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Cavity quantum electrodynamics (QED) studies the interac-
tion of light and matter at its most fundamental level: the 
coherent interaction of single atoms with single photons. 

Over the past 40 years, this exploration has led to advances in exper-
imental techniques to the level where control of the quantum state 
of single atoms is now possible, developments that have provided 
exquisitely precise tools to probe the counterintuitive nature of 
quantum physics1,2. To reach a regime where coherent light–matter  
coupling overwhelms all decay rates, such that quantum effects 
become important, cavity QED relies on atoms with a large atomic 
electric dipole moment and cavities that confine the electromag-
netic field in a small region of space.

However, quantum coherence is not limited to natural atoms, 
and the first conclusive signatures of a coherent superposition of 
two states in an engineered quantum system were observed two 
decades ago via the atomic physics techniques of Rabi oscillations3 
and Ramsey interference fringes4,5. At the heart of such experiments 
is a Josephson junction-based device acting as a single artificial 
atom6. However, unlike natural atoms, superconducting artificial 
atoms must be somewhat coerced into behaving quantum mechani-
cally with appropriate design and operation at cryogenic tempera-
tures. Nevertheless, formidable progress in this direction has been 
made over the past 20 years, and by some measures, artificial atoms 
are now on par with or even surpassing their natural counterparts. 
In addition, superconducting quantum circuits can be strongly and 
controllably coupled to electromagnetic fields confined in circuit 
elements such as inductors and capacitors. In other words, the phys-
ics of cavity QED can naturally be explored in circuits, an observa-
tion that has opened the field of circuit QED7–9. Beyond quantum 
optics, circuit QED achieves in a single architecture the essential 
requirements for universal quantum computing and is now a lead-
ing architecture for the realization of a scalable quantum computer10.

This Review surveys how the degree of control and connec-
tivity of artificial atoms enabled by circuit QED can be exploited 
both to explore the physics of cavity QED and quantum optics on a 
chip, as well as to build promising quantum technologies. We first  

introduce the basic concepts of circuit QED and how the new 
parameter regimes that can be obtained in circuit QED, compared 
with cavity QED, lead to new possibilities for quantum optics. Next, 
we discuss circuit QED in the context of quantum information pro-
cessing. We then present perspectives on the next steps for the field 
of circuit QED towards quantum computation, first with quantum 
error correction (QEC) and then by discussing some of the chal-
lenges associated with scaling to larger systems.

Circuit QED in a nutshell
In this section, we summarize the basic theory of circuit QED.

Superconducting quantum circuits. The basic ingredients of  
circuit QED are illustrated in Fig. 1. They consist of a supercon-
ducting qubit (green) embedded in a high-quality microwave 
oscillator (blue), such as a superconducting coplanar-transmis-
sion-line resonator, a lumped-element inductor–capacitor (LC) 
circuit, or a three-dimensional (3D) cavity. When working with 
a transmission-line resonator (Fig. 1a), the qubit is fabricated 
in close proximity to the centre conductor of the resonator7. 
This centre conductor is interrupted by gaps leading to capaci-
tive coupling to the input and output ports of the resonator (grey 
in Fig. 1a). At these points, the current vanishes and these open 
boundary conditions result in normal modes with well-separated 
frequencies11. By working with centimetre-long resonators, the 
fundamental frequency is in the microwave regime and is typi-
cally chosen to be between 5 and 15 GHz. These frequencies are 
high enough to avoid thermal photon population at the temper-
ature where these devices are operated (~10 mK), but still in a 
convenient range for microwave control electronics. Moreover, 
dissipation is minimized by fabricating the circuits using alumin-
ium, which is superconducting below 1 K. The distribution of the  
electric field for the second mode of the resonator is illustrated by 
the orange lines in Fig. 1a.

Close to one of the mode frequencies, the resonator is well 
approximated by a single parallel LC oscillator where the effective 
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inductance L and capacitance C are chosen to match the mode fre-
quency ωr ¼ 1=

ffiffiffiffiffiffi
LC

p

I
 and the characteristic impedance, Zr ¼

ffiffiffiffiffiffiffiffiffi
L=C

p

I
 

(Fig. 1b). In a quantized model, the Hamiltonian of this circuit takes 
the usual form for a harmonic oscillator

ĤLC ¼ ℏωrâ
yâ ð1Þ

The creation operator ây
I

 can be expressed as 
ây ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ℏZr

p
Φ̂� iZrQ̂
� 

I
 where Φ̂

I
 is the flux threading the  

inductor and Q̂
I
 the charge on the capacitor with Φ̂; Q̂

� �
¼ iℏ

I
. 

The operator ây
I

 thus creates a quantized excitation of the oscilla-
tor’s charge and flux degrees freedom or, equivalently, of its elec-
tric and magnetic fields. In short, the action of ây

I
 is the creation 

of a photon of frequency ωr localized in the LC circuit. It is worth 
noting that while the average voltage across the LC circuit van-
ishes in the vacuum state, its root-mean-square value is non-zero: 
Vzpf ¼ 0 V̂2

 0
 1=2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωr=2C

p

I
, where V̂ ¼ Q̂=C

I
. Typical cir-

cuit parameters result in a Vzpf ≈ 1 μV (ref. 12). Going back to the 
transmission-line resonator of Fig. 1a where the separation between 
the centre conductor and the ground plane is d ≈ 5 μm, this cor-
responds to a zero-point electric field as large as Ezpf = Vzpf/d ≈ 0.2 
V m−1 in this region of the circuit. These large quantum fluctua-
tions of the electric field result from the small mode volume of the 
resonator and are one of the reasons why light–matter coupling can 
be much larger in circuit QED than in cavity QED. Importantly, 
the lifetime of single microwave photons in these structures can be 
long, approaching 0.1 ms in coplanar resonators13–16 and 1 ms in 3D 
cavities of the type illustrated in Fig. 1c17.

The second crucial ingredient is the qubit. There are many types 
of superconducting qubits, and here we focus on the transmon, 
which is the simplest and most widely used18. As illustrated in Fig. 1, 
it consists of a capacitively shunted Josephson junction with capaci-
tance CS. The Josephson junction is a nonlinear and non-dissipative 
circuit element which, in the transmon, essentially plays the role of 
a nonlinear inductance causing the energy levels of the circuit to be 
non-uniformly distributed. This situation is well described at low 
energies by the Hamiltonian

ĤT ¼ ℏωqb̂
yb̂þ ℏKb̂yb̂yb̂b̂ ð2Þ

In this expression, ℏωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p � EC
I

 is the transition fre-
quency between the first two states of the transmon, with EC ≈ 
e2/2CS the charging energy, where e is the elementary charge and EJ 
the Josephson energy. The second term of ĤT

I
 is a Kerr nonlinearity 

with negative Kerr constant ℏK ¼ �EC=2
I

. In other words, the trans-
mon is a weakly nonlinear oscillator with negative anharmonicity 
2K/2π = −EC/h ≈ 200 MHz. Importantly, the above expressions are 
valid in the transmon limit, where the ratio EJ=EC ≳ 50

I
 is large. In 

practice, this ratio is achieved by using a very large shunting capac-
titance making the transmon a physically large circuit (Fig. 1a).

In contrast to the LC oscillator, the nonlinearity of the trans-
mon makes it possible to address its first two levels with minimal 
leakage to higher-energy states. In this case, the transmon reduces 
to an effective two-level system with states labelled 0j i; 1j if g

I
 and 

which can be used as a qubit for quantum information processing. 
To manipulate the qubit state, voltage pulses at the 0–1 transition 
frequency ωq are sent to the transmon from a capacitively coupled 
microwave source (Fig. 1b). This coherent microwave drive is rep-
resented by an additional term in the transmon Hamiltonian of 
the form Ĥdrive ¼ ϵðtÞðb̂y þ b̂Þ

I
 (ref. 19). By precisely controlling the 

amplitude, phase and duration of the pulse ϵ tð Þ
I

, it is possible to pre-
pare arbitrary states of the transmon with gate fidelity as high as 
99.95% (ref. 20).

Owing to its simple design and long coherence time, the trans-
mon qubit is currently the most widely studied. It is, however, 
only one of several flavours of superconducting qubits. Other con-
temporary superconducting qubits include the flux qubit21 with 
a large shunting capacitance22, the fluxonium23 and the recently 
realized 0–π qubit24. The reader interested in learning more 
about the different types of superconducting qubits can consult  
recent reviews25,26.

Light–matter coupling in a circuit. Up to now, we have discussed 
the oscillator and the transmon qubit individually, but things get 
much more interesting when these two elements interact. Indeed, 
just as a microwave source can drive qubit transitions, the zero-
point voltage fluctuations Vzpf of the capacitively coupled oscillator 
can stimulate energy exchange between the qubit and the oscillator. 
To model this situation, the amplitude ϵ tð Þ

I
 proportional to a classi-

cal voltage in Ĥdrive
I

 is replaced by the LC oscillator’s voltage opera-
tor V̂

I
 leading to the qubit–oscillator interaction Hamiltonian

Ĥcoupling ¼ ℏgðây þ âÞðb̂y þ b̂Þ ð3Þ

where all the prefactors are packaged in the coupling constant g 
(refs. 7,18). Combining with ĤLC

I
 and ĤT

I
, this Hamiltonian takes a 

particularly simple form in the two-level approximation where 
b̂ ! σ̂�
I

, with σ̂�
I

 the Pauli lowering operator

ĤJC ¼ ℏωrâ
yâþ ℏωq

2
σ̂z þ ℏg âyσ̂� þ âσ̂þ

� � ð4Þ

In this Hamiltonian, we have also dropped rapidly oscillating 
terms from Ĥcoupling

I
 that, in the usual parameter range, only lead to 

a negligibly small frequencies shift27.
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Fig. 1 | realizations of circuit QED. a, Schematic representation of  
a superconducting transmon qubit (green) coupled to a 1D transmission-
line resonator. The transmon is formed by two superconducting  
islands connected by a Josephson junction. With lateral dimensions  
(~300 μm) much smaller than that of the resonator (~1 cm), multiple 
transmons can be fabricated in the same resonator (not shown). The input 
and output ports of the resonator are shown in grey. The orange lines  
and arrows illustrate the electric field distribution for the resonator’s 
second mode. b, Lumped-element version where an LC circuit (blue)  
plays the role of the oscillator. The voltage source (grey) is used to control 
the quantum state of the transmon (green). c, Three-dimensional coaxial 
cavity with its electric field distribution (solid orange lines) and evanescent 
field (dashed orange lines). Panels adapted with permission from: a, ref. 7, 
APS; c, ref. 17, APS.
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The Hamiltonian ĤJC

I
 represents the exchange of a single micro-

wave photon from the LC oscillator to the qubit, and vice versa. It is 
known as the Jaynes–Cummings Hamiltonian and describes light–
matter interaction in cavity QED1. Importantly, in circuit QED, this 
interaction can be made much stronger than is realized in atomic 
systems8. Here, the coupling g can be expressed as the product of 
the electric dipole moment of the qubit and of the zero-point elec-
tric field of the harmonic mode1,7,28. As already mentioned, very 
large quantum fluctuations of the field are obtained by engineering 
harmonic modes with small mode volumes. Moreover, because the 
transmon is such a large object (Fig. 1a), its dipole moment is sub-
stantially larger than that of, for example, the single Rydberg atoms 
used in microwave cavity QED. Alternatively, large coupling can 
also be achieved with large mode volumes, for example, with the 3D 
coaxial cavity illustrated in Fig. 1c, by compensating the reduction 
in field amplitude by working with even larger transmon qubits29.

Quantum optics on a chip
The very strong light–matter coupling that is possible in circuit 
QED together with the large nonlinearity of Josephson junctions 
and the flexibility in designing superconducting quantum circuits is 
opening the possibility to explore the very rich physics of quantum 
optics on a chip. In this section, we provide a few illustrations of 
this growing research direction30. Because microwaves are the natu-
ral frequency range for these circuits, the experiments discussed 
here are realized with microwave rather than optical photons. With 
much of the pioneering work in cavity QED also involving micro-
wave photons, this is not unique to circuit QED1,9.

A distinguishing feature of circuit QED is, however, the strength 
of light–matter coupling g that can be realized. To play an impor-
tant role, this quantity should overwhelm the atomic relaxation 
and dephasing rates, as well as the cavity decay rate. In this situa-
tion, atom and photon states hybridize to form entangled states. On 
resonance, this coherent interaction leads to an avoided crossing of 
size 2g between the atom and the oscillator energy levels, known 
as the vacuum Rabi splitting. While the first observation in circuit 
QED8 of this hallmark signature of the strong coupling regime had 
a peak separation to linewidth ratio of ~10, on par with atomic sys-
tems31–33, more recent experiments easily display ratios of several  
hundreds (Fig. 2).

The new parameter regimes that can be achieved in circuit QED 
have also made it possible to experimentally test long-standing the-
oretical predictions of quantum optics. One example is the effect 
of squeezed radiation on atoms. As early as the mid-80s, theorists 
had predicted how dephasing and resonant fluorescence of an atom 
would be modified under squeezed radiation34,35. Testing these ideas, 
however, requires solving multiple experimental challenges, such as 
squeezing all the spatial modes of the field coupled to the atom and 
minimizing losses36. Despite much effort, simultaneously address-
ing all of these challenges remains difficult in atomic systems37. The 
situation is drastically different in circuit QED where the nonlin-
earity of Josephson junctions can be exploited to readily produce 
squeezed radiation38. Moreover, this radiation can easily be guided 
via on- and off-chip transmission lines to a qubit playing the role of 
an artificial atom. The reduced dimensionality of electrical circuits 
limits the number of modes involved in atomic interactions, such 
that squeezing a single mode can have a substantial effect. Taking 
advantage of this, what would have been a tour de force experiment 
in atomic systems has been realized in circuit QED, confirming the 
theoretical predictions39,40.

In addition, the strong nonlinearity of superconducting qubits 
has been used to prepare exotic quantum states of the microwave 
field. The first experiment in this direction took advantage of the 
possibility to rapidly frequency-tune superconducting qubits to 
transfer, one by one, qubit excitations to the oscillator41. In this way, 
oscillator Fock states up to n ¼ 6j i

I
 have been prepared. Using a 

similar sequential approach, the same authors have also prepared 
arbitrary superpositions of the oscillator field and used the qubit 
to measure the field’s Wigner function (something quite challeng-
ing to do in ordinary quantum optics) (Fig. 3)42. An alternative 
approach avoiding the long preparation time that is typical of the 
above sequential method takes advantage of the dispersive regime 
discussed in the next section to drive qubit transitions condition-
ally on the Fock state of the cavity43. Together with ideas borrowed 
from optimal control44, this approach has been used to prepare Fock 
states up to n ¼ 6j i

I
 with high fidelity, as well as the superposition 

of coherent states known as four-legged cat states45 and so-called 
Gottesman–Kitaev–Preskill (GKP) grid states46. As will be dis-
cussed below, these types of intricate states of the microwave field 
are a useful resource for QEC.

Quantum information processing
To have long coherence times, qubits must be well decoupled from 
sources of noise and uncontrollable degrees of freedom, such as 
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Fig. 2 | Vacuum rabi splitting. a, Transmission power spectrum of 
transmission-line resonator as a function of the input drive frequency 
displaying clear vacuum Rabi splitting. The solid blue line is measured at 
the qubit-resonator resonance Δ = 0 while the dashed red line shows the 
spectrum measured at strong detuning jΔj ¼ jωq � ωrj  g

I
 where only 

the resonator is probed. b, The resonator transmission spectra versus drive 
frequency νrf and external flux bias Φ/Φ0, where Φ0 is the flux quantum.  
The flux bias is used to tune the qubit frequency and allows mapping of the 
full qubit-resonator anti-crossing. Blue corresponds to low transmission 
and red to high transmission. The solid white line correspond to the dressed 
qubit-resonator energies, while the dashed white lines indicate the bare 
resonator frequency νr = ωr/2π and qubit transition frequency νq = ωq/2π 
with its flux dependence. c, Resonator transmission at the flux bias indicated 
by the arrows in b and corresponding to qubit-resonator resonance. The 
vacuum Rabi splitting is clearly observed. Panels adapted with permission 
from: a, ref. 8, Springer Nature Ltd; b,c, ref. 123, Springer Nature Ltd.
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electromagnetic noise, dielectric losses and quasiparticles (bro-
ken Cooper pairs). However, qubits must be strongly coupled to 
external control electronics to realize fast logical operations and 
readout. Simultaneously satisfying these seemingly contradictory 
requirements is one of the main challenges in designing and oper-
ating qubits. Circuit QED is an appealing approach to solve these 
challenges in a solid-state system7,47. Indeed, the oscillator can be 
used to measure the qubit state (and vice versa) and can act as a 
‘quantum bus’ mediating interactions between qubits. In this way, it 
is possible to entangle qubits separated by as much as a centimetre. 
As we will see below, the oscillator itself can also be the primary 
holder of the quantum information, with the qubits playing a sec-
ondary role as controllers.

In the context of quantum information processing, it is useful to 
work in the dispersive regime where the detuning between the qubit 
and the oscillator frequency is made much larger than the light–
matter coupling strength, Δj j ¼ ωq � ωr

�� ��  g
I

. A first advantage 
of working at large detunings is that the resonator acts as a band-
pass filter protecting the qubit from noise at its transition frequency, 
which is the cause of unwanted qubit transitions (for example, 
vacuum noise, which causes spontaneous emission of microwave 
photons when the qubit is in its excited state). A second advan-
tage results from the fact that, in this limit, the Jaynes–Cummings 
Hamiltonian is well approximated by the simpler effective model1,7

Ĥdisp ¼ ℏ ωr þ χσ̂zð Þâyâþ ℏωq

2
σ̂z ð5Þ

with χ = g2/Δ known as the dispersive shift. As is made clear by the 
first term of Ĥdisp

I
, in the dispersive regime, the oscillator frequency 

is pulled by its interaction with the qubit to a new qubit-state depen-
dent frequency, ωr ± χ. Measuring the response of the oscillator to 
a probe tone can therefore reveal the state of the qubit7,48. Owing to 
the development of quantum-limited amplifiers49, this approach is 
used to realize single-shot qubit readout with fidelity above 99% in 
under 100 ns measurement time50. Moreover, collecting the terms 
proportional to σ̂z

I
 in Ĥdisp

I
 makes it clear that the dispersive cou-

pling also leads to a photon-number-dependent shift of the qubit 
frequency, ωq þ 2χâyâ

I
 (ref. 51). As a result, by measuring this quan-

tized light shift of the qubit, it is possible to resolve different low 
photon-number states in the oscillator with very high fidelity (ref. 52).  
As alluded to in the previous section, this very large light shift 

enables sophisticated quantum control capabilities, something 
which we come back to below.

By coupling multiple qubits to the same oscillator, the latter 
can also play the role of a quantum bus mediating entanglement 
between the qubits7,47. The interaction of each qubit with the oscil-
lator takes the form of Ĥcoupling

I
 and multiple approaches have been 

theoretically proposed and experimentally implemented to turn 
this qubit-resonator coupling into an effective qubit–qubit inter-
action19,25,47. In the simplest case, two qubits can be brought in 
resonance with each other while remaining far detuned from the 
resonator. In this situation, a qubit excitation can be mediated virtu-
ally by the resonator, leading to a qubit–qubit exchange interaction 
of the form χ σ̂þ1σ̂�2 þ σ̂�1σ̂þ2ð Þ

I
 (refs. 47,53). Maximally entangled 

states can be generated from this interaction, for example, by tuning 
the qubits in resonance with each other for a time t = π/4χ. Using 
more sophisticated methods, resonator-mediated two-qubit gates 
have been experimentally realized with fidelity as high as 99.1% in a 
gate time of 160 ns (ref. 54). Alternatively, two-qubit gates can also be 
mediated by tunable coupling circuit elements reaching fidelities of 
99.5% in ~50 ns (refs. 25,55). While not using a resonator to mediate 
entanglement, these experiments rely on the dispersive readout to 
measure the qubit.

Although readout and gate fidelity in circuit QED are now above 
99% and several tens of qubits can be operated together to carry 
non-trivial computing tasks10, much work remains to be done 
before large-scale quantum computation can be realized with this 
architecture. Fortunately, circuit QED offers many advantages when 
it comes to QEC, a concept that is essential for quantum computa-
tion and to which we now turn.

Quantum error correction
The idea that QEC is possible in principle56–58 is in some ways even 
more remarkable than the idea of quantum computation itself. 
Quantum computers are in one sense analogue devices with con-
tinuously growing errors. Error correction succeeds because special 
types of measurements can be constructed that collapse the state 
to a small number of discrete possibilities, either no error or some 
specific discrete error on a specific qubit.

Remarkably, this collapse can be arranged to yield informa-
tion about the error that occurred, but no information about the 
quantum state, which would lead to destruction of the underlying 
computation that is in progress. Early experiments using NMR 
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spectroscopy59,60, ion traps61,62, solid-state defect centres63,64 and 
superconducting qubits65,66 demonstrated QEC protocols, but vari-
ous technical limitations prevented them from successfully extend-
ing the lifetime of the quantum information beyond the best value 
naturally occurring in the systems. Three different circuit QED 
schemes have recently approached or slightly exceeded this break-
even point46,67,68 using a so-called continuous-variable approach 
described below.

QEC requires encoding information in a high-dimensional sys-
tem (‘logical qubit’) comprising entangled states of multiple ‘physi-
cal qubits’. The information must be hidden in the non-classical 
correlations among the physical qubits so that no single physical 
qubit ‘knows’ the state of the logical qubit. In this way, the envi-
ronment cannot damage the information by collapsing the state of 
one physical qubit (or in the case of codes tolerant to n errors, by 
collapsing the state of up to n physical qubits). Logical information 
thus has to be encoded via ‘unnatural’ high-weight (that is, multi-
qubit) entangling operations to be protected from ‘natural’ errors 
that are (assumed to be) low weight.

A crucial step is to extract information (‘error syndromes’) 
about errors without causing back action on the encoded system. 
A necessary (but not sufficient) condition to avoid back action 
is that the measurement yields no information about the logical 
state, only about the errors. Error syndrome information is stored 
in unnatural high-weight operators, but can be measured using 
multiple low-weight operations between the data qubits and one 
or more ancilla qubits69.

A key concept in QEC is that of the break-even point. A logi-
cal qubit containing n physical qubits has an error rate n times 
worse than a single physical qubit. Thus, every QEC code begins by  

taking a giant step backward. It is up to the control system to find 
and correct the errors sufficiently rapidly and accurately that the rate 
of uncorrected logical qubit errors falls below that of the best single 
physical qubit comprising the logical qubit. The point at which the 
collective QEC process dynamics begins to actually increase the life-
time of the quantum information over the lifetime of the best of the 
individual components defines ‘break even.’

A second key concept is fault tolerance, namely the reliable per-
formance of QEC in the presence of imperfect ancillae and imper-
fect measurement and control operations. The task of fault-tolerant 
design is vastly more subtle and challenging than it is in traditional 
classical systems design. But, remarkably, with certain assumptions 
on the error model and the noise being below a certain threshold, 
quantum fault tolerance is in principle possible.

The goal of fault-tolerant system design is to prevent a ‘chain 
reaction’ of errors. This challenge can be met at the software level 
using ‘transversal’ gates69 and more generally using error correction 
at intermediate steps of gates70. To prevent a blow up of the hardware 
parts count, it is also important to work below the software level, 
directly at the hardware level using, for example, ‘error transparent’ 
gates52,71–75, ‘biased-noise’ qubits76–81, and other techniques and qubit 
designs24,82. We are in the earliest stages of experiments exploring 
these techniques, and achieving robust and practical fault tolerance 
in large-scale systems remains a grand challenge for the entire field 
of quantum information processing. Meeting this remarkably dif-
ficult challenge will require achieving still lower natural qubit error 
rates, extremely high-fidelity multi-qubit gate operations and error 
syndrome measurements, all with minimal cross-talk.

Much industrial effort is currently being devoted towards the 
goal of realizing the surface code58 within the circuit QED archi-
tecture83–86. This remarkable code uses a 2D lattice array of qubits 
that affords topological protection of the quantum information 
and requires only local weight-four error syndrome measurements. 
Only Clifford group operations can be directly implemented on 
the encoded states necessitating so-called magic-state injection to 
achieve universal control of individual logical qubits, something 
that is expected to require huge hardware overhead87. Recent theo-
retical advances in so-called lattice surgery techniques may prove 
useful in this regard88–90.

Realistic theoretical simulations suggest that considerable fur-
ther experimental progress will be required to reach the break-even 
point and will require as many as 49 physical qubits and a large com-
plex of control and readout wiring91. This scale of hardware now 
exists10 but has not yet demonstrated low enough error rates and 
weight-four error syndrome measurement with high enough fidel-
ity for the surface code to reach break even.

It may be possible that this challenge can be met ‘head on’ 
through engineering, but at this early stage in the development of 
the field, an important intellectual challenge is to develop com-
pletely new ideas that will allow us to avoid the hardware count 
explosion and achieve practical fault tolerance in a manner that is 
much more hardware efficient.

Here again, circuit QED offers interesting perspectives. In the 
‘traditional’ approach to circuit QED, the transmon anharmonic 
oscillators18 are treated as discrete-variable (two-level) qubits (as in 
Fig. 4a), and the resonators are used as quantum buses53 to couple 
the qubits via exchange of real and virtual photons.

A promising and radically different complementary approach is 
to use the microwave photon states of the resonators as logically 
encoded continuous variable (‘bosonic’) qubits (as in Fig. 4b) and 
use the anharmonic transmon oscillators as ancillae to provide uni-
versal control for the resonators45,92. This new approach has reached 
the break-even point67 for quantum memory error correction and 
demonstrated a factor of two improvement in the fidelity of error-
corrected gate operations on logically encoded qubits74 in the pres-
ence of naturally occurring errors.
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Fig. 4 | QEC hardware. a,b, A Hilbert space of dimension 8 can be 
constructed either from three discrete-variables (qubits) (a) or one 
continuous-variable system (b, top): either a coplanar waveguide (2D 
CPW) resonator or a 3D cavity microwave resonator and one transmon 
controller (not shown). The top portion of a illustrates the energy 
spectrum of three separate two-level systems whose individual states can 
be described by three Bloch spheres (middle portion of panel). Here jXi

I
 

and jYi
I

 are linear superpositions of the qubit basis states j0i
I

 and j1i
I

. The 
bottom portion of a gives the most general (possibly entangled) state of the 
system in the energy eigenbasis of the three qubits. The middle portion of 
b illustrates the quadratic potential energy of the harmonic oscillator mode 
with its discrete energy levels labelled by photon number. The oscillatory 
orange curve represents the wave function ψ(x) in the position basis 
corresponding to a general superposition of states in the photon number 
(Fock) basis shown in the bottom portion of the panel. The coefficients aj 
are exactly the same in both the discrete variable and continuous variable 
cases and there is a one-to-one correspondence between qubit states and 
cavity states. For example, qubit state 101j i

I
 corresponds to photon number 

state n = 5, since the binary representation of 5 is 101.
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In this regard, superconducting resonators have several advan-
tages: they can easily have millisecond coherence times exceeding 
those of superconducting qubits by 10 to 20 times. Moreover, they 
bring the increased state space dimension needed for logical qubits 
by simply including more photons rather than increasing the num-
ber of physical qubits. Furthermore, the error model of microwave 
resonators is very simple and is dominated by photon loss (ampli-
tude damping) with negligible dephasing.

A simple code exploiting these ideas and which corrects ampli-
tude damping to the lowest order is the binomial code93, for which 
QEC approaching the break-even point has also been recently  
demonstrated68 using the logical states

0Lj i ¼ 1ffiffiffi
2

p 0j i þ 4j ið Þ ð6Þ

1Lj i ¼ 2j i ð7Þ

where nj i
I

 is the n-photon Fock state. This code was also used to 
achieve deterministic teleportation of an entangling gate on logi-
cally encoded states94.

Because this code utilizes only a single bosonic mode, it requires 
the measurement of a single error syndrome to detect a photon loss 
error: the photon number parity. The parity of the photon number 
is a quantity that is very difficult to measure in ordinary quantum 
optics, but quite easy in circuit QED67,95,96. Because both logical 
states of the bosonic code are +1 eigenstates of parity, and both have 
the same mean photon number, the code satisfies the necessary  
conditions for lowest-order QEC97. Indeed, parity jumps tell us 
that a loss event occurred but nothing about the logical state in  
which it occurred.

This relative simplicity of the bosonic encoding is to be con-
trasted with the simplest qubit code for amplitude damping98. This 
code requires four qubits and measurement of three error syn-
dromes to determine whether a decay error has occurred, and if so, 
on which of the four physical qubits it occurred. To first order in 
amplitude damping, this code has five possible error states, while 
the bosonic code has only two possible error states (loss of zero or 
one photon).

A further advantage of bosonic encoding is that the logical qubits 
stored as standing waves in a resonator can be released as travelling 
waves to achieve quantum communication and remote entangle-
ment within the quantum computer (and beyond)99,93,100. The same 
error correctability that protects the logical bosonic qubits stored in 
resonators also protects them against errors in the communication 
process, so no additional encoding is required.

Because the resonator is a harmonic oscillator, classical drive 
tones cannot achieve universal quantum operations without the 
assistance of a nonlinear oscillator ancilla. Hence, the transmon is 
still needed, not as a qubit, but as a controller for the bosonic qubit. 
The controller coherence is not as good as that of the cavity it con-
trols, but this is partially compensated by the fact that the controller 
idles much of the time since the error rate in the resonators is low. 
New ideas for ‘hardware efficient’ fault tolerance are being devel-
oped and demonstrated to further reduce the impact of controller 
errors without increasing the hardware overhead52,71–75. This line of 
research is bringing the field into the early stages of the era of fault-
tolerant quantum computation.

Another exciting recent advance in continuous variable quantum 
information processing is the experimental realization of the states 
of the GKP101 QEC code in trapped ions102 and in circuit QED46. 
The code words consist of a periodic comb of squeezed states (or 
equivalently a uniform grid in phase space). Although originally 

a b c

Qubit

Vertical I/O

Coupling bus

Readout resonator

Flux-bias line

Microwave-drive line

Feedline Thermalization of outer conductor

HEMT

Isolator Low-pass filter Circulator

Eccosorb filter Termination

TWPA Band-pass filter Dir. coupler

Drive

35K

3K

900mK

100mK

10mK

Flux Pump Output

10
/2

0 
dB

T

H

N
bT

i
N

bT
i

N
bT

i

10
 d

B
20

 d
B

20
 d

B
20

 d
B

20
 d

B

Sample

Fig. 5 | Quantum hardware. a, Electrical circuit schematic of a 17-qubit surface code, indicating the placement of the qubits and resonators used for 
qubit–qubit coupling and qubit readout. I/O stands for input/output. b, Dilution refrigerator used to cool superconducting chips through a series of stages 
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designed for mathematically simple but physically unrealistic oscil-
lator displacement errors, this code has recently been shown to have 
excellent performance for physically realistic amplitude damping 
errors103. Simultaneous error correction for both logical bit- and 
phase-flip errors near the break-even point has also been demon-
strated46. When originally proposed, the GKP code seemed to be 
far beyond the realm of experimental possibility, but the rapidly 
advancing capabilities in circuit QED now make this a very promis-
ing direction for near-term progress.

An interesting potential route for achieving fault tolerance is the 
design of qubits with highly biased noise channels (for example, 
qubits that have very few bit flips compared with phase flips). The 
same features of circuit QED mentioned above that permit observa-
tion of novel effects of squeezed light on superconducting qubits 
allow one to engineer a biased-noise cat qubit in cavities using two-
photon driving and dissipation, and in transmon qubits using two-
photon driving. These cat states suffer predominantly from only one 
type of error (associated with single-photon gain or loss) and are 
predicted to have a higher error threshold for fault tolerance77–79 due 
to certain topological properties78. Preliminary experimental results 
are encouraging80,81.

So far we have discussed error-correctable bosonic logical 
qubits stored in a single microwave resonator. We note that a 2D 
array of such resonators could be assembled to implement the 
surface code as a second level of QEC. This could be done with 
any of the existing bosonic codes (binomial97, cat67, GKP46,101) or 
even with the ‘bare’ unencoded states consisting simply of 0 and 
1 photons. Because errors in the GKP code words correspond to 
continuous translations in phase space, decoding the errors in the 
second-level surface code has some interesting connections to 
gauge field theories104.

The case of biased-noise qubits77–81 would be especially interest-
ing because recent theoretical work has demonstrated that a prop-
erly constructed surface code can have a very high error threshold 
(approaching 50% for the code capacity threshold and exceeding 5% 
for the fault-tolerance threshold) when constructed from an array 
of biased-noise qubits105,106. These results assume the existence of a 
bias-preserving controlled NOT gate, something that is not possible 
with ordinary two-level qubits, but has recently been proven to be 
possible with pumped cat qubits78.

Practical challenges
Quantum information processing with circuit QED is rapidly tran-
sitioning from the realm of scientific curiosity to the threshold of 
technical reality107. Making this transition presents numerous prac-
tical challenges that stand squarely in the subject domain of quan-
tum engineering, a developing new discipline that serves to bridge 
traditional quantum science and classical engineering in support of 
building extensible quantum machines19. Although the engineer-
ing abstractions associated with system scalability, for example, the 
quantum analogues of Dennard scaling or Moore’s law, have yet to 
be developed for quantum information processors as they are yet 
still too immature, we can articulate the present challenges — as we 
understand them today — in extending current practice to larger-
scale systems and applications (Fig. 5).

The generic needs of a quantum information processor can be 
summarized along the following lines. Quantum processors must be 
built from high-coherence materials using reproducible, extensible 
fabrication processes108. Once fabricated, they must be controlled 
and read out with high fidelity, a challenge that becomes more 
daunting as the number of qubits increases. There is both the need 
for the ingress and egress of larger numbers of control and read-
out signals to the processor, as well as a ‘tyranny of interconnects’ 
in routing those signals within the processor109. There is the need 
to calibrate the individual qubit and cavity frequencies, and their 
couplings to one another, to properly control and readout the pro-
cessor, as well as to null out classical cross-talk and unwanted coher-
ent Hamiltonian dynamics54,85. One must furthermore house and 
thermalize the processor — and all its control lines and, possibly, 
cryogenic electronics — in a manner consistent with its high-fidel-
ity operation in a dilution refrigerator with limited heat-handling 
capacity at millikelvin temperatures110. And, one must develop a 
set of electronics and a software stack to implement the given algo-
rithms at scale111.

The challenges in meeting these needs are related in part to two 
distinct eras of scaling. The first is a nearer-term ‘brute-force era’, 
where each qubit is essentially individually wired for control and 
readout. Contemporary qubit processors with up to several tens 
of qubits fall in this category10,112. Such brute-force approaches are 
viable up to around 1,000 qubits — a loose estimate — limited pri-
marily by packaging, signal routing and the size of dilution refrig-
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erator one is willing to manufacture. The second may be referred to 
as the ‘scaling era’, where integrated methods — such as signal mul-
tiplexing and co-located, cryogenic electronics — are introduced to 
enable the control and readout of more qubits with fewer wires at 
the expense of higher complexity and heat load.

The two types of superconducting qubit circuits discussed 
here — planar circuit QED and microwave bosonic qubits — 
share many of these challenges, albeit to differing degrees. With 
the planar approach, the superconducting qubits themselves hold 
the quantum information and microwave cavities are used to read 
out the quantum states and, in some cases, mediate qubit coupling 
and control. Such planar processors benefit from semiconductor 
fabrication methods, including lithographic extensibility, manu-
facturability on silicon chips and relatively small form factors. The 
challenges reside in maintaining high coherence as the fabrication 
processes become more complex to meet the needs mentioned 
above. In the bosonic-qubit approach, relatively large (centimetre 
scale) microwave cavities are machined in blocks of aluminium 
to hold the photonic quantum states, and the transmon qubits 
are used to control these states. The primary advantage of this 
approach is a degree of modularity and higher cavity-photon life-
times, at the expense of a much larger footprint. As mentioned 
before, today, both approaches achieve approximately the same 
level of gate fidelity, around 99.9% for single-qubit gates and 99% 
for two-qubit gates25.

Both the planar-qubit and cavity-photon approaches will rely on  
3D integration to facilitate extensibility (Fig. 6). The bosonic-
qubit approach is by its very nature 3D integrated, whereas the 
2D planar-qubit approach leverages 3D integration technolo-
gies in a more conventional context113. As one moves from 1D 
chains of qubits66,85 to larger 2D arrays, the signal routing to the 
inner qubits becomes practically prohibitive without utilizing the 
third dimension to enable interconnects to cross and bypass one 
another. Although one may envision fabrication of multiple wir-
ing layers alongside qubits in a single monolithic process, such 
an approach generally incorporates lossy dielectrics between wir-
ing layers and reduces qubit coherence. While monolithic fabri-
cation with high-quality dielectrics may one day be a plausible 
and potentially advantageous approach for integrated qubit and 
control electronics, in the meantime, an alternative approach is 
to bump-bond together individual chips fabricated according to 
their respective functionality, for example, a qubit chip with high 
coherence, a multilayer interconnect chip for signal routing and a 
through-silicon-via (TSV) chip that connects them while isolat-
ing the highly sensitive qubit chip from the lossy dielectrics in the 
interconnect chip113.

Although 3D integration helps address the ‘tyranny of intercon-
nects’, it alone does not solve it. As the number of qubits increases, 
there is an increased demand on the number of signal lines that 
must be connected to the qubit package (housing). Today, those 
signals are generated using electronics at room temperature and 
brought into the dilution refrigerator along coaxial wiring that must 
be properly thermalized110. Advances include the use of flex cabling 
to reduce the heat load on the refrigerator and to increase the den-
sity of wiring. Bringing the control electronics into the refrigerator, 
for example, using cryogenic complementary metal–oxide–semi-
conductor (CMOS)114 or superconducting single-flux-quantum 
(SFQ)115 logic, serves to shorten the length of the signal wires, but 
it does not reduce the number of wires connecting to the package 
unless the cryogenic electronics are directly integrated with the 
qubits. In practice, cryogenic CMOS dissipates too much power to 
be viable in proximity to the qubits at the millikelvin stage of today’s 
refrigerators. SFQ-based electronics or its derivatives may provide 
a solution, but is currently less mature than its CMOS counterpart. 
These problems may not be prohibitive in the brute-force era, but 
they will need to be addressed in the scaling era.

Outlook
Superconducting qubits and the circuit QED architecture have 
enabled tremendous experimental and theoretical advances over 
the past 15 years. With single-qubit and two-qubit gate fidelities 
currently standing at the 99–99.95% level, it is now possible to 
execute small-scale quantum algorithms with increasing circuit 
width (number of qubits) and depth (number of gates), including 
quantum simulations of small molecular systems116,117, the dynamics 
of chemical physics processes118 and quantum many-body simula-
tions119,120, as well as a recent report of the demonstration of quan-
tum computational supremacy10. In addition, quantum networking 
using error correctable photonic codes is now being explored for 
use in distributed, modular computing architectures99. Beyond 
quantum computation, circuit QED techniques are now being 
applied to quantum-sensing applications in areas such as the search 
for dark matter121,122.

Much work remains before quantum computers — even small-
scale ones — become a practical reality. However, the circuit QED 
architecture provides an excellent platform for superconducting 
qubits to perform both the fundamental science and foundational 
engineering that will support the larger-scale systems of qubits 
needed to realize quantum algorithms of practical importance.
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