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A central component of variational quantum algorithms (VQAs) is the state-preparation circuit, also known as
ansatz or variational form. This circuit is most commonly designed such as to exploit symmetries of the problem
Hamiltonian and, in this way, constrain the variational search to a subspace of interest. Here, we show that this
approach is not always advantageous by introducing ansatzes that incorporate symmetry-breaking unitaries. This
class of ansatzes, that we call quantum-optimal-Control-inspired ansates (QOCA), is inspired by the theory of
quantum optimal control and leads to an improved convergence of VQAs for some important problems. Indeed,
we benchmark QOCA against popular variational forms applied to the Fermi-Hubbard model at half-filling and
show that our variational circuits can approximate the ground state of this model with high accuracy. We also
show how QOCA can be used to find the ground state of the water molecule and compare the performance of our
ansatz against other common choices used for chemistry problems. This work constitutes a first step towards the
development of a more general class of symmetry-breaking ansatzes with applications to physics and chemistry
problems.
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I. INTRODUCTION

The rise of noisy intermediate-scale quantum processors
[1,2] requires us to find novel algorithms designed to attenuate
the effects of noise. Variational quantum algorithms (VQAs)
are an example of such methods [3,4]. These algorithms make
use of a quantum computer and a classical coprocessor to
minimize a cost function specified by a problem Hamiltonian
Ĥprob. This minimization is achieved by preparing a state
that approximates the ground state of Ĥprob on the quantum
computer using an iterative procedure driven by the classical
coprocessor. Importantly, and due to the variational nature of
these algorithms, this approach has been shown to potentially
be resilient against noise, and well suited to several applica-
tions including finance [5], pure mathematics [6], machine
learning [7,8], optimization problems [9,10], quantum chem-
istry and materials [11–15], as well as quantum optics [16].

In VQAs, the state preparation requires the parametrization
of a quantum circuit, referred to as the ansatz or variational
form. Recently, a considerable amount of effort has been
invested in designing ansatzes that preserve the symmetries
of the problem Hamiltonian [17–21]. The goal of symmetry-
preserving strategies is to constrain the variational search to
a small space of interest, which in principle can improve
the probability of convergence to the target state with fewer
optimizer iterations.
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In this work, we highlight shortcomings of this approach.
We then provide an ansatz that goes beyond symmetry-
preserving methods by introducing a set of unitaries that
break the symmetries of the problem Hamiltonian. To achieve
this, we borrow ideas from the theory of quantum optimal
control, where fast and high-fidelity operations are achieved
through the addition of time-dependent symmetry-breaking
terms to the Hamiltonian. Focusing on fermionic systems, we
incorporate such terms in a time-evolution-like ansatz [22] to
obtain the quantum-optimal-control-inspired ansatz (QOCA).
We benchmark this approach against common ansatzes found
in the literature for the Fermi-Hubbard model and apply these
ideas to the water molecule with minimal modifications. We
find that, in most cases, this method produces approximations
of the target ground state that are orders of magnitude more
accurate then with previous approaches. To understand this
improvement, we present evidence that QOCA allows for an
exploration in a slightly larger Hilbert space than allowed by
structured variational forms.

The paper is organized as follows: in Sec. II we discuss
known approaches to ansatz design, while in Sec. III we intro-
duce QOCA after a brief review of quantum optimal control
theory. We also elaborate on our strategy for the selection of
symmetry-breaking terms. In Sec. IV we explain how these
terms can be incorporated into a variational ansatz for the
Fermi-Hubbard model. Finally, we compare results obtained
with the different approaches in Sec. V.

II. VARIATIONAL ANSATZES

In the VQA framework, a quantum processor stores a
quantum state |ψ (θ)〉 parametrized by a collection of classical
variational parameters θ. This state is prepared from a known
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initial state, |ψ0〉 using a quantum circuit (the ansatz) Û (θ)
such that |ψ (θ)〉 = Û (θ)|ψ0〉. The value of θ is iteratively
adjusted by a classical coprocessor with the purpose of mini-
mizing the cost function

E [θ] = 〈ψ (θ)|Ĥprob|ψ (θ)〉
〈ψ (θ)|ψ (θ)〉 . (1)

Numerous variational forms Û (θ) have been explored in the
literature [18,22–27]. Before introducing our approach, in this
section we briefly review two widely used ansatzes highlight-
ing their advantages and disadvantages.

A. Hardware-efficient ansatz

The hardware-efficient ansatz (HEA), introduced in
Ref. [23], relies on gates that are native to the quantum
hardware to produce circuits of high expressibility [28] and
low depth. In particular, the HEA requires the application of
successive blocks of parametrized single-qubit rotations fol-
lowed by a generic entangling unitary ÛEnt. An example for N
qubits is

ÛHEA(θ) =
∏

d

ÛEnt

N∏
n=1

R̂(n)
Z

(
θZ

n,d

)
R̂(n)

Y

(
θY

n,d

)
, (2)

where θ = {θZ
n,d , θ

Y
n,d} groups all the variational parameters

and R̂(n)
σ̂a

(θ ) = exp[−iθσ̂a/2] denotes a single-qubit rotation
of angle θ around the a ∈ {x, y, z} axis on qubit n. σ̂a is the
corresponding Pauli matrix. The parameter d is the number
of layers, or depth, of the ansatz. Here and for the rest of this
paper, we use the convention

∏N
i Ûi = ÛN · · · Û1 for operator

multiplication.
A feature of the HEA is that it facilitates a broad explo-

ration of the Hilbert space since it does not purposely favor
a particular symmetry sector. This ansatz has already been
experimentally implemented to prepare the ground state of
small molecules [23], to simulate the folding of a few amino
acid polymers [15], and to find the solution of classical opti-
mization problems [10]. However, solving small instances of
important problems does not provide a proof of scalability of
the method for larger systems. Indeed, there is evidence that
sufficiently random parametrized circuits, such as the ones
produced by HEA, suffer from an exponentially vanishing
gradient with the number of qubits making them harder to
converge as the system size grows [29].

B. Variational Hamiltonian ansatz

Ansatzes that leverage the structure of the problem can
avoid the aforementioned scalability issues since they do not
explore the full Hilbert space. Wecker et al. [22] introduced
the variational Hamiltonian ansatz (VHA), which consists of a
parametrized adaptation of the quantum circuit implementing
time evolution under the problem Hamiltonian via Trotteri-
zation. In the VHA framework, the state-preparation unitary
reads

ÛVHA(θ) =
∏

d

∏
j

eiθ j,d Ĥj , (3)

where θ = {θ j,d} are the variational parameters and Ĥprob =∑
j Ĥ j is the problem Hamiltonian expressed as the sum of

noncommuting groups of terms labeled Ĥj . The depth d is
associated with each time increment of the Trotterization of
the time-evolution operator. With appropriate choices of the
grouping of the terms in the Hamiltonian, this approach can
be implemented using few variational parameters, therefore
simplifying the classical optimization. However, depending
on the complexity of the problem, circuits can be considerably
deeper as compared to those typically used with the HEA.

Fourier-transformed VHA (FT-VHA)

To further reduce the number of variational parameters, it
is possible to take advantage of the fact that most fermionic
Hamiltonians can be written as Ĥprob = T̂ + V̂ , where the
diagonal bases of T̂ and V̂ are related through the fermionic
Fourier transformation (FT) [30–32]. With the FT-VHA vari-
ational form, the FT is used to alternate between these bases
at every Trotter step. In the context of quantum chemistry, this
is known as the split-operator method [33,34]. This idea was
also recently introduced by Babbush et al. [35] for the varia-
tional quantum simulation of materials. The state-preparation
unitary thereby reads

ÛFT-VHA(τ, ν) =
∏

d

FT†

(∏
j

eiτ j,d T̂ j

)
FT

(∏
j

eiν j,dV̂j

)
, (4)

where τ = {τ j,d} and ν = {ν j,d} are the parameters associated
with T̂ = ∑

j T̂ j = FT T̂ FT† and V̂ , respectively. Since now

both T̂ and V̂ are diagonal, they contain only terms that
commute. For this reason, the circuit decomposition of their
exponentials can be achieved exactly, which was not the case
of T̂ in the regular VHA. However, this comes at the cost of
the long FT circuit [30,32,35].

Because they are built from the problem Hamiltonian, both
VHA and FT-VHA preserve the symmetries of the problem.
For example, if no term of Ĥprob allows the number of particles
to change, this quantity will be conserved in the variational
state |ψ (θ)〉. This choice restricts the variational search to a
relatively small subspace of the Hilbert space which, intu-
itively, can increase the performance of the VQA. Because
of this, the VHA and FT-VHA ansatzes are likely to perform
better than HEA for large system sizes. However, as we show
in Sec. V, always preserving symmetries of the problem can
also be detrimental.

Another approach used in the context of quantum chem-
istry is the UCCSD ansatz [3]. Although not strictly
Hamiltonian-based, this method preserves the parity symme-
try of fermions and conserves the number of particles. Despite
providing accurate results, the UCCSD ansatz circuits can
be very deep, limiting its applicability on near-term quantum
devices.

III. QUANTUM-OPTIMAL-CONTROL-INSPIRED
ANSATZ (QOCA)

To address the drawbacks of the ansatzes discussed above,
we propose an ansatz that borrows ideas from the theory of
quantum optimal control [36–39], and which we therefore
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dub the quantum-optimal-control-inspired ansatz, or QOCA.
The main idea behind QOCA resides in the introduction
of carefully chosen symmetry-breaking unitaries into the
symmetry-preserving ansatz VHA. Further connections be-
tween quantum control and variational quantum algorithms
were established in Ref. [40]. In this section, we begin by
reviewing some of the central aspects of the theory of quan-
tum optimal control, and then show how these ideas can be
incorporated in the design of variational forms.

A. Quantum optimal control

Quantum optimal control (QOC) theory describes methods
to optimally steer a quantum system from an initial state to
a known final state [41]. Such techniques have been applied
to a wide variety of problems including the quantum con-
trol of chemical reactions [42,43], spins in nuclear magnetic
resonance experiments [38,44] and, more recently, to super-
conducting qubits [39,45].

In this approach, the control Hamiltonian is specified by
a set of time-independent drive Hamiltonians {Ĥk} whose
amplitudes are parametrized by the time-dependent coeffi-
cients {ck (t )} ∈ R. For example, these can represent the action
of electromagnetic control pulses on the system. The total
Hamiltonian Ĥ (t ) is then, in general, time-dependent taking
the form

Ĥ (t ) = Ĥ0 +
∑

k

ck (t )Ĥk, (5)

with Ĥ0 the free, or drift, Hamiltonian of the con-
trolled system. Note that typically [Ĥ0, Ĥk] �= 0. Solving the
Schrödinger equation of the driven system results in the uni-
tary Û (t ), which can propagate pure states through time as
|ψ (t )〉 = Û (t )|ψ (0)〉.

The system described by the Hamiltonian of Eq. (5) is said
to be fully controllable if for any initial state |ψ (0)〉, there
exist a set controls {ck (t )} and a time T > 0 for which the
state |ψ (T )〉 can be any target state of the Hilbert space [41].

Quantum optimal control techniques, such as the GRAPE
algorithm [38], provide a method for designing the control
pulses ck (t ) to achieve a desired state preparation. This is
usually realized by seeking the set of controls and time T that
optimize a cost function characterizing the state-preparation
fidelity, which may include constraints such as the control
time and the maximum pulse amplitudes.

In the GRAPE algorithm, time is discretized into N incre-
ments, or pixels, of duration �t such that the total evolution
occurs in a time T = N�t . Using this discretization, the con-
tinuous control fields ck (t ) are now parametrized by the new
constant piecewise control fields {uk, j} as

ck (t ) =
N−1∑
j=0

uk, j � j (t,�t ), (6)

where � j (t,�t ) ≡ �(t − j�t ) − �(t − ( j + 1)�t ) with �

the Heaviside function. The time evolution operator for a time
T therefore reads

Û (T ) =
N−1∏
j=0

exp

[
−i�t

(
Ĥ0 +

∑
k

uk, j Ĥk

)]
, (7)

and an optimal control pulse shape is obtained by iteratively
tuning the values of the discrete control fields {uk, j}.

As pointed out in Ref. [40], QOC and VQAs are both
quantum-classical optimization routines where minimization
is achieved over pulse amplitudes in the former, and gate
parameters in the later. In the next section, we tighten this
connection in the special case where the VQA ansatz is itself
inspired by the methods of QOC.

B. The QOCA variational form

Building on the concept of quantum optimal control, we
identify a set of key ingredients that define a QOC-inspired
VQA instance (QOCA). Formally, one must specify (1) a
problem Hamiltonian Ĥprob whose ground state we wish to
prepare, (2) a set of drive terms {Ĥk}, where, by design,
[Ĥprob, Ĥk] �= 0 ∀ k, (3) a variational ansatz built from Ĥprob

and {Ĥk}, (4) a cost function, and, finally, (5) an optimization
procedure.

More specifically, to build the QOCA variational form we
begin by introducing the control-like Hamiltonian, similar to
Eq. (5), using Ĥprob and {Ĥk},

ĤQOCA = Ĥprob +
∑

k

Ĥk . (8)

From Eq. (8), we derive the following time-evolution-like
parametrized circuit ansatz

ÛQOCA(θ, δ) =
∏

d

(∏
j

eiθ j,d Ĥj
∏

k

eiδk,d Ĥk

)
, (9)

where Ĥprob = ∑
j Ĥ j and θ = {θ j,d} are the problem Hamil-

tonian parameters. Similar to Eqs. (6) and (7), δ = {δk,d} are
the variational parameters associated with the drive Hamilto-
nians {Ĥk}. Again, d is the depth of the ansatz and is analog
to the steps in the time evolution of Eq. (7).

In a purely QOC setting, the cost function is often chosen
to be the state or process fidelity. This choice is however
not appropriate for VQAs since the target ground state is
generally unknown. Instead, we use the expectation value of
the problem Hamiltonian as in Eq. (1) which corresponds to
an energy measurement in a quantum physics or chemistry
problem.

While in QOC optimization is on the amplitude of the
control fields, for QOCA we directly optimize the gate angles
associated with the different terms of Eq. (8). Moreover, note
that in QOC we do not have control over the drift Hamiltonian;
however, in the QOCA setting the optimization controls both
the problem and drive Hamiltonians.

The key intuition behind QOCA is that the problem Hamil-
tonian Ĥprob helps in constraining the variational search to
the relevant symmetry sector of the Hilbert space, while the
drives {Ĥk} potentially allow the ansatz to take shortcuts by
temporarily exiting this sector. This concept is schematically
illustrated in Fig. 1(b) where we illustrate possible paths
in the Hilbert space for the HEA, VHA, and QOCA varia-
tional forms. We provide numerical evidence for this intuition
in Sec. V.

In principle, one has the freedom to select any drive Hamil-
tonians that do not commute with Ĥprob. QOCA can therefore
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(a) (b)

FIG. 1. (a) Single circuit layer of the ansatzes studied in this work arranged according to the symmetry of their structure. Here high
symmetry implies that the ansatz is completely built around the problem Hamiltonian, while the lack of symmetries reflects the arbitrariness of
its circuit. We show the hardware-efficient ansatz (HEA), the variational Hamiltonian ansatz (VHA), the Fourier-transformed VHA (FT-VHA),
the quantum-optimal-control-inspired ansatz (QOCA), along with a shallower version of QOCA, the short-QOCA ansatz. The horizontal
lines represent the qubit registers that encode the spin orbitals associated with the ↑ or ↓ spins. For HEA, the entangling block is a stair of
CNOTs indicated by the dashed qubit line. For all other ansatzes, T̂ and V̂ are, respectively, the kinetic and interaction parts of the problem
Hamiltonian and {τ, ν} are their associated variational parameters. For FT-VHA, we have that T̂ = FT T̂ FT†. The subcircuits D represent the
implementation of the drives. (b) Possible paths in the Hilbert space for the HEA, VHA, and QOCA variational forms. The initial state |ψ0〉
and the target state |
〉 are in the same symmetry sector containing N particles. Since HEA does not preserve the symmetries of Ĥprob, its path
easily escapes from the fixed particle number subspace, while VHA is restricted to it. By introducing symmetry-breaking terms, QOCA may
have the ability to find shortcuts in Hilbert space, therefore avoiding local extrema.

be seen as a QOC experiment that is simulated on a quantum
computer, where the drives need not be related to the physical
interactions with the system of interest. However, it is not
straightforward to predict which choice of {Ĥk} will have the
most positive impact on the outcome of the VQA. One option
is to use an adaptive approach such as the one described
in Refs. [46,47]. In the next section we show how simple
considerations can help to bound the number of interesting
drive operators, and suggest which of these could be most
effective.

C. Which drive Hamiltonians are useful for fermionic
problems?

With the objective of applying QOCA to fermionic sys-
tems, we consider the time-dependent fermionic Hamiltonian

Ĥf (t ) =
∑

j

[α j (t )â j + α∗
j (t )â†

j ]

+
∑
i, j

βi j (t )(â†
i â j + â†

j âi ) +
∑
i, j

γi j (t )â†
i âiâ

†
j â j,

(10)

where â†
j and â j are fermionic ladder operators of spin orbital

j respecting the anticommutation relations {âi, â†
j} = δi j and

{âi, â j} = {â†
i , â†

j} = 0. Importantly, Ĥf (t ) is fully control-
lable in the sense that any unitary matrix can be generated
by solving its Schrödinger equation for a finite time [48,49].

We note that while the first term of Ĥf (t ) is unphys-
ical since it breaks the parity symmetry of fermions, the
quadratic and quartic terms occur in many physical models.
This makes Ĥf (t ) attractive for designing driven physically
inspired ansatzes, as terms of the form α(t )â + α∗(t )â† do
not commute with the physical problem Hamiltonian. Inter-
estingly, the use of such terms has been proposed in the

context of variational error suppression [4] as they may allow
a variational state to “re-enter” a particular symmetry sector
to correct for the effect of symmetry-breaking errors.

As a first example of QOCA variational forms, we
therefore propose to use the first term of Ĥf (t ) as symmetry-
breaking Hamiltonian. This choice is, however, not restrictive,
and future work will investigate a broader class of drive
Hamiltonians. We also note that our approach can easily be
extended to the simulation of nonfermionic Hamiltonians.

IV. QOCA FOR THE FERMI-HUBBARD MODEL

For completeness, we start this section by reviewing the
Fermi-Hubbard model and explain how we use the QOCA
variational form to approximate its ground state. We motivate
our choice of initial state, and elaborate on the selection and
circuit decomposition of the drive terms. Finally, we introduce
short-QOCA, a variant of QOCA that yields shorter circuits
by dropping some terms of Ĥprob from the Hamiltonian that
generates the regular QOCA variational form.

A. The Fermi-Hubbard model (FHM)

The Fermi-Hubbard model is an iconic model in the study
of strongly correlated materials [50]. It describes interacting
spin- 1

2 fermions on a lattice where each site can be occupied
by up to two particles of opposite spins. The Hamiltonian of
the FHM for L lattice sites takes the form

ĤFHM = −t
∑

〈i, j〉,σ
â†

iσ â jσ

≡ T̂

+U
L∑

i=1

n̂i↑n̂i↓ − μ
∑
i,σ

n̂iσ

≡ V̂

, (11)

where i, j are the lattice-site indices, and σ = {↑,↓} labels the
spin degree of freedom. In the first term, 〈i, j〉 denotes a sum
over nearest-neighbor sites, and n̂iσ = â†

iσ âiσ is the occupation
operator of the spin orbital labeled iσ .
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The first term of Eq. (11) represents hopping between
neighboring sites with amplitude −t and will be referred to
as T̂ . This term is diagonal in momentum space if periodic
boundary conditions are imposed, and its ground state consists
of delocalized plane waves. The second term is a nonlinear,
on-site Coulomb repulsion of strength U , while the last term
is the chemical potential. These last two terms are diagonal
in the position basis and, taken together, are denoted V̂ . The
ground state of V̂ is described by wave functions localized on
the sites.

A particularly interesting instance of the FHM is the half-
filling regime (which occurs for μ = U/2) at intermediate
coupling, U/t ∼ 4. In this regime, both T̂ and V̂ contribute
significantly to the system’s energy, thus creating competition
between the localized and delocalized states of the electrons,
leading to rich physics such as the Mott transition. Because
it becomes impossible to accurately treat either part of the
Hamiltonian perturbatively, exact numerical diagonalization
of the FHM is difficult beyond 24 lattice sites at half-filling
[51]. To benchmark our variational form, we work in this
particularly challenging regime.

Despite its apparent simplicity, the Fermi-Hubbard model
has been used to study systems ranging from heavy fermions
[52] to high-temperature superconductors [53,54]. As a re-
sult, it is an interesting problem to benchmark near-term
quantum computers [55], and a useful performance test for
variational ansatzes. For these reasons, variational quantum
algorithms have already been used to find the ground state
of the FHM, for example, using the HEA variational form
[56], the VHA [21,22,57,58], and other symmetry-preserving
ansatzes [21,24,55,59,60].

B. Encoding, parametrization and optimization of the ansatzes

We use the Jordan-Wigner (JW) transformation to en-
code fermionic Fock states into qubit registers, as detailed in
Appendix A. Moreover, we work in real space and
order the basis vectors for the 2L spin orbitals as
| f1↑ . . . fL↑; f1↓ . . . fL↓〉 with fp ∈ {0, 1} the occupation of or-
bital p.

Using this purely conventional choice, in Fig. 1(a) we
schematically draw one layer of the circuits implementing
the different ansatzes discussed above and arranged by the
symmetry of their structure. A highly symmetric ansatz is
completely built around Ĥprob while a weakly symmetric con-
struction is arbitrary with respect to the problem.

To parametrize these circuits, we consider two possible
strategies: one corresponding to full parametrization of the
single- and two-qubit gates and the other having a number
of parameters that grows only with the depth of the ansatz,
but not with the number of qubits. Whenever used, the lat-
ter is specified with the label scalable. Both strategies are
elaborated on in Appendix B, and details of the numerical
simulation are presented in Appendix C.

In most cases, the parameters are initialized at zero, and
we use the COBYLA optimizer [61–63], which operates
deterministically. The reproducibility of our simulations is
therefore guaranteed over repeated runs, avoiding the neces-
sity to average over many simulations. Moreover, we use the
state-vector simulator from Qiskit [64], which outputs the full

wave function and consequently no measurement statistics is
needed to analyze our results.

C. Initial state

In general, the performance of VQAs strongly depends on
the choice of initial state and value of the variational parame-
ters. The initial state acts as an educated guess to the target
state and is often chosen such as to be easily computable
classically. Moreover, because the initialization stage of a
variational algorithm should be straightforward for the quan-
tum processor or otherwise be treated as a separate routine
[65], we are interested in benchmarking the performance of
the QOCA variational form for the N-qubit simple initial state

|ψ0〉 = H⊗N |0〉 = |+〉⊗N , (12)

where H is the Hadamard gate. In addition to being easy to
prepare, this initial state corresponds to half-filling and zero
total spin, placing it in the same symmetry sector as the target
state.

While this choice allows us to demonstrate the usefulness
of the QOCA variational form given unstructured, simple
initial conditions, we also show how the convergence can be
improved further by using the ground state of the noninteract-
ing FHM fixing U = μ = 0 in Eq. (11) as initial state. More
details on how to prepare this more complex state are provided
in Appendix D.

D. Drive Hamiltonians

To reduce the number of variational parameters, we take
α j (t ) = 1 + i in Eq. (10) leading to the drive Hamiltonians

Ĥ1 =
L∑

j=1

(â†
j + â j ), (13)

Ĥ2 =
L∑

j=1

i(â†
j − â j ). (14)

We use these drives on all sites, and for both up and down
spins. Performing the JW transformation on Eqs. (13) and (14)
leads to

Ĥ1 �→
L∑

j=1

X̂ j

⊗
l< j

Ẑl , (15)

Ĥ2 �→
L∑

j=1

Ŷj

⊗
l< j

Ẑl , (16)

where X̂ , Ŷ , and Ẑ are Pauli matrices. To incorporate these
expressions into the QOCA variational form of Eq. (9), we
perform a first-order Trotter-Suzuki decomposition, arriving
at the drive circuit equation for the dth layer of the ansatz,

∏
k=1,2

eiδk,d Ĥk ≈
L∏

j=1

exp

⎡
⎣iδ1,d X̂ j

⊗
l< j

Ẑl

⎤
⎦

× exp

⎡
⎣iδ2,d Ŷj

⊗
l< j

Ẑl

⎤
⎦, (17)
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(a)

(b)

FIG. 2. (a) Circuit decomposition of the drive of Eq. (17) used for
QOCA. This circuit generalizes to any number of qubits by append-
ing additional Ẑ . . . ẐŶ and Ẑ . . . ẐX̂ multiqubit gates at the end. We
also show the circuit compiled to one- and two-qubit (CNOT) gates.
(b) Decomposition of the multiqubit gates based on a conventional
approach to decompose exponentials of Pauli strings into circuits of
CNOTs described in [66]. The transformation H = (X̂ + Ẑ )/

√
2 is

the Hadamard gate which changes between the X̂ and Ẑ bases and
G = (Ŷ + Ẑ )/

√
2 is the equivalent transformation between the Ŷ and

Ẑ bases. The angles of the rotations Ra(θ ) = exp[−iθσ̂a/2] are the
variational parameters, where σ̂a is a Pauli matrix. The dashed qubit
line may comprise multiple qubits on which are applied descending
and ascending stairs of CNOTs on either side of the RZ rotations.

where {δk,d} are the variational parameters associated with
the kth drive term of that layer. A schematic of the circuit
implementing Eq. (17) for four qubits is illustrated in Fig. 2,
where we also show a compiled version of the circuit.

E. The short-QOCA variational form

Depending on the form of the drive, the quantum circuits
corresponding to QOCA can be long. There exists, however,
a practical approach to reduce the circuit depth without com-
promising the performance substantially.

Because the drive D in Fig. 2 and the kinetic part of the
FHM (11) are both block-diagonal in the spin degree of free-
dom, we chose to remove the latter term from the Hamiltonian
that generates the ansatz (8), arriving at the simplified form

ÛsQOCA(ν, δ) =
∏

d

(∏
j

eiν j,dV̂j
∏

k

eiδk,d Ĥk

)
, (18)

where V̂ = ∑
j V̂j is the on-site interaction part of the Fermi-

Hubbard Hamiltonian (11), and ν = {ν j,d} are the associated
variational parameters. Since implementing eiθ T̂ is more
costly in terms of two-qubit gates than eiθV̂ , this simplification
reduces the circuit depth by a factor of two. We refer to this
simplified version of the QOCA variational form as short-
QOCA; see Fig. 1.

V. NUMERICAL RESULTS

We now present results obtained from numerical simu-
lations of QOCA and short-QOCA for the Fermi-Hubbard
model, and contrast these results with those obtained with the
other possible ansatzes. As an illustration of the use of QOCA
beyond the Fermi-Hubbard model, we also present a compari-
son of the performance of this ansatz over a hardware-efficient
approach and the UCCSD ansatz for a 12-qubit representation
of the H2O molecule.

While our VQA cost function is the energy of the varia-
tional state |ψ (θ)〉 given in Eq. (1), throughout this section we
rather report the fidelity

Fidelity = |〈ψ (θ)|
〉|2, (19)

of the prepared state with respect to the target |
〉. This metric
is a more appropriate measure of the quality of the trial wave
function than the energy.

A. Fermi-Hubbard model

We consider 2 × 2 (8 qubits) and 2 × 3 (12 qubits) lattices
of the Fermi-Hubbard model at half-filling with open bound-
ary conditions. As the former configuration can be seen as
a periodic 1 × 4 chain, we also explore this case using the
FT-VHA variational form which assumes periodic boundary
conditions. Importantly, we find that for smaller systems such
as the four-qubit 2 × 1 dimer, all ansatzes converge in a few
tens of iterations on the ground-state energy with a precision
<10−7 using a single ansatz layer, d = 1, except for the HEA
which requires two layers.

1. Comparing the ansatzes

For systems with four and six fermionic sites, we observe
important variations in the ability of the different ansatzes
to converge to the ground state energy. This is illustrated
in Fig. 3, which shows, for all approaches, the final state
infidelity as a function of the number of ansatz layers, d ,
initialized with the simple half-filled state of Eq. (12). The
maximum fidelities achieved for all ansatzes are reported in
Table I along with resource counts using a circuit compilation
in terms of CNOTs. The gate count for the different wave
function ansätze reported in Table I indicates a clear tradeoff
between the circuit depth and the achievable accuracy. For the
QOCA ansatzes, the number of CNOTs required is above the
capabilities of current, state-of-the-art, noisy hardware (lim-
ited by gate fidelities and decoherence time), but the obtained
level of accuracy nevertheless places QOCA among the most
favorable ansatzes for future near-term quantum computers.

We first note that VHA and FT-VHA perform poorly for
both system sizes and that their performance does not improve
with the addition of more entangling layers, i.e., by increasing
d . Because these ansatzes are fermion-number preserving,
this observation suggests that VHA and FT-VHA may not
efficiently search over all states of fixed particle number in
the variational landscape. Moreover, since FT-VHA performs
similarly to VHA for the 2 × 2 system, we also conclude that
alternating bases with the fermionic Fourier transform does
not yield superior results for these lattice sizes.
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TABLE I. Maximum fidelities with respect to the ground state of the FHM, attained for d ansatz layers, requiring a number nθ of variational
parameters. The total gate depth is also indicated. The latter estimate assumes an all-to-all connectivity, and the same compiling procedure is
used for all ansatzes.

Hubbard model Maximum fidelity d nθ Gate depth

2 × 2(8 qubits)
HEA 0.9876 9 144 72
VHA 0.1343 8 64 320

FT-VHA 0.1315 7 56 588
QOCA 0.9999 4 64 272

QOCA (scalable) 0.9992 10 50 680
Short-QOCA 0.9999 9 108 279

2 × 3(12 qubits)
HEA 0.7276 10 240 120
VHA 0.0804 10 130 740

QOCA 0.9965 9 225 1098
QOCA (scalable) 0.8822 10 60 1220

Short-QOCA 0.7476 8 144 408

Interestingly, QOCA systematically reaches the ground
state of the Fermi-Hubbard model with significantly more
accuracy than VHA for both system sizes, indicating that
the additional symmetry-breaking terms help the convergence.
This advantage persists even when reducing the number of
variational parameters from 16 to 5 per layer in the case of
the scalable parametrization of QOCA, which converged with
0.9992 fidelity at d = 10 for the 2 × 2 system. The hardware-
efficient approach also performs better than VHA, although
it uses considerably more parameters than all other ansatzes.
The increase in the number of variational parameters as a

FIG. 3. Final variational state infidelities with respect to the tar-
get state as a function of the number of layers d of the variational
forms of this work. Top panel is for a 2 × 2 plaquette, while the
bottom panel is a 2 × 3 system. The initial state is |+〉⊗N for all
cases. Data at d = 0 correspond to the initial state alone, which has
a fidelity of 0.035 with the target state. Unless specified, all ansatzes
are fully parametrized according to Appendix B 1.

function of the system size for such heuristic ansatzes can
be seen as a potential limiting factor for the application of
QOCA. However, there is evidence that when a small error in
the total energy is tolerated, the number of parameters scales
only polynomially [27], allowing for an efficient optimization
towards an approximated ground-state wave function in near-
term quantum devices.

Data obtained with the short-QOCA variational form
shows that the QOCA circuits can be substantially shortened
by removing more than half of the two-qubit gates at every
step without much compromise on the performance for small
systems. In fact, for the 2 × 2 Hubbard model, a fidelity of
0.9999 is achieved with nine layers of this ansatz.

With improved fidelities for shallower circuits which use
fewer variational parameters than standard approaches, we
find that QOCA provides significant gain with respect to other
common ansatzes.

2. The benefits of breaking symmetries

Figura 4 shows the evolution of the average number of
particles per lattice site (top panel) and the infidelity of the
variational state with respect to the target state (bottom panel)
throughout the optimization process for the same simulations
as in Fig. 3.

Focusing first on the top panel, we first note that, because
the initial state |+〉⊗N is half-filled, all variational states begin
in the correct particle-number symmetry sector of the Hilbert
space with 〈N̂〉/L = 1, where L is the number of fermionic
sites. Because VHA does not contain terms that allow the
particle number to change, this quantity is constant throughout
the optimization. We hypothesize that the poor performance
of this ansatz in reaching the ground state is caused by the
inability of this variational form to overcome local minima in
parameter space.

In contrast, both parametrizations of QOCA allow the av-
erage site occupancy to deviate from 〈N̂〉/L = 1 as the drive
angles are being tuned away from zero by the optimizer. As
seen in Fig. 4, this can lead to the sharp features observed
in the first few ∼102 iterations as the classical optimizer can
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FIG. 4. Top: Average number of particles per lattice site in
the variational state at every iteration of the VQA routine. 〈N̂〉 =∑

i,σ 〈n̂iσ 〉 is the total occupation and L is the number of sites. Bot-
tom: Corresponding variational state infidelity, 1 − |〈ψ (θ)|
〉|2, with
respect to the ground state of the Fermi-Hubbard model |
〉. The
results are for a 2 × 2 system and the initial state is |+〉⊗N for all
ansatzes. Runs for ansatz depth d = 9 was used for HEA and d = 10
for the others, but this behavior is observed for most d .

initially overweight the value of drive terms. Over the full
optimization, the number of particles deviates only slightly
from the target value 〈N̂〉/L = 1 with changes of only ∼5%
of the site occupancy. This is an indication that the symmetry-
breaking terms in QOCA allow the ansatz to explore a Hilbert
space that is slightly larger than the manifold of fixed parti-
cle number. Nevertheless, we find that these relatively small
excursions out of the target symmetry sector can significantly
ease convergence of the VQA. Indeed, we observe that the
onset of the return to the target symmetry sector, as indicated
by the vertical dashed lines in Fig. 4 is often associated with
the abrupt descents in the infidelity, which may indicate that
regions of steep gradients in parameter space are found.

This behavior is similarly observed for the hardware-
efficient ansatz of Eq. (2) which also does not preserve the
symmetries of Ĥprob. This phenomenon is not particular to
the realizations displayed in the figure, and it is generally
observed for other system sizes and initial states.

We note, however, that these desired regions in parameter
space would never be found if an error-mitigation technique
based on symmetry verification were employed [19,67]. In-
deed, in these schemes the variational states are postselected
after the energy measurements only if they preserve desired
symmetries of the target state. However, other strategies for
error mitigation remain applicable [68–70].

3. Initial state

Because it provides a simple setting to benchmark the per-
formance of the different ansatzes, we have so far considered
only the easily prepared initial state of Eq. (12). Improved
approximation to the ground state can be obtained if a more
structured initial state is considered, although at the price of
more complex state preparation circuits.

In Fig. 5 we compare the performance of the VHA and
QOCA variational forms on the 2 × 2 lattice with the follow-
ing initial states of increasing complexity: (1) the simple state

FIG. 5. Variational state fidelities with respect to the ground state
of the 2 × 2 FHM as a function of the number of ansatz layers,
d , for the VHA and QOCA variational forms. Results with three
initial states are presented: (solid) Hadamard gates on every qubit
|+〉⊗N , (dotted) a selected ground state of T̂ corresponding to |
(1)

T 〉
of Appendix D, and (dashed) a superposition of ground states of T̂
corresponding to |
T 〉 of Appendix D.

|+〉⊗N already used above, (2) one of the degenerate ground
states of T̂ labeled |
(1)

T 〉 in Appendix D, and (3) the superpo-
sition of ground states of T̂ labeled |
T 〉 in Appendix D.

Remarkably, while the final variational state obtained with
VHA strongly depends on the initial state, QOCA systemati-
cally achieves convergence with fidelity >0.9999 regardless
of the initialization choice. Again because of its ability
to move between symmetry sectors, these results illustrate
QOCA’s robustness to simple, unstructured, initial conditions
that can have very small overlaps with the target ground state.
For both variational forms, using a superposition of the de-
generate ground states of T̂ as initial state (dashed lines) leads
to convergence with fewer entangling layers. This, however,
comes at the cost of significantly increasing the complexity of
the initialization stage of the VQA (see Appendix D).

B. Proof-of-principle implementation of the H2O molecule

The previous section illustrates how QOCA can approxi-
mate the ground state of the FHM with systematically more
accuracy than previously introduced ansatzes, even when
faced with unstructured initial conditions. In order to in-
vestigate the broader applicability of this method, we now
benchmark the QOCA variational form on a quantum chem-
istry problem. As a proof-of-principle test, we consider the
H2O molecule in its equilibrium configuration. Because we
disregard the degrees of freedom corresponding to the core
orbitals, this problem maps to 12 qubits using the STO3G ba-
sis set [71,72]. The Hamiltonian is obtained using the PySCF
driver as provided by Qiskit Chemistry [64].

We compare the performance of QOCA against HEA
together with the well-known chemistry-inspired UCCSD
ansatz parametrized at the fermionic level [3]. Depending on
which molecular orbitals are considered for the single and
double excitations, the UCCSD ansatz can take multiple forms
with greatly varying circuit depth. To ensure a fair comparison
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TABLE II. Maximum fidelities obtained with d entangling lay-
ers, nθ variational parameters and different initial states for the
QOCA, HEA, and UCCSD variational forms applied to the water
molecule. The total gate depth reported assumes an all-to-all con-
nectivity, and the same compiling procedure is used for all ansatzes.
The initial states are either the Hartree-Fock (HF) approximation
to the ground state or the equal superposition of all basis states
|+〉⊗N . Depending on which molecular orbitals are considered, two
instances of UCCSD are presented: the full ansatz (full), and one
with a reduced number of excitations (red.); see Appendix E for more
UCCSD results.

Water molecule (12 qubits)
Initial state Maximum fidelity d nθ Gate depth

QOCA |+〉⊗N 0.9742 1 23 71
|+〉⊗N 0.9955 7 161 497
|+〉⊗N 0.9969 10 230 710

HF 0.9735 1 23 71
HF 0.9917 7 161 497

HEA |+〉⊗N 0.9820 8 192 96
UCCSD (red.) HF 0.9813 1 8 477
UCCSD (full) HF 0.9999 1 92 6878

with QOCA, we therefore highlight the maximum fidelity
acquired with the full UCCSD ansatz (all orbitals considered)
and one with a reduced number of excitations such that the
circuit depth matches that of QOCA (see also Appendix E for
all possible constructions of UCCSD). Because the Hamil-
tonian describing the water molecule has significantly more
terms than the FHM, directly implementing Hamiltonian-
based ansatzes as it is done above would lead to very long
circuits. Therefore, we do not consider VHA for this problem.

In consequence, as a simple implementation of QOCA
for a quantum chemistry problem, we use a variation of the
ansatz based on the 12-qubit Hamiltonian of an open 1 × 6
Fermi-Hubbard chain with the drive terms of Eqs. (13) and
(14). Although the water molecule Hamiltonian describes a
richer set of fermionic interactions than the FHM, this choice
of ansatz offers one of the simplest construction that captures
electron-electron correlations and is therefore a good starting
point. Note that further improvement to the method could
be realized by considering an ansatz that better captures the
chemistry of the water molecule and by using other drive
terms. Moreover, the ansatz is fully parametrized as before
and the simulations are performed under the same numerical
conditions. Again, we use the energy of the variational state as
the cost function of the minimization procedure, but we report
the final state fidelity with respect to the target ground state as
a mean of comparing the ansatzes.

The maximum fidelities achieved for QOCA, HEA, and
UCCSD are reported in Table II for different numbers of
ansatz layers d and initial states, which are either the Hartree-
Fock (HF) approximation to the ground state or the equal
superposition of all basis states |+〉⊗N . Both initial states
require one layer of single-qubit gates to prepare. The number
of variational parameters nθ and total gate depth are also
indicated. For UCCSD (both full and reduced instances), we
use d = 1, as it is known to be enough for the simulation of
chemical systems [25,73].

FIG. 6. Final VQA state fidelity with respect to the ground state
of the water molecule in its equilibrium geometry for the UCCSD,
HEA, and QOCA variational forms. Each UCCSD data point corre-
sponds to an ansatz built from a unique combination of molecular
orbitals, and all possible instances are shown. Data for QOCA and
HEA come from simulations using up to d = 10 ansatz layers. The
starred data are also reported in Table II.

From Table II we observe that a d = 7 QOCA circuit
produces a better approximation to the target ground state
(fidelity of 0.9955) than the reduced UCCSD instance (fidelity
of 0.9813) while requiring a comparable gate depth. In order
to outperform the best QOCA results (fidelity of 0.9969 with
d = 10), UCCSD requires circuits that are almost an order
of magnitude deeper; see Fig. 6 in Appendix E. When con-
sidering all molecular orbitals, the full UCCSD ansatz can
reach fidelities of >0.9999, but this comes at the cost of
extremely deep circuits with almost 104 gates. On the other
hand, the HEA approach with d = 8 performs similarly than
the reduced UCCSD with circuits that are five times shallower.
However, HEA requires considerably more parameters, which
may compromise its performance for larger systems.

Interestingly, the |+〉⊗N initial state, which has a very small
overlap of ∼10−4 with the target state, yields better fidelities
for QOCA than the Hartree-Fock initial state, which has a
0.9735 overlap. This, again, emphasizes the fact that QOCA
is robust to unstructured initial conditions.

It is important to highlight that while QOCA uses more
variational parameters than UCCSD, the circuit depth re-
quired to achieve similar state fidelities is significantly
smaller, suggesting that QOCA can be useful for solv-
ing quantum-chemistry problems in noisy-intermediate-scale
quantum devices for which circuit depth is more limiting
than the number of parameters. Although the circuit depth
is reduced, it is still prohibitively large for application in
current devices; nonetheless it constitutes a clear step forward,
providing a systematic approach for the construction of a
class of quantum circuits that will enable the accurate simu-
lation of complex chemical systems in the near-term quantum
computers. Moreover, modifying the QOCA circuit to better
reproduce the interactions between the molecular orbitals of
the water molecule could lead to further improvements in
performance.
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VI. CONCLUSION

We introduced the quantum-optimal-control-inspired
ansatz by providing a framework to design quantum
variational ansatzes that include symmetry-breaking drive
terms, similar to the methods of quantum optimal control. We
applied QOCA to the half-filled Fermi-Hubbard model and
found that, in most cases, the QOCA variational form yields
a far faster and more accurate convergence than standard
approaches, even when using unstructured initial states
having little overlap with the target ground state. We showed
evidence that this improved convergence is a consequence of
the symmetry-breaking terms of the ansatz which allow for
small excursions of the trial wave function outside of the target
symmetry sector. Moreover, with minimal modifications of
the variational form over our FHM implementation, we used
QOCA to prepare the ground state of the water molecule and
showed that it can perform equivalently well to the commonly
used UCCSD ansatz with shorter circuits.

Its broader applicability and the flexibility in choosing
drive terms make QOCA a promising approach to tackle a
wide range of quantum chemistry and materials problems on
near-term quantum computers. Our work represents a first step
towards the development of a more general class of symmetry-
breaking ansatzes for variational quantum algorithms.

Note added. Recently we became aware of related
work [74].
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APPENDIX A: JORDAN-WIGNER FERMIONIC
ENCODING

In the Jordan-Wigner transformation, each fermionic site
is encoded into the state of two qubits with the mapping (0,↑
,↓,↑↓) �→ (00, 01, 10, 11). Moreover, the fermionic ladder
operators take the form

âp �→ σ̂p

⊗
l<p

Ẑl ,

â†
p �→ σ̂ †

p

⊗
l<p

Ẑl , (A1)

where σ̂ = |0〉〈1|, Ẑ is the Pauli-Z operator and the indices
denote the spin orbitals or qubits. For a lattice of L sites, we
arrange the N = 2L spin orbitals as | f1↑ . . . fL↑; f1↓ . . . fL↓〉
with fp ∈ {0, 1} the occupation of spin orbital p.

TABLE III. Asymptotic scaling of the number of variational
parameters of the ansatzes of this work for the full and scal-
able parametrization strategies. These numbers are for periodic
η-dimensional Fermi-Hubbard systems of L lattice sites. d is the
number of layers of the ansatzes.

Full Scalable
parametrization parametrization

HEA 2Ld –
VHA (η + 1)Ld (2η + 1)d
FT-VHA (η + 1)Ld (η + 1)d
QOCA (η + 3)Ld (2η + 3)d
sQOCA 3Ld 3d

With this mapping, hopping terms between spin orbitals p
and q with p < q transform as

â†
pâq + â†

qâp �→ 1

2
(X̂pX̂q + ŶpŶq)

q−1⊗
l=p+1

Ẑl , (A2)

where X̂ , Ŷ , and Ẑ are Pauli matrices. The product of Ẑ oper-
ators, referred to as the JW string, vanishes when q = p + 1.
Moreover, the number operator on spin orbital p, and therefore
the onsite Coulomb interaction between spin orbitals p and q
take the form

n̂p = â†
pâp �→ 1

2
(Î − Ẑp),

n̂pn̂q �→ 1

4
(Î − Ẑp − Ẑq + ẐpẐq). (A3)

At half-filling, the single Ẑs coming from the onsite inter-
action terms are canceled by similar terms arising from the
chemical potential, leading to a simple expression for the
potential

V̂ �→ U

4

L∑
i=1

Ẑi↑Ẑi↓, (A4)

which is diagonal in the computational basis.

APPENDIX B: PARAMETRIZATION OF THE ANSATZES

1. Full parametrization

This strategy corresponds to taking all (or almost all)
gate angles as variational parameters. This gives the classi-
cal optimizer enough freedom to explore the Hilbert space
spanned by the ansatz at the cost of a longer optimization time.
We note that the HEA has, by default, a fully parametrized
configuration since all single-qubit gates are parametrized.
Moreover, the same strategy for VHA consists of assign-
ing one parameter to every â†

iσ â jσ + H.c. hopping terms and
duplicating the parameter to take into account the two spin
orientations. This is because at half-filling and zero total spin,
there is a spin-inversion symmetry which removes the need
to treat spins up and down differently. Additionally, every
term of the on-site interaction is associated with a variational
parameter. The asymptotic scaling of number of variational
parameters for all ansatzes is summarized in Table III for both
parametrization strategies.
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2. Scalable parametrization

In a scalable parametrization strategy, we employ a num-
ber of variational parameters that is independent of the
system size. Because there are fewer parameters, we ex-
pect the optimization to be faster, but larger circuit depths
might be necessary to achieve the same accuracy as full
parametrization.

Although it is less clear how one would achieve a scalable
parametrization for hardware-efficient approaches, a simple
strategy exists for physics-inspired ansatzes such as QOCA. It
consists in grouping the individual terms of the Hamiltonian
into a constant number of sets containing commuting terms.
For example, a common way of grouping the different terms
of the FHM on a 2D lattice is

ĤFHM = Ĥh,even + Ĥh,odd + Ĥv,even + Ĥv,odd + ĤU , (B1)

where the first four terms now group the even and odd, vertical
and horizontal hopping terms, while ĤU collects the on-site
interaction terms. Note that for the 3D FHM, two additional
sets of hopping terms covering the third dimension would be
necessary.

APPENDIX C: NUMERICAL SIMULATIONS

All simulations are done using Qiskit Aqua’s VQA tools
[64]. Because noise is not considered, a unitary state-vector
simulator is used. For simplicity, we also assumed all-to-all
connectivity of the qubits, although this is not strictly needed.
We chose the COBYLA [61–63] method as the classical op-
timizer with a maximum number of function evaluation of
∼105. This number was justified as being reasonable in [21]
using experimentally realistic arguments.

Whenever possible, we initialize all variational parameters
to zero. With this choice, Hamiltonian-based ansatzes im-
plement the identity operator at the start of the optimization
routine and the variational search begins from the initial state.
In contrast to a random initialization of the parameters, this
strategy also avoids the need of doing repeated VQA runs and
postselecting the best results. However, in the case of short-
QOCA, this strategy results in premature convergence of the
optimizer into states close to the initial guess, forcing us to use
a random initialization of the parameters. Interestingly, even
without postselection, this did not hinder the convergence
capability due to the robustness of QOCA regarding initial
conditions.

Finally, all layers of the ansatzes are optimized simulta-
neously. Further improvement can potentially be achieved by
adopting a layer-by-layer optimization strategy as in Ref. [22].

For the simulation of the water molecule, we use the
PySCF driver to obtain the Hamiltonian as provided

APPENDIX D: INITIAL STATES

In most quantum simulations of the FHM reported in the
literature [21,22,24,57,58,60], the initial state is the ground
state of the noninteracting FHM, i.e., fixing U = μ = 0 in
Eq. (11). Because the resulting Hamiltonian is diagonal in
Fourier space, this is a convenient choice because the ground
state is readily computed classically. However, preparing this

on a quantum computer generally requires very long quantum
circuits as it involves the fermionic Fourier transformation.
Current implementations of this transformation [30,32,35] are
defined only for periodic systems, which limits this initial
state’s applicability. To the best of our knowledge, no imple-
mentation of an open-boundary-conditions fermionic Fourier
transformation has been developed to date. Furthermore, the
ground state of the noninteracting FHM can be degenerate
which makes it difficult to choose which one or superposi-
tion thereof to use. This challenge is often pointed out as an
open problem [21,60], since in most VQA realization, prior
knowledge of the target state is used to find the initial state
that maximizes the fidelity. It is unclear how one would make
this choice as systems grow computationally intractable.

1. The noninteracting Fermi-Hubbard model

To see how this degeneracy arises, we consider the 1D
noninteracting FHM (U = μ = 0) with L sites and periodic
boundary conditions. In momentum space, the Hamiltonian is
given by a collection of free fermionic modes

T̂ = FT T̂ FT† =
∑

k,σ={↑,↓}
εk ĉ†

kσ
ĉkσ , (D1)

where the energy spectrum is

εk = −2t cos

(
2πk

L

)
. (D2)

In the above Hamiltonian, ĉ†
kσ

and ĉkσ are respectively the
creation and annihilation fermionic operators of momen-
tum k and spin σ . They are obtained from the real-space
ladder operators â†

kσ
and âkσ and the fermionic Fourier

transformation as

ĉ†
kσ

= FT â†
kσ

FT† = 1√
L

L−1∑
j=0

e−i 2πk
L j â†

jσ , (D3)

ĉkσ = FT âkσ FT† = 1√
L

L−1∑
j=0

ei 2πk
L j â jσ . (D4)

Because k can take only discrete values, one notices that
a degeneracy appears when there are energy levels at εk = 0
since these levels could be occupied or empty without affect-
ing the ground state energy. It is straightforward to see from
Eq. (D2) that this can happen only when L = 4l , with l an
integer. In this case, there are two values of k (corresponding
to k = l and k = 3l) which leads to εk = 0. The degeneracy is
therefore 42 = 16 since each momentum mode can be empty,
occupied by a ↑ or ↓ spin, or both. In the half-filled symmetry

sector, the degeneracy is reduced to (
4
2) = 6. Note that in the

case L �= 4l , the ground state of the noninteracting FHM is not
degenerate and is a simple basis state in momentum space.

As mentioned above, this occasional degeneracy makes it
difficult to guess which basis state (or superposition thereof) is
the best initial state to use in a VQA. However, one can select
states that respect certain desired properties such as particle
number, total spin, and total momentum.
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Typically, the degeneracy at L = 4l can be lifted by ap-
plying a small perturbative Coulomb interaction U . In this
case, the ground state of the noninteracting FHM becomes a
superposition of basis states in Fourier space. One must apply
the FT† in order to transform this initial state into real space
for the VQA.

2. Choosing and preparing the initial states

In the case of L = 4 (or 2 × 2), we computed the fidelity
of the 16 degenerate ground states of Eq. (D1) with respect
to the target ground state and postselected the ones leading
to the highest fidelity. This strategy is, of course, not scalable
and therefore it remains unclear how one would proceed in
practice in the case where the fidelity with the target ground
state cannot be computed beforehand.

In the present case, this strategy yields two ground states
with a fidelity of ≈0.425 with respect to the ground state of the
full model. Labeling the spin orbitals | f1↑ . . . fL↑; f1↓ . . . fL↓〉,
these two states in real space are

|
(1)
T 〉 = FT† |1100 ; 1100〉, (D5)

|
(2)
T 〉 = FT† |1001 ; 1001〉. (D6)

Preparing these two states requires applying Pauli-X gates
on selected qubits followed by the fermionic Fourier trans-
formation, something which requires long quantum circuits
[30,32,35].

Adding a small perturbation U = 1 × 10−5t , we find that
the following superposition of |
(1)

T 〉 and |
(2)
T 〉 yields a

significantly larger fidelity to the true ground state of ≈0.85:

|
T 〉 = |
(1)
T 〉 − |
(2)

T 〉√
2

= FT† |1100 ; 1100〉 − |1001 ; 1001〉√
2

. (D7)

This, however, increases the complexity of the initial state
preparation.

APPENDIX E: SIMULATION OF THE WATER MOLECULE

In order to vary the circuit depth of the UCCSD ansatz
and provide a fair comparison against the QOCA variational
form, we consider all possible combinations of excitations for
the 12-qubit water molecule. The varied number of molec-
ular orbitals involved in the excitations yields circuits with
different gate depths, according to the construction rules of
the UCCSD ansatz [18,25]. Furthermore, this choice of ex-
citations participating in the generation of the ansatz might
affect the quality of the final VQA state. In Fig. 6 we compare
the performance of the UCCSD, HEA, and QOCA variational
forms in preparing the ground state of the water molecule in
its equilibrium geometry.

Each data point in Fig. 6 obtained for the UCCSD ansatz
represents a unique combination of spin orbitals considered in
the cluster operators, starting from one single excitation and
going up to all possible single and double excitations. We ob-
serve that the number of excitations considered play a critical
role in the final state fidelity, which can reach 0.9999 when
the full UCCSD ansatz is taken into account. Importantly, the
circuit depth required for this approach is significantly larger
than the one of QOCA for the same accuracy. In contrast, the
number of variational parameters is smaller for UCCSD.
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