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Efficient modeling of superconducting quantum circuits with
tensor networks
Agustin Di Paolo 1, Thomas E. Baker1, Alexandre Foley 1, David Sénéchal 1 and Alexandre Blais 1,2✉

We use a tensor network method to compute the low-energy excitations of a large-scale fluxonium qubit up to a desired
accuracy. We employ this numerical technique to estimate the pure-dephasing coherence time of the fluxonium qubit due to
charge noise and coherent quantum phase slips from first principles, finding an agreement with previously obtained
experimental results. By developing an accurate single-mode theory that captures the details of the fluxonium device, we
benchmark the results obtained with the tensor network for circuits spanning a Hilbert space as large as 15180. Our algorithm
is directly applicable to the wide variety of circuit-QED systems and may be a useful tool for scaling up superconducting
quantum technologies.
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INTRODUCTION
Superconducting qubits are a leading platform for quantum
information processing1,2. These qubits are built from super-
conducting quantum circuits integrating linear elements, such as
capacitors and inductors, together with the only known nonlinear
and nondissipative circuit component: the Josephson junction.
Superconducting circuits operate at milliKelvin temperatures,
where the electromagnetic degrees of freedom associated to
currents and voltages in the circuit are described quantum
mechanically3,4. In this regime, nodes (or branches) of the circuit
are represented by bosonic fields with, in principle, infinite Hilbert
space dimension. The circuit topology defines linear and nonlinear
interactions between these bosonic modes. Determining the low-
lying excitations of the circuit in the presence of such interactions
requires the diagonalization of the full circuit Hamiltonian.
However, for circuits with more than a few nodes, this task
rapidly becomes intractable by exact diagonalization. With current
devices integrating 10s5 to 100s6, 1000s7 and even 10,000s8

Josephson junctions, finding methods to efficiently model these
systems is timely.
In this work, we adapt to many-body superconducting quantum

circuits a numerical tensor network method that we introduce in
(Baker, T. E. et al. manuscript in preparation). As an example of this
method, we use this numerical technique to compute the relevant
low-energy excitations of a large-scale superconducting circuit
known as fluxonium qubit5, taking into consideration all degrees
of freedom of a circuit model of the device. Solving the complete
fluxonium Hamiltonian is challenging due to the presence of long-
range linear and nonlinear interactions between circuit modes. We
show that the tensor network technique succeeds at modeling
this circuit and gives access to information about the system that
can be used, for instance, to estimate the qubit coherence
times from first principles. Moreover, we develop an effective
theory for the fluxonium qubit that we use to benchmark the
results obtained with the tensor network algorithm in certain
parameter regimes.
To highlight the benefits of our tensor network approach, we

study the phenomenon of charge dispersion in the fluxonium

qubit. To this end, we consider the device parameters reported in
a experiment that analyzed the effect of charge dispersion on the
coherence time of the qubit9. We perform numerical simulations
in a range of parameters, including those of the experiment,
confirming an existing effective theory for describing charge
dispersion in this qubit, and clarifying the regime of validity of
that theory. Moreover, we estimate the coherence time of the
experimental device using our tensor network approach, finding
agreement with the reported values. Finally, we push the tensor
network method to parameter regimes where the accuracy of the
effective theory is reduced, and quantify the deviations with
respect to the tensor network result. Our findings are useful in the
design of fluxonium devices with balanced flux- and charge-noise
dephasing rates, and motivate further experimental work to probe
charge dispersion in these circuits.
The manuscript is organized as follows. In section “The multi-

targeted DMRG algorithm”, we summarize some important
aspects of the tensor network technique employed in this work.
In section “DMRG implementation of the fluxonium-qubit
Hamiltonian”, we provide a tensor network implementation of
the complete fluxonium-qubit Hamiltonian, introduce an accurate
single-mode description of this qubit, and compare the results
obtained with these approaches as a way of benchmarking the
tensor network results. Section “Charge dispersion and coherence
time” discusses charge noise in the fluxonium qubit, and provides
tensor network estimates of charge dispersion of the qubit
transition supporting a previously developed theory9. We
conclude in “Discussion” section and provide an outlook of
our results.

RESULTS
The multi-targeted DMRG algorithm
A useful strategy to determine the low-energy excitations of a
quantum system is based on decomposing its many-body
wavefunction into a series of tensors, each representing a single
site (or mode). The resulting wavefunction is known as matrix
product state (MPS)10. For a review, see for instance refs. 11–15.
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The full many-body wavefunction can be written as12

ψj i ¼
X
fσig

cσ1σ2 ¼ σNJ
σ1σ2 ¼ σNJj i; (1)

where σi indexes orbitals (or levels) that belong to a finite-
dimensional basis of states for the ith site. For a site representing a
bosonic mode, a finite-dimensional basis for this site may be
defined by truncating the site’s Hilbert space. The probability
amplitude cσ1σ2 ¼ σNJ

in Eq. (1) is interpreted as a tensor with NJ

indices, NJ being the number of sites. In order to obtain a MPS
representation of ψj i, a series of tensor decompositions can be
performed using the singular value decomposition (SVD). By
performing successive SVDs on the original tensor, one obtains a
site-by-site representation of the wavefunction of the form12

ψj i ¼ P
fσig;faig

Aσ1
a1A

σ2
a1a2 ¼ A

σNJ�1
aNJ�2aNJ�1A

σNJ
aNJ�1

´ σ1σ2 ¼ σNJj i;
(2)

where Aσi
ai�1ai is a tensor associated to the ith site. Here, an extra

index ai appears corresponding to a link that connects to an
adjacent site. The dimension of this shared index is known as the
bond dimension and is controlled by truncating the number of
nonzero singular values that are kept following the SVDs.
Effectively, this truncation leads to an approximate representation
of the many-body state. Physical systems that can be modeled
efficiently by a MPS often involve short-range interactions and low
dimensions16. More general cases can also be captured by a MPS
at the price of using a larger bond dimension11,12.
In practice, the MPS is obtained by first constructing the

Hamiltonian as a tensor network, known as a matrix product
operator (MPO). Once the MPO is specified, an algorithm can be
designed to converge from a starting initial state to the correct
ground state. A well-known tensor network method to achieve
this is the density matrix renormalization group (DMRG) algo-
rithm17,18. This variational approach is efficient at solving for the
ground state of systems that are well captured by the MPS and
can converge in only a few iterations16,19,20. More importantly, the
complexity of this algorithm scales linearly with the number of
sites, making it possible to treat system sizes well beyond what is
possible with exact diagonalization.
While DMRG is most commonly used to study ground states,

the analysis of superconducting quantum circuits requires us to
determine several low-energy excitations. For example, in the case
of a single superconducting qubit built using some large
superconducting circuit, the ground state and the two first lowest
energy excitations are needed to estimate the qubit frequency ω01

and anharmonicity ω12−ω01, where �hωi is the energy of the ith

eigenstate of the circuit and ωij=ωj−ωi. If nq such qubits are
integrated on a chip, the number of excitations required to
characterize the device typically scales as n2q.
The conventional approach to compute excitations with DMRG

is to add to the system Hamiltonian an energy penalty of the formP
i2ex:Λ ψij i ψih j, with Λ > 0, where ex. denotes a set of previously

determined excitations f ψij ig. This energy penalty turns the next
excited into an effective ground state for which standard DMRG
can be run12. However, this technique can in some cases miss
excited states and suffers from convergence issues.
To remedy this problem, we have derived an extension of the

DMRG algorithm that can find a number of excitations simulta-
neously, see (Baker, T. E. et al. manuscript in preparation). This
procedure, that we name the “multi-targeted” DMRG algorithm,
extends Eq. (2) to include an additional index that labels the
excitation number. Energy is then variationally minimized to the
correct eigenvalues and simultaneously for all excitations. This
technique is numerically stable and, unlike standard approaches,
does not miss excitations or introduce numerical degeneracies in
all tested situations, including tens of excitations. Furthermore, an
important benefit of our multi-targeted DMRG algorithm is that
the orthogonality of the computed excited states is guaranteed up
to numerical accuracy.

DMRG implementation of the fluxonium-qubit Hamiltonian
Because of its relatively complex structure, with a Hamiltonian that
includes periodic boundary conditions, as well as short- and long-
range linear and nonlinear interactions, the fluxonium qubit5 is a
challenging system to explore with our numerical method. We
note, however, that non-multi-targeted DMRG has previously been
used to study quantum phase transitions in Josephson junction
rings21,22 and the coherence properties of the current-mirror
qubit23.
The fluxonium circuit (see Fig. 1) consists of a small Josephson

junction, referred to as the “black-sheep” junction, shunted by a
superinductance, i.e., a circuit element with effective impedance
greater than the quantum of resistance RQ= h/(2e)2≃ 6.5 kΩ and
self-resonance frequencies >10 GHz (refs. 24–28). The inductive
shunt makes the device insensitive to charge noise29, while flux-
noise insensitivity can be reached for large values of the
superinductance30. Recent realizations of the fluxonium qubit
have shown long coherence times31, making these devices very
attractive for quantum information processing.
Superinductances are most commonly fabricated by connecting

10s to 100s of Josephson junctions in series, forming a linear
array5,27. Other promising implementations of superinductances
are based on nanowires built from disordered superconductors,

Fig. 1 Circuit model of the fluxonium qubit. a Detailed circuit scheme including a “black-sheep” junction (center) shunted by a capacitance
(top) and a junction-array superinductance with NJ junctions (bottom). Stray capacitances to ground are depicted in a lighter shade of blue. b
Effective circuit in which the junction array is modeled as a linear inductance. ϕi for i ∈ [0, NJ] denotes the superconducting phase at every
circuit node, while θi for i∈ [1, NJ] is the phase difference at every junction of the array. The superinductance (or fluxonium) mode is defined as
the phase difference across the black-sheep junction: ϕ ¼ ϕ0 � ϕNJ

¼PNJ
i¼1 θi .
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such as NbTiN, TiN, and granular aluminum. Experiments on
nanowire superinductors have recently demonstrated inductance
values comparable to some of the junction-array counterparts,
with low levels of loss and residual nonlinearity32–35. Beyond
fluxonium, superinductances are also exploited by other qubit
designs, with the notable example of the noise-protected
0− π qubit25,36.
Regardless of the physical implementation, a superinductance is

a multimode device that can in principle be approximated by a
single-mode circuit element27. While the single-mode description
of the superinductance is often enough to describe a qubit
that incorporates this circuit element, the underlying multimode
structure of the former device is inherited by the qubit
Hamiltonian and can have important consequences27,32,37,38.
Below, we investigate some of these aspects for the case of a
fluxonium qubit based on a Josephson junction array. However, it
is worth noticing that our theory and numerical methods are
applicable to a wider variety of fluxonium devices, as nanowire
superinductances can effectively be described as an array of
Josephson junctions33,39.

Setting up the multi-targeted DMRG algorithm. With the goal of
determining the low-energy excitations of the full fluxonium
device shown in Fig. 1a by means of the multi-targeted DMRG
algorithm, we first describe the circuit Hamiltonian. In this circuit,
the black-sheep junction is specified by its Josephson energy EJb
and its capacitance CJb , which may include a shunt capacitance.
We take the superinductance to be realized by an array of
Josephson junctions, with LJi and CJi being the ith junction
inductance and capacitance, respectively. Moreover, a ground
capacitance C0i is associated to the ith circuit node. In the absence
of circuit-element disorder, these parameters take the constant
values LJ, CJ, and C0, respectively. We also define the plasma
frequency ωp ¼ 1=

ffiffiffiffiffiffiffiffi
LJCJ

p
and reduced impedance z ¼ ffiffiffiffiffiffiffiffiffiffiffi

LJ=CJ

p
=RQ

of the array junctions. Following the standard procedure for
quantizing a circuit3, the Hamiltonian of the circuit takes the form
(see section “Fluxonium circuit hamiltonian”)

H ¼
XNJ

i¼1

H0i þ
XNJ

j

_gij ~ni~nj � EJb cos
XNJ

i¼1

θi þ φext

 !
: (3)

In this expression, H0i ¼ 4ECi
~n2i � EJi cos θi , with ~ni ¼ ni � ngi , is a

noninteracting (or site) Hamiltonian for the ith array junction,
where θi is the phase difference across that junction and ni the
conjugate charge. Moreover, ngi is an offset-charge parameter, ECi
is the effective charging energy of this junction and EJi ¼ φ2

0=LJi is
the Josephson energy with φ0=Φ0/2π, where Φ0= h/2e is the flux
quantum. In addition to the on-site energies, Eq. (3) includes a
bilinear interaction / ~ni~nj arising from the ground, black-sheep
and array-junction capacitances, that couples all sites with
comparable strength and full connectivity. The last term of
Eq. (3) is a nonlocal interaction that results from the strongly
nonlinear Josephson potential of the black-sheep junction, and
that depends on the external flux Φext= φ0φext associated with
this junction3. Because Eq. (3) includes a very large number of
degrees of freedom and is therefore difficult to work with, this
Hamiltonian is not directly employed in the literature to describe
the fluxonium qubit. Instead, fluxonium devices are usually
modeled by an effective Hamiltonian that incorporates a single
bosonic degree of freedom, ϕ ¼PNJ

i¼1 θi , known as superinduc-
tance or fluxonium mode5.
To go beyond the usual effective model and obtain the low-

energy excitations of Eq. (3) by means of a tensor network, the
circuit Hamiltonian must first be converted to its MPO form.
Crucially, we noticed that the long-range cosine interaction is
ideally suited to MPSs and operators, preventing an increase of
the bond dimension with the number of sites. This observation is
one of the key findings of our work and extends to all circuit-QED

Hamiltonians, including the black-box-quantization40–42 and
energy-participation-ratio43 formalisms. Indeed, we have success-
fully implemented a wide variety of such models and circuit
Hamiltonians, results that will be reported elsewhere. On the other
hand, the all-to-all capacitive interaction in Eq. (3) does not have
an efficient MPO representation. However, this unfavorable
interaction does not prevent an efficient implementation of the
multi-targeted DMRG algorithm, as the results reported in this
manuscript are obtained with a relatively small bond dimension
using MPO compression techniques44. The efficient matrix-
product-operator representation of the black-sheep Josephson
potential in Eq. (3), and the possibility of handling an arbitrary
capacitive coupling Hamiltonian by compression techniques,
makes our DMRG implementation readily applicable to the wide
variety of circuit-QED setups.

Effective single-mode theory. To assert the validity of our DMRG
method, we derive in section “Effective model for the fluxonium
qubit” an effective single-mode theory from Eq. (3) that can be
solved by exact diagonalization. This theory goes beyond the
standard treatment found in the literature, accounting for the
details of a circuit model of the device and some of the effects due
to the multimode structure. Under approximations controlled by
the parameter regime of the device, we arrive at the Hamiltonian

H0 ¼ 4ECn
02 � N2

J EL cosðϕ0=NJÞ � EJ cosðϕ0 þ φextÞ; (4)

where the mode described by ϕ0 is closely related to the
superinductance (or fluxonium) mode ϕ, and n0 the conjugate
charge. Here, EC, EL, and EJ are, respectively, effective capacitive,
inductive, and Josephson energies obtained from the classical
normal-mode structure of the circuit. If the ground capacitances
C0i for i∈ [1, NJ] can be neglected, then ϕ0 ¼ ϕ and
n0 ¼ n ¼ N�1

J

PNJ
i¼1 ni , where n is the conjugate charge operator

to ϕ. Otherwise, the ϕ0 mode includes corrections to ϕ that are
linear in C0. We note that Eq. (4) is a single-mode Hamiltonian
obtained after tracing out the high-frequency modes of the
fluxonium circuit that are assumed to be in vacuum. This
constitutes an approximation useful to describe the low-
frequency properties of the fluxonium qubit.
Although in the limit of large NJ Eq. (4) reduces to the usual

effective model for the fluxonium qubit (see Fig. 1b)5, the
parameters of Eq. (4) include important corrections that arise
from the nonlinearity of the array junctions and the details of
the circuit. We find, in fact, that these considerations can lead to
significant frequency shifts of the qubit transitions (see Supple-
mentary Fig. 3). Importantly, our theory is formulated for an
arbitrary capacitance matrix and just like our numerical techni-
ques, it is readily applicable to circuit models that generalize that
of Fig. 1, for instance by including additional stray capacitances
needed to describe a given device. Crucially, because of its single-
mode nature, Eq. (4) can easily be diagonalized numerically by
truncating the Hilbert space of the ϕ0 mode to finite dimension.

Comparison. Having derived the effective model of Eq. (4), which
will be used as a benchmark, we are now in a position to
demonstrate the results of our DMRG approach and explore the
capabilities of this method. To this end, we consider a device in
the “heavy fluxonium” regime6,32,45, where the shunt capacitance
is large, and a superinductance made of NJ= 120 identical
junctions, where ωp/2π= 25 GHz and z= 0.03 (ref. 27). We choose
to work in the heavy regime for a demonstration because of the
recent interest in the heavy fluxonium due to its millisecond-long
T1. It should be stressed, however, that there is nothing particular
about this regime from a numerical point of view, and we show in
section “Charge dispersion and coherence time” and the
appendices of this work how the tensor network is equally
successful at solving the fluxonium Hamiltonian in other
parameter regimes. A comprehensive description of the various
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parameter regimes of the fluxonium qubit is offered in the
Supplementary Discussion.
Each junction is modeled as a multilevel system using the 15

lowest energy eigenstates of the site Hamiltonian H0i . Indeed, we
find that for low-impedance junctions, truncation errors can be
avoided using a smaller number of eigenstates of H0i compared to
other possible basis, such as the Cooper-pair-number basis46. The
DMRG implementation is thus defined in a product basis of local
wavefunctions spanning a many-body Hilbert space as large as
15120 and that has, a priori, no built-in information about collective
modes of the system. Importantly, this choice of basis also makes
our treatment readily extensible to other superconducting
quantum circuits.
Figure 2a shows the energy spectrum of the fluxonium device

of Fig. 1 for both multi-targeted DMRG (Eq. (3), light-blue circles)
and exact diagonalization of the effective single-mode theory
(Eq. (4), black dashed lines), as a function of the external flux Φext.
We find excellent agreement between these two independent
models. Importantly, this observation extends to all systems sizes
and parameter sets that we have tested, from a few-sites
fluxonium-like device to circuits with many more junctions.
Indeed, Supplementary Fig. 1 shows the result for a circuit with
NJ= 180 spanning a many-body Hilbert space of size 15180, while
Supplementary Figs. 2 and 3 explore the result in distinct
parameters regimes of the fluxonium Hamiltonian for moderate
system sizes. These results provide supporting evidence of a
successful DMRG implementation of the fluxonium-qubit Hamil-
tonian and motivate applying the DMRG technique in regimes of
parameters, where deriving an effective model is challenging.

Exploring the DMRG results. In addition to computing global
properties of the circuit, such as its energy spectrum, the multi-
targeted DMRG algorithm also gives access to local site properties
and n-body correlators. These operators can give insights into the
many-body structure of the fluxonium eigenstates. The purpose of
this section is to motivate the use of our DMRG algorithm to
explore some of these quantities.
As an example application, Fig. 2b shows the mean photon-

number population hpii ¼ hψk jH0i jψki=_ωp of the ith site, for all

sites (i∈ [1, 120], vertical axis of each of the six density plots) as a
function of Φext. These expectation values are computed for a
given eigenstate ψkj i of the full fluxonium circuit, from the ground
state (k= 0, bottom density plot) to the fifth excited state (k= 5,
top density plot). Because of the absence of circuit-element
disorder in these simulations, the results do not show any
variations with site number. We observe that the photon-number
population of the array junctions is relatively low for the ground
state. The same is true for some excited states whose energies
change rapidly with the external flux (fluxons). Note that energies
are given with respect to the ground state energy, which is chosen
to be always 0. In other words, the energy of the ith excited state
as illustrated in Fig. 2a corresponds to that of the transition
ψ0j i ! ψij i. Moreover, we note that the photon-number popula-
tion of the array junctions is relatively high for excited states that
have a weak frequency dispersion as a function of Φext (plasmons).
We interpret these results with the help of Fig. 2c, which illustrates
a portion of the local Josephson potential of an array junction and
its single-site wavefunctions. From the point of view of this site
(left panel), a fluxon state ψkj i involves a small displacement by
αk/NJ of the site’s wavefunction (red) away from its noninteracting
ground state position (light blue), where αk is a real number. With
the current operator associated to the ith junction given by
Ii ¼ Ic sin θi , where Ic is critical current, this displacement results in
a circulating current for αk ≠ 0. In addition to this mean-field
displacement, plasmon states involve non-negligible population
of the sites’ excited states, as shown in Fig. 2c (right panel).
The above interpretation becomes clearer by considering the

effective potential and wavefunctions obtained from the single-
mode effective Hamiltonian Eq. (4), as shown in Fig. 2d for Φext ∈
{0, Φ0/4, Φ0/2}. The shape of the effective potential is determined
by the cosine potential of the black-sheep junction and the
inductive energy �N2

J EL cosðϕ0=NJÞ ’ ELϕ02=2 of the array. While
fluxon states correspond in this picture to the lowest energy
eigenstates associated to the local minima of the effective
potential, plasmon states correspond to intra-well excitations
(see Supplementary Discussion). The potential of the effective
model connects to that of Fig. 2c by noticing that hψk jϕjψki �
hψk j

PNJ
i¼1 θi jψki ¼ αk for an excitation ψkj i localized in a single

Fig. 2 A 120-junction superinductance heavy fluxonium as a function of Φext. a Energy spectrum of the Hamiltonians in Eq. (3) (DMRG) and
Eq. (4) (single mode). b Mean photon-number population of the array Josephson junctions (sites) for every eigenstate ψkj i of the fluxonium
circuit. c Single-junction picture of fluxon- and plasmon-like excitations. d Schematic of the effective potential energy and wavefuctions of the
single-mode Hamiltonian for Φext∈ {0, Φ0/4, Φ0/2}. e Expectation value of the phase operator at every circuit node of the superinductance for
the fluxonium eigenstates labeled by ψ0j i and ψ2j i. Circuit parameters: CJb ¼ 40 fF, EJb=h ¼ 7:5 GHz, CJ≃ 32.9 fF, and LJ≃ 1.23 nH (from ωp/2π
= 25 GHz and z= 0.03 (ref. 27)) and C0= 0. Single-mode model parameters: EC/h≃ 0.48 GHz, EL/h≃ 1.27 GHz (i.e., L≃ 129.1 nH), and EJ ¼ EJb .
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potential well. Thus, in this case, the displacement of the sites’
wavefunctions adds to a collective value αk that approximately
coincides with the position of a local minimum of the effective
potential. This is examined further in Fig. 2e, which shows the
expectation value of the phase drop ϕ0 � ϕi �

Pi
j¼1 θj , obtained

from DMRG, and plotted as a function of the site number for the
fluxon states ψ0j i and ψ2j i at Φext=Φ0/4 in Fig. 2d (middle panel).
In this figure, the expectation value 〈ψk∣(ϕ0− ϕi)∣ψk〉 is repre-
sented by the angle between the direction of a vector localized on
the ith site, with respect to the vertical direction. Thus, the total
angle between the vectors belonging to the first and last sites can
be identified with the positions of the local minima α0 and α2 of
the effective potential of Eq. (4).
Overall, Fig. 2 shows that the multi-targeted DMRG algorithm

correctly reproduces the results of the effective single-mode
theory and it can also provide information that is not accessible
from this theory. The close comparison shown in the results from
both methods demonstrates a correct DMRG implementation of
the full circuit Hamiltonian of the fluxonium qubit. This fact also
suggests that other circuit Hamiltonians can benefit from this
numerical method. Moreover, the local physical quantities such as
those illustrated in Fig. 2b, contain information about the energy-
participation ratio of all circuit components for a given collective
excitation. This information could be used to identify limiting
dissipation channels, and to understand the effect of circuit-
element disorder. We return to these aspects in “Discussion”
section.

Charge dispersion and coherence time
We now proceed with a concrete application that shows how our
DMRG implementation can be leveraged to estimate coherence
time of the fluxonium qubit from first principles. In particular,
we are interested in quantifying the impact of charge noise and
coherent quantum phase slips (CQPSs) on the qubit coherence
time9,28.

Charge dispersion. In the fluxonium circuit, the black-sheep
junction acts as a weak link that couples flux states of the
superconducting, loop allowing for the control of the qubit’s
degree of freedom. The tunneling of a flux quantum corresponds
to a change of 2π in the phase of the superconducting order
parameter and is therefore known as CQPS9,47–52. The rate at
which a quantum of flux can tunnel in and out of the loop through
the black-sheep junction defines the CQPS amplitude, which
increases with the impedance of this circuit element. In
experiments, fluxonium devices exploit a wide range of black-
sheep junction impedances, ranging from relatively small values in
the heavy-fluxonium regime6,32,45, to moderate and large values in
the fluxonium5,9 and light-fluxonium30 regimes, respectively. Yet,
in practice, the loop’s superinductance is also built from
Josephson junctions itself and CQPS can develop through the
junctions of the array. Unlike the previous case, however, CQPS
occurring in the superinductance can degrade qubit coherence
and must be minimized by circuit design28.
Manucharyan et al.9 introduced an effective model describing

the effect of CQPS events occurring in the superinductance of a
fluxonium qubit. In this model, CQPS events due to the black-
sheep junction are captured by a single-mode Hamiltonian similar
in spirit to Eq. (4). In addition, CQPS occurring through the
superinductance enter in the same effective Hamiltonian via the
external flux, such that Φext→Φext+mΦ0, where m is an integer-
valued operator representing the number of CQPS in the array. A
CQPS event at any junction of the superinductance leads to a
jump m→m ± 1, and is described by a flux-tunneling Hamiltonian
of the form HCQPS ¼ ðES m� þ E�S mþÞ=2, where the operator
m− [mþ ¼ ðm�Þy] removes (adds) a single flux quantum from the
loop. Here, ES is the total CQPS amplitude given by the

superinductance and obtained, as an approximation, by coher-
ently adding the contributions from each of the NJ array junctions.
In the limit of small array-junction impedance and large
inductance, one has ES ¼

PNJ
i¼1 ϵ0i e

i2πngi (refs. 28,9), where

ϵ0i ¼ 8
ffiffiffi
2

p
_ωpi expð�4=πziÞ=

ffiffiffiffiffiffi
πzi

p
; (5)

corresponds to the charge dispersion of the ground state
energy of the transmon Hamiltonian H0i in terms of the
reduced impedance zi and plasma frequency ωpi of the ith array
junction28,46,47,53. We note that, as a consequence of the
Aharonov–Casher effect, the flux-tunneling amplitude contributed
by the ith array junction has a well-defined phase, proportional to
the offset-charge ngi associated to that junction9,47,52,54–56.
In the limit of rare CQPS, ∣ES∣ ≪ EL, HCQPS can be regarded as a

small perturbation to the fluxonium Hamiltonian. In this situation,
first-order perturbation theory predicts a shift δωij ¼ Re½ES�ðhTij �hTiiÞ=_ of the qubit’s i→ j transition frequency, where T ¼
expð�i2πnÞ is a 2π displacement operator whose expectation
values are computed, using the unperturbed eigenstates f ψij ig
with m= 0 (ref. 9). For a homogeneous array (ϵ0i � ϵ0 for i∈ [1,
NJ]), one has �NJϵ0 � Re½ES� � NJϵ0, and the total charge
dispersion of the qubit transition frequency is

jΔω01j ¼ 2NJϵ0jhTi1 � hTi0j=_: (6)

As the classical flux states of the loop are degenerate at Φext=Φ0/
2, the effect of a nonzero ES is stronger close to this flux bias. Quite
interestingly, in this regime, the qubit frequency can be a sensitive
probe of many-body phenomena: CQPS interference.
Figure 3 shows the charge dispersion of the fluxon transition of

a fluxonium device with parameter values chosen to be as close as
possible to those of the experiment of ref. 9. Figure 3a shows the
qubit transition frequency as a function of the external flux close
to Φext=Φ0/2 for different values of the offset-charge ngi � ng,
assumed to be the same on every junction of the array. Each
subpanel shows the DMRG results for a given value of the array-
junction impedance. The lightest (darkest) transition in purple
corresponds to ng= 0 (ng= 0.5). Since ng= 0.5 is a charge
degeneracy point of the single-array-junction Hamiltonian H0i ,
Cooper-pair transport between the circuit islands is relatively
easier, leading to a stronger flux dispersion in comparison to that
at ng= 0 (ref. 57). Dashed black lines show the qubit transition
frequency according to Eq. (4). Note that the offset-charge
dependence of the CQPS tunneling energy leads to constructive
(∣ES∣ > 0) and destructive (ES→ 0) interference of CQPS events.
Qualitatively, charge dispersion increases rapidly with the array-

junction impedance z due to the exponential scaling of Eq. (5).
This is best illustrated by Fig. 3b, which shows the charge
dispersion for Φext=Φ0/2 as a function of z. Light-blue circles (full
DMRG) correspond to a fully numerical estimation using DMRG for
which the charge dispersion is computed by taking the difference
between the energy of the fluxon transition for ng= 0 and ng=
0.5. Black triangle symbols (Eq. (6) (DMRG)) are the result of Eq. (6)
for which the matrix elements are evaluated, using the eigenstates
obtained from DMRG for ng= 0. In contrast, the black dashed line
(Eq. (6) (single mode)) is obtained by evaluating the matrix
elements using the single-mode Hamiltonian Eq. (4). We find no
significant difference between the DMRG (Eq. (6) (DMRG)) and the
single-mode (Eq. (6) (single mode)) implementations of Eq. (6) in
the entire range of z.
We observe a remarkable agreement between the estimation of

the total charge dispersion from fully numerical DMRG and that
predicted by Eq. (6), up to array-junction impedances as high as z
≃ 0.1 in Fig. 3, which corresponds to a junction impedance ZJ≃
650Ω or one tenth of the superconducting quantum of resistance.
This provides evidence in support of the theoretical model
introduced in ref. 28. Although barely visible, small deviations
between the fully numerical DMRG estimation and those based on
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Eq. (6) are present for z≲ 0.06. The largest truncation error for all
simulations in Fig. 3 is of order 10−11, and the error tolerance on
the eigenvalues are set to 10−12, guaranteeing the convergence of
the fully numerical DMRG results to the same accuracy. DMRG
being a variational method, we have verified that the convergence
to the reported accuracy is also well-behaved. We noticed
deviations of the same order of magnitude between the fully
numerical DMRG estimation and the prediction of Eq. (6) for
devices, with different sets of circuit parameters.
The difference between the full numerical multi-targeted DMRG

estimation and those based on Eq. (6) increases in the range of
z≳ 0.1 in Fig. 3 (see also figure inset). In this regime, some of the
assumptions on which the theory of ref. 9 is based are no longer
valid, placing the DMRG method at a clear advantage over the
effective theory. Furthermore, the fact that such deviations can be
quantified with a tensor network method motivate further
experimental and theoretical explorations to understand the
physics of CQPS in fluxonium devices to a greater extent.

Coherence-time estimations. Because of unavoidable charge noise,
the value of δωij fluctuates in time, broadening the qubit transition,
and deteriorating coherence. This observation is the basis of the
experimental study of ref. 9, where the decrease of the qubit
coherence time around the flux sweet spot is taken as indirect
evidence of CQPS events in the superinductance. To quantify this
effect, ref. 9 assumes that the variables ngi are independent and
randomly distributed. The probability distribution of Re½ES� can then
be approximated by a Gaussian with zero mean and standard
deviation

ffiffiffiffiffiffiffiffiffiffi
NJ=2

p
ϵ0 (ref. 9). The effective broadening of the qubit

transition in presence of noise thus scales as
ffiffiffiffiffi
NJ

p
, translating to the

pure-dephasing rate 1=Tφ;CQPS ¼ jΔω01j=4
ffiffiffiffiffi
NJ

p
(refs. 9[,28).

In support of the experimental observation and as a further
example of the power of the multi-targeted DMRG algorithm, we
show below that full DMRG simulation of a device with similar

circuit parameters to those reported in ref. 9 predicts the pure-
dephasing coherence times to be dominated by the combined
effect of charge noise and CQPS around Φext=Φ0/2. Indeed, we
compare Tφ,CQPS to the coherence time expected for 1/f flux noise
by deriving a multilevel pure-dephasing master equation of the
form (see section “Multilevel pure-dephasing master equation for
flux noise”)

∂tρ ¼ P
k
Γkkφ D½σkk; σkk� ρ

þ P
k>l

Γklφ D½σkk; σll� þ D½σll; σkk�ð Þρ; (7)

where Γklφ are time-dependent pure-dephasing rates proportional to
the 1/f flux-noise amplitude, σkl ¼ ψkj i ψlh j, and D½x; y� ρ ¼ xρyy �
fyyx; ρg=2 is a generalized dissipator operator. By integrating
Eq. (7), we find the flux-noise coherence time Tφ,Flux by solving the
implicit equation ρ01(Tφ,Flux)/ρ01(0)= 1/e. Our semi-analytical
method leads to a slight correction to the pure-dephasing
coherence time with respect to other approaches, see section
“Multilevel pure-dephasing master equation for flux noise” for
details.
Figure 4a shows the energy spectrum of the simulated device as

a function of the external flux, results that should be compared to
those of ref. 9. In contrast to the results in Fig. 2a, the difference
between the DMRG and single-mode simulations for the para-
meters of ref. 9 is slightly more noticeable due to the low plasma
frequency of the array junctions ωp/2π= 12.5 GHz, around which
~40 other additional circuit modes lie. This makes any single-mode
approximation invalid, except at low frequencies. Furthermore, Fig.
4b shows the estimation of the device’s coherence times using only
the results from DMRG as a function of the external flux and close
to the bias point Φext=Φ0/2. We find coherence time values that
are very similar to the experimental observation (see Fig. 4 in ref. 9),
thus providing further numerical evidence of the combined effects

Fig. 3 Charge dispersion of a 40-junction superinductance fluxonium qubit as a function of the reduced impedance of the array
junctions. a Broadening of the fluxon transition around Φext=Φ0/2 for ng∈ [0, 0.5]. Color lines are obtained using the multi-targeted DMRG
algorithm, while dashed black lines correspond to estimations using the single-mode Hamiltonian Eq. (4). b Total charge dispersion of the
fluxon transition at Φext=Φ0/2 according to the DMRG calculation (circles) contrasted to the prediction of Eq. (6) with matrix elements
evaluated by means of DMRG (triangles) or the single-mode model (dashed lines). Inset: data displayed in linear scale. Parameters: CJb ¼ 7:5 fF,
EJb=h ¼ 8:9 GHz, ωp/2π= 12.5, and C0= 0, according to ref. 9.
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of charge noise and CQPS. This mechanism dominates over flux
noise close to the device’s flux sweet spot, resulting in sub-μs
coherence times for the device parameters of ref. 9.
Combined, the results of Figs. 3 and 4 illustrate the rich interplay

between charge noise and CQPS in the fluxonium architecture.
Added to the improved simulation capabilities provided by the
multi-targeted DMRG algorithm, these findings motivate a
systematic experimental study to understand these effects further.

DISCUSSION
We have reported the application of a DMRG algorithm to
simulate large-scale superconducting quantum devices. We have
used this numerical technique to study aspects of quantum
coherence of the fluxonium qubit. To assert the validity of the
DMRG simulations and interpret the numerical results, we have
developed a detailed single-mode theory for the fluxonium qubit.
We have employed this theory and the numerical method to
investigate the combined effect of charge noise and CQPSs in the
fluxonium qubit. Our results on the charge dispersion of the
fluxonium qubit confirm a model introduced in ref. 9, and
reproduce some of the experimental findings of that work.
Combined, these results are of significant value for the design of
the next generation of fluxonium and other many-body super-
conducting quantum devices.
Having access to the expectation values of local and of n-body

operators thanks to tensor network techniques makes it possible
to investigate the many-body properties of superconducting
quantum circuits. This could help, for instance, to nonlocally
encode quantum information in protected subspaces by exploit-
ing entanglement in these systems. Moreover, local information of
large-scale superconducting quantum circuits may be used to
evaluate the impact of dissipation channels and circuit-element
disorder. This might also lead to a more detailed understanding
of dissipation and decoherence mechanisms. Our numerical
approach also has the potential to enable advancements in
several areas of superconducting-qubit research. In particular, we
envision future applications to the analysis of multi-qubit devices
and the design of scalable superconducting-qubit architectures.

METHODS
Fluxonium circuit Hamiltonian
In this section, we derive the circuit Hamiltonian used in the DMRG
calculations presented in the main text. We consider a fluxonium device
where a black-sheep Josephson junction with capacitance CJb (including
both shunt and junction capacitances) and Josephson energy EJb is
shunted by a superinductance made of NJ junctions, each of capacitance
CJi and energy EJi with i∈ [1, NJ]. We moreover assume that each circuit

node of the superinductance is connected to ground by a stray
capacitance C0i . The NJ+ 1 node flux (phase) variables of the circuit are
denoted by Φi (ϕi=Φi/φ0), where φ0=�/2e is the reduced quantum of
magnetic flux and i∈ [0, NJ] (see also Fig. 1a). The circuit Lagrangian can
then be written as3

LðΦ; _ΦÞ ¼ CJb
2 ð _ΦNJ � _Φ0Þ2 þ

PNJ

i¼1

CJ i
2 ð _Φi � _Φi�1Þ2

þ PNJ

i¼0

C0i
2

_Φ
2
i þ

PNJ

i¼1
EJi cos ðΦi � Φi�1Þ=φ0½ �

þ EJb cos ðΦNJ � Φ0 þ ΦextÞ=φ0½ �;

(8)

where Φext is the flux through the circuit loop. A more convenient basis is
defined by the flux variables Θi=Φi−1−Φi for i∈ [1, NJ] and the cyclic
mode Σ ¼PNJ

i¼0 Φi . The relation between these modes and the original
node fluxes can be expressed concisely by Θ= R ⋅Φ, where
Θ ¼ ðΘ1; ¼ ;ΘNJ ; ΣÞT , Φ ¼ ðΦ0; ¼ ;ΦNJ ÞT , and R is the NJ+ 1 × NJ+ 1
matrix

R ¼

1 �1 0 � � � � � � � � � 0

0 1 �1 0 � � � � � � 0

0 0 1 �1 0 � � � 0

..

. ..
. . .

. . .
. . .

. . .
. ..

.

0 � � � � � � 0 1 �1 0

0 � � � � � � � � � 0 1 �1

1 1 1 � � � � � � 1 1

2666666666664

3777777777775
: (9)

Under this change of basis, Eq. (8) becomes

LðΘ; _ΘÞ ¼ _Θ
T � CΘ

2 � _ΘþPNJ

i¼1
EJi cosðΘi=φ0Þ

þ EJb cos
PNJ

i¼1
Θi þ Φext

� �
=φ0

� �
;

(10)

where CΘ ¼ ðR�1ÞT � CΦ � R�1 is defined in terms of the capacitance matrix
½CΦ�ij ¼ ∂2LðΦ; _ΦÞ=∂ _Φi∂ _Φj , for i, j∈ [0, NJ+ 1]. Note that the Σ mode does
not enter in the potential energy.
After a Legendre transformation, we arrive at the circuit Hamiltonian

H ¼ qTΘ � C�1
Θ

2 � qΘ �PNJ

i¼1
EJi cos θi

� EJb cos
PNJ

i¼1
θi þ φext

� �
;

(11)

where qΘ � ∂LðΘ; _ΘÞ=∂ _Θ ¼ CΘ � _Θ is a vector of conjugate charge
operators, θi=Θi/φ0 are phase operators and φext=Φext/φ0. In the
presence of disorder in the circuit capacitances, the σ= Σ/φ0 mode
couples slightly to the θi modes via the respective conjugate charge
operators. Here, we neglect this capacitive coupling under the assumption
of small circuit-element disorder and a large-frequency σ mode. The
inverse capacitance matrix can thus be truncated to include only the θi
modes, reducing Eq. (11) to a Hamiltonian of NJ interacting degrees of

Fig. 4 Coherence time of a 40-junction superinductance fluxonium qubit. a Energy spectrum according to DMRG and single-mode
estimations as a function of Φext. The black dotted line corresponds to the plasma frequency of the array junctions. b Pure-dephasing
coherence times for flux and charge (CQPS) noise as obtained from DMRG. Parameters: CJb ¼ 7:5 fF, EJb=h ¼ 8:9 GHz, z= 0.09, ωp/2π= 12.5,
and C0= 0, extracted from ref. 9. The 1/f flux-noise amplitude is taken to be AΦ= 1.2 μΦ0, which is a conservative value46.
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freedom. Note that the resulting pairwise θi–θj capacitive coupling has all-
to-all connectivity and exhibits no particular structure in the θi basis.

Accounting for charge dispersion. To model charge dispersion, we assume
that each of the NJ+ 1 circuit islands is coupled to a local fictitious voltage
source Vi for i∈ [0, NJ]. The associated terms in the Lagrangian can
generically be written as

PNJ
i¼0ðCgi=2Þð _Φi � ViÞ2, where Cgi is a gate

capacitance for the ith circuit node. Equivalently, this can be expressed as

LgðΦ; _ΦÞ ¼ � _Φ
T � Cg � V; (12)

where Cg ¼ diagðCg0 ; Cg1 ; ¼ ;CgNJþ1
Þ and V ¼ ðV0; V1; ¼ ; VNJþ1ÞT . In

addition to Eq. (12), the capacitance matrix of the circuit is modified to
account for the gate capacitances as CΦ ! eCΦ ¼ CΦ þ Cg.
Defining dΦ= Cg ⋅ V, the conjugate charge operators are given by

qΘ ¼ eCΘ � _Θ� dΘ; (13)

where eCΘ ¼ ðR�1ÞT � eCΦ � R�1 and dΘ ¼ ðR�1ÞT � dΦ . The circuit Hamilto-
nian then takes the form

H ¼ ðqΘ þ dΘÞT �eC�1

Θ

2 � ðqΘ þ dΘÞ

� PNJ

i¼1
EJi cos θi � EJb cos

PNJ

i¼1
θi þ Φext

φ0

� �
:

(14)

Omitting the σ mode and irrelevant constants, the above expression
simplifies to

H ¼ PNJ

i¼1

½eC�1

Θ �ii
2 ðqi � qgi Þ

2 � EJi cos θi

� �
þPNJ

j
½eC�1

Θ �ijðqi � qgi Þðqj � qgj Þ

� EJb cos
PNJ

i¼1
θi þ φext

� �
;

(15)

where qgi ¼ ½eC�1
Θ � dΘ�i=2½eC�1

Θ �ii for i∈ [1, NJ] are effective offset charges in
the θi basis and qi ¼ ½qΘ�i . This Hamiltonian is equivalent to Eq. (3). Each of
the bracketed terms in Eq. (15) define a site Hamiltonian (H0i for the ith
array junction), while the remaining terms lead to linear and nonlinear all-
to-all interactions between the sites. In the main text, we have used the
Cooper-pair-number operators ni= qi/2e and the offset-charge
ngi ¼ qgi=2e, instead of qi and qgi , respectively.

Effective model for the fluxonium qubit
We now derive an effective single-mode Hamiltonian for the fluxonium
qubit that captures all circuit details. Because it is simple yet accurate, this
model is used in the main text to assert the validity of the DMRG
simulations in appropriate parameter ranges.
To obtain this effective model, we first consider a change of coordinates

in which adiabatically eliminating the circuit modes other than the
superinductance mode ϕ ¼PNJ

i¼1 θi is simple. To find this appropriate
change of coordinates, we reverse engineer the following Ansatz defining
an additional change of basis

Rð1Þ ¼

1�PNJ�1
k¼1 að1Þk 1þ að1Þ1 � � � 1þ að1ÞNJ�1 0

�1 1 0 � � � 0

..

.
0 . .

. . .
. ..

.

�1 ..
. . .

.
1 0

0 0 0 0 1

266666664

377777775
; (16)

where the constants fað1Þk g are defined by

að1Þk ¼
PNJ�1

i;j¼0 ðNJ½CΘ�ikδjk � ½CΘ�ijÞPNJ�1
i;j¼0 ½CΘ�ij

; (17)

for k∈ [1, NJ− 1]. Note that Eq. (16) acts as identity in the subspace of the
σmode and none of the σ-mode components of the capacitance matrix CΘ
are included in Eq. (17). The role of R(1) is to capacitively decouple a
superinductance-like mode of the form

ϕð1Þ ¼ ϕþ
XNJ�1

k¼1

að1Þk ðθk � θ1Þ; (18)

from all other circuit modes, while leaving the σ mode invariant. Indeed,

the capacitance matrix now reads

Cð1Þ
X ¼ ½ðRð1ÞÞ�1�T � Cð0Þ

X � ðRð1ÞÞ�1
; (19)

where Cð0Þ
X ¼ CΘ is block diagonal. Importantly, this transformation works

in the presence of circuit-element disorder, in which case the block-
diagonal form of Cð1Þ

X is preserved. Only spurious couplings to the σ mode
are not purposely eliminated, as these will be neglected later on. The first
block has dimension 1 × 1 and corresponds to the ϕ(1) mode; the second
block has dimension (NJ− 1) × (NJ− 1) and involves all circuit modes
except ϕ(1) and σ; the last 1 × 1 block corresponds to the σ mode. By
design, the first and second blocks of Eq. (19) are exactly decoupled from
each other, even in the presence of circuit-element disorder. In this case
the first two blocks can be weakly coupled to the third block. Because the
σ mode has a very high frequency for standard fluxonium circuit
parameters, we neglect this coupling.
While the transformation Eq. (16) isolates the most relevant mode of the

circuit, we iterate recursively this procedure to decouple all remaining
circuit modes in the capacitive interaction. Doing this will allow us to trace
out such degrees of freedom later on. We proceed by defining an
additional set of rotation matrices {R(n)}, for n∈ [2, NJ− 1], with the general
form

RðnÞ ¼

1 0 0 � � � � � � � � � � � � � � � � � � 0

0 1 0 � � � � � � � � � � � � � � � � � � 0

..

. . .
. . .

. . .
. � � � � � � � � � � � � � � � 0

..

. ..
.

0 1 0 � � � � � � � � � � � � 0

..

. ..
. ..

.
0 1�PNJ�1

k¼n aðnÞk 1þ aðnÞn 1þ aðnÞnþ1 � � � 1þ aðnÞNJ�1 0

..

. ..
. ..

. ..
. �1 1 0 � � � 0 ..

.

..

. ..
. ..

. ..
. �1 0 1 0 0 ..

.

..

. ..
. ..

. ..
. ..

. ..
. . .

. . .
. . .

. ..
.

..

. ..
. ..

. ..
. �1 0 � � � 0 1 0

0 0 0 0 0 � � � � � � � � � 0 1

26666666666666666666666664

37777777777777777777777775

:

(20)

Similarly to R(1), the matrix R(n) is composed by a n × n identity block for the
modes labeled by k < n; a (NJ− n+ 1) × (NJ− n+ 1) block for modes
labeled by k∈ [n, NJ− 1]; and a 1 × 1 block for the σ mode. The coefficients
faðnÞk g are defined as

aðnÞk ¼
PNJ�1

i;j¼n fðNJ � 1þ nÞ½Cðn�1Þ
X �ikδjk � ½Cðn�1Þ

X �ijgPNJ�1
i;j¼n ½Cðn�1Þ

X �ij
; (21)

which is a generalization of Eq. (17).
The transformations Rðn <NJ�1Þ are designed to each decouple a single

mode, while RðNJ�1Þ decouples the last two modes n= NJ− 1 and n= NJ.
Therefore, these NJ− 1 successive transformations exactly diagonalize the
upper NJ × NJ block of the capacitance matrix CΘ that does not include the
σmode. We stress that these transformations work even in the presence of
disorder in the capacitance matrix, eliminating all but the coupling to the σ
mode. Indeed, it can be seen that these transformations recursively block
diagonalize any capacitance matrix, where the coefficients faðnÞk g should
be determined for each case. This procedure is also a key difference
between our strategy and previous approaches to finding multimode
Hamiltonians, such as those in refs. 37,38. In these works, the Hamiltonian of
the fluxonium circuit is expanded in a predefined analytical basis of so-
called difference modes. This basis is then used to analyze the effects of
circuit-element disorder and multimode interactions by performing a
series expansion of both the kinetic and potential energy parts of the
Hamiltonian. In our case, we find a basis that, while accounting for disorder
in the capacitance matrix of the circuit, diagonalizes the kinetic energy part
of the Hamiltonian (with exception of the σ-mode components). The
upside of our approach is that following the basis transformation, all
multimode interactions are moved to the potential energy, making it
relatively easier to eliminate high-frequency modes and to obtain a single-
mode approximation. A downside is that our basis transformation is not
analytical and depends on the parameters of the circuit. In contrast to
former analytical approaches37,38, our theory is thus semi-analytical.
Following this change of basis, we invert these transformations to arrive

at

θi ¼ ϕð1Þ

NJ
þ
XNJ

n¼2

vniϕ
ðnÞ; (22)
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where the coefficient vni quantifies how much the ϕ(n) mode couples to the
ith Josephson junction of the array. The differences with the theory in
refs. 37,38 are more noticeable from this expression, where the modes {ϕ(n)}
and the coefficients {vni} in terms of which the single-junction operator θi is
written depend on the details of the circuit. Using Eq. (22) and the
definition ϕ ¼PNJ

i¼1 θi , we moreover have

ϕ ¼ ϕð1Þ þ
XNJ

n¼2

Vnϕ
ðnÞ; (23)

where Vn ¼
PNJ

i¼1 vni . If C0= 0, it follows that Vn ¼ 0 for n∈ [2, NJ], and
ϕ(1)≡ ϕ is the only mode that couples to the black-sheep junction. In other
case, all modes are weakly coupled to the black-sheep junction, but this
undesired coupling can be easily taken into account as we show in the
following.
The potential energy of Eq. (11) is now rewritten using the relations Eqs.

(22) and (23). In order to trace out the unwanted degrees of freedom, we
write the operator ϕ(n) for n > 1 in terms of the harmonic oscillator ladder
operators as ϕðnÞ ¼ ffiffiffiffiffiffiffi

πzn
p ðan þ aynÞ. Here, zn ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ln=Cn

p
=RQ is the effective

reduced impedance of the nth mode, given in terms of the effective
inductance Ln and capacitance Cn. While Cn can be readout directly from
the block-diagonal capacitance matrix, the reduced inductance is
determined by the product L�1

n ¼ XT
n � ðM�1ÞT � L�1 �M�1 � Xn, where Xn

is the mode vector associated to ϕ(n) and M ¼ ðQNJ�1
n¼1 RðnÞÞT � R is a matrix

that reverses the multiple changes of basis. The trace can then be
performed straightforwardly by noticing that

eixϕ
ðnÞ ¼ e�πx2zn=2eix

ffiffiffiffiffi
πzn

p
ayn eix

ffiffiffiffiffi
πzn

p
an ; (24)

and thus trn½eixϕðnÞ
ρ� ¼ e�πx2zn=2 where we assume that the nth mode

remains in its noninteracting vacuum state. Following to Eqs. (22) and (23),
we approximate

cos θi ’ trn> 1½cos θi �
’ xi cos½ϕð1Þ=NJ�;

(25)

where xi ¼
QNJ

n¼2 e
�πv2ni zn=2, and

cosðϕþ φextÞ ’ trn> 1½cosðϕþ φextÞ�
’ xb cos½ϕð1Þ þ φext�;

(26)

with xb ¼QNJ
n¼2 e

�πV2
nzn=2. In Eqs. (25) and (26), trn> 1 indicates a trace

operation over all circuit modes ϕ(n), except for n= 1. The trace operation
introduces important corrections to the circuit Hamiltonian that vary
exponentially with the effective impedance {zn} of the circuit modes and
are a consequence of the full-cosine structure of the array junctions’
potential. To the best of our knowledge, these corrections are not reported
elsewhere. By renaming ϕð1Þ ! ϕ0 , we arrive at the effective single-mode
Hamiltonian

H ¼ 4ECn
02 �PNJ

i¼1
xiEJi cosðϕ0=NJÞ

� xbEJb cosðϕ0 þ φextÞ;
(27)

where EC is taken to be the charging energy EC ¼ e2=2½Cð1Þ
X �00 of the ϕ0

mode and ½ϕ0; n0� ¼ i. Note that Eq. (27) is equivalent to Eq. (4) of the main
text. Up to corrections of order N�3

J , Eq. (27) reduces to

H ¼ 4ECn
02 þ EL

2
ϕ

02 � EJ cosðϕ0 þ φextÞ; (28)

where EL ¼
PNJ

i¼1 xiEJi=N
2
J and EJ ¼ xbEJb are the effective inductive and

Josephson junction energies. Equation (28) corresponds to the original
fluxonium-qubit model of ref. 5. Here, however, all energies entering
Eq. (28) are specified by a precise semi-analytical function of the circuit
parameters.
Finally, we note that, while a single-mode theory is enough for the

purposes of this work, the multimode properties of the fluxonium qubit
could, in principle, be investigated using our theory by undoing the trace
operation. However, these properties have been extensively studied before
using other methods37,38.

Multilevel pure-dephasing master equation for flux noise
In this section, we derive a master equation describing pure dephasing due
to 1/f flux noise in the fluxonium qubit. Assuming weak system–bath
coupling, the master equation is obtained from the standard

integrodifferential equation

∂tρðtÞ ¼ � 1

_2

Z t

0
dτ trB½HintðtÞ; ½Hintðt � τÞ; ρðt � τÞ � ρB��; (29)

where ρ(t)⊗ ρB is the system–bath density matrix, assumed to be
separable at all times58. Assuming that the bath correlation functions are
sharp around τ= 0, ρ(t− τ) in Eq. (29) can be approximated by ρ(t) with
negligible error. This standard approximation conveniently leads to a
Markovian master equation and allows us to extend the integral in Eq. (29)
to infinitely negative times. This last step is however not performed here in
order to capture the Gaussian decay of the coherences of the density
matrix in the presence of 1/f noise.
The system–bath interaction Hamiltonian can be obtained from the

fluxonium circuit Hamiltonian assuming that Φext ¼ Φ0
ext þ δΦ, where Φ0

ext
is the applied flux bias and δΦ represents fluctuations. To first order in δΦ,
the interaction Hamiltonian can be written as59

Hint ¼ ∂ΦextHjΦ0
ext
´ δΦ; (30)

where H is the Hamiltonian of the fluxonium qubit and the derivative with
respect to the external flux is evaluated at Φext ¼ Φ0

ext. Expanding Eq. (29)
in the eigenbasis f ψkj ig of the full circuit, we arrive at

∂tρ ¼ � 1
_2
P

k; k0

l; l0

R t
0dτ ∂ΦextHjkk

0
Φ0
ext
∂ΦextHjll

0
Φ0
ext
e�iðωll0 þωkk0 Þtþiωkk0 τ

´ trB½ ψlj i ψl0h jδΦðtÞ; ½ ψkj i ψk0h jδΦðt � τÞ; ρ� ρB��;
(31)

where we have introduced the matrix elements
∂ΦextHjkk

0
Φ0
ext

¼ hψk j∂ΦextHjΦ0
ext
jψk0 i, and omitted the explicit time dependence

of ρ(t)→ ρ.
Tracing out the bath degrees of freedom leads to the so-called

Bloch–Redfield equation58. This equation has, however, a number of
disadvantages that can potentially lead to unphysical dissipation results.
Thus, for practical purposes, we use the rotating-wave approximation
discarding terms for which ωll0 þ ωkk0≠0. As shown below, this approxima-
tion reduces Eq. (31) to a Lindblad-form master equation. Assuming that
the qubit has a set of nondegenerate energy transitions, this approxima-
tion is equivalent to the conditions l ¼ k0 and l0 ¼ k for ωkk0≠0, and l ¼ l0
for ωkk0 ¼ 0. In this way, Eq. (31) simplifies to

∂tρ ¼ � 1
_2
P
k0>k

R1
0 dτ ∂ΦextHjkk

0
Φ0
ext
∂ΦextHjk

0k
Φ0
ext
eiωkk0 τ trB½jψk0 ihψk jδΦðtÞ; ½ ψkj i ψk0h jδΦðt � τÞ; ρ� ρB��

� 1
_2
P
k0>k

R1
0 dτ ∂ΦextHjk

0k
Φ0
ext
∂ΦextHjkk

0
Φ0
ext
e�iωkk0 τ trB½ ψkj i ψk0h jδΦðtÞ; ½ ψk0j i ψkh jδΦðt � τÞ; ρ� ρB��

� 1
_2
P
k;l

R1
0 dτ ∂ΦextHjkkΦ0

ext
∂ΦextHjllΦ0

ext
trB½ ψlj i ψlh jδΦðtÞ; ½ ψkj i ψkh jδΦðt � τÞ; ρ� ρB��:

(32)

We now assume that δΦ(t) can be modeled as a (real) stationary random
process. This assumption is motivated by physical models of bistable two-
level system defects that are known to produce noise of type 1/f
(refs. 60,61). The pure-dephasing master equation is then derived from the
third line of Eq. (32), i.e.,

∂tρ ¼ � 1
_2
P
k;l

R1
0 dτ ∂ΦextHjkkΦ0

ext
∂ΦextHjllΦ0

ext

´ trB½ ψlj i ψlh jδΦðtÞ; ½ ψkj i ψkh jδΦðt � τÞ; ρ� ρB��:
(33)

To obtain a workable expression, we introduce the noise spectral density
S1=fΦ ½ω� for 1/f flux noise by the definition3

trB½ρBδΦðtÞδΦðt0Þ� ¼
1
2π

Z 1

�1
dω S1=fΦ ½ω�e�iωðt�t0Þ; (34)

and assume the general form

S1=fΦ ðωÞ ¼ A2Φ
jωj=2π ; (35)

where AΦ is the 1/f flux-noise amplitude, typically reported to be in the
range 1–10 μΦ0 (ref. 46). It must be stressed that Eq. (35) is an
approximation to the spectral densities measured in the laboratory, which
can scale as ∣ω∣−μ with μ∈ [0.6, 1.3]46,62.
We proceed further by exploiting a simple mathematical fact. Using Eqs.

(34) and (35), we find thatZ t

0
dτ trB½ρBδΦðtÞδΦðt0Þ� ¼ lim ωir!0 � 2A2Φ

Z t

0
dτ CiðωirτÞ; (36)

where CiðyÞ ¼ � R1y dx x�1 cos x is the cosine integral. Here, ωir is an
infrared frequency cutoff in the order of 2π × 1 Hz, introduced to regularize
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the cosine integral and motivated by physical reasons63. Since the time t in
which we are interested in calculating the time evolution of the density
matrix is small compared to the time scale set by ω�1

ir , we make use of the
series expansion

CiðwÞ ¼ γ þ log ðyÞ þ
X1
k¼1

ð�y2Þk
2kð2kÞ! ; (37)

where γ ≃ 0.58 is the Euler’s constant to approximateZ t

0
dτ trB½ρBδΦðtÞδΦðt0Þ� ’ 2A2Φ t ½ð1� γÞ � log ðωirtÞ�: (38)

Expanding the double commutators in Eq. (33) and making use of
Eq. (38), we arrive at a pure-dephasing master equation of the form

∂tρ ¼ P
k
Γkkφ D½σkk ; σkk � ρ

þ P
k
Γklφ D½σkk ; σll � þ D½σll ; σkk �ð Þρ; (39)

where Γklφ are time-dependent pure-dephasing rates given by

Γklφ ¼ ∂ΦextHjkkΦ0
ext
∂ΦextHjllΦ0

ext
´ 4A2Φ t ½ð1� γÞ � log ðωirtÞ�=_2; (40)

σkl ¼ ψkj i ψlh j, and D½x; y� ρ ¼ xρyy � fyyx; ρg=2 is a generalized dissipator
superoperator. Equivalently, Eq. (39) can be recast in the more familiar
form

∂tρ ¼ P
k
Γkkφ D½σkk � ρ

þ P
k
Γklφ D½σkk þ σll � � D½σkk � � D½σll �ð Þρ; (41)

whereD½x� ρ ¼ xρxy � fxyx; ρg=2 is the standard dissipator superoperator.
By projecting Eq. (41), one has

hψk j∂tρjψli ¼ � 1
2

Γkkφ þ Γllφ � 2Γklφ
h i

hψk jρjψli; (42)

where

Γkkφ þ Γllφ � 2Γklφ
h i

/ ½∂Φext ð_ωklÞjΦ0
ext
�2: (43)

Thus, we obtain that the decay of the coherences of the density matrix is
proportional to the flux dispersion of the k↔ l qubit transition, as expected
for first-order dephasing processes. Since second-order corrections to the
pure-dephasing rate at sweet spots are of order A4Φ , most devices are
simply T1-limited at such operating points. Now, in order to produce an
estimate of the pure-dephasing coherence time due to 1/f flux noise, we
integrate Eq. (42), arriving at the expression

ρklðtÞ ¼ ρklð0Þ exp �A2Φð∂Φextωkl jΦ0
ext
Þ2 t2

3
2
� γ

� �
� log ðωirtÞ

� �� �
: (44)

We note that expressions similar to Eq. (44) have been previously reported
in the literature46,63. However, these expressions do not include the
correction ð32 � γÞ within brackets in Eq. (44). Finally, we define the
coherence time Tφ as the solution of the implicit equation ρ01(Tφ)/ρ01(0)=
1/e. The solution of this equation has been used in Fig. 4 to produce an
estimation of the pure-dephasing coherence time due to flux noise.
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