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Universal quantum computers require a large network of qubits robust against errors. Recent
theoretical and experimental studies on donor nuclear spins in silicon, engineered on semiconductor
platforms compatible with industrial fabrication, show their coherent behavior and potential for
scalability. Here we present a hardware-efficient quantum protocol that corrects phase flips of a
nuclear spin using explicit experimentally feasible operations. We introduce the MAUS encoding
(Moment AngUlar System encoding) which uses the large Hilbert space provided by the nuclear
spin of the donor to encode the information and employ the electron spin of the donor as an ancilla
for error correction. Simulations using present-day experimental manipulation fidelities predict sig-
nificant improvement in logical qubit fidelity over existing spin quantum-error-correction protocols.
These results provides a realizable blueprint for a corrected spin-based qubit.

We reach the summit of universal, fault-tolerant quan-
tum computation one step at a time. Creating a logical
qubit that use error correction to outperform bare phys-
ical qubits is a key step in this journey. The commu-
nity has dubbed this achievement “beating the break-even
point” [1]. So far, the greatest progress toward this goal
has been made in superconducting platforms by focusing
on correcting the dominant relaxation errors caused by
photon loss [2, 3].

Dopants in silicon are another very promising plat-
form for quantum information processing [4]. Their nu-
clear spins show record coherence times and single-gate
fidelity for a solid-state platform [5, 6]. Their electron
spins allow QND measurements of the nuclear spins [7]
and potentially facilitate long-distance coupling of two
nuclear spins via the charge degree of freedom [8]. Re-
cently, two-qubit gates based on exchange coupling were
implemented on two-dopant systems [9, 10]. Addition-
ally, dopants are compact compared to superconducting
qubits and can be embedded in devices manufactured in
a CMOS foundry [11], allowing them to benefit from the
decades of development of the microelectronic industry to
integrate them in large-scale platforms based on silicon
transistor technology.

Unlike in superconducting circuits, relaxation errors
are negligible in donor nuclear spins. Instead, the rel-
evant errors are dominated by dephasing, as evidenced
by the separation between relaxation time T1 = 65 s
and coherence time T2 = 60 ms reported in [7] and the
T2 = 1.75 s reported in [12] for dopants embedded in
a nanostructure. Here we propose a hardware-efficient
error-correction scheme that exploits this highly biased
noise in a similar spirit to bosonic codes and numerically
demonstrate its capacity to beat the break-even point
with near-term technology. Because we choose to encode
in a large single spin rather than several small spins to
protect against dephasing, our proposal, which we chris-
ten the MAUS encoding (Moment AngUlar System en-

FIG. 1. Schematic of the sample for error correcting codes.
(a) A donor is implanted in silicon 28. A transmission line
is used to apply microwave (radio-frequency resp.) magnetic
fields to manipulate the electron (nuclear resp.) spin states.
Three gates allow the manipulation of the donor charge state
(with potential Vd), the ancillary dot (with potential Va) and
the readout dot (with potential Vr). (b) Illustration of the
transition manipulations. Nuclear spin energy level diagram
for a dopant immersed in Bz magnetic field. For electron spin
down (up) state, the state is represented with a solid (dashed)
line. Two type of manipulation are used in the protocol, nu-
clear (νj) and electron (f |k〉) spin transition (see text).

coding), is the “bosonic code” version of the protocols
outlined in Ref. [13]. In pursuing the goal of scalable
dopant-based architecture, using high nuclear spin offers
an advantage as it allows for built-in error correction.
Describing the system.—The system we consider—

illustrated in Fig. 1 (a)—is a single donor implanted in
enriched 28Si whose electron spin S = 1/2 is coupled to
its nuclear spin, I ≥ 3/2, via a hyperfine dipole interac-
tion A and a quadrupole interaction Q. The magnitude
of the nuclear spin is necessary to ensure that the Hilbert
space is large enough to detect and recover from at least
one error. The donor electron spin is coupled to the spin
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of a ancillary accumulation dot via an exchange coupling
Jex. The charge state of the accumulation dot can then
be directly measured using a readout dot. This geom-
etry allows a measurement of the electron spin state of
the donor without affecting its charge spatial distribu-
tion [14, 15]. Therefore the hyperfine coupling A, re-
sulting from a contact interaction, remains constant dur-
ing the protocol, preventing unwanted nuclear dephas-
ing. The full spectrum of the spins and the QND aspect
of the measurement is discuss in the Supplemental Mate-
rial [16]. These spins are subjected to a static magnetic
field Bz along the z axis and an oscillating magnetic field
B1. This field is generated by an on-chip antenna [17]
and oscillates in the x-y plane at frequency f to manip-
ulate the spin states. The Hamiltonian describing this
system is

H = (γeSz − γnIz)Bz +AS · I +QI2z/4

+ (γeSy − γnIy)B1 cos(2πft) . (1)

In order to detail the protocol on a minimal system,
we focus our discussion on an arsenic donor with nuclear
spin I = 3/2 and depict only the spin transitions of the
donor in Fig. 1 (b); however, our protocol generalizes
to all donors with a nuclear spin I ≥ 3/2 [16]. For ar-
senic, γe/2π = 28.02 GHz T−1, γn/2π = 7.31 MHz T−1,
A/2π = 198.35 MHz [18], and Q/2π, which depends on
the strains at the donor position, is on the order of
50 kHz [19, 20]. Notice that the dipole coupling A can
be tuned from the given value down to 0, for donor in
its neutral and ionized charge state respectively, with
the gate potential Vd [8]. To ensure a Zeeman split-
ting much larger than the electron temperature (neces-
sary for a high-fidelity spin readout) the amplitude of
the static field Bz must be on the order of 1 T. The
typical size of this system is less than 1 µm2, making
it a highly compact corrected systems. The manipu-
lations applied to the system via magnetic field gener-
ated by the current iMW+RF [see Fig. 1 (a)] provide both
Nuclear Magnetic Resonance (NMR) and Electron Spin
Resonance (ESR) [see Fig. 1 (b)]. When applying ESR
pulse we drive the electron-spin transition f |k〉 with the
nucleus in state |k〉, whose frequencies (γeBz + 2kA)/2π
are typically on the order of 30 GHz. The theoretical
maximum Rabi frequency for this transition is the dipole
interaction A. Experimentally, heating effects due to
the large current needed to generate the magnetic field
limit the Rabi frequency Ω to a value on the order of
100 kHz [12]. When applying NMR pulses, we weakly
drive the nuclear-spin transitions νj , with j going from 1
to 3 for the transition |3/2〉z ↔ |1/2〉z , |1/2〉z ↔ |−1/2〉z
and |−1/2〉z ↔ |−3/2〉z respectively, with frequencies
(γnBz + A + (j − 2)Q/2)/2π. This pulse, of frequency
around 200 MHz, with an amplitude on the order of
0.1 mT, induces a Rabi frequency Ω on the order of 1 kHz.
This Rabi frequency is sufficiently weak compared to the

quadrupole term so as to allow us to address the nuclear
transitions individually, otherwise known as the slow-
drive regime. The protocol requires a Ix rotation, which
could be applied with a pulse of frequency (γnBz+A)/2π
driven strongly to ensure a Rabi frequency much higher
than the quadrupole term. This would require an oscil-
lating magnetic field larger than 10 mT, far from the re-
ported experimental limit [6]. To implement this Ix rota-
tion we propose using a 3-frequency pulse simultaneously
driving all the nuclear-spin transitions. This would en-
sure the Ix rotation stays in the slow-drive regime. More
details are provided on the nuclear spin manipulation in
the Supplemental Material [16].
Correcting errors.—The preëminence of T2-type er-

rors in spin systems means that extending the coher-
ence time of logical information is primarily dependent
on correcting Iz errors. Codespaces constructed from ex-
tremal eigenstates of an angular-momentum operator in
the equatorial plane (such as Iy) are ideal for correcting
Iz errors. Expressed in terms of the raising and lowering
operators I(y)± for the y component of angular momen-
tum, Iz = (I

(y)
+ + I

(y)
− )/2, so the effect of an Iz error on

the extremal eigenstates of Iy is to decrement the mag-
nitude of the Iy eigenvalues: |±I〉y 7→ |±(I−1)〉y. As
long as I ≥ 3/2, such an error is exactly correctable.
In fact, for I = (2p + 1)/2 it is possible to correct up
to p consecutive Iz errors, analogous to a code of dis-
tance d = 2p + 1 [21, Sec. 2.2]. Since extremal eigen-
states of angular-momentum operators are spin coherent
states, these MAUS codespaces are analogous to the cat
codes constructed from coherent states in harmonic os-
cillators [22–27].

Correction of dephasing errors in oscillators has been
discussed autonomously with cat codes [24] and in anal-
ogy with spin coherent states in binomial codes [28,
Sec. VI. C.]. Native implementation in a spin system,
however, is advantageous for at least two reasons. First,
in spin systems, the primary source of error is in fact
physical dephasing, unlike in harmonic oscillators where
the primary loss channel is usually photon loss. Second,
the measurements and recovery operations required are
much more natural in spin systems than the analogous
operations in an oscillator.
Describing the protocol.—For the sake of simplicity we

illustrate the working principle of our error correction
protocol on a 3/2 nuclear spin system (see Fig. 2). The
same protocol for error correction can be applied to any
higher nuclear spin (see Fig. 3 and Fig. 4) resulting in
different performance. Full protocol for higher nuclear
spin is detailed in the Supplemental Material [16].
Encoding a logical state starts with preparing the nu-

cleus in the ground state |3/2〉z. To create a superpo-
sition of computational-basis states |0̄〉 = |3/2〉y and
|1̄〉 = |−3/2〉y, one performs a π pulse to transfer the
population from |3/2〉z to |1/2〉z, from which one cre-
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FIG. 2. Quantum error correction protocol. Pulse sequence
applied to electron (ESR) and nuclear (NMR) spins: νjφ(θ) is
a rotation of the jth transitions of the nuclear spin of angle θ
due to a pulse of phase φ. Iφ(θ) is a rotation of the nuclear
spin of angle θ due to a pulse of phase φ. f |k〉φ (θ) is a rotation
of angle θ of the electron-spin transition of nuclear spin |k〉z.
The evolution ν1,30 (π) (displayed in blue) is only applied if an
error is detected.

ates the desired logical superposition by manipulating
the |±1/2〉z subspace. Parallel π pulses transfer the pop-
ulations from |±1/2〉z to |±3/2〉z. The maximum time
needed for this information-encoding step is that required
for a 3π nuclear-spin pulse, typically 1 ms, much shorter
than T1 and T2 as are all pulses lengths used for manip-
ulations. At this point, the information is encoded in
the Iz basis, where it is vulnerable to dephasing from the
fluctuating magnetic field. To transfer the information to
the Iy basis, where it will be protected from this fluctu-
ating field, one finally applies a linear drive to rotate the
entire spin by an angle of π/2 about the x axis, complet-
ing the encoding in the subspace that protects against
dephasing errors. This encoding procedure is illustrated
in the left part of Fig. 2.
Error detection is performed by reversing the π/2 pulse

about the x axis and driving transitions that flip the elec-
tron spin when the nuclear spin is in the states |±1/2〉z.
Notice that the waiting time between two error-detection
pulses must be an integer multiple of 4π/Q, on the or-
der of 0.2 ms, to remove the evolution induced by the
quadrupole term. Subsequent measurement of the elec-
tron effects a measurement projecting the nuclear spin
into the subspace spanned by |±3/2〉z (signalling no er-
ror) or the subspace spanned by |±1/2〉z (signalling an
Iz error). One measures the electron spin of the donor
by applying a π pulse on the ancillary dot electron only
resonant if the donor electron is in its exited state. By
adjusting the gate potential Va of the ancillary dot, one
can set its chemical potential such that the electron on
the ancillary dot can only tunnel to the readout dot when
it is in its excited state [31]. By measuring the presence
or absence of such tunneling, one completes the mea-
surement chain, resulting in a QND measurement of the
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FIG. 3. Ideal performance of MAUS codes for angular-
momentum-eigenbasis-based quantum error correction of de-
phasing noise, as measured by entanglement fidelity with re-
spect to the noise strength expressed as the product of the
nuclear dephasing rate Γn and the time t between correction
cycles. The schemes in all spins larger than 1/2 outperform
the break even point of encoding the qubit in neighboring Iz
angular-momentum eigenstates, which is the encoding that
obtains the best fidelity when no error correction is allowed.
The larger spins exhibit steeper slopes, which illustrates the
power of being able to correct random Iz rotations to higher
orders. The smallest of the minimal qudit codes [29] exists in
spin 5/2. This code does not exactly correct small rotations,
so its optimal recovery fidelity [30] exhibits scaling equivalent
to a bare qubit in the small-noise limit, only becoming com-
parable to the MAUS codes when the time between correction
cycles is of the order of T2 ∼ 1/Γn.

nuclear spin that does not affect the charge state of the
donor. More details about this error-detection protocol
are given in the Supplemental Material [16]. The typical
time needed for the electron-spin manipulation is 0.1 ms.
Adding this to the QND readout time, on the order of
0.5 ms [15], gives an error-detection time of 0.6 ms. This
is much shorter than the electron-spin lifetime in a static
magnetic field of 1 T, which is on the order of 103 seconds
[32].

During the detection protocol, in the case of an error
we allow the electron to remain in its flipped state. Be-
cause of the hyperfine coupling, depending on whether
the number of errors during the full protocol is even or
odd the |0̄〉 state of the qubit will be encoded in the
nuclear-spin state |3/2〉y or |−3/2〉y, respectively, which
we must keep track of in order to correctly interpret the
outcomes of decoding measurements.
The recovery operation, to be performed if an error is

detected, is simply parallel π pulses to transfer popula-
tion from |1/2〉z → |3/2〉z and |−1/2〉z → |−3/2〉z. The
typical duration of this pulse is 0.5 ms. In the event that
no error is detected, no recovery operation is needed. Fi-
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FIG. 4. Effect of imperfect detection and recovery oper-
ations. For relevant nuclear and electron dephasing rates
Γn = 10−4 Ω and Γe = 5× 10−4 Ω (see text) using the ex-
plicit correction protocol described in the text the codes still
beat the break-even point for reasonably frequent error cor-
rection. For the spin-3/2 code we obtain the optimal ratio
with respect to the uncorrected ±1/2 encoding when waiting
time t ≈ 3×10−2Γ−1

n between correction cycles. A correction
cycle involves between two and three π rotations between se-
lect levels of the nuclear and electron spins, so time required
to perform the correction will be at most 3πΩ−1. At the noise
strength we use in this simulation, this amounts to a ratio be-
tween correction time and waiting time of π × 10−2. Going
to higher spins at these noise values can bring marginal gains
for longer waiting times, but we see the advantage is quickly
erased by the more error-prone correction protocol when in-
creasing the repetition rate.

nally, a π/2 rotation about the x axis is performed again
to return the information to the protected subspace.
Information decoding is a π/2 pulse about the x axis

follow by two ESR pulses separated in time. If the elec-
tron spin flip occurs during the first (second) ESR pulse
we know that the nuclear spin is in the |−3/2〉z (|3/2〉z)
state. If the electron spin fails to flip during either of the
ESR pulses, this indicates an error has occurred, though
a faithful measurement result could still be obtained by
using ESR pulses to flip the electron spin conditioned on
the nucleus being in the states |±1/2〉z.
Noise Effect.—Detection and recovery operations are

necessarily noisy, which implies that the correction step
should not be repeated too frequently. Figure 4 depicts
how a code executed with these imperfections can pass
from beating the break-even point to performing worse
than a bare qubit if the time t between correction cycles is
made too short. Additionally, the fact that detection and
recovery are performed while the information is encoded
in the Iz basis means that the information is exposed
to uncorrectable errors during the procedure, so as usual
it is important to perform these operations as quickly

as possible. Even so, this procedure provides a means
of extending the lifetime of logical quantum information
by storing it predominantly in the protected subspace
(where the noise does not corrupt the information).

The baseline against which we compare the perfor-
mance of our protocol is the uncorrected encoding of
logical information in the subspace spanned by |±1/2〉.
This is a subspace that experiences minimal dephasing,
and so provides the best storage of logical information
in the absence of any error correction. For optimal per-
formance, one would use tools from optimal control—
such as GRAPE [33]—to craft optimal pulse sequences
for achieving the desired operations.
Quantifying performance.—To quantify the perfor-

mance of these codes and the proposed correction proto-
col, we perform a series of numerical experiments, using
entanglement fidelity/infidelity of the corrected dephas-
ing channel with the ideal identity channel as our figure
of merit. The dephasing channel we use is generated by
the master equation

ρ̇ = ΓnD[Iz]ρ+ 1
2ΓeD[σz]ρ , (2)

where Γn and Γe quantify the dephasing rates of the nu-
clear and the electron spins, respectively. Figure 3 il-
lustrates the performance of the spin-3/2 code and the
analogous higher-spin codes in an idealized setting where
the detection and recovery operations are performed per-
fectly and instantaneously. The size of the nuclear spin
determines how many Iz dephasing errors can be suc-
cessfully recovered, so in the limit of small dephasing
Γnt � 1 the infidelity scales as a power of the dephas-
ing that grows with the size of the nuclear spin. The
most analogous existing codes are called minimal qudit
codes [29] and require a nucleus of at least spin 5/2. As
Fig. 3 reveals, even our smallest spin-3/2 code outper-
forms the spin-5/2 minimal qudit code for all but ex-
ceedingly large dephasing.

Figure 4 illustrates the fidelities we can expect from
this error-correction procedure in the more realistic set-
ting of noisy detection and recovery. As there is some am-
biguity when modeling as to where to locate the imperfec-
tions, we choose to concentrate all the noise in the envi-
ronmental dephasing and leave the control Hamiltonians
ideal. Taking the Rabi frequencies for the transitions be-
tween neighboring nuclear and electron spin states to be
Ω, we consider nuclear dephasing rates Γn ranging from
10−2 Ω to 10−4 Ω (for donor charge state going from neu-
tral to ionized, respectively) and electron dephasing rates
of at least Γe = 5× 10−4 Ω. These parameter values
reflect the greater susceptibility of the electron spin to
environmental noise, and result in a nuclear-spin π-pulse
fidelity going from 99% to 99.99% and an electron-spin π-
pulse fidelity of at most 99.95%, which is consistent with
experimentally measured values reported in the litera-
ture [6]. For nuclear dephasing rate Γn = 10−4 Ω one can
beat the break-even point with repetition rates less than
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FIG. 5. Comparison of our spin-3/2 code to break-even performance over the parameter space. The blue regions are where we
beat the break-even point. Specifically, these regions mark where infidelity of the bare uncorrected qubit (uncorr.) is worse
(larger) than the infidelity of the corrected qubit. The relevant parameters which we vary are the nuclear dephasing rate Γn
and the electron dephasing rate Γe (both relative to the Rabi frequency Ω at which we are able to drive transitions), and
the wait time t between correction cycles (expressed relative to the nuclear dephasing rate Γn). The smallest value for the
electron dephasing rate plotted in (a) is consistent with current experiments, indicating these experiments exceed break-even
requirements on readout noise by several orders of magnitude. The nuclear dephasing rate for current experiments is also far
below the break-even requirement for realistic correction-repetition rates.

103Γn, giving several orders of magnitude over which we
can significantly reduce errors. We find as much as an
order-of-magnitude reduction of entanglement infidelity
at the optimal rate 30Γn before hitting a floor when the
correction procedure introduces noise more rapidly than
the environment. Larger spins again exhibit more rapid
suppression of entanglement infidelity initially as the rep-
etition rate is increased, though the more complicated
correction procedure implies a higher noise floor.

Figures 5(a) and 5(b) illustrate parameter regimes in
which our protocol beats the break-even point for the
spin-3/2 code. As one can see in Fig. 5(a), there is a
horizontal transition from beating the break-even point
to failing to beat that point as the electron dephasing
rate increases. This indicates that, for a given nuclear
dephasing rate, there is a maximum electron dephasing
rate beyond which the error-correction measurements are
so noisy as to be useless. Likewise there is a vertical
transition from beating the break-even point to failing to
beat the break-even point as the waiting time between
correction cycles decreases. This happens when the time
between error-correction cycles is so short that the en-
vironmental dephasing is negligible compared to the er-
rors introduced by imperfect detection and recovery op-
erations. For a fixed electron dephasing rate, as shown
in Fig. 5(b), the minimum waiting time above which it
is possible to beat the break-even point varies propor-
tionately with the nuclear dephasing rate. Even for a
nuclear dephasing rate of 10−2Ω, as one would expect
for less favorable neutral donors, one still has a range
of correction-cycle-repetition rates spanning an order of
magnitude that beats the break-even point.

Conclusion.—We have described a hardware-efficient
error-correction protocol capable of correcting the most
relevant noise in spins. Our simulations show that
this protocol can beat the break-even point given the
performance demonstrated in present-day experimental
systems. Our protocol resembles some error-correcting
codes for harmonic oscillators, with the advantage that
the operations required by the code are native to the spin
system. Recent advances in fast spin readout [34, 35],
fast QND read-out [36] and coupling between nuclear
spins [8, 37] will further improve the performance and
broaden the applications of our protocol.
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SUPPLEMENTAL MATERIAL

Simulations

The error channel we consider in all simulations
is obtained by integrating the Lindblad master equa-
tion Eq. (2). For Fig. 3, to illustrate the optimal perfor-
mance of the codes we consider, the detection and recov-
ery operations are assumed to take place instantaneously.
For the MAUS codes, this means applying a quantum op-
eration that projects the nucleus onto one of the several
subspaces spanned by Iy basis vectors of equal magni-

tude but opposite sign and applies a conditional unitary
that maps the resulting subspace back onto the subspace
spanned by the extremal Iy basis vectors. The concate-
nation of this detection and recovery channel after the
noise channel is then applied to half of a maximally en-
tangled pair of nuclei. The fidelity of the output of this
channel with the maximally entangled input state is the
entanglement fidelity, which we use as our figure of merit.
To obtain the fidelities we present for the minimal qudit
code we solve a semidefinite program [30] to determine
the detection and recovery channel that optimizes the
entanglement fidelity.

For Figs. 4 and 5 we simulate finite-time recovery pro-
cesses using piecewise-constant control Hamiltonians to
drive the transitions of the protocol described in the main
text in parallel with the dephasing noise. All transitions
are driven with Rabi frequency Ω and implemented us-
ing the rotating-wave approximation. This involves first
driving the transitions that take the y axis of the spin to
the z axis of the spin in order to perform the necessary
entangling interactions with the electron. To generalize
the protocol to accommodate spins larger than 3/2 an it-
erative procedure is then used where we drive transitions
that flip the electron spin conditioned on the projection
along the z axis of the nuclear spin having magnitude at
most |I −n|, for n starting at 1 and increasing by 1 each
time the electron spin is found to have flipped. Once
the electron spin is found to have not been flipped—or
|I − n| = 1/2—the magnitude of the z projection of the
nuclear spin is known, and we drive the transitions that
map this subspace back to the subspace spanned by the
extremal Iz eigenstates, completing the protocol by fi-
nally driving the transitions to take the z axis back to the
y axis. This arrangement of the detection measurements
is chosen to minimize the total detection and recovery
time, as the most-likely scenarios involve small decreases
in the magnitude of the angular-momentum projection
along z, which are identified by the protocol in fewer mea-
surements than more dramatic magnitude reductions.

Coherent manipulations

In this section, we detail the nuclear and electron
spin manipulation Hamiltonians and we discuss the
microwave-pulse properties as well as the fidelities we
expect given recent experimental results. A spin sub-
jected to a resonant monochromatic microwave pulse ro-
tates at an angular frequency Ω around an axis r =
(sinφ,− cosφ, 0), φ being the phase of the pulse. The
spin state at any time τ can be calculated by the equa-
tion |Ψ(Ωτ)〉 = Rφ(Ωτ) |Ψ(0)〉. The rotation operator R
depends on the applied pulse.

http://dx.doi.org/ 10.1103/PhysRevApplied.4.014018
http://dx.doi.org/ 10.1103/PhysRevApplied.13.024019
http://dx.doi.org/ 10.1103/PhysRevApplied.13.024019
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Nuclear spin

The record reported fidelity of a coherent manipula-
tion of a single donor nuclear spin in enriched silicon 28
is 99.99% [6]. This fidelity is obtained when the donor is
in its ionised state. The reported fidelity for the donor in
its neutral state is 99% [6]. Because we need a non null
dipole coupling term A to implement the protocol, we
take these two values as extreme case in the calculation
of the code fidelity Fig. 5(b). All NMR manipulations
are applied in the slow-manipulation limit (Ων � Q),
meaning the applied oscillating magnetic field is much
smaller than 0.5 mT. Each transition can then be ma-
nipulated individually. In this regime, the generalised
rotating-frame approximation is appropriate to describe
the dynamics of the nuclear spin [38].

We first discuss the quasi mono-chromatic regime. In
this regime, each nuclear spin is subjected to a maximum
of one resonant pulse. Under this approximation, a pulse
of frequency νpq, phase shift φ and duration τ , resonant
with the nuclear spin transition |p〉 ↔ |q〉, induces a Rabi
oscillation of angle θ = Ωpqτ . The expression for the
rotation unitary is then

R
|p〉,|q〉
φ (θ) = exp[iθ(σ|p〉,|q〉x cosφ+ σ|p〉,|q〉y sinφ)/2] , (3)

with σ|p〉,|q〉x,y being Pauli operators acting on the subspace
spanned by |p〉 and |q〉. As shown in Fig. 2, we use this
unitary evolution during the information-encoding step
(π pulse on the first transition, arbitrary pulse on the sec-
ond transition and simultaneous π pulse on the first and
the third transition) and the error-correction step (simul-
taneous π pulse on the first and the third transition). The
typical frequency of the microwave pulse sent to perform
these manipulations is 200 MHz. For the Ix rotation, the
dynamic is different in the sense that a given state can
be subjected to two components of the poly-chromatic
pulse. We then need to treat the generalised rotating
frame Hamiltonian in its more general form. Consider-
ing pulse frequency component νj = γnBz +A+(2− j)Q
of amplitude Bj resonant with the nuclear spin transition
j, the Hamiltonian of the nuclear spin dynamic is:

HG.R.F = γn/2


0

√
3B1 0 0√

3B1 0 2B2 0

0 2B2 0
√

3B3

0 0
√

3B3 0

 (4)

It is then possible to calibrate the magnetic field am-
plitude of each pulse frequency component to reach the
equality HG.R.F = Ix. This manipulation is used before
and after each free evolution. The typical frequencies
of the microwave pulse component sent to perform these
manipulations are 200 MHz.

QND read-out

A key point of the protocol is the quantum non demo-
lition (QND) read out of the nuclear spin. Even though
Fig. 1 only depicts the double dot approach, we discuss
two approaches in this section. The first is the one imple-
mented in the experiment that gave the state-of-the-art
coherent-manipulation fidelity for donors [6], the second
is a proposal that would induce less dephasing during the
error detection step.

Single-dot measurement

To find out if the nuclear spin is in the {|−1/2〉 , |1/2〉}
subspace, we apply a polychromatic pulse (f |−1/2〉 and
f |1/2〉) of amplitude and duration guaranteeing a π ro-
tation of the electron spin. If the nuclear spin is in the
subspace {|−3/2〉 , |3/2〉} the pulse won’t have any ef-
fect on the system. By contrast, if the nuclear spin is
in {|−1/2〉 , |1/2〉} the pulse is resonant and will reverse
the electron spin. This change of electron spin induces
an electron transfer back and forth with the lateral dot
tuned with a appropriate chemical potential. This elec-
tron transfer with the dot can be measured by a trans-
port measurement through a SET or by rf-reflectometry
on the dot. The electron transfer between the donor and
the dot impacts the nuclear spin dynamic. Indeed, the
harmonic A term of the hyperfine coupling comes from
a contact interaction between the nuclear spin and the
electron spin. When the electron tunnels back and forth
between the donor and the dot, the nuclear spin is no
longer subject to the same dynamics. This induces a loss
of information on the phase of the nuclear spin δφ = Aδt,
δt being the time resolution of the electron position mea-
surement. The hyperfine interaction term A is of the
order of 108 Hz and the fastest charge readout, based
on reflectometry measurement [39, 40], is of the order of
10−7 s, giving a phase uncertainty of the order of 10 rad.
To reduce this uncertainty down to 10−3, a value where
this dephasing mechanism could be negligible compared
with the environmental dephasing process, it is neces-
sary both to reduce the coupling term A and to use a
faster charge-readout technique. A proposal [8] shows
that by applying a DC electric field on top of the donor,
the electron wave function can be delocalised to an inter-
face charge state. It is then possible to tune the A term
from zero to its zero field value. Notice that the value
of A cannot be null in the proposed protocol to keep a
sufficiently high energy difference in between the differ-
ent electron spin transitions. This decrease of A added
to the temporal resolution offered by reflectometry tech-
niques would lower the phase uncertainty. However, in
order to have a reasonable phase uncertainty, technical
developments are necessary, which is why we propose a
double-dot system.
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Double-dot measurement

Figure 1 (a) illustrates another idea to avoid the de-
phasing effect due to the modification of the hyperfine
coupling during the readout process. The idea is to use a
read-out technique that does not affect the charge state
of the donor. Such a technique has been demonstrated in
several different systems [14, 41], including silicon based
quantum dots [15]. In this last case, a π pulse is applied
to the electron spin below Va. This pulse is resonant
with the electron-spin transition only if the donor elec-
tron spin is in its excited state. The electron-spin flip
induces a transfer back and forth of the ancillary elec-
tron with the SET as for the actual donor spin readout.
Notice that in the donor system, the degeneracy between
the dot and the donor electron spin is lifted by the hyper-
fine coupling, meaning that no micro-magnets are needed
(see Fig. 6). In this protocol, a microwave pulse needs to
be added to the sequence of Fig. 2. In the error-detection
part, after the f±1/20 (π) pulse, a π pulse is applied to the
electron spin located under Va. This pulse is resonant
only if the donor electron spin has been flipped by the
f
±1/2
0 (π) pulse. This exchange coupling may affect the
fidelity of the electron-spin manipulation. In addition,
the charge state of the donor is kept in its neutral sate.
This avoids the uncertainty of the previous protocol but
induces a bigger constant dephasing due to a higher cou-

pling of the nuclear spin to the environment through the
hyperfine coupling. Indeed, as measured [12], the nuclear
spin T2 goes from 1.75s in its ionized state to 20.4ms in its
neutral state. However, the hyperfine coupling A can be
tuned from its zero-field value down to zero with the gate
potential Vd [8]. An intermediate value of A allows lower
dephasing rates while keeping a non-zero value, neces-
sary for the pulse selectivity of the protocol. Figure 5(b)
displays a significant gain of the MAUS code compared
with a bare qubit for a range of nuclear-spin dephasing
rates going from its neutral to ionized charge-state value.

Protocol for higher order spin

Increasing the size of the nuclear spin increases the
complexity of the pulse sequence, especially for the er-
ror detection. Here we briefly describe the protocol for a
|5/2〉 nuclear spin. To limit the average number of ma-
nipulations required, we first flip the electron spin con-
ditioned on one or two errors having occurred. Most of
the time, no error will be detected at this stage. If an
error is detected, a second pulse is then sent to distin-
guish between one and two errors having occurred. The
same logic can be generalized to higher spins, making
sure that each binary measurement can unambiguously
identify the most likely error at each step.
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FIG. 6. Spin transitions of the donor/double-dot system. (a) At each column an interaction is added to display how the
degeneracies are lifted. On the right (b), the spin transitions are ordered as function of their energies. The nuclear spin
transitions νj are in yellow, the error detection pulses f±1/2

0 are in solid red line (γ − J/2± A) and the ancillary-dot-electron
transition is in solid green line (γ−±J/2). This spectrum shows that the transitions of the donor and dot electron spins are at
two different energies due to the hyperfine coupling. Besides, the dot electron-spin manipulation is conditioned by the electron
spin to the donor as needed to perform the QND readout without modifying the charge state of the donor.
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FIG. 7. Illustration of the MAUS error correcting protocol applied to a spin 5/2.
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