebeck) response

functions can be found in Ref. [2].

Appendix D: Spectral function with definite sign

The spectral function Im[CR
AA†(ω)] associated with a correlation function of the form

CAA†(τ) = −
〈
TτA(τ)A†

〉
(D.1)



64

has the property

Im[CR
AA†(ω)] < 0 , (D.2)

if A is a fermion operator, or
Im[CR

AA†(ω)]

ω
< 0 , (D.3)

if A is a boson operator.

Proof:

Let us assume 0 < τ < β. If |i〉 are eigenstates of H , then

CAA†(τ) = − 1

Z

∑
i

〈i|e−βHeτHAe−τHA†|i〉

= − 1

Z

∑
ij

〈i|e−βHeτHAe−τH |j〉〈j|A†|i〉

= − 1

Z

∑
ij

e−βEieτ(Ei−Ej)〈i|A|j〉〈j|A†|i〉

= − 1

Z

∑
ij

e−βEieτ(Ei−Ej) |〈i|A|j〉|2 ,

(D.4)

where

Z =
∑
i

〈i|e−βH |i〉 =
∑
i

e−βEi . (D.5)

IfA is bosonic,CAA†(τ) is periodic in τ , with period β, and ifA is fermionic,CAA†(τ)

is antiperiodic, i.e.,CAA†(τ+β) = −CAA†(τ). Taking into account the (anti-)periodicity,

the Fourier transform of CAA†(τ) is

CAA†(iωn) = − 1

Z

∑
ij

e−βEi |〈i|A|j〉|2
∫ β

0

dτeiωnτeτ(Ei−Ej)

= − 1

Z

∑
ij

|〈i|A|j〉|2

iωn + Ei − Ej
e−βEi

(
eiωnβeβ(Ei−Ej) − 1

)
= − 1

Z

∑
ij

|〈i|A|j〉|2

iωn + Ei − Ej
(
±e−βEj − e−βEi

)
(D.6)
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where ωn = 2nπT and we use the + for bosons and ωn = (2n+ 1)πT and we use the −

for fermions. Now the retarded correlation function is

CR
AA†(ω) = − lim

η→0+

1

Z

∑
ij

|〈i|A|j〉|2

ω + iη + Ei − Ej
(
±e−βEj − e−βEi

)
(D.7)

and thus,

Im[CR
AA†(ω)] =

π

Z

∑
ij

|〈i|A|j〉|2
(
±e−βEj − e−βEi

)
δ(ω + Ei − Ej) . (D.8)

Therefore,

Im[CR
AA†(ω)] < 0 , fermions , (D.9)

Im[CR
AA†(ω)]

< 0 , ω > 0

> 0 , ω < 0
, bosons (D.10)

i.e.
Im[CR

AA†(ω)]

ω
< 0 , bosons. (D.11)
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