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Quantum-mechanical effects at the macroscopic level were first explored in Josephson-junction-
based superconducting circuits in the 1980s. In recent decades, the emergence of quantum
information science has intensified research toward using these circuits as qubits in quantum
information processors. The realization that superconducting qubits can be made to strongly and
controllably interact with microwave photons, the quantized electromagnetic fields stored in
superconducting circuits, led to the creation of the field of circuit quantum electrodynamics
(QED), the topic of this review. While atomic cavity QED inspired many of the early developments
of circuit QED, the latter has now become an independent and thriving field of research in its own
right. Circuit QED allows the study and control of light-matter interaction at the quantum level in
unprecedented detail. It also plays an essential role in all current approaches to gate-based digital
quantum information processing with superconducting circuits. In addition, circuit QED provides a
framework for the study of hybrid quantum systems, such as quantum dots, magnons, Rydberg
atoms, surface acoustic waves, and mechanical systems interacting with microwave photons.
Here the coherent coupling of superconducting qubits to microwave photons in high-quality
oscillators focusing on the physics of the Jaynes-Cummings model, its dispersive limit, and the
different regimes of light-matter interaction in this system are reviewed. Also discussed is coupling of
superconducting circuits to their environment, which is necessary for coherent control and
measurements in circuit QED, but which also invariably leads to decoherence. Dispersive qubit
readout, a central ingredient in almost all circuit QED experiments, is also described. Following an
introduction to these fundamental concepts that are at the heart of circuit QED, important use cases of
these ideas in quantum information processing and in quantum optics are discussed. Circuit QED
realizes a broad set of concepts that open up new possibilities for the study of quantum physics at the
macro scale with superconducting circuits and applications to quantum information science in the
widest sense.
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I. INTRODUCTION

Circuit quantum electrodynamics (QED) is the study of the
interaction of nonlinear superconducting circuits, acting as
artificial atoms or as qubits for quantum information process-
ing, with quantized electromagnetic fields in the microwave-
frequency domain. Inspired by cavity QED (Kimble, 1998;
Haroche and Raimond, 2006), a field of research originating
from atomic physics and quantum optics, circuit QED has led
to advances in the fundamental study of light-matter inter-
action, in the development of quantum information processing
technology (Clarke andWilhelm, 2008; Wendin, 2017; Krantz
et al., 2019; Blais, Girvin, and Oliver, 2020; Kjaergaard,
Schwartz et al., 2020), and in the exploration of novel hybrid
quantum systems (Xiang et al., 2013; Clerk et al., 2020).
First steps toward exploring the quantum physics of super-

conducting circuits were made in the mid 1980s. At that time,
the question arose as to whether quantum phenomena, such as
quantum tunneling or energy level quantization, could be
observed in macroscopic systems of any kind (Leggett, 1980,
1984b). One example of such a macroscopic system is the
Josephson tunnel junction (Josephson, 1962; Tinkham, 2004)
formed by a thin insulating barrier at the interface between
two superconductors and in which macroscopic quantities
such as the current flowing through the junction or the voltage
developed across it are governed by the dynamics of the
gauge-invariant phase difference of the Cooper pair conden-
sate across the junction. The first experimental evidence for
quantum effects in these circuits (Clarke et al., 1988) was the
observation of quantum tunneling of the phase degree of
freedom of a Josephson junction (Devoret, Martinis, and
Clarke, 1985), rapidly followed by the measurement of
quantized energy levels of the same degree of freedom
(Martinis, Devoret, and Clarke, 1985).
While the possibility of observation of coherent quantum

phenomena in Josephson-junction-based circuits, such as
coherent oscillations between two quantum states of the
junction and the preparation of quantum superpositions,
was already envisaged in the 1980s (Tesche, 1987), the
prospect of realizing superconducting qubits for quantum
computation revived interest in the pursuit of this goal (Bocko,
Herr, and Feldman, 1997; Shnirman, Schön, and Hermon,
1997; Bouchiat et al., 1998; Makhlin, Schön, and Shnirman,
1999, 2001). In a groundbreaking experiment, time-resolved
coherent oscillations with a superconducting qubit were
observed in 1999 (Nakamura, Pashkin, and Tsai, 1999).
Further progress resulted in the observation of coherent
oscillations in coupled superconducting qubits (Pashkin et al.,
2003; Yamamoto et al., 2003) and in significant improve-
ments of the coherence times of these devices by exploiting
symmetries in the Hamiltonian underlying the description of
the circuits (Vion et al., 2002; Clarke and Wilhelm, 2008;
Kjaergaard, Schwartz et al., 2020).
In parallel to these advances, in atomic physics and

quantum optics cavity QED developed into an excellent
setting for the study of the coherent interactions between
individual atoms and quantum radiation fields (Rempe,
Walther, and Klein, 1987; Haroche and Kleppner, 1989;
Thompson, Rempe, and Kimble, 1992; Brune et al., 1996),
and its application to quantum communication (Kimble, 2008)
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and quantum computation (Kimble, 1998; Haroche and
Raimond, 2006). In the early 2000s, the concept of realizing
the physics of cavity QED with superconducting circuits
emerged with proposals to coherently couple superconducting
qubits to microwave photons in open 3D cavities (Al-Saidi
and Stroud, 2001; Yang, Chu, and Han, 2003; You and Nori,
2003), in discrete LC oscillators (Buisson and Hekking, 2001;
Makhlin, Schön, and Shnirman, 2001), and in large Josephson
junctions (Marquardt and Bruder, 2001; Blais, van den Brink,
and Zagoskin, 2003; Plastina and Falci, 2003). The prospect
of realizing strong coupling of superconducting qubits to
photons stored in high-quality coplanar waveguide resonators,
together with suggestions to use this approach to protect
qubits from decoherence, to read out their state, and to couple
them to each other in a quantum computer architecture
advanced the study of cavity QED with superconducting
circuits (Blais et al., 2004). The possibility of exploring both
the foundations of light-matter interaction and advancing
quantum information processing technology with supercon-
ducting circuits provided motivation for the rapid advance in
experimental research, culminating in the first experimental
realization of a circuit QED system achieving the strong-
coupling regime of light-matter interaction where the coupling
overwhelms damping (Chiorescu et al., 2004; Wallraff
et al., 2004).
Circuit QED combines the theoretical and experimental

tools of atomic physics, quantum optics, and the physics of
mesoscopic superconducting circuits not only to further
explore the physics of cavity QED and quantum optics in
novel parameter regimes but also to allow the realization of
engineered quantum devices with technological applications.
Indeed, after 15 years of development, circuit QED is now a
leading architecture for quantum computation. Simple quan-
tum algorithms have been implemented (DiCarlo et al., 2009;
Lucero et al., 2012; Kandala et al., 2017; Zheng et al., 2017;
Arute et al., 2020b), cloud-based devices are accessible,
demonstrations of quantum-error correction have approached
or reached the so-called break-even point (Ofek et al., 2016;
Hu et al., 2019), and devices with several tens of qubits have
been operated with claims of quantum supremacy (Arute
et al., 2019).
More generally, circuit QED is opening new research

directions. These include the development of quantum-limited
amplifiers (Clerk et al., 2010; Roy and Devoret, 2016) and
single-microwave photon detectors (Besse et al., 2018; Kono
et al., 2018; Lescanne, Deléglise et al., 2020), with applica-
tions ranging from quantum information processing to the
search for dark matter axions (Lamoreaux et al., 2013; Zheng
et al., 2016; Dixit et al., 2020; Backes et al., 2021), to hybrid
quantum systems (Clerk et al., 2020) where different physical
systems such as nitrogen-vacancy (NV) centers (Kubo et al.,
2010), mechanical oscillators (Aspelmeyer, Kippenberg, and
Marquardt, 2014), semiconducting quantum dots (Burkard
et al., 2020), and collective spin excitations in ferromagnetic
crystals (Lachance-Quirion et al., 2019) are interfaced with
superconducting quantum circuits.
In this review, we start in Sec. II by introducing the two

main actors of circuit QED: high-quality superconducting
oscillators and superconducting artificial atoms. The latter are
also known as superconducting qubits in the context of

quantum information processing. There are many types of
superconducting qubits and we choose to focus on the
transmon (Koch et al., 2007). This choice is made not only
because the transmon is the most widely used qubit but also
because this allows us to present the main ideas of circuit QED
without having to delve into the rich physics of the different
types of superconducting qubits. Much of the material
presented in this review applies to other qubits without
significant modification. Section III is devoted to light-matter
coupling in circuit QED, including a discussion of the Jaynes-
Cummings model and its dispersive limit. Different methods
to obtain approximate effective Hamiltonians valid in the
dispersive regime are presented. Section IV addresses the
coupling of superconducting quantum circuits to their electro-
magnetic environment, considering both dissipation and
coherent control. In Sec. V, we turn to measurements in
circuit QED, with an emphasis on dispersive qubit readout.
Building on this discussion, Sec. VI presents the different
regimes of light-matter coupling that are reached in circuit
QED and their experimental signatures. In the last sections, we
turn to two applications of circuit QED: quantum computing
in Sec. VII and quantum optics in Sec. VIII.
Our objective in this review is to give the reader a solid

background on the foundations of circuit QED rather than to
showcase the latest developments in the field. We hope that
this introductory text will allow one to understand the recent
advances of the field and to become an active participant in its
development.

II. SUPERCONDUCTING QUANTUM CIRCUITS

Circuit components with spatial dimensions that are small
compared to the relevant wavelength can be treated as lumped
elements (Devoret, 1997), and we start this section with a
particularly simple lumped-element circuit: the quantum LC
oscillator. We subsequently discuss the closely related two-
and three-dimensional microwave resonators that play a
central role in circuit QED experiments and that can be
thought of as distributed versions of the LC oscillator with a
set of harmonic frequencies. Finally, we move on to nonlinear
quantum circuits with Josephson junctions as the source of
nonlinearity and discuss how such circuits can behave as
artificial atoms with addressable energy levels. We put special
emphasis on the transmon qubit (Koch et al., 2007), which is
the most widely used artificial atom design in current circuit
QED experiments.

A. The quantum LC resonator

An LC oscillator is characterized by its inductance L and
capacitance C or, equivalently, by its angular frequency ωr ¼
1=

ffiffiffiffiffiffiffi
LC

p
and characteristic impedance Zr ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
. The total

energy of this oscillator is given by the sum of its charging and
inductive energy

HLC ¼ Q2

2C
þΦ2

2L
; ð1Þ

where Q is the charge on the capacitor and Φ is the flux
threading the inductor; see Fig. 1. From charge conservation,
charge is related to current I by QðtÞ ¼ R

t
t0
dt0Iðt0Þ, and from

Blais, Grimsmo, Girvin, and Wallraff: Circuit quantum electrodynamics

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025005-3



Faraday’s induction law flux is related to voltage by
ΦðtÞ ¼ R

t
t0
dt0Vðt0Þ, where we have assumed that the charge

and flux are zero at an initial time t0, often taken to be in the
distant past (Vool and Devoret, 2017).
It is instructive to rewrite HLC as

HLC ¼ Q2

2C
þ 1

2
Cω2

rΦ2: ð2Þ

This form emphasizes the analogy of the LC oscillator with a
mechanical oscillator of coordinate Φ, conjugate momentum
Q, and mass C. With this analogy in mind, quantization
proceeds in a well-known manner: The charge and flux
variables are promoted to noncommuting observables satisfy-
ing the commutation relation

½Φ̂; Q̂� ¼ iℏ: ð3Þ
It is useful to introduce the standard annihilation â and
creation â† operators of the harmonic oscillator. With the
previously mentioned mechanical analogy in mind, we choose
these operators as

Φ̂ ¼ Φzpfðâ† þ âÞ; Q̂ ¼ iQzpfðâ† − âÞ; ð4Þ

withΦzpf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2ωrC

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏZr=2

p
andQzpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωrC=2

p ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2Zr

p
the characteristic magnitude of the zero-point

fluctuations of the flux and the charge, respectively. With
these definitions, the previous Hamiltonian takes the usual
form

ĤLC ¼ ℏωrðâ†âþ 1=2Þ; ð5Þ
with eigenstates that satisfy â†âjni ¼ njni for n ¼ 0; 1; 2;….
In the rest of this review, we follow the convention of dropping
from the Hamiltonian the factor of 1=2 corresponding to zero-
point energy. The action of â† ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=2ÞℏZr

p ðΦ̂ − iZrQ̂Þ is to
create a quantized excitation of the flux and charge degrees of

freedom of the oscillator or, equivalently, of the magnetic and
electric fields. In other words, â† creates a photon of frequency
ωr stored in the circuit.
While formally correct, one can wonder if this quantization

procedure is relevant in practice. Is it possible to operate LC
oscillators in a regime where quantum effects are important?
For this to be the case, at least two conditions must be
satisfied. First, the oscillator should be sufficiently well
decoupled from uncontrolled degrees of freedom such that
its energy levels are considerably less broad than their
separation. In short, we require the oscillator’s quality factor
Q ¼ ωr=κ, with κ the oscillator linewidth or, equivalently, the
photon-loss rate, to be large. An approach to treat the
environment of a quantum system is described in Sec. IV.
Because losses are at the origin of level broadening, super-
conductors on low-loss dielectric substrates such as sapphire
or high-resistivity silicon wafers are ideal for reaching the
quantum regime. Care must also be taken to minimize the
effect of coupling to the external circuitry that is essential for
operating the oscillator. As discussed later, large quality
factors ranging from Q ∼ 103 to 108 can be obtained in the
laboratory (Frunzio et al., 2005; Bruno et al., 2015; Reagor
et al., 2016).
Given that your typical microwave oven has a quality factor

approaching 104 (Vollmer, 2004), it is not surprising that large
Q-factor oscillators can be realized in state-of-the-art labo-
ratories. The relation to kitchen appliances, however, stops
here with the second condition requiring the energy separation
ℏωr between adjacent eigenstates to be larger than thermal
energy kBT. Since 1 GHz × h=kB ∼ 50 mK, the condition
ℏωr ≫ kBT can be easily satisfied with microwave-frequency
circuits operated at ∼10 mK in a dilution refrigerator. These
circuits are therefore operated at temperatures far below the
critical temperature (∼1–10 K) of the superconducting films
from which they are made.
With these two requirements satisfied, an oscillator with a

frequency in the microwave range can be operated in the
quantum regime. This means that the circuit can be prepared
in its quantum-mechanical ground state jn ¼ 0i simply by
waiting for a time of the order of a few photon lifetimes
Tκ ¼ 1=κ. It is also crucial to note that the vacuum fluctua-
tions of the voltage are typically relatively large. For example,
taking reasonable values L ∼ 0.8 nH and C ∼ 0.4 pF,
corresponding to ωr=2π ∼ 8 GHz and Zr ∼ 50 Ω, the
ground state is characterized by vacuum fluctuations of the
voltage of variance as large as ΔV0 ¼ ½hV̂2i − hV̂i2�1=2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωr=2C

p
∼ 1 μV, with V̂ ¼ Q̂=C. As we make clear later,

this leads to large electric field fluctuations and therefore to
large electric-dipole interactions when coupling to an artifi-
cial atom.

B. 2D resonators

Quantum harmonic oscillators come in many shapes and
sizes, the LC oscillator being just one example. Other types of
harmonic oscillators that feature centrally in circuit QED are
microwave resonators where the electromagnetic field is
confined either in a planar, essentially two-dimensional
structure (2D resonators) or in a three-dimensional volume

FIG. 1. Left panel: harmonic potential vs flux of the LC circuit
with Φ0 ¼ h=2e the flux quantum. Right panel: response of the
oscillator to an external perturbation as a function of the detuning
δ of the perturbation from the oscillator frequency. Here
κ ¼ ωr=Q, with Q the oscillator’s quality factor, is the full width
at half maximum (FWHM) of the oscillator response. Equiv-
alently, 1=κ is the average lifetime of the single-photon state j1i
before it decays to j0i. Inset: lumped-element LC oscillator of
inductance L and capacitance C.
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(3D resonators). The boundary conditions imposed by the
geometry of these different resonators lead to a discretization
of the electromagnetic field into a set of modes with distinct
frequencies, where each mode can be thought of as an
independent harmonic oscillator. Conversely (especially for
the 2D case) one can think of these modes as nearly
dissipationless plasma modes of superconductors.
Early experiments in circuit QED were motivated by the

observation of large quality factors in coplanar waveguide
resonators in the context of experiments for radiation detectors
(Day et al., 2003) and by the understanding of the importance
of presenting a clean electromagnetic environment to the
qubits. Early circuit QED experiments were performed with
these 2D coplanar waveguide resonators (Wallraff et al.,
2004), which remains one of the most commonly used
architectures today.
A coplanar waveguide resonator consists of a coplanar

waveguide of finite length formed by a center conductor of
width w and thickness t, separated on both sides by a distance
s from a ground plane of the same thickness; see Fig. 2(a)
(Simons, 2001; Pozar, 2011). Both conductors are typically
deposited on a low-loss dielectric substrate of permittivity ε
and thickness much larger than the dimensions w, s, t. This
planar structure acts as a transmission line along which signals
are transmitted in a way analogous to a conventional coaxial
cable. As in a coaxial cable, the coplanar waveguide confines
the electromagnetic field to a small volume between its center
conductor and the ground; see Fig. 2(b). The dimensions of

the center conductor, the gaps, and the thickness of the
dielectric are chosen such that the field is concentrated
between the center conductor and ground, and radiation in
other directions is minimized. This structure supports a quasi-
TEM mode (Wen, 1969), with the electromagnetic field partly
in the dielectric substrate and in the vacuum or another
dielectric above the substrate, and with the largest concen-
tration in the gaps between the center conductor and the
ground planes. In practice, the coplanar waveguide can be
treated as an essentially dispersion-free, linear dielectric
medium. To minimize losses, superconducting metals such
as aluminum, niobium, and niobium titanium nitride (NbTiN)
are used in combination with dielectrics of low-loss tangent,
such as sapphire and high-resistivity silicon (Nersisyan et al.,
2019; McRae et al., 2020).
As with the lumped LC oscillator, the electromagnetic

properties of a coplanar waveguide resonator are described by
its characteristic impedance Zr ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=c0

p
and the speed of

light in the waveguide v0 ¼ 1=
ffiffiffiffiffiffiffiffi
l0c0

p
, where we have intro-

duced the capacitance to ground c0 and inductance l0 per unit
length (Simons, 2001). Typical values of these parameters are
Zr ∼ 50 Ω and v0 ∼ 1.3 × 108 m=s, or about a third of the
speed of light in vacuum (Göppl et al., 2008). For a given
substrate, the characteristic impedance can be adjusted by
varying the parameters w, s, and t of the waveguide (Simons,
2001). In the coplanar waveguide geometry, transmission lines
of constant impedance Zr can therefore be realized for
different center conductor width w by keeping the ratio of
w=s close to a constant (Simons, 2001). This allows the
experimenter to fabricate a device with large w at the edges for
convenient interfacing, and small w away from the edges to
minimize the mode volume or simply for miniaturization.
A resonator is formed from a coplanar waveguide by

imposing boundary conditions of either zero current or zero
voltage at the two end points separated by a distance d. Zero
current can be achieved by microfabricating a gap in the center
conductor (open boundary), while zero voltage can be
achieved by grounding an end point (shorted boundary). A
resonator with open boundary conditions at both ends, as
illustrated in Fig. 2(a), has a fundamental frequency f0 ¼
v0=2d with harmonics at fm ¼ ðmþ 1Þf0, and is known as a
λ=2 resonator. On the other hand, λ=4 resonators with
fundamental frequency f0 ¼ v0=4d are obtained with one
open end and one grounded end. A typical example is a λ=2
resonator of length 1.0 cm and speed of light 1.3 × 108 m=s
corresponding to a fundamental frequency of 6.5 GHz.
This coplanar waveguide geometry is flexible and a large

range of frequencies can be achieved. In practice, however, the
useful frequency range is restricted from above by the
superconducting gap of the metal from which the resonator
is made (82 GHz for aluminum). Above this energy, losses
due to quasiparticles increase dramatically. Low-frequency
resonators can be made by using long, meandering coplanar
waveguides. Sundaresan et al. (2015) realized a resonator with
a length of 0.68 m and a fundamental frequency of
f0 ¼ 92 MHz. With this frequency corresponding to a tem-
perature of 4.4 mK, the low-frequency modes of such long
resonators are not in the vacuum state. Indeed, according to
the Bose-Einstein distribution, the thermal occupation of the

(b) (c)

(a)

FIG. 2. (a) Schematic layout of a λ=2 coplanar waveguide
resonator of length d, center conductor width w, and ground plane
separation s, together with its capacitively coupled input and
output ports. The cosine shape of the second mode function
(m ¼ 1) is illustrated with pink arrows. Also shown is the
equivalent lumped-element circuit model. Adapted from Blais
et al., 2004. (b) Cross-section cut of the coplanar waveguide
resonator showing the substrate (dark blue), the two ground
planes, and the center conductor (light blue) as well as schematic
representations of theE andB field distributions. (c) Transmission
vs frequency for an overcoupled resonator. The first three
resonances of frequencies fm ¼ ðmþ 1Þf0 are illustrated with
f0 ¼ v0=2d ∼ 10 GHz and linewidth κm=2π ¼ fm=Q.
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fundamental mode frequency at 10 mK is n̄κ ¼
1=ðehf0=kBT − 1Þ ∼ 1.8. Typical circuit QED experiments
instead work with resonators in the range of 5–15 GHz,
where microwave electronics is well developed.
As mentioned, entering the quantum regime for a given

mode m requires more than ℏωm ≫ kBT. It is also important
that the linewidth κm be small compared to the mode
frequency ωm. As for the LC oscillator, the linewidth can
be expressed in terms of the quality factor Qm of the resonator
mode as κm ¼ ωm=Qm. An expression for the linewidth in
terms of circuit parameters is given in Sec. IV. There are
multiple sources of losses and it is common to distinguish
between internal losses due to coupling to uncontrolled
degrees of freedom (dielectric and conductor losses at the
surfaces and interfaces, substrate dielectric losses, nonequili-
brium quasiparticles, vortices, two-level fluctuators, etc.)
and external losses due to coupling to the input and output
ports used to couple signals in and out of the resonator (Göppl
et al., 2008). In terms of these two contributions, the total
dissipation rate of modem is κm ¼ κext;m þ κint;m and the total,
or loaded, quality factor of the resonator is therefore QL;m ¼
ðQ−1

ext;m þQ−1
int;mÞ−1. It is always advantageous to maximize the

internal quality factor and much effort has been invested in
improving resonator fabrication such that values of Qint ∼ 105

are routinely achieved. A dominant source of internal losses in
superconducting resonators at low power is believed to be
two-level systems (TLSs) that reside in the bulk dielectric, in
the metal substrate, and in the metal-vacuum and substrate-
vacuum interfaces where the electric field is large (Sage et al.,
2011; Oliver and Welander, 2013; Wang et al., 2015). Internal
quality factors over 106 have been achieved by careful
fabrication minimizing the occurrence of TLSs and by etching
techniques to avoid substrate-vacuum interfaces in regions of
high electric fields (Vissers et al., 2010; Megrant et al., 2012;
Bruno et al., 2015; Calusine et al., 2018).
On the other hand, the external quality factor can be

adjusted via the coupling at the ends of the resonator to
input-output transmission lines. For the case of an open end,
this is a capacitive coupling. In coplanar waveguide resona-
tors, these input and output coupling capacitors are frequently
chosen either as a simple gap of a defined width in the center
conductor, as illustrated in Fig. 2(a), but they can also be
formed by interdigitated capacitors (Göppl et al., 2008). The
choice Qext ≪ Qint corresponding to an “overcoupled” reso-
nator is ideal for fast qubit measurement, which is discussed in
more detail in Sec. V. On the other hand, undercoupled
resonators (Qext ≫ Qint), where dissipation is limited only by
internal losses, which are kept as small as possible, can serve
as quantum memories to store microwave photons for long
times. Using different modes of the same resonator (Leek
et al., 2010) or combinations of resonators (Johnson et al.,
2010; Kirchmair et al., 2013), regimes of both high and low
external losses can be combined in the same circuit QED
device. A general approach for describing losses in quantum
systems is detailed in Sec. IV.
Finally, the magnitude of the vacuum fluctuations of the

electric field in coplanar waveguide resonators is related to the
mode volume. While the longitudinal dimension of the mode
is limited by the length of the resonator, which also sets the

fundamental frequency d ∼ λ=2, the transverse dimension can
be adjusted over a broad range. Commonly chosen transverse
dimensions are of the order of w ∼ 10 μm and s ∼ 5 μm
(Wallraff et al., 2004). If desired, the transverse dimension of
the center conductor may be reduced to the submicron scale,
up to a limit set by the penetration depth of the super-
conducting thin films, which is typically of the order of 100–
200 nm. When combining the typical separation s ∼ 5 μm
with the magnitude of the voltage fluctuations ΔV0 ∼ 1 μV
already expected from the discussion of the LC circuit, we
find that the zero-point electric field in a coplanar resonator
can be as large as ΔE0 ¼ ΔV0=s ∼ 0.2 V=m. This is at least 2
orders of magnitude larger than the typical amplitude of ΔE0

in the 3D cavities used in cavity QED (Haroche and Raimond,
2006). As will become clear later, together with the large size
of superconducting artificial atoms, this will lead to the large
light-matter coupling strengths that are characteristic of
circuit QED.

1. Quantized modes of the transmission-line resonator

While only a single mode of the transmission-line resonator
is often considered, there are many circuit QED experiments
where the multimode structure of the device plays an
important role. In this section, we present the standard
approach to finding the normal modes of a distributed
resonator, first by using a classical description of the circuit.
For the small signals that are relevant to circuit QED, the

electromagnetic properties along the x direction of a coplanar
waveguide resonator of length d can be modeled using a
linear, dispersion-free one-dimensional medium. Figure 3
shows the telegrapher model for such a system where the
distributed inductance of the resonator’s center conductor is
represented by the series of lumped-element inductances and
the capacitance to ground by a parallel combination of
capacitances (Pozar, 2011). Using the flux and charge
variables introduced in the description of the LC oscillator,
the energy associated with each capacitance is Q2

n=2C0,
while the energy associated with each inductance is
ðΦnþ1 −ΦnÞ2=2L0. In these expressions, Φn is the flux
variable associated with the nth node and Qn is the conjugate
variable that is the charge on that node. Using the standard
approach (Devoret, 1997), we can thus write the classical
Hamiltonian corresponding to Fig. 3 as

H ¼
XN−1

n¼0

�
1

2C0

Q2
n þ

1

2L0

ðΦnþ1 −ΦnÞ2
�
: ð6Þ

FIG. 3. Telegrapher model of an open-ended transmission-line
resonator of length d. L0 and C0 are, respectively, the inductance
and capacitance associated to each node n of flux Φn. The
resonator is coupled to external transmission lines (not shown) at
its input and output ports via the capacitors Cκ.
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It is useful to consider a continuum limit of this Hamiltonian
where the size of a unit cell δx is taken to be zero. For this
purpose, we write C0 ¼ δxc0 and L0 ¼ δxl0, with c0 and l0
the capacitance and inductance per unit length, respectively.
Moreover, we define a continuum flux field via ΦðxnÞ ¼ Φn
and charge density field QðxnÞ ¼ Qn=δx. We can sub-
sequently take the continuum limit δx → 0, while keeping
d ¼ NΔx constant to find

H ¼
Z

d

0

dx

�
1

2c0
QðxÞ2 þ 1

2l0
½∂xΦðxÞ�2

�
; ð7Þ

where we have used ∂xΦðxnÞ ¼ limδx→0ðΦnþ1 −ΦnÞ=δx. In
Eq. (7), the charge Qðx; tÞ ¼ c0∂tΦðx; tÞ is the canonical
momentum to the generalized flux Φðx; tÞ ¼ R

t
−∞ dt0Vðx; t0Þ,

with Vðx; tÞ the voltage to ground on the center conductor.
Using Hamilton’s equations together with Eq. (7), we find

that the propagation along the transmission line is described
by the wave equation

v20
∂2Φðx; tÞ

∂x2 −
∂2Φðx; tÞ

∂t2 ¼ 0; ð8Þ

with v0 ¼ 1=
ffiffiffiffiffiffiffiffi
l0c0

p
the speed of light in the medium. The

solution to Eq. (8) can be expressed in terms of normal modes

Φðx; tÞ ¼
X∞
m¼0

umðxÞΦmðtÞ; ð9Þ

with Φ̈m ¼ −ω2
mΦm a function of time oscillating at the mode

frequency ωm and

umðxÞ ¼ Am cos ½kmxþ φm� ð10Þ

being the spatial profile of the mode with amplitude Am.
The wave vector km ¼ ωm=v0 and the phase φm are set by
the boundary conditions. For an open-ended λ=2 resonator
these are

Iðx ¼ 0; dÞ ¼ −
1

l0

∂Φðx; tÞ
∂x

����
x¼0;d

¼ 0; ð11Þ

corresponding to the fact that the current vanishes at the two
extremities. A λ=4 resonator is modeled by requiring that the
voltage Vðx; tÞ ¼ ∂tΦðx; tÞ vanishes at the grounded boun-
dary. Asking for Eq. (11) to be satisfied for every mode
implies that φm ¼ 0 and that the wave vector is discrete with
km ¼ mπ=d. Finally, it is useful to choose the normalization
constant Am such that

1

d

Z
d

0

dx umðxÞum0 ðxÞ ¼ δmm0 ; ð12Þ

resulting in Am ¼ ffiffiffi
2

p
. This normalization implies that the

amplitude of the modes in a 1D resonator decreases with the
square root of the length d.
Using this normal mode decomposition in Eq. (7), the

Hamiltonian can now be expressed in the simpler form

H ¼
X∞
m¼0

�
Q2

m

2Cr
þ 1

2
Crω

2
mΦ2

m

�
; ð13Þ

where Cr ¼ dc0 is the total capacitance of the resonator and
Qm ¼ Cr

_Φm is the charge conjugate to Φm. We immediately
recognize this Hamiltonian to be a sum over independent
harmonic oscillators; see Eq. (1).
Following once more the quantization procedure of

Sec. II.A, the two conjugate variables Φm and Qm are
promoted to noncommuting operators

Φ̂m ¼
ffiffiffiffiffiffiffiffiffi
ℏZm

2

r
ðâ†m þ âmÞ; ð14Þ

Q̂m ¼ i

ffiffiffiffiffiffiffiffiffi
ℏ

2Zm

s
ðâ†m − âmÞ; ð15Þ

with Zm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lm=Cr

p
the characteristic impedance of mode m

and L−1
m ≡ Crω

2
m. Using these expressions in Eq. (13)

immediately leads to the final result

Ĥ ¼
X∞
m¼0

ℏωmâ
†
mâm; ð16Þ

with ωm ¼ ðmþ 1Þω0 the mode frequency and ω0=2π ¼
v0=2d the fundamental frequency of the λ=2 transmission-
line resonator.
To simplify the discussion,we assumed here that themedium

forming the resonator is homogeneous. In particular, we
ignored the presence of the input and output port capacitors
in the boundary condition of Eq. (11). In addition to lowering
the external quality factor Qext, these capacitances modify the
amplitude and phase of the mode functions and shift the mode
frequencies. It is possible to render the resonator nonlinear by
introducing one or several Josephson junctions directly into the
center conductor of the resonator. A theoretical treatment of
the resonator mode functions, frequencies, and nonlinearity
in the presence of resonator inhomogeneities, including
embedded junctions, was given by Bourassa et al. (2012)
and is also discussed in Sec. III.D.

C. 3D resonators

Although their physical origin is not yet fully understood,
dielectric losses at interfaces and surfaces are important
limiting factors to the internal quality factor of coplanar
transmission-line resonators and lumped-element LC oscil-
lators; see Oliver and Welander (2013) for a review. An
approach for mitigating the effect of these losses is to lower
the ratio of the electric field energy stored at interfaces and
surfaces to the energy stored in vacuum. Indeed, it has been
observed that planar resonators with larger feature sizes (s and
w), and hence weaker electric fields near the interfaces
and surfaces, typically have larger internal quality factors
(Sage et al., 2011).
This approach can be pushed further by using three-

dimensional microwave cavities rather than planar circuits
(Paik et al., 2011). In 3D resonators formed by a metallic
cavity, a larger fraction of the field energy is stored in the
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vacuum inside the cavity than close to the surface. As a result,
the surface participation ratio—the ratio of the energy stored
at surfaces versus in vacuum—can be as small as 10−7 in 3D
cavities, in comparison to 10−5 for typical planar geometries
(Reagor, 2015). Another potential advantage is that the
harmonic mode does not require a dielectric substrate. In
practice, however, this does not lead to a major gain in quality
factor since, while coplanar resonators can have air-substrate
participation ratios as large as 0.9, the bulk loss tangent of
sapphire and silicon substrate is significantly smaller than that
of the interface oxides and does not appear to be the limiting
factor (Wang et al., 2015).
In practice, three-dimensional resonators come in many

different form factors and can reach a higher quality factor
than lumped-element oscillators and 1D resonators. Quality
factors has high as 4.2 × 1010 have been reported at 51GHz and
0.8 K with Fabry-Perot cavities formed by two highly polished
copper mirrors coated with niobium (Kuhr et al., 2007).
Corresponding to single-microwave photon lifetimes of
130 ms, these cavities have been used in landmark cavity
QED experiments (Haroche and Raimond, 2006). Similar
quality factors have also been achieved with niobium micro-
maser cavities at 22GHz and 0.15K (Varcoe et al., 2000). In the
context of circuit QED, commonly used geometries include
rectangular (Paik et al., 2011; Rigetti et al., 2012) and coaxial
λ=4 cavities (Reagor et al., 2016). The latter have important
practical advantages in that no current flows near any seams
created in the assembly of the device that can be responsible for
contact resistance (Brecht et al., 2015; Reagor, 2015).
As illustrated in Fig. 4(a) and in close analogy with the

coplanar waveguide resonator, rectangular cavities are formed
by a finite section of a rectangular waveguide terminated by
two metal walls acting as shorts. These three-dimensional
resonators are thus simply vacuum surrounded on all sides by
metal, typically aluminum to maximize the internal quality
factor or copper if magnetic field tuning of components placed
inside the cavity is required. The metallic walls impose
boundary conditions on the electromagnetic field in the cavity,
leading to a discrete set of TE and TM cavity modes of
frequency (Pozar, 2011)

ωmnl ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
mπ

a

	
2

þ
�
nπ
b

	
2

þ
�
lπ
d

	
2

s
; ð17Þ

labeled by the three integers (m; n; l), where c is the speed of
light and a, b, and d are the cavity dimensions. Dimensions of
the order of a centimeter lead to resonance frequencies in the
gigahertz range for the first modes. The TE modes to which
superconducting artificial atoms couple are illustrated in
Figs. 4(b)–4(e). Because these modes are independent, once
quantized the cavity Hamiltonian again takes the form of
Eq. (16), corresponding to a sum of independent harmonic
oscillators. We return to the question of quantizing the
electromagnetic field in arbitrary geometries in Sec. III.D.
As mentioned, a major advantage of 3D cavities compared

to their 1D or lumped-element analogs is their high quality
factor or, equivalently, long photon lifetime. A typical internal
Q factor for rectangular aluminum cavities is 5 × 106,
corresponding to a photon lifetime above 50 μs (Paik et al.,

2011). These numbers are even higher for coaxial cavities
where Qint ¼ 7 × 107, or above a millisecond of photon
storage time, has been reported (Reagor et al., 2016).
Moreover, the latter type of cavity is more robust against
imperfections that arise when integrating 3D resonators with
Josephson-junction-based circuits. Lifetimes of up to 2 s have
also been reported in niobium cavities that were initially
developed for accelerators (Romanenko et al., 2020). At such
long photon lifetimes, microwave cavities are longer-lived
quantum memories than the transmon qubit that we introduce
in Sec. II.D. This has led to a new paradigm for quantum
information processing in which information is stored in a
cavity with the role of the qubit limited to providing the
essential nonlinearity (Mirrahimi et al., 2014). We return to
these ideas in Sec. VII.C.

D. The transmon artificial atom

Although the oscillators discussed in Sec. II.C can be
prepared in their quantum-mechanical ground state, it is
challenging to observe quantum behavior with such linear
systems. Indeed, harmonic oscillators are always in the
correspondence limit, and some degree of nonlinearity is
therefore essential to encode and manipulate quantum infor-
mation in these systems (Leggett, 1984a). Superconductivity
allows one to introduce nonlinearity in quantum electrical
circuits while avoiding losses. Indeed, the Josephson junction
is a nonlinear circuit element that is compatible with the
requirements for high quality factors and operation at milli-
kelvin temperatures. The physics of these junctions was first
understood in 1962 by Brian Josephson (Josephson, 1962;
McDonald, 2001).

(b) (c)

(d) (e)

(a)

(f)

FIG. 4. (a) Photograph of a 3D rectangular superconducting
cavity showing the interior volume of the waveguide enclosure
housing a sapphire chip and transmon qubit, with two symmetric
coaxial connectors for coupling signals in and out. (b)–(e) First
four TEmnl modes of a 3D rectangular superconducting cavity
obtained from COMSOL. (f) Schematic representation of a coaxial
λ=4 cavity with electric field (solid line) pointing from the inner
conductor to the sidewalls and evanescent field (dashed line)
rapidly decaying from the top of the inner conductor. Adapted
from Reagor et al. 2016.
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Contrary to expectations (Bardeen, 1962), Josephson
showed that a dissipationless current, i.e., a supercurrent,
could flow between two superconducting electrodes separated
by a thin insulating barrier. More precisely, he showed that this
supercurrent is given by

I ¼ Ic sinφ; ð18Þ

where Ic is the junction’s critical current and φ is the phase
difference between the superconducting condensates on either
side of the junction (Tinkham, 2004). The critical current,
whose magnitude is determined by the junction size and
material parameters, is the maximum current that can be
supported before Cooper pairs are broken. Once this happens,
dissipation kicks in and a finite voltage develops across the
junction accompanied by a resistive current. Operation in the
quantum regime requires currents well below this critical
current. Josephson also showed that the time dependence of
the phase difference φ is related to the voltage across the
junction according to

dφ
dt

¼ 2π

Φ0

V; ð19Þ

with Φ0 ¼ h=2e the flux quantum. It is useful to write this
expression as φðtÞ ¼ 2πΦðtÞ=Φ0 ¼ 2π

R
dt0Vðt0Þ=Φ0, with

ΦðtÞ the flux variable introduced in Sec. II.A.
Taken together, the Josephson relations of Eqs. (18) and (19)

make it clear that a Josephson junction relates current I to flux
Φ. The relation (18) is analogous to the constitutive relation of
a geometric inductance Φ ¼ LI, which also links these two
quantities. For this reason, it is useful to define the Josephson
inductance

LJðΦÞ ¼
� ∂I
∂Φ

	
−1

¼ Φ0

2πIc

1

cosð2πΦ=Φ0Þ
: ð20Þ

In contrast to geometric inductances, LJ depends on Φ. As a
result, when operated below the critical current the Josephson
junction can be thought of as a nonlinear inductor.
Replacing the geometric inductance L of the LC oscillator

discussed in Sec. II.A with a Josephson junction, as in
Fig. 5(b), therefore renders the circuit nonlinear. In this
situation, the energy levels of the circuit are no longer
equidistant. If the nonlinearity and the quality factor of the
junction are large enough, the energy spectrum resembles that
of an atom, with well-resolved and nonuniformly spread
spectral lines that can be addressed. We therefore often refer
to this circuit as an artificial atom (Clarke et al., 1988;
Martinis, Devoret, and Clarke, 2020). In many situations, and
as it is the focus of much of this review, we can furthermore
restrict our attention to only two energy levels, typically the
ground and first excited states, forming a qubit.
To make this discussion more precise, it is useful to see how

the Hamiltonian of the circuit of Fig. 5(b) is modified by the
presence of the Josephson junction taking the place of the
linear inductor. While the energy stored in a linear inductor is
E ¼ R

dtVðtÞIðtÞ ¼ R
dtðdΦ=dtÞI ¼ Φ2=2L, where we use

Φ ¼ LI in the last equality, the energy of the nonlinear
inductance instead takes the form

E ¼ Ic

Z
dt

�
dΦ
dt

	
sin

�
2π

Φ0

Φ
	

¼ −EJ cos

�
2π

Φ0

Φ
	
; ð21Þ

with EJ ¼ Φ0Ic=2π the Josephson energy. This quantity
represents the energy associated with the coherent tunneling
of Cooper pairs across the junction. Taking this contribu-
tion into account, the quantized Hamiltonian of the capac-
itively shunted Josephson junction therefore reads (see
Appendix A)

ĤT ¼ ðQ̂ −QgÞ2
2CΣ

− EJ cos

�
2π

Φ0

Φ̂
	

¼ 4ECðn̂ − ngÞ2 − EJ cos φ̂: ð22Þ

In Eq. (22), CΣ ¼ CJ þ CS is the total capacitance, including
the junction’s capacitance CJ and the shunt capacitance CS.
On the second line, we define the charge number operator
n̂ ¼ Q̂=2e, the phase operator φ̂ ¼ ð2π=Φ0ÞΦ̂, and the
charging energy EC ¼ e2=2CΣ. We also include a possible
offset charge ng ¼ Qg=2e term representing the effect (up to
a constant term in the Hamiltonian we have neglected) of an
external electric field bias. The offset charge term can arise
from spurious unwanted degrees of freedom in the trans-
mon’s environment or from an intentional external gate
voltage Vg ¼ Qg=Cg.
The spectrum of ĤT is controlled by the ratio EJ=EC, with

EJ=EC ≪ 1 corresponding to charge qubits (Nakamura,
Pashkin, and Tsai, 1999), EJ=EC ∼ 1 corresponding to the
quantronium (Vion et al., 2002), and EJ=EC ≫ 1 correspond-
ing to the transmon; see the reviews given by Makhlin, Schön,
and Shnirman (2001), Zagoskin and Blais (2007), Clarke and
Wilhelm (2008), and Kjaergaard, Schwartz et al. (2020).
Regardless of the parameter regime, one can always express
the Hamiltonian in the diagonal form Ĥ ¼ P

j ℏωjjjihjj in

(a)

(b)

(c)

FIG. 5. (a) Cosine potential well of the transmon qubit (solid
line) compared to the quadratic potential of the LC oscillator
(dashed lines). The spectrum of the former has eigenstates labeled
fjgi; jei; jfi; jhi;…g and is characterized by an anharmonicity
−EC. (b) Circuit for the fixed-frequency transmon qubit. The
square with a cross represents a Josephson junction with
Josephson energy EJ and junction capacitance CJ . (c) By using
a SQUID rather than a single junction, the frequency of the
transmon qubit becomes flux tunable.
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terms of its eigenfrequencies ωj and eigenstates jji. In the
literature, two notations are commonly used to label these
eigenstates: fjgi; jei; jfi; jhi;…g and, when there is no risk of
confusion with resonator Fock states, fj0i; j1i; j2i;…g.
Depending on the context, we use both notations in this
review. Figure 6 shows the energy difference E0j=ℏ ¼ωj − ω0

for the three lowest energy levels for different ratios EJ=EC as
obtained from numerical diagonalization of Eq. (22). If the
charging energy dominates (EJ=EC < 1), the eigenstates of
the Hamiltonian are approximately given by eigenstates of the
charge operator jji ≃ jni, with n̂jni ¼ njni. In this situation, a
change in gate charge ng has a large impact on the transition
frequency of the device. As a result, unavoidable charge
fluctuations in the circuit’s environment lead to fluctuations
in the qubit transition frequency and, consequently, to
dephasing.
To mitigate this problem, a solution is to work in the

transmon regime, where, as previously alluded to, the ratio
EJ=EC is large, with typical values being EJ=EC ∼ 20–80
(Koch et al., 2007; Schreier et al., 2008). In this situation, the
charge degree of freedom is highly delocalized due to the large
Josephson energy. For this reason, as shown in Fig. 6(c), the
first energy levels of the device become essentially indepen-
dent of the gate charge. It can in fact be shown that the charge
dispersion, which describes the variation of the energy levels
with gate charge, decreases exponentially with EJ=EC in the
transmon regime (Koch et al., 2007). The net result is that the
coherence time of the device is much larger than at small
EJ=EC. However, as also shown in Fig. 6, the price to pay for
this increased coherence is the reduced anharmonicity α ¼
E12 − E01 of the transmon, anharmonicity that is required to
control the qubit without causing unwanted transitions to
higher excited states. While charge dispersion is exponentially
small with EJ=EC, the loss of anharmonicity has a much
weaker dependence on this ratio given by ∼ðEJ=ECÞ−1=2. As
discussed in more detail in Sec. VII, because of the gain in
coherence the reduction in anharmonicity is not an impedi-
ment to controlling the transmon state with high fidelity.
While the variance of the charge degree of freedom is large

when EJ=EC ≫ 1, the variance of its conjugate variable φ̂ is

correspondingly small, withΔφ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hφ̂2i − hφ̂i2

p
≪ 1. In this

situation, it is instructive to rewrite Eq. (22) as

ĤT ¼ 4ECn̂2 þ 1
2
EJφ̂

2 − EJðcos φ̂þ 1
2
φ̂2Þ; ð23Þ

with the first two terms corresponding to an LC circuit of
capacitance CΣ and inductance E−1

J ðΦ0=2πÞ2, the linear part
of the Josephson inductance equation (20). We have dropped
the offset charge ng in Eq. (23) on the basis that the frequency
of the relevant low-lying energy levels is insensitive to this
parameter. Although these energies are not sensitive to
variations in ng, it is still possible to use an external oscillating
voltage source to cause a transition between the transmon
states. We return to this later. The last term of Eq. (23) is the
nonlinear correction to this harmonic potential, which for
EJ=EC ≫ 1 and therefore Δφ̂ ≪ 1 can be truncated to its first
nonlinear correction leading to the approximate transmon
Hamiltonian

Ĥq ¼ 4ECn̂2 þ
1

2
EJφ̂

2 −
1

4!
EJφ̂

4: ð24Þ

As expected from the previous discussion, the transmon
is thus a weakly anharmonic oscillator. Note that the 2π
periodicity of the Hamiltonian is broken under this
approximation.
Following Sec. II.A, it is then useful to introduce creation

and annihilation operators chosen to diagonalize the first two
terms of Eq. (24). Denoting these operators as b̂† and b̂, in
analogy to Eq. (4) we have

φ̂ ¼
�
2EC

EJ

	
1=4

ðb̂† þ b̂Þ; ð25Þ

n̂ ¼ i
2

�
EJ

2EC

	
1=4

ðb̂† − b̂Þ: ð26Þ

This form makes it clear that fluctuations of the phase φ̂
decrease with EJ=EC, while the reverse is true for the
conjugate charge n̂. Using these expressions in Eq. (24)
finally leads to1

Ĥq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p
b̂†b̂ −

EC

12
ðb̂† þ b̂Þ4

≈ ℏωqb̂
†b̂ −

EC

2
b̂†b̂†b̂ b̂; ð27Þ

where ℏωq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECEJ

p
− EC. On the second line, we have

kept only the terms that have the same number of creation and
annihilation operators. This is reasonable because, in a frame
rotating at ωq, any terms with an unequal number of b̂ and b̂†

will oscillate. If the frequency of these oscillations is larger
than the prefactor of the oscillating term, then this term rapidly

FIG. 6. Frequency difference ωj − ω0 of the first three energy
levels of the transmon Hamiltonian obtained from numerical
diagonalization of Eq. (22) expressed in the charge basis fjnig
for different EJ=EC ratios and a fixed plasma frequency
ωp=2π ¼ 5 GHz. For large values of EJ=EC the energy levels
become insensitive to the offset charge ng.

1The approximate Hamiltonian equation (27) is not bounded from
below: an artifact of the truncation of the cosine operator. Care should
therefore be taken when using this form, and it should strictly
speaking be used only in a truncated subspace of the original
Hilbert space.
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averages out and can be neglected (Cohen-Tannoudji, Diu,
and Laloe, 1977). This rotating-wave approximation (RWA) is
valid here if ℏωq ≫ EC=4, an inequality that is easily satisfied
in the transmon regime.
We can interpret Eq. (22) as describing an effective phase

particle in a cosine potential, with the phase playing the role of
position and C playing the role of mass. The plasma frequency
ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ECEJ
p

=ℏ corresponds to the frequency of small
oscillations at the bottom of a well of the cosine potential.
In the transmon regime, this frequency is renormalized by a
“Lamb shift” equal to the charging energy EC such that ωq ¼
ωp − EC=ℏ is the transition frequency between the ground and
first excited states. Finally, the last term of Eq. (27) is a
Kerr nonlinearity, with EC=ℏ playing the role of Kerr
frequency shift per excitation of the nonlinear oscillator
(Walls and Milburn, 2008). To see this more clearly, it can
be useful to rewrite Eq. (27) asHq ¼ ℏω̃qðb̂†b̂Þb̂†b̂, where the
frequency ω̃qðb̂†b̂Þ ¼ ωq − ECðb̂†b̂ − 1Þ=2ℏ of the oscillator

is a decreasing function of the excitation number b̂†b̂.
Considering only the first few levels of the transmon, this
simply means that the e-f transition frequency is smaller by
EC than the g-e transition frequency; see Fig. 5(a). In other
words, in the regime of validity of the approximation made to
obtain Eq. (24), the anharmonicity of the transmon is −EC,
with typical values EC=h ∼ 100–400 MHz (Koch et al.,
2007). Corrections to the anharmonicity from −EC can be
obtained numerically or by keeping higher-order terms in the
expansion of Eq. (24).
While the nonlinearity EC=ℏ is small with respect to the

oscillator frequency ωq, it is in practice much larger than the
spectral linewidth that can routinely be obtained for these
artificial atoms and can therefore easily be spectrally resolved.
As a result and in contrast to more traditional realizations of
Kerr nonlinearities in quantum optics (Walls and Milburn,
2008), it is possible with superconducting quantum circuits to
have a large Kerr nonlinearity even at the single-photon level.
Some of the many implications of this observation are
discussed further later in this review. For quantum information
processing, the presence of this nonlinearity is necessary to
address only the ground and first excited states without
unwanted transition to other states. In this case, the transmon
acts as a two-level system, or qubit. However, keep in mind
that the transmon is a multilevel system and that it is often
necessary to include higher levels in the description of the
device to quantitatively explain experimental observations.
These higher levels can also be used to considerable advantage
in some cases (Rosenblum et al., 2018; Elder et al., 2020; Ma,
Zhang et al., 2020; Reinhold et al., 2020).

E. Flux-tunable transmons

A useful variant of the transmon artificial atom is the flux-
tunable transmon, where the single Josephson junction is
replaced with two parallel junctions forming a superconduct-
ing quantum interference device (SQUID); see Fig. 5(c) (Koch
et al., 2007). The transmon Hamiltonian then reads

ĤT ¼ 4ECn̂2 − EJ1 cos φ̂1 − EJ2 cos φ̂2; ð28Þ

where EJi is the Josephson energy of junction i and φ̂i is the
phase difference across that junction. In the presence of an
external flux Φx threading the SQUID loop and in the limit
of small geometric inductance of the loop,2 flux quantization
requires that φ̂1 − φ̂2 ¼ 2πΦx=Φ0ðmod 2πÞ (Tinkham, 2004).
Defining the average phase difference as φ̂ ¼ ðφ̂1 þ φ̂2Þ=2,
the Hamiltonian can then be rewritten as (Tinkham, 2004;
Koch et al., 2007)

ĤT ¼ 4ECn̂2 − EJðΦxÞ cosðφ̂ − φ0Þ; ð29Þ

where

EJðΦxÞ ¼ EJΣ cos

�
πΦx

Φ0

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2 tan2

�
πΦx

Φ0

	s
; ð30Þ

with EJΣ ¼ EJ2 þ EJ1 and d ¼ ðEJ2 − EJ1Þ=EJΣ the junction
asymmetry. The phase φ0 ¼ d tanðπΦx=Φ0Þ can be ignored
for a time-independent flux (Koch et al., 2007). According to
Eq. (29), replacing the single junction with a SQUID loop
yields an effective flux-tunable Josephson energy EJðΦxÞ. In
turn, this results in a flux-tunable transmon frequency
ωqðΦxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ECjEJðΦxÞj

p
− EC=ℏ.

3 In practice, the transmon
frequency can be tuned by as much as 1 GHz in as little as
10–20 ns (DiCarlo et al., 2009; Rol et al., 2019, 2020). This
possibility is exploited in several applications, including
quantum logical gates, as discussed in more detail in Sec. VII.
As discussed later, this additional control knob can lead to

dephasing due to noise in the flux threading the SQUID loop.
With this in mind, it is worth noticing that transmon qubits
with a finite asymmetry d can have a smaller range of
tunability than symmetric transmons, and thus also made less
susceptible to flux noise (Hutchings et al., 2017). Finally, first
steps toward realizing voltage tunable transmons where a
semiconducting nanowire takes the place of the SQUID loop
have been demonstrated (Casparis et al., 2018; Luthi
et al., 2018).

F. Other superconducting qubits

While the transmon is currently the most extensively used
and studied superconducting qubit, many other types of
superconducting artificial atoms are used in the context of
circuit QED. In addition to working with different ratios
of EJ=EC, these other qubits vary in the number of Josephson
junctions and the topology of the circuit in which these
junctions are embedded. This includes charge qubits
(Shnirman, Schön, and Hermon, 1997; Bouchiat et al.,
1998; Nakamura, Pashkin, and Tsai, 1999), flux qubits
(Mooij et al., 1999; Orlando et al., 1999) including variations

2If the geometric inductance is sufficiently small, we can neglect
the dynamics of the high-frequency mode associated with oscillating
circulating currents in the loop.

3The absolute value arises because, when expanding the Hamil-
tonian in powers of φ̂ in Eq. (24), the potential energy term must
always be expanded around a minimum. This discussion also
assumes that the ratio jEJðΦxÞj=EC is in the transmon range for
all relevant Φx.
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with a large shunting capacitance (You et al., 2007; Yan et al.,
2016), phase qubits (Martinis et al., 2002), the quantronium
(Vion et al., 2002), the fluxonium (Manucharyan et al., 2009),
the 0 − π qubit (Brooks, Kitaev, and Preskill, 2013; Gyenis
et al., 2021), the bifluxon (Kalashnikov et al., 2020), and the
blochnium (Pechenezhskiy et al., 2020), among others. For
more details about these different qubits, see reviews on the
topic given by Makhlin, Schön, and Shnirman (2001),
Zagoskin and Blais (2007), Clarke and Wilhelm (2008),
Krantz et al. (2019), and Kjaergaard, Schwartz et al. (2020).

III. LIGHT-MATTER INTERACTION IN CIRCUIT QED

A. Exchange interaction between a transmon and an oscillator

Having introduced the two main characters of this review,
the quantum harmonic oscillator and the transmon artificial
atom, we are now ready to consider their interaction. Because
of their large size coming from the requirement of having a
low charging energy (large capacitance), transmon qubits can
naturally be capacitively coupled to microwave resonators; see
Fig. 7 for schematic representations. With the resonator taking
the place of the classical voltage source Vg, capacitive
coupling to a resonator can be introduced in the transmon
Hamiltonian equation (22) with a dynamical gate voltage
ng → −n̂r, representing the effective offset charge term of the
transmon due to the quantum electric field operator of the
resonator (the choice of sign is simply a common convention
in the literature that we adopt here; see Appendix A). The
Hamiltonian of the combined system is therefore (Blais et al.,
2004)

Ĥ ¼ 4ECðn̂þ n̂rÞ2 − EJ cos φ̂þ
X
m

ℏωmâ
†
mâm; ð31Þ

where n̂r ¼
P

m n̂m, with n̂m ¼ ðCg=CmÞQ̂m=2e, is the con-
tribution to the offset charge term due to the mth resonator
mode. Here Cg is the gate capacitance and Cm is the associated
resonator mode capacitance. To simplify these expressions,
we assume here that Cg ≪ CΣ; Cm. A derivation of the
Hamiltonian of Eq. (31) that goes beyond the simple replace-
ment of ng by −n̂r and without the previous assumption is
given in Appendix A for the case of a single LC oscillator
coupled to the transmon.
Assuming that the transmon frequency is much closer to

one of the resonator modes than all the other modes, say,
jω0 − ωqj ≪ jωm − ωqj for m ≥ 1, we truncate the sum over
m in Eq. (31) to a single term. In this single-mode approxi-
mation, the Hamiltonian reduces to a single oscillator of
frequency denoted ωr coupled to a transmon. Note that,
regardless of the physical nature of the oscillator (for example,
a single mode of a 2D or 3D resonator), it is possible to
represent this Hamiltonian with an equivalent circuit where
the transmon is capacitively coupled to an LC oscillator, as
illustrated in Fig. 7(b). This type of formal representation of
complex geometries in terms of equivalent lumped-element
circuits is generally known as “black-box quantization” (Nigg
et al., 2012) and is explored in more detail in Sec. III.D. As
discussed in Sec. IV.E, despite the single-mode approximation
being useful, there are many situations of experimental
relevance where ignoring the multimode nature of the reso-
nator leads to inaccurate predictions.
Using the creation and annihilation operators introduced in

Secs.II.A and II.D, in the single-mode approximation Eq. (31)
reduces to4

Ĥ ≈ ℏωrâ†âþ ℏωqb̂
†b̂ −

EC

2
b̂†b̂†b̂ b̂

− ℏgðb̂† − b̂Þðâ† − âÞ; ð32Þ

where ωr is the frequency of the mode of interest and

g ¼ ωr
Cg

CΣ

�
EJ

2EC

	
1=4

ffiffiffiffiffiffiffiffi
πZr

RK

s
; ð33Þ

the oscillator-transmon, or light-matter, coupling constant.
Here Zr is the characteristic impedance of the resonator mode
and RK ¼ h=e2 ∼ 25.8 kΩ is the resistance quantum. The
Hamiltonian (32) can be further simplified in the experimen-
tally relevant situation where the coupling constant is much
smaller than the system frequencies: jgj ≪ ωr;ωq. Invoking
the rotating-wave approximation, it simplifies to

(b) (c)

(a)

FIG. 7. Schematic representation of a transmon qubit (green)
coupled to (a) a 1D transmission-line resonator, (b) a lumped-
element LC circuit, and (c) a 3D coaxial cavity. (a) Adapted from
Blais et al., 2004. (c) Adapted from Reagor et al., 2016.

4One might worry about the term n̂2r arising from Eq. (31).
However, this term can be absorbed in the charging energy term of
the resonator mode [see Eq. (1)] and therefore leads to a renorm-
alization of the resonator frequency, which we omit here for
simplicity. See Eqs. (A9) and (A10) for further details.
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Ĥ ≈ ℏωrâ†âþ ℏωqb̂
†b̂ −

EC

2
b̂†b̂†b̂ b̂

þ ℏgðb̂†âþ b̂â†Þ: ð34Þ

As can be seen from Eq. (26), the prefactor ðEJ=2ECÞ1=4 in
Eq. (33) is linked to the size of charge fluctuations in the
transmon. By introducing a length scale l corresponding to the
distance a Cooper pair travels when tunneling across the
transmon’s junction, it is tempting to interpret Eq. (33) as
ℏg ¼ d0E0, with d0 ¼ 2elðEJ=32ECÞ1=4 the dipole moment of
the transmon and E0 ¼ ðωr=lÞðCg=CΣÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏZr=2

p
the resona-

tor’s zero-point electric field as seen by the transmon. Since
these two factors can be made large, especially so in the
transmon regime where d0 ≫ 2el, the electric-dipole inter-
action strength g can be made large, much more so than with
natural atoms in cavity QED. It is also instructive to express
Eq. (33) as

g ¼ ωr
Cg

CΣ

�
EJ

2EC

	
1=4

ffiffiffiffiffiffiffiffi
Zr

Zvac

s ffiffiffiffiffiffiffiffi
2πα

p
; ð35Þ

where α ¼ Zvac=2RK is the fine-structure constant and Zvac ¼ffiffiffiffiffiffiffiffiffiffiffi
μ0=ϵ0

p
∼ 377 Ω is the impedance of vacuum, with ϵ0 the

vacuum permittivity and μ0 the vacuum permeability
(Devoret, Girvin, and Schoelkopf, 2007). To find α here
should not be surprising because this quantity characterizes
the interaction between the electromagnetic field and charged
particles. Here this interaction is reduced by the fact that both
Zr=Zvac and Cg=CΣ are smaller than unity. Large couplings
can nevertheless be achieved by working with large values of
EJ=EC or, in other words, in the transmon regime. Large g is
therefore obtained at the expense of reducing the transmon’s
relative anharmonicity −EC=ℏωq ≃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=8EJ

p
. We note that

the coupling can be increased by boosting the resonator’s
impedance, something that can be realized, for example, by
replacing the resonator’s center conductor with a junction
array (Andersen and Blais, 2017; Stockklauser et al., 2017).
Apart from a change in the details of the expression of the

coupling g, the previous discussion holds for transmons
coupled to lumped 2D or 3D resonators. By going from
2D to 3D, the resonator mode volume is made significantly
larger, leading to a reduction in the vacuum fluctuations of the
electric field. As first demonstrated by Paik et al. (2011), this
can be made without change in the magnitude of g simply by
making the transmon larger, thereby increasing its dipole
moment. As illustrated in Fig. 7(c), the transmon then
essentially becomes an antenna that is optimally placed within
the 3D resonator to strongly couple to one of the resona-
tor modes.
To strengthen the analogy with cavity QED even further, it

is useful to restrict the description of the transmon to its first
two levels. This corresponds to making the replacements b̂† →
σ̂þ ¼ jeihgj and b̂ → σ̂− ¼ jgihej in Eq. (32) to obtain the
well-known Jaynes-Cummings Hamiltonian (Blais et al.,
2004; Haroche and Raimond, 2006)

ĤJC ¼ ℏωrâ†âþ ℏωq

2
σ̂z þ ℏgðâ†σ̂− þ âσ̂þÞ; ð36Þ

where we use the convention σ̂z ¼ jeihej − jgihgj. The last
term of this Hamiltonian describes the coherent exchange of a
single quantum between light and matter, here realized as a
photon in the oscillator or an excitation of the artificial atom.

B. The Jaynes-Cummings spectrum

The Jaynes-Cummings Hamiltonian is an exactly solvable
model that accurately describes many situations in which an
atom, artificial or natural, can be considered a two-level
system in interaction with a single mode of the electromag-
netic field. This model can yield qualitative agreement with
experiments in situations where only the first two levels of the
transmon (jσ ¼ fg; egi) play an important role. It is often the
case, however, that quantitative agreement between theoretical
predictions and experiments is obtained only when accounting
for higher transmon energy levels and the multimode nature of
the field. Nevertheless, since a great deal of insight can be
gained, in this section we consider the Jaynes-Cummings
model more closely.
In the absence of the coupling g, the bare states of the qubit-

field system are labeled jσ; niwith σ as previously defined and
n the photon number. The dressed eigenstates of the Jaynes-
Cummings Hamiltonian jσ; ni ¼ Û†jσ; ni can be obtained
from these bare states using the Bogoliubov-like unitary
transformation (Carbonaro, Compagno, and Persico, 1979;
Boissonneault, Gambetta, and Blais, 2009)

Û ¼ exp ½ΛðN̂TÞðâ†σ̂− − âσ̂þÞ�; ð37Þ

where we define

ΛðN̂TÞ ¼
arctan ð2λ

ffiffiffiffiffiffiffi
N̂T

p
Þ

2
ffiffiffiffiffiffiffi
N̂T

p : ð38Þ

Here N̂T ¼ â†âþ σ̂þσ̂− is the operator associated with the
total number of excitations, which commutes with ĤJC, and
λ ¼ g=Δ, with Δ ¼ ωq − ωr the qubit-resonator detuning.
Under this transformation, ĤJC takes the diagonal form

ĤD ¼ Û†ĤJCÛ

¼ ℏωrâ†âþ ℏωq

2
σ̂z −

ℏΔ
2



1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λ2N̂T

q �
σ̂z: ð39Þ

The dressed-state energies can be read directly from Eq. (39)
and, as illustrated in Fig. 8, the Jaynes-Cummings spectrum
consists of doublets fjg; ni; je; n − 1ig of fixed excitation
number5

5To arrive at these expressions, we add ℏωr=2 to ĤD. This global
energy shift is without consequences.
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Eg;n ¼ ℏnωr −
ℏ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4g2n

q
;

Ee;n−1 ¼ ℏnωr þ
ℏ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4g2n

q
; ð40Þ

and of the ground state jg; 0i ¼ jg; 0i of energy
Eg;0 ¼ −ℏωq=2. The excited dressed states are

jg; ni ¼ cosðθn=2Þjg; ni − sinðθn=2Þje; n − 1i;
je; n − 1i ¼ sinðθn=2Þjg; ni þ cosðθn=2Þje; n − 1i; ð41Þ

with θn ¼ arctanð2g ffiffiffi
n

p
=ΔÞ.

A crucial feature of the energy spectrum of Eq. (40) is the
scaling with the photon number n. In particular, for zero
detuning (Δ ¼ 0) the energy levels Eg;n and Ee;n−1 are split by
2g

ffiffiffi
n

p
. This is in contrast to coupled harmonic oscillators

where the energy splitting is independent of n. Experimentally
probing this spectrum thus constitutes a way to assess the
quantum nature of the coupled system (Carmichael, Kochan,
and Sanders, 1996; Fink et al., 2008). We return to this and
related features of the spectrum in Sec. VI.A.

C. Dispersive regime

On resonance (Δ ¼ 0), the dressed states in Eq. (41) are
maximally entangled qubit-resonator states, implying that the
qubit is, by itself, never in a well-defined state; i.e., the
reduced state of the qubit found by tracing over the resonator
is not pure. For quantum information processing, it is there-
fore more practical to work in the dispersive regime where the
qubit-resonator detuning is large with respect to the coupling
strength: jλj ¼ jg=Δj ≪ 1. In this case, the coherent exchange
of quanta between the two systems described by the last term
of ĤJC is not resonant, and interactions take place only via
virtual photon processes. Qubit and resonator are therefore

only weakly entangled and a simplified model obtained later
from second-order perturbation theory is often an excellent
approximation. As the virtual processes can involve higher
energy levels of the transmon, it is, however, crucial to
account for its multilevel nature. For this reason, our starting
point will be the Hamiltonian of Eq. (34) and not its two-level
approximation in Eq. (36). For the same reason, the results
obtained here are applicable only to the transmon. The energy
level structure of other superconducting qubits can lead to
significantly different expressions than those obtained next.

1. Schrieffer-Wolff approach

To find an approximation to Eq. (34) valid in the dispersive
regime, we perform a Schrieffer-Wolff transformation to
second order (Blais et al., 2004; Koch et al., 2007). As
shown in Appendix B, as long as the interaction term in
Eq. (34) is sufficiently small, the resulting effective
Hamiltonian is well approximated by

Ĥdisp ≃ ℏωrâ†âþ ℏωqb̂
†b̂ −

EC

2
b̂†b̂†b̂ b̂

þ
X∞
j¼0

ℏðΛj þ χjâ†âÞjjihjj; ð42Þ

where jji label the eigenstates of the transmon that, under the
approximation used to obtain Eq. (27), are just the eigenstates
of the number operator b̂†b̂. Moreover, we have defined

Λj ¼ χj−1;j; χj ¼ χj−1;j − χj;jþ1; ð43aÞ

χj−1;j ¼
jg2

Δ − ðj − 1ÞEC=ℏ
; ð43bÞ

for j > 0 and with Λ0 ¼ 0, χ0 ¼ −g2=Δ. Here the χj’s are
known as dispersive shifts, while the Λj’s are Lamb shifts and
are signatures of vacuum fluctuations (Bethe, 1947; Lamb and
Retherford, 1947; Fragner et al., 2008).
Truncating Eq. (42) to the first two levels of the transmon

leads to the more standard form of the dispersive Hamiltonian
(Blais et al., 2004)

Ĥdisp ≈ ℏω0
râ†âþ ℏω0

q

2
σ̂z þ ℏχâ†âσ̂z; ð44Þ

where χ is the qubit-state-dependent dispersive cavity shift
with (Koch et al., 2007)

ω0
r ¼ ωr −

g2

Δ − EC=ℏ
; ω0

q ¼ ωq þ
g2

Δ
;

χ ¼ −
g2EC=ℏ

ΔðΔ − EC=ℏÞ
: ð45Þ

These dressed frequencies are what are measured experimen-
tally in the dispersive regime and it is important to emphasize
that the frequencies entering the right-hand sides of Eq. (45)
are the bare qubit and resonator frequencies. The spectrum of
this two-level dispersive Hamiltonian is illustrated in Fig. 9.
Much of this review is devoted to the consequences of this

FIG. 8. Box: energy spectrum of the uncoupled (gray lines) and
dressed (blue lines) states of the Jaynes-Cummings Hamiltonian
at zero detuning: Δ ¼ ωq − ωr ¼ 0. Transmon states are labeled
fjgi; jeig, while photon numbers in the cavity are labeled
jn ¼ 0; 1; 2;…i and plotted vertically. The degeneracy of the
two-dimensional manifolds of states with n quanta is lifted by
2g

ffiffiffi
n

p
by the electric-dipole coupling. The light blue line outside

of the main box represents the third excited state of the transmon,
labeled jfi. Although it is not illustrated here, the presence of this
level shifts the dressed states in the manifolds with n ≥ 2 quanta
(Fink et al., 2008).
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dispersive Hamiltonian for qubit readout and quantum infor-
mation processing. We note that the Scrieffer-Wolff trans-
formation also gives rise to resonator and qubit self-Kerr
nonlinearities at fourth order (Zhu et al., 2013).
As mentioned, the previous perturbative results are valid

when the interaction term in Eq. (34) is sufficiently small
relative to the energy splitting of the bare transmon-oscillator
energy levels: jλj ¼ jg=Δj ≪ 1. Because the matrix elements
of the operators involved in the interaction term scale with the
number of photons in the resonator and the number of qubit
excitations, a more precise bound on the validity of Eq. (42)
needs to take these quantities into account. As discussed in
Appendix B.2.a, we find that for the previously mentioned
second-order perturbative results to be a good approximation,
the oscillator photon number n̄ should be much smaller than a
critical photon number ncrit:

n̄ ≪ ncrit ≡ 1

2jþ 1

�jΔ − jEC=ℏj2
4g2

− j

	
; ð46Þ

where j ¼ 0; 1;… refers to the qubit state as before. For
j ¼ 0, this yields the familiar value ncrit ¼ ðΔ=2gÞ2 for the
critical photon number expected from the Jaynes-Cummings
model (Blais et al., 2004), while setting j ¼ 1 gives a more
conservative bound. In either case, this gives only an approxi-
mate estimate for when to expect higher-order effects to
become important.
It is worth contrasting Eq. (45) with the results expected

from performing a dispersive approximation to the Jaynes-
Cummings model (36), which leads to χ ¼ g2=Δ; see
Appendix B.2.b (Blais et al., 2004; Boissonneault,
Gambetta, and Blais, 2010). This agrees with the previous
result in the limit of largeEC, but, since EC=ℏ is typically small
compared to Δ in most transmon experiments, the two-level
system Jaynes-Cummingsmodel gives a poor prediction for the
dispersive shift χ in practice. The intuition here is that EC
determines the anharmonicity of the transmon. Two coupled
harmonic oscillators can shift each other’s frequencies, but only

in a state-independent manner. Thus the dispersive shift must
vanish in the limit of EC going to zero.

2. Bogoliubov approach

We now present an approach to arrive at Eq. (44) that can be
simpler than performing a Schrieffer-Wolff transformation
and that is often used in the circuit QED literature.
To proceed, it is convenient to write Eq. (34) as the sum of a

linear and a nonlinear part (Ĥ ¼ Ĥlin þ Ĥnl), where

Ĥlin ¼ ℏωrâ†âþ ℏωqb̂
†b̂þ ℏgðb̂†âþ b̂â†Þ; ð47Þ

Ĥnl ¼ −
EC

2
b̂†b̂†b̂ b̂ : ð48Þ

The linear part Ĥlin can be diagonalized exactly using the
Bogoliubov transformation

Ûdisp ¼ exp ½Λðâ†b̂ − âb̂†Þ�: ð49Þ

Under this unitary, the annihilation operators transform as
Û†

dispâÛdisp¼cosðΛÞâþsinðΛÞb̂ and Û†
dispb̂Ûdisp ¼ cosðΛÞb̂−

sinðΛÞâ. With the choice Λ ¼ ð1=2Þ arctanð2λÞ, this results in
the diagonal form

Û†
dispĤlinÛdisp ¼ ℏω̃râ†âþ ℏω̃qb̂

†b̂; ð50Þ

with the dressed frequencies

ω̃r ¼ 1
2
ðωr þ ωq −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4g2

q
Þ; ð51aÞ

ω̃q ¼ 1
2
ðωr þ ωq þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4g2

q
Þ: ð51bÞ

Applying the same transformation to Ĥnl and, in the
dispersive regime, expanding the result in orders of λ lead
to the dispersive Hamiltonian (see Appendix B.3)

Ĥdisp ¼ Û†
dispĤÛdisp

≃ ℏω̃râ†âþ ℏω̃qb̂
†b̂

þ ℏKa

2
â†â†â âþℏKb

2
b̂†b̂†b̂ b̂þℏχabâ†âb̂

†b̂; ð52Þ

where we introduce

Ka ≃ −
EC

ℏ

�
g
Δ

	
4

; Kb ≃ −EC=ℏ;

χab ≃ −2
g2EC=ℏ

ΔðΔ − EC=ℏÞ
: ð53Þ

The first two of these quantities are self-Kerr nonlinearities,
while the third is a cross-Kerr interaction. All are negative in
the dispersive regime. As discussed in Appendix B.3, the
expression for χab in Eq. (53) is obtained after performing a
Schrieffer-Wolff transformation to eliminate a term of the
form b̂†b̂â†b̂þ H:c: that results from applying Udisp on Hnl.
Higher-order terms in λ and other terms rotating at frequency

FIG. 9. Energy spectrum of the uncoupled (gray lines) and
dressed states in the dispersive regime (blue lines). The two
lowest transmon states are labeled fjgi; jeig, while photon
numbers in the cavity are labeled jn ¼ 0; 1; 2;…i and are plotted
vertically. In the dispersive regime, the g-e transition frequency of
the qubit in the absence of resonator photons is Lamb shifted and
takes the value ωq þ χ. Moreover, the cavity frequency is pulled
by its interaction with the qubit and takes the qubit-state-
dependent value ωr � χ.
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Δ or faster have been dropped to arrive at Eq. (52). These
terms are given in Eq. (B33).
Truncating Eq. (52) to the first two levels of the transmon

correctly leads to Eqs. (44) and (45). These expressions are not
valid if the excitation number of the resonator or the transmon
is too large or if jΔj ∼ EC=ℏ. Indeed, the regime 0 < Δ < EC,
known as the straddling regime, is qualitatively different from
the usual dispersive regime. It is characterized by positive self-
Kerr and cross-Kerr nonlinearities (Ka; χab > 0) and is better
addressed by exact numerical diagonalization of Eq. (31)
(Koch et al., 2007).
An interesting feature of circuit QED is the large non-

linearities that are achievable in the dispersive regime.
Dispersive shifts larger than the resonator or qubit linewidth
(χ > κ; γ) are readily realized in experiments, a regime
referred to as strong-dispersive coupling (Gambetta et al.,
2006; Schuster et al., 2007). Some of the consequences of this
regime are discussed in Sec. VI.B. It is also possible to achieve
large self-Kerr nonlinearities for the resonator: jKaj > κ.6

These nonlinearities can be enhanced by embedding
Josephson junctions in the center conductor of the resonator
(Bourassa et al., 2012; Ong et al., 2013), an approach that is
used in quantum-limited parametric amplifiers (Castellanos-
Beltran et al., 2008) and in the preparation of quantum states
of the microwave electromagnetic field (Kirchmair et al.,
2013; Holland et al., 2015; Puri, Boutin, and Blais, 2017).

D. Josephson junctions embedded in multimode electromagnetic
environments

Thus far we have focused on the capacitive coupling of a
transmon to a single mode of an oscillator. For many situations
of experimental relevance it is, however, necessary to consider
the transmon, or even multiple transmons, embedded in an
electromagnetic environment with a possibly complex geom-
etry, such as a 3D cavity.
Consider the situation depicted in Fig. 10(a), where a

capacitively shunted Josephson junction is embedded in some
electromagnetic environment represented by the impedance
ZðωÞ. To keep the discussion simple, we consider here a single
junction but the procedure can easily be extended to multiple
junctions. As discussed in Sec. II.D, the Hamiltonian of the
shunted junction [Eq. (23)] can be decomposed into the sum
of a linear contribution of capacitance CΣ ¼ CS þ CJ and
linear inductance LJ ¼ E−1

J ðΦ0=2πÞ2, and a purely nonlinear
contribution. This decomposition is illustrated in Fig. 10(b),
where the spider symbol represents the nonlinear contribution
(Manucharyan et al., 2007; Bourassa et al., 2012).
We assume that the electromagnetic environment is

linear and nonmagnetic and has no free charges and currents.
Since CΣ and LJ are themselves linear elements, we consider
them part of the electromagnetic environment too, which is
illustrated by the box in Fig. 10(b). Combining all linear
contributions, we write a Hamiltonian for the entire system—
junction plus the surrounding electromagnetic environment—
as Ĥ ¼ Ĥlin þ Ĥnl where

Ĥnl ¼ −EJðcos φ̂þ 1

2
φ̂2Þ ð54Þ

is the nonlinear part of the transmon Hamiltonian introduced
in Eq. (23). A good strategy is to first diagonalize the linear
part Ĥlin, which can in principle be done much as was done in
Sec. III.C. Subsequently, the phase difference φ̂ across the
junction can be expressed as a linear combination of the
eigenmodes of Ĥlin, a decomposition that is then used in Ĥnl.
A convenient choice of canonical fields for the electro-

magnetic environment is the electric displacement field D̂ðxÞ
and the magnetic field B̂ðxÞ, which can be expressed in terms
of bosonic creation and annihilation operators (Bhat and Sipe,
2006)

D̂ðxÞ ¼
X
m

½DmðxÞâm þ H:c:�; ð55aÞ

B̂ðxÞ ¼
X
m

½BmðxÞâm þ H:c:�; ð55bÞ

where ½âm; â†n� ¼ δmn. The more commonly used electric field
is related to the displacement field through D̂ðxÞ ¼
ε0ÊðxÞ þ P̂ðxÞ, where P̂ðxÞ is the polarization of the medium.
Moreover, the mode functions DmðxÞ and BmðxÞ can be
chosen to satisfy orthogonality and normalization conditions
such that

Ĥlin ¼
X
m

ℏωmâ
†
mâm: ð56Þ

In Eqs. (55) and (56), we implicitly assume that the eigenm-
odes form a discrete set. If some part of the spectrum is
continuous, which is the case for infinite systems such as open
waveguides, the sums must be replaced by integrals over the
relevant frequency ranges. The result is general, holds for

(b)

(c)

(a)

FIG. 10. (a) Transmon qubit coupled to an arbitrary impedance,
such as that realized by a 3D microwave cavity. (b) The
Josephson junction can be represented as a capacitive element
CJ and a linear inductive element LJ in parallel with a purely
nonlinear element that is indicated by the spiderlike symbol. Here
CΣ ¼ CS þ CJ is the parallel combination of the Josephson
capacitance and the shunting capacitance of the transmon.
(c) Normal mode decomposition of the parallel combination of
the impedance ZðωÞ together with LJ and CΣ represented by
effective LC circuits.

6The transmon is itself an oscillator with a large self-Kerr given by
ℏKb ¼ −EC.
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arbitrary geometries, and can include inhomogeneities such as
partially reflecting mirrors and materials with dispersion (Bhat
and Sipe, 2006). We restrict ourselves, however, to discrete
spectra in the following.
Diagonalizing Ĥlin amounts to determining the mode

functions fD̂mðxÞ; B̂mðxÞg, which is essentially a classical
electromagnetism problem that can be approached using
numerical software such as finite element solvers (Minev
et al., 2020). Assuming that the mode functions have been
found, we now turn to Ĥnl, for which we relate φ̂ to the
bosonic operators âm. This can be done by noting again
that φ̂ðtÞ ¼ 2π

R
dt0V̂ðt0Þ=Φ0, where the voltage is simply

the line integral of the electric field V̂ðtÞ ¼ R
dl · ÊðxÞ ¼R

dl · D̂ðxÞ=ε across the junction (Vool et al., 2016).
Consequently, the phase variable can be expressed as

φ̂ ¼
X
m

½φmâm þ H:c:�; ð57Þ

where φm ¼ ið2π=Φ0Þ
R xJ
x0
J
dl · DmðxÞ=ωmε is the dimension-

less magnitude of the zero-point fluctuations of themth mode,
as seen by the junction and the boundary conditions defined as
in Fig. 10(a).
Using Eq. (57) in Ĥnl we expand the cosine to fourth order

in analogy with Eq. (24). This means that we are assuming
that the capacitively shunted junction is well into the transmon
regime, with a small anharmonicity relative to the Josephson
energy. Focusing on the dispersive regime where all eigen-
frequencies ωm are sufficiently well separated, and neglecting
fast-rotating terms in analogy with Sec. III.C leads to

Ĥnl ≃
X
m

ℏΔmâ
†
mâm þ 1

2

X
m

ℏKmðâ†mÞ2â2m;

þ
X
m>n

ℏχm;nâ
†
mâmâ

†
nân; ð58Þ

where Δm ¼ ð1=2ÞPn χm;n, Km ¼ χm;m=2, and

ℏχm;n ¼ −EJφ
2
mφ

2
n: ð59Þ

It is also useful to introduce the energy participation ratio pm,
defined as the fraction of the total inductive energy of modem
that is stored in the junction pm ¼ ð2EJ=ℏωmÞφ2

m such that we
can write (Minev et al., 2020)

χm;n ¼ −
ℏωmωn

4EJ
pmpn: ð60Þ

As is clear from the previous discussion, finding the
nonlinear Hamiltonian can be reduced to finding the eigenm-
odes of the system and the zero-point fluctuations of each
mode across the junction. Finding the mode frequencies ωm
and zero-point fluctuations φm, or alternatively the energy
participation ratios pm, can be complicated for a complex
geometry. As mentioned this is, however, an entirely classical
electromagnetism problem that can be handled numerically
(Bhat and Sipe, 2006; Minev et al., 2020).

An alternative approach is to represent the linear electro-
magnetic environment seen by the purely nonlinear element as
an impedance ZðωÞ, as illustrated in Fig. 10(c). Neglecting
loss, any such impedance can be represented by an equivalent
circuit of possibly infinitely many LC oscillators connected in
series. The eigenfrequencies ℏωm ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
LmCm

p
, can be

determined by the real parts of the zeros of the admittance
YðωÞ ¼ Z−1ðωÞ, and the effective impedance of themth mode
as seen by the junction can be found from Zeff

m ¼
2=ωmImY 0ðωmÞ (Nigg et al., 2012; Solgun, Abraham, and
DiVincenzo, 2014). The effective impedance is related to
the previously used zero-point fluctuations as Zeff

m ¼
2ðΦ0=2πÞ2φ2

m=ℏ ¼ RKφ
2
m=ð4πÞ. From this point of view,

the quantization procedure thus reduces to the task of
determining the impedance ZðωÞ as a function of frequency.

E. Beyond the transmon: Multilevel artificial atom

Thus far we have relied on a perturbative expansion of the
cosine potential of the transmon under the assumption that
EJ=EC ≫ 1. To go beyond this regime one can instead resort
to exact diagonalization of the transmon Hamiltonian.
Returning to the full transmon-resonator Hamiltonian in
Eq. (31), we write (Koch et al., 2007)

Ĥ ¼ 4ECn̂2 − EJ cos φ̂þ ℏωrâ†âþ 8ECn̂n̂r

¼
X
j

ℏωjjjihjj þ ℏωrâ†âþ i
X
ij

ℏgijjiihjjðâ† − âÞ; ð61Þ

where jji are now the eigenstates of the bare transmon
Hamiltonian Ĥt ¼ 4ECn̂2 − EJ cos φ̂ obtained from numeri-
cal diagonalization and we define

ℏgij ¼ 2e
Cg

CCΣ
Qzpfhijn̂jji: ð62Þ

The eigenfrequencies ωj and the matrix elements hijn̂jji can
be computed numerically in the charge basis, an approach that
is applicable to other superconducting qubits. Alternatively,
these expressions can be determined by taking advantage of
the fact that, in the phase basis φ̂jφi ¼ φjφi, Eq. (22) takes the
form of a Mathieu equation whose exact solution is known
(Cottet, 2002; Koch et al., 2007).
The second form of Eq. (61) written in terms of energy

eigenstates jji is a general Hamiltonian that can describe an
arbitrary multilevel artificial atom capacitively coupled to a
resonator. As in the discussion in Sec. III.C, in the dispersive
regime where jgijj

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
≪ jωi − ωj − ωrj for all relevant

atomic transitions i ↔ j and with n the oscillator photon
number, it is possible to use a Schrieffer-Wolff transformation
to approximately diagonalize Eq. (61). As discussed in
Appendix B.2, to second order one finds that (Zhu et al.,
2013)

Ĥ≃
X
j

ℏðωjþΛjÞjjihjjþℏωrâ†âþ
X
j

ℏχjâ†âjjihjj; ð63Þ

where
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Λj ¼
X
i

jgijj2
ωj − ωi − ωr

; ð64aÞ

χj ¼
X
i

� jgijj2
ωj − ωi − ωr

−
jgijj2

ωi − ωj − ωr

	
: ð64bÞ

This result is, as previously stated, general, and it can be
used with a variety of artificial atoms coupled to a resonator
in the dispersive limit. Higher-order expressions were given by
Boissonneault, Gambetta, and Blais (2010) and Zhu et al.
(2013).

F. Alternative coupling schemes

Coupling the electric-dipole moment of a qubit to the zero-
point electric field of an oscillator via a capacitor is the most
common approach to light-matter coupling in a circuit, but it is
not the only possibility. Another approach is to take advantage
of the mutual inductance between a flux qubit and the center
conductor of a resonator to couple the qubit’s magnetic dipole
to the resonator’s magnetic field. A stronger interaction can be
obtained by galvanically connecting the flux qubit to the
center conductor of a transmission-line resonator (Bourassa
et al., 2009). In such a situation, the coupling can be
engineered to approach, or even be larger, than the system
frequencies allowing to reach what is known at the ultra-
strong-coupling regime; see Sec. VI.C.
Yet another approach is to couple the qubit to the oscillator

in such a way that the resonator field does not result in qubit
transitions but instead only shifts the qubit’s frequency.
This is known as longitudinal coupling and is represented
by the Hamiltonian (Kerman, 2013; Billangeon, Tsai, and
Nakamura, 2015a, 2015b; Didier, Bourassa, and Blais, 2015;
Richer and DiVincenzo, 2016; Richer et al., 2017)

Ĥz ¼ ℏωrâ†âþ ℏωq

2
σ̂z þ ℏgzðâ† þ âÞσ̂z: ð65Þ

Because the light-matter interaction in Ĥz is proportional to σ̂z
rather than σ̂x, the longitudinal interaction does not lead to
dressing of the qubit by a resonator field of the form discussed
in Sec. III.B. Some of the consequences of this observation,
particularly for qubit readout, are discussed in Sec. V.C.3.

IV. COUPLING TO THE ENVIRONMENT

Thus far we have dealt with isolated quantum systems. A
complete description of quantum electrical circuits, however,
must also take into account a description of how these systems
couple to their environment, including any measurement
apparatus and control circuitry. In fact, the environment plays
a dual role in quantum technology: Not only is a description of
quantum systems as perfectly isolated unrealistic, as coupling
to unwanted environmental degrees of freedom is unavoid-
able, but a perfectly isolated system would also not be useful
since we would have no means of controlling or observing it.
For these reasons, in this section we consider quantum
systems coupled to external transmission lines. We also

introduce the input-output theory, which is of central impor-
tance in understanding qubit readout in circuit QED in Sec. V.

A. Wiring up quantum systems with transmission lines

We start the discussion by considering transmission lines
coupled to individual quantum systems, which are a model for
losses and can be used to apply and receive quantum signals
for control and measurement. To be specific, we consider a
semi-infinite coplanar waveguide transmission line capaci-
tively coupled at one end to an oscillator; see Fig. 11. The
semi-infinite transmission line can be considered a limit of the
coplanar waveguide resonator of finite length discussed in
Sec. II.B.1, where one of the boundaries is now pushed to
infinity. This leads to a densely packed frequency spectrum,
which in its infinite limit must be treated as a continuum. In
analogy with Eq. (16), the Hamiltonian of the transmission
line is consequently

Ĥtml ¼
Z

∞

0

dωℏωb̂†ωb̂ω; ð66Þ

where the mode operators now satisfy ½b̂ω; b̂†ω0 � ¼ δðω − ω0Þ.
Similarly, the position-dependent flux and charge operators of
the transmission line are, in analogy with Eqs. (9), (10), (14),
and (15), given in the continuum limit by (Yurke, 2004)

Φ̂tmlðxÞ ¼
Z

∞

0

dω

ffiffiffiffiffiffiffiffiffiffiffi
ℏ

πωcv

r
cos

�
ωx
v

	
ðb̂†ω þ b̂ωÞ; ð67aÞ

Q̂tmlðxÞ ¼ i
Z

∞

0

dω

ffiffiffiffiffiffiffiffiffi
ℏωc
πv

r
cos

�
ωx
v

	
ðb̂†ω − b̂ωÞ: ð67bÞ

These are the canonical fields of the transmission line and in
the Heisenberg picture under Eq. (66) are related through

Q̂tmlðx; tÞ ¼ c _̂Φtmlðx; tÞ. In Eqs. (67), v ¼ 1=
ffiffiffiffi
lc

p
is the speed

of light in the transmission line, with c and l the capacitance
and inductance per unit length, respectively.
Considering capacitive coupling of the line to the oscillator

at x ¼ 0, the total Hamiltonian takes the form

Ĥ ¼ Ĥs þ Ĥtml − ℏ
Z

∞

0

dωλðωÞðb̂†ω − b̂ωÞðâ† − âÞ; ð68Þ

where Ĥs ¼ ℏωrâ†â is the oscillator Hamiltonian. Moreover,
λðωÞ ¼ ðCκ=

ffiffiffiffiffiffiffiffi
cCr

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωrω=2πv

p
is the frequency-dependent

FIG. 11. LC circuit capacitively coupled to a semi-infinite
transmission line used to model both damping and driving of
the system. Here b̂inðtÞ and b̂outðtÞ are the oscillator’s input and
output fields, respectively.
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coupling strength, with Cκ the coupling capacitance and Cr
the resonator capacitance. These expressions neglect small
renormalizations of the capacitances due to Cκ, as discussed in
Appendix A.
In the following, λðωÞ is assumed to be sufficiently small

relative to ωr such that the interaction can be treated as a
perturbation. In this situation, the system’s Q factor is large
and the oscillator responds in a small bandwidth only around
ωr. It is therefore reasonable to take λðωÞ ≃ λðωrÞ in Eq. (68).
Dropping rapidly oscillating terms finally leads to (Gardiner
and Zoller, 1999)

Ĥ ≃ Ĥs þ Ĥtml þ ℏ
Z

∞

0

dωλðωrÞðâb̂†ω þ â†b̂ωÞ: ð69Þ

Under the well-established Born-Markov approximations,
Eq. (69) leads to the following Lindblad-form Markovian
master equation for the system’s density matrix ρ (Gardiner
and Zoller, 1999; Breuer and Petruccione, 2002; Carmichael,
2002):

_ρ ¼ −i½Ĥs; ρ� þ κðn̄κ þ 1ÞD½â�ρþ κn̄κD½â†�ρ; ð70Þ

where κ ¼ 2πλðωrÞ2 ¼ Ztmlω
2
rC2

κ=Cr is the photon decay rate,
or linewidth, of the oscillator introduced earlier and, as
expected from Fermi’s golden rule (Clerk et al., 2010), is
evaluated at the system frequency ωr. Moreover, n̄κ ¼ n̄κðωrÞ
is the number of thermal photons of the transmission
line as given by the Bose-Einstein distribution hb̂†ωb̂ω0 i ¼
n̄κðωÞδðω − ω0Þ at the system frequency ωr and environment
temperature T. The symbol D½Ô�• represents the dissipator

D½Ô�• ¼ Ô • Ô† − 1
2
fÔ†Ô; •g; ð71Þ

with f·; ·g the anticommutator. Focusing on the second term of
Eq. (70), the role of this superoperator can be understood
intuitively by noting that the term ÔρÔ† with Ô ¼ â in Eq. (71)
acts on the Fock state jni as âjnihnjâ† ¼ njn − 1ihn − 1j. The
second term of Eq. (70) therefore corresponds to photon loss at
rate κ. Finite temperature stimulates photon emission, boosting
the loss rate to κðn̄κ þ 1Þ. On the other hand, the last term of
Eq. (70) corresponds to absorption of thermal photons by the
system. Because ℏωr ≫ kBT at dilution refrigerator temper-
atures, it is often assumed that n̄κ → 0. Deviations from this
expected behavior are, however, common in practice due to
residual thermal radiation propagating along control lines
connecting to room-temperature equipment and to uncontrolled
sources of heating. Approaches to mitigate this problem using
absorptive components are being developed (Córcoles et al.,
2011; Wang et al., 2019).

B. Input-output theory in electrical networks

While the master equation describes the system’s damped
dynamics, it provides no information on the fields radiated by
the system. Since radiated signals are what is measured
experimentally, it is of practical importance to include those
in our model. This is known as the input-output theory for
which two standard approaches exist. The first approach is to

work directly with Eq. (69) and consider Heisenberg picture
equations of motion for the system and field annihilation
operators â and b̂ω. This is the route taken by Gardiner and
Collett, one that is widely used in the quantum optics literature
(Collett and Gardiner, 1984; Gardiner and Collett, 1985).
An alternative approach is to introduce a decomposition of

the transmission-line modes in terms of left- and right-moving
fields, linked by a boundary condition at the position of the
oscillator that we take to be x ¼ 0with the transmission line at
x ≥ 0 (Yurke and Denker, 1984). The advantage of this
approach is that the oscillator’s input and output fields are
then defined in terms of easily identifiable left-moving (b̂Lω)
and right-moving (b̂Rω) radiation field components propagat-
ing along the transmission line. To achieve this, we replace
the modes cosðωx=vÞb̂ω in Eqs. (67a) and (67b) by
ðb̂Rωeiωx=v þ b̂Lωe−iωx=vÞ=2. Since the number of degrees
of freedom of the transmission line has seemingly doubled,
the modes b̂L=Rω cannot be independent. Indeed, the dynamics
of one set of modes is fully determined by the other set
through a boundary condition linking the left and right movers
at x ¼ 0.
To see this, it is useful to first decompose the voltage

V̂ðx; tÞ ¼ _̂Φtmlðx; tÞ at x ¼ 0 into left-moving (input) and
right-moving (output) contributions as V̂ðtÞ ¼ V̂ðx ¼ 0; tÞ ¼
V̂ inðtÞ þ V̂outðtÞ, where

V̂ in=outðtÞ ¼ i
Z

∞

0

dω

ffiffiffiffiffiffiffiffiffiffi
ℏω
4πcv

r
eiωtb̂†L=Rω þ H:c: ð72Þ

The boundary condition at x ¼ 0 follows from Kirchhoff’s
current law

ÎðtÞ ¼ V̂outðtÞ − V̂ inðtÞ
Ztml

; ð73Þ

where the left-hand side ÎðtÞ ¼ ðCκ=CrÞ _̂QrðtÞ is the current
injected by the sample, with Q̂r the oscillator charge (see
Appendix C for a derivation), while the right-hand side is the
transmission-line voltage difference at x ¼ 0.7 A mode
expansion of the operators involved in Eq. (73) leads to the
standard input-output relation (see Appendix C for details)

b̂outðtÞ − b̂inðtÞ ¼
ffiffiffi
κ

p
âðtÞ; ð74Þ

where the input and output fields are defined as

b̂inðtÞ ¼
iffiffiffiffiffi
2π

p
Z

∞

−∞
dωb̂Lωe−iðω−ωrÞt; ð75Þ

b̂outðtÞ ¼
iffiffiffiffiffi
2π

p
Z

∞

−∞
dωb̂Rωe−iðω−ωrÞt ð76Þ

and satisfy the commutation relations ½b̂inðtÞ; b̂†inðt0Þ� ¼
½b̂outðtÞ; b̂†outðt0Þ� ¼ δðt − t0Þ. To arrive at Eq. (74), terms

7Note that if instead we have a boundary condition of zero current
at x ¼ 0, it would follow that V̂ inðtÞ ¼ V̂outðtÞ; i.e., the end point
serves simply as a mirror reflecting the input signal.
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rotating at ωþ ωr have been dropped based on the previously
mentioned assumption that the system responds only to
frequencies ω ≃ ωr such that these terms are fast rotating
(Yurke, 2004). In turn, this approximation allows one to
extend the range of integration from ð0;∞Þ to ð−∞;∞Þ in
Eqs. (75) and (76). We have also approximated λðωÞ ≃ λðωrÞ
over the relevant frequency range. These approximations are
compatible with those used to arrive at the Lindblad-form
Markovian master equation of Eq. (70).
The same expressions and approximations can be used to

obtain the equation of motion for the resonator field âðtÞ in the
Heisenberg picture, which takes the form (see Appendix C for
details)

_̂aðtÞ ¼ i½Ĥs; âðtÞ� −
κ

2
âðtÞ þ ffiffiffi

κ
p

b̂inðtÞ: ð77Þ

Equation (77) shows that the resonator dynamics is deter-
mined by the input field (in practice, noise or drive), while
Eq. (74) shows how the output can, in turn, be found from the
input and the system dynamics. The output field thus holds
information about the system’s response to the input, which
can be measured to indirectly give us access to information
about the dynamics of the system. As discussed in more detail
in Sec. V, this can be done by measuring the voltage at some
x > 0 away from the oscillator. Under the previously used
approximations, this voltage can be expressed as

V̂ðx; tÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωrZtml

2

r
½eiωrx=v−iωrtb̂outðtÞ

þ e−iωrx=v−iωrtb̂inðtÞ þ H:c:�: ð78Þ

Note that this approximate expression assumes that all
relevant frequencies are near ωr and, furthermore, neglects
all non-Markovian time-delay effects.
In this section we have considered a particularly simple

setup: a single quantum system connected to the end point of a
semi-infinite transmission line. More generally, quantum
systems can be made to interact by coupling them to a
common transmission line, and multiple transmission lines
can be used to form quantum networks. These more complex
setups can be treated using the SLH formalism, which
generalizes the results in this section (Gough and James,
2009; Combes, Kerckhoff, and Sarovar, 2017).

C. Qubit relaxation and dephasing

The master equation (70) was derived for an oscillator
coupled to a transmission line, but this form of the master
equation is quite general. In fact, Eq. (68) is itself a generic
system-bath Hamiltonian that can be used to model dissipa-
tion due to a variety of different noise sources (Caldeira and
Leggett, 1981). To model damping of an arbitrary quantum
system, for example, a transmon qubit or a coupled resonator-
transmon system, the operator â in Eq. (68) is simply replaced
with the relevant system operator that couples to the trans-
mission line (or, more generally, the bath).
For the case of a transmon (see Fig. 12), Ĥs in Eq. (70) is

replaced with the Hamiltonian Ĥq of Eq. (27) together with

the additional replacements D½â�• → D½b̂�•, D½â†�• → D½b̂†�•,
and κ → γ. Here γ ¼ 2πλðωqÞ2 is the relaxation rate of the
artificial atom that is related to the qubit-environment cou-
pling strength evaluated at the qubit frequency. This immedi-
ately leads to the master equation

_ρ ¼ −i½Ĥq; ρ� þ γðn̄γ þ 1ÞD½b̂�ρþ γn̄γD½b̂†�ρ; ð79Þ

where ρ now refers to the transmon state and n̄γ is the thermal
photon number of the transmon’s environment. It is often
assumed that n̄γ → 0 but, as with the oscillator, a residual
thermal population is often observed in practice (Córcoles
et al., 2011; Wang et al., 2019).
Superconducting quantum circuits can also suffer from

dephasing caused, for example, by fluctuations of parameters
controlling their transition frequency and by dispersive
coupling to other degrees of freedom in their environment.
For a transmon, a phenomenological model for dephasing can
be introduced by adding the following term to the master
equation (Carmichael, 2002):

2γφD½b̂†b̂�ρ; ð80Þ

with γφ the pure dephasing rate. Because of its insensitivity to
charge noise (see Fig. 6), γφ is often small for the 0-1
transition of transmon qubits (Koch et al., 2007). Given that
charge dispersion increases exponentially with level number,
dephasing due to charge noise can be apparent on higher
transmon levels; see Egger et al. (2019). Another source of
dephasing for the transmon is the residual thermal photon
population of a resonator to which the transmon is dispersively
coupled. This can be understood from the form of the
interaction in the dispersive regime χabâ†âb̂

†b̂, where fluc-
tuations of the photon number lead to fluctuations in the qubit
frequency and therefore to dephasing (Bertet et al., 2005;
Schuster et al., 2005; Gambetta et al., 2006; Rigetti et al.,
2012). Other sources of relaxation and dephasing include two-
level systems within the materials and interfaces of the devices
(Müller, Cole, and Lisenfeld, 2019), quasiparticles (Glazman
and Catelani, 2020) generated by a number of phenomena
including infrared radiation (Barends et al., 2011; Córcoles
et al., 2011), and even ionizing radiation (Vepsäläinen et al.,
2020). We note that a term of the form of Eq. (80) but with b̂†b̂

FIG. 12. Transmon qubit coupled capacitively to a semi-infinite
transmission line and inductively to a flux line. These ports are
used to control the qubit state and to change its transition
frequency. They also lead to qubit decay into the transmission
line and to dephasing due to flux noise.
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replaced by â†â can also be added to the master equation of
the oscillator to model dephasing of the cavity itself.
Oscillator dephasing rates are, however, typically small and
this contribution is often neglected (Reagor et al., 2016).
Combining these results, the master equation for a transmon

subject to relaxation and dephasing assuming that n̄γ → 0 is

_ρ ¼ −i½Ĥq; ρ� þ γD½b̂�ρþ 2γφD½b̂†b̂�ρ: ð81Þ

It is common to express this master equation in the
two-level approximation of the transmon, which is obtained
simply by taking Ĥq → ℏωaσ̂z=2, b̂

†b̂→ðσ̂zþ1Þ=2, b̂→ σ̂−,

and b̂† → σ̂þ.
Note that the rates γ and γφ appearing in the previous

expressions are related to the characteristic T1 relaxation time
and T2 coherence time of the artificial atom, which are defined
as (Schoelkopf et al., 2003)

T1 ¼
1

γ1
¼ 1

γ↓ þ γ↑
≃
1

γ
; ð82aÞ

T2 ¼
1

γ2
¼

�
γ1
2
þ γφ

	
−1
; ð82bÞ

where γ↓ ¼ ðn̄γ þ 1Þγ and γ↑ ¼ n̄γγ. The approximation in
Eq. (82a) holds for n̄γ → 0. At zero temperature, T1 is the
characteristic time for the artificial atom to relax from its first
excited state to the ground state. On the other hand, T2 is the
dephasing time, which quantifies the characteristic lifetime of
coherent superpositions, and includes a contribution from
both pure dephasing (γφ) and relaxation (γ1). Current best
values for the T1 and T2 time of fixed-frequency transmon
qubits are in the 50 − 120 μs range for aluminum-based
transmons (Devoret and Schoelkopf, 2013; Nersisyan et al.,
2019; Kjaergaard, Schwartz et al., 2020; Wei et al., 2020).
Relaxation times above 300 μs have been reported in trans-
mon qubits where the transmon pads have been made with
tantalum rather than aluminum, but the Josephson junction is
still made from aluminum and aluminum oxide (Place et al.,
2020). Other superconducting qubits also show large relax-
ation and coherence times. Examples are T1; T2 ∼ 300 μs for
heavy-fluxonium qubits (Zhang et al., 2021), and T1 ∼ 1.6 ms
and T2 ∼ 25 μs for the 0-π qubit (Gyenis et al., 2021).
Qubit relaxation and incoherent excitation occur due to

uncontrolled exchange of gigahertz frequency photons
between the qubit and its environment. These processes are
observed to be well described by the Markovian master
equation of Eq. (81). In contrast, the dynamics leading to
dephasing are typically non-Markovian, happening at low
frequencies (i.e., slow time scales set by the phase coherence
time itself). As a result, it is observed that these processes
cannot be accurately described by a Markovian master
equation such as Eq. (81). This equation thus represents a
somewhat crude approximation to dephasing in superconduct-
ing qubits. That being said, in practice the Markovian theory is
still useful, particularly because it correctly predicts the results
of experiments probing the steady-state response of the
system.

D. Dissipation in the dispersive regime

We now turn to a description of dissipation for the coupled
transmon-resonator system of Sec. III. Assuming that the
transmon and the resonator are coupled to independent baths
as illustrated in Fig. 13, the master equation for this composite
system is (taking n̄κ;γ → 0 for simplicity)

_ρ ¼ −i½Ĥ; ρ� þ κD½â�ρþ γD½b̂�ρþ 2γφD½b̂†b̂�ρ; ð83Þ

where ρ is now a density matrix for the total system and Ĥ
describes the coupled system as in Eq. (34). Equation (83) is
valid only at small values of g=ðωr;ωqÞ. This is because
energy decay occurs via transitions between system eigen-
states, while the previous expression describes transitions
between the uncoupled bare states. A derivation of the master
equation valid at arbitrary g was given by Beaudoin,
Gambetta, and Blais (2011).
More important to the present discussion is the fact that, at

first glance, Eq. (83) gives the impression that dissipative
processes influence the transmon and the resonator in com-
pletely independent manners. However, because Ĥ entangles
the two systems, the loss of a resonator photon can lead to
relaxation of the dressed qubit. Moving to the dispersive
regime, a more complete picture of dissipation therefore
emerges after applying the unitary transformation in
Eq. (49) not only on the Hamiltonian but also on the previous
master equation. Neglecting fast-rotating terms and consid-
ering corrections to second order in λ [which is consistent if
κ; γ; γφ ¼ OðECg2=Δ2Þ] leads to the dispersive master equa-
tion (Boissonneault, Gambetta, and Blais, 2009)

_ρdisp ¼ −i½Ĥdisp; ρdisp�
þ ðκ þ κγÞD½â�ρdisp þ ðγ þ γκÞD½b̂�ρdisp
þ 2γφD½b̂†b̂�ρdisp
þ γΔD½â†b̂�ρdisp þ γΔD½b̂†â�ρdisp; ð84Þ

FIG. 13. Because the dressed states in the dispersive regime are
entangled qubit-cavity states, cavity damping at the rate κ leads to
qubit relaxation at the Purcell rate γκ . Conversely, qubit relaxation
leads to cavity decay at the inverse Purcell rate κγ . Adding a
Purcell filter (not shown) reduces the cavity density of states at
the qubit frequency and therefore suppresses Purcell decay.
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where we have introduced

γκ ¼
�
g
Δ

	
2

κ; κγ ¼
�
g
Δ

	
2

γ; γΔ ¼ 2

�
g
Δ

	
2

γφ; ð85Þ

and ρdisp ¼ Û†
dispρÛdisp is the density matrix in the dispersive

frame. Equation (85) has three new rates, the first of which is
known as the Purcell decay rate γκ (Purcell, 1946). This rate
captures the fact that the qubit dressed by the field can relax by
emission of a resonator photon. It can be understood simply
from the form Eq. (41) of the dressed eigenstate je; 0i ∼
je; 0i þ ðg=ΔÞjg; 1i that is closest to a bare qubit excitation
jei. This state is the superposition of the qubit first excited
state with no photon and, with probability ðg=ΔÞ2, the qubit
ground state with a photon in the resonator. The latter
component can decay at the rate κ, taking the dressed excited
qubit to the ground state jg; 0i with a rate γκ. Similar intuition
is also applied to κγ , now associated with a resonator photon
loss through a qubit decay event.
The situation is more subtle in the last line of Eq. (84).

Following Boissonneault, Gambetta, and Blais (2008, 2009),
an effective master equation for the transmon can be obtained
from Eq. (84) by approximately eliminating the resonator
degrees of freedom. This results in transmon relaxation and
excitation rates given approximately by n̄γΔ, with n̄ the
average photon number in the resonator. Commonly known
as dressed dephasing, this leads to spurious transitions during
qubit measurement and can be interpreted as originating from
dephasing noise at the detuning frequency Δ that is up- or
down-converted by readout photons to cause spurious qubit-
state transitions.
Because we have taken the shortcut of applying the

dispersive transformation on the master equation, the previous
discussion neglects the frequency dependence of the various
decay rates. In a more careful derivation, the dispersive
transformation is applied on the system plus bath
Hamiltonian, and only then is the master equation derived
(Boissonneault, Gambetta, and Blais, 2009). The result has the
same form as Eq. (84), but with different expressions for the
rates. Indeed, it is useful to write κ ¼ κðωrÞ and γ ¼ γðωqÞ to
recognize that, while photon relaxation is probing the envi-
ronment at the resonator frequency ωr, qubit relaxation is
probing the environment at ωq. With this notation, the first
two rates of Eq. (85) become in the more careful derivation
γκ ¼ ðg=ΔÞ2κðωqÞ and κγ ¼ ðg=ΔÞ2γðωrÞ. In other words,
Purcell decay occurs by emitting a photon at the qubit
frequency and not at the resonator frequency suggested by
the completely white noise model used to derive Eq. (85). In
the same way, it is useful to write the dephasing rate as γφ ¼
γφðω → 0Þ to recognize the importance of low-frequency
noise to dephasing. Using this notation, the rates in the last
two terms of Eq. (84) become, respectively, γΔ ¼
2ðg=ΔÞ2γφðΔÞ and γ−Δ ¼ 2ðg=ΔÞ2γφð−ΔÞ (Boissonneault,
Gambetta, and Blais, 2009). In short, dressed dephasing
probes the noise responsible for dephasing at the transmon-
resonator detuning frequency Δ. This observation was used to
probe this noise at gigahertz frequencies by Slichter et al.

(2012). Moreover, in the presence of qubit or resonator drives,
effective master equations derived from the full system plus
bath Hamiltonian without the rotating-wave or two-level
approximations also obtain drive-power-dependent relaxation
rates (Malekakhlagh, Petrescu, and Türeci, 2020; Müller,
2020; Petrescu, Malekakhlagh, and Türeci, 2020). In particu-
lar, these theories attribute the drive-induced enhancement of
qubit relaxation to correlated qubit-cavity processes such as
stimulated emission.
The observations in this section result from the qubit-

oscillator dressing that occurs under the Jaynes-Cummings
Hamiltonian. For this reason, the situation is substantially
different if the electric-dipole interaction leading to the
Jaynes-Cummings Hamiltonian is replaced by a longitudinal
interaction of the form of Eq. (65). In this case, there is no
light-matter dressing and, consequently, no Purcell decay or
dressed dephasing (Kerman, 2013; Billangeon, Tsai, and
Nakamura, 2015a). This is one of the advantages of this
alternative light-matter coupling.

E. Multimode Purcell effect and Purcell filters

Thus far we have considered dissipation for a qubit
dispersively coupled to a single-mode oscillator. Replacing
the latter with a multimode resonator leads to dressing of the
qubit by all of the resonator modes and therefore to a
modification of the Purcell decay rate. Following the previous
discussion, one may then expect the contributions to add up,
leading to the modified rate

P∞
m¼0ðgm=ΔmÞ2κm, with m the

mode index. However, when accounting for the frequency
dependence of κm, gm, and Δm, this expression diverges
(Houck et al., 2008). It is possible to cure this problem by
using a more refined model (Parra-Rodriguez et al., 2018).
The divergence is removed when the finite size of the
transmon and the frequency dependence of the impedance
of the resonator’s input and output capacitors is included
(Bourassa, 2012) or, in the dipole approximation for the qubit,
by taking into account the frequency dependence of the qubit-
resonator coupling capacitance (Malekakhlagh, Petrescu, and
Türeci, 2017).
Given that damping rates in quantum electrical circuits are

set by classical system parameters (Leggett, 1984b), a simpler
approach to compute the Purcell rate exists. It can indeed be
shown that γκ ¼ Re½YðωqÞ�=CΣ, with YðωÞ ¼ 1=ZðωÞ the
admittance of the electromagnetic environment seen by the
transmon (Esteve, Devoret, and Martinis, 1986; Houck et al.,
2008). This expression again makes it clear that relaxation
probes the environment (here represented by the admittance)
at the system frequency. It also suggests that engineering the
admittance YðωÞ such that it is purely reactive at ωq can cancel
Purcell decay; see the inset of Fig. 13. This can be done by
adding a transmission-line stub of appropriate length and
terminated in an open circuit at the output of the resonator,
something that is known as a Purcell filter (Reed, Johnson
et al., 2010). Because of the increased freedom in optimizing
the system parameters (essentially decoupling the choice of κ
from the qubit relaxation rate), Purcell filters of various types
are commonly used experimentally (Jeffrey et al., 2014;
Bronn et al., 2015; Walter et al., 2017).
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F. Controlling quantum systems with microwave drives

While connecting a quantum system to external trans-
mission lines leads to losses, such connections are never-
theless necessary to control and measure the system. Consider
a continuous microwave tone of frequency ωd and phase ϕd
applied to the input port of the resonator. A simple approach to
model this drive is based on the input-output approach
of Sec. IV.B. Indeed, the drive can be taken into account
by replacing the input field b̂inðtÞ in Eq. (77) with
b̂inðtÞ → b̂inðtÞ þ βðtÞ, where βðtÞ ¼ AðtÞ expð−iωdt − iϕdÞ
is the coherent classical part of the input field of amplitude
AðtÞ. The resulting term

ffiffiffi
κ

p
βðtÞ in the Langevin equation can

be absorbed in the system Hamiltonian with the replacement
Ĥs → Ĥs þ Ĥd, where

Ĥd ¼ ℏ½εðtÞâ†e−iωdt−iϕd þ ε�ðtÞâeiωdtþiϕd �; ð86Þ

with εðtÞ ¼ i
ffiffiffi
κ

p
AðtÞ the possibly time-dependent amplitude

of the drive as seen by the resonator mode. Generalizing to
multiple drives on the resonator and/or drives on the transmon
is straightforward.
The drive Hamiltonian Ĥd is the generator of displacement

in phase space of the resonator. As a result, by choosing
appropriate parameters for the drive, evolution under Ĥd will
bring the intraresonator state from vacuum to an arbitrary
coherent state (Gardiner and Zoller, 1999; Carmichael, 2002)

jαi ¼ D̂ðαÞj0i ¼ e−jαj2=2
X∞
n¼0

αnffiffiffiffiffi
n!

p jni; ð87Þ

where D̂ðαÞ is known as the displacement operator and takes
the form

D̂ðαÞ ¼ eαâ
†−α�â: ð88Þ

As discussed in the next section, coherent states play an
important role in qubit readout in circuit QED.
It is important to note that Ĥd derives from Eq. (77), which

is itself the result of a rotating-wave approximation. As can be
understood from Eq. (22), before this approximation the drive
rather takes the form iℏεðtÞ cosðωdtþ ϕdÞðâ† − âÞ. Although
Ĥd is sufficient in most cases of practical interest, departures
from the predictions of Eq. (86) can been seen at large drive
amplitudes (Pietikäinen et al., 2017; Verney et al., 2019).

V. MEASUREMENTS IN CIRCUIT QED

Before the development of circuit QED, the quantum state
of superconducting qubits was measured by fabricating and
operating a measurement device, such as a single-electron
transistor or dc SQUID, in close proximity to the qubit
(Makhlin, Schön, and Shnirman, 2001; Clarke and
Wilhelm, 2008). A challenge with such an approach is that
the readout circuitry must be strongly coupled to the qubit
during measurement so as to extract information on a time-
scale much smaller than T1, while being well decoupled from
the qubit when the measurement is turned off to avoid

unwanted backaction. Especially given that measurement
necessarily involves dissipation (Landauer, 1991), simulta-
neously satisfying these two requirements is challenging.
Circuit QED, however, has several advantages to offer over
the previous approaches. Indeed, as discussed in this section,
qubit readout in this architecture is realized by measuring
scattering of a probe tone off an oscillator coupled to the qubit.
This approach first leads to an excellent measurement on-off
ratio since qubit readout occurs only in the presence of the
probe tone. A second advantage is that the necessary dis-
sipation now occurs away from the qubit, essentially at a
voltage meter located at room temperature, rather than in a
device fabricated at close proximity to the qubit. Unwanted
energy exchange is, moreover, inhibited when working in the
dispersive regime where the effective qubit-resonator inter-
action in Eq. (44) is such that even the probe-tone photons are
not absorbed by the qubit. As a result, the backaction on the
qubit is to a large extent limited to the essential dephasing that
quantum measurements must impart on the measured system,
leading in principle to a quantum nondemolition (QND) qubit
readout.
Because of the small energy of microwave photons with

respect to optical photons, single-photon detectors in the
microwave-frequency regime are still being developed; see
Sec. VIII.F. Therefore, measurements in circuit QED rely on
amplification of weak microwave signals followed by detec-
tion of field quadratures using heterodyne detection. Before
discussing qubit readout, in Sec. V.A we explain these terms
and go over the main challenges related to such measurements
in the quantum regime.

A. Microwave field detection

Figure 14 illustrates a typical measurement chain in circuit
QED. The signal of a microwave source is directed to the input
port of the resonator first going through a series of attenuators
thermally anchored at different stages of the dilution refrig-
erator. The role of these attenuators is to absorb the room-
temperature thermal noise propagating toward the sample.
The field transmitted by the resonator is first amplified, then
mixed with a reference signal, converted from analog to
digital, and finally processed with a field-programmable gate
array (FPGA) or recorded. Circulators are inserted before the
amplification stage to prevent noise generated by the amplifier
from reaching the resonator. Circulators are directional devi-
ces that transmit signals in the forward direction, while
strongly attenuating signals propagate in the reverse direction
(here coming from the amplifier) (Pozar, 2011). In practice,
circulators are bulky off-chip devices relying on permanent
magnets that are not compatible with the requirement for
integration with superconducting quantum circuits. They also
introduce additional losses due to insertion losses and off-chip
cable losses. Significant effort is currently being devoted to
developing compact, on-chip, superconducting circuit-based
circulators (Kamal, Clarke, and Devoret, 2011; Chapman
et al., 2017; Lecocq et al., 2017; Abdo et al., 2019).
In practice, the different components and cables of the

measurement chain have a finite bandwidth that we assume to
be larger than the bandwidth of the signal of interest b̂outðtÞ at
the output of the resonator. To account for the finite bandwidth
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of the measurement chain and to simplify the following
discussion, it is useful to consider the filtered output field

âfðtÞ ¼ ðf⋆b̂outÞðtÞ
¼

Z
∞

−∞
dτfðt − τÞb̂outðτÞ

¼
Z

∞

−∞
dτfðt − τÞ½ ffiffiffi

κ
p

âðτÞ þ b̂inðτÞ�; ð89Þ

which is linked to the intracavity field â via the input-output
boundary condition [Eq. (74)] that we use on the last line of
Eq. (89). In this equation the filter function fðtÞ is normalized
to
R
∞
−∞ dtjfðtÞj2 ¼ 1 such that ½âfðtÞ; â†fðtÞ� ¼ 1. As discussed

later in the context of qubit readout, in addition to representing
the measurement bandwidth, filter functions are used to
optimize the distinguishability between the qubit states.
Ignoring the presence of the circulator and assuming that a

phase-preserving amplifier (i.e., an amplifier that amplifies
both signal quadratures equally) is used, in the first stage of
the measurement chain the signal is transformed according to
(Caves, 1982; Clerk et al., 2010)

âamp ¼
ffiffiffiffi
G

p
âf þ

ffiffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
ĥ†; ð90Þ

where G is the power gain and ĥ† accounts for noise added by
the amplifier. The presence of this added noise is required for
the amplified signal to obey the bosonic commutation relation
½âamp; â

†
amp� ¼ 1. Equivalently, the noise must be present

because the two quadratures of the signal are canonically

conjugate. Amplification of both quadratures without added
noise would allow us to violate the Heisenberg uncertainty
relation between the two quadratures.
In a standard parametric amplifier, âf in Eq. (90) represents

the amplitude of the signal mode and h represents the
amplitude of a second mode called the idler. The physical
interpretation of Eq. (90) is that an ideal amplifier performs a
Bogoliubov transformation on the signal and idler modes. The
signal mode is amplified, but the requirement that the trans-
formation be canonical implies that the phase conjugated and
amplified quantum noise from the idler port must appear in the
signal output port. Ideally, the input to the idler is vacuum with
hĥ†ĥi ¼ 0 and hĥĥ†i ¼ 1, so the amplifier adds only quantum
noise. Near-quantum-limited amplifiers with ∼20 dB power
gain approaching this ideal behavior are now routinely used in
circuit QED experiments. These Josephson-junction-based
devices, as well as the distinction between phase-preserving
and phase-sensitive amplification, are discussed further in
Sec. VIII.B.
To measure the weak signals that are typical in circuit QED,

the output of the first near-quantum-limited amplifier is further
amplified by a low-noise high-electron-mobility transistor
(HEMT) amplifier. The latter acts on the signal again fol-
lowing Eq. (90), now with a larger power gain ∼30–40 dB but
also a larger added noise photon number. The best cryogenic
HEMT amplifiers in the 4–8 GHz band have noise figures as
low as hĥ†ĥi ∼ 5–10. However, the effect of attenuation due to
cabling up to the previous element of the amplification chain,
i.e., a quantum-limited amplifier or the sample of interest
itself, can degrade this figure significantly. A more complete
understanding of the added noise in this situation can be
derived from Fig. 15(a). There, beam splitters of transmis-
sivity η1;2 model the attenuation leading to the two amplifiers
of gain labeled G1 and G2. Taking into account vacuum noise
v̂1;2 at the beam splitters, the input-output expression of this
chain can be cast under the form of Eq. (90) with a total gain
GT ¼ η1η2G1G2 and noise mode ĥ†T corresponding to the total
added noise number

(b)

(a)

FIG. 15. (a) Amplification chain with amplifiers of gain G1;2

and noise mode ĥ1;2 with attenuation modeled by beam splitters
of transmittivity η1;2. The beam splitters each have a vacuum port
with vacuum mode v̂1;2 such that hv̂†1;2v̂1;2i ¼ 0. The quantum
efficiency derived from this model is η ¼ 1=ðNT þ 1Þ ≤ 1, with
NT ¼ hĥ†TĥTi the total added noise number given in Eq. (91).
(b) Alternative model where a noisy amplifier is modeled
by a noiseless amplifier preceded by a beam splitter of trans-
mittivity η̄. The quantum efficiency derived from this model is
η̄ ¼ 1=ð2Aþ 1Þ ≤ 1=2, with A the added noise given in
Eq. (94).

FIG. 14. Schematic representation of the microwave measure-
ment chain for field detection in circuit QED, with the resonator
depicted as a Fabry-Perot cavity. The signal (RF) from a micro-
wave source is applied to the input port of the resonator first
passing through attenuators to reduce the level of thermal
radiation. After passing through a circulator, the resonator’s
output field is first amplified by a quantum-limited amplifier,
such as a JPA or a JTWPA, and then by a HEMT amplifier. The
signal is then mixed with a local oscillator (LO). The signal at the
output of the mixer is digitized with an analog-to-digital converter
(ADC) and can be further processed by a field-programmable
gate array (FPGA). The two lines at the output of the mixer
correspond to the two quadratures of the field. The temperature at
which the different components are operated is indicated.
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NT ¼ 1

GT − 1
½η1ðG1 − 1ÞG2ðN1 þ 1Þ

þ ðG2 − 1ÞðN2 þ 1Þ� − 1

≈
1

η1

�
1þ N1 þ

N2

η2G1

�
− 1; ð91Þ

where Ni ¼ hĥ†i ĥii, with i ¼ 1; 2; T. The last expression
corresponds to the large gain limit. According to Eq. (91),
if the gain G1 of the first amplifier is large, the noise of the
chain is dominated by the noise N1 of the first amplifier. This
emphasizes the importance of using near-quantum-limited
amplifiers with low noise in the first stage of the chain. In the
literature, the quantum efficiency η ¼ 1=ðNT þ 1Þ is often
used to characterize the measurement chain, with η ¼ 1 in the
ideal case NT ¼ 0.
It is worthwhile to note that another definition of the

quantum efficiency can often be found in the literature. This
alternative definition is based on Fig. 15(b) where a noisy
amplifier of gain G is replaced by a noiseless amplifier of gain
G=η̄ preceded by a fictitious beam splitter of transmittivity η̄
adding vacuum noise to the amplifier’s input (Leonhardt and
Paul, 1993). The quantum efficiency corresponds here to the
transmittivity η̄ of the fictitious beam splitter. The input-output
relation of the network of Fig. 15(b) with its noiseless phase-
preserving amplifier reads âamp ¼

ffiffiffiffiffiffiffiffiffi
G=η̄

p ð ffiffiffī
η

p
âf þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η̄

p
v̂Þ,

which can be expressed as

hjâampj2i ¼
G
η̄

�
ð1 − η̄Þ 1

2
þ η̄hjâfj2i

�
; ð92Þ

with hjÔj2i ¼ hfÔ†; Ôgi=2 the symmetrized fluctuations.
The first term of Eq. (92) corresponds to the noise added
by the amplifier, here represented by vacuum noise added to
the signal before amplification, while the second term corre-
sponds to noise in the signal at the input of the amplifier. On
the other hand, Eq. (90) for a noisy amplifier can also be cast
in the form of Eq. (92) with

hjâampj2i ¼ GðAþ hjâfj2iÞ; ð93Þ

where we introduce the added noise

A ¼ G − 1

G

�
hĥ†ĥi þ 1

2

	
: ð94Þ

In the limit of low amplifier noise hĥ†ĥi → 0 and large
gain, the added noise is found to be bounded by A ≥ ð1 −
G−1Þ=2 ≃ 1=2 corresponding to half a photon of noise (Caves,
1982). Using Eqs. (92) and (93), the quantum efficiency of a
phase-preserving amplifier can therefore be written as η̄ ¼
1=ð2Aþ 1Þ ≤ 1=2 and is found to be bounded by 1=2 in the
ideal case. The concept of quantum efficiency is not limited to
amplification and can be applied to the entire measurement
chain illustrated in Fig. 14.
Using Eqs. (78) and (90), the voltage after amplification can

be expressed as

V̂ampðtÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωRFZtml

2

r
½e−iωRFtâamp þ H:c:�; ð95Þ

where ωRF is the signal frequency. To simplify the expres-
sions, we have dropped the phase associated with the finite
cable length. We have also dropped the contribution from the
input field b̂inðtÞ moving toward the amplifier in the opposite
direction at that point (see Fig. 14), because this field is not
amplified and therefore gives a small contribution compared
to the amplified output field. Recall, however, the contribution
of this field to the filtered signal [Eq. (89)].
Different strategies can be used to extract information from

the amplified signal, and here we take the next stage of the
chain to be an in-phase and quadrature (IQ) mixer. As
schematically illustrated in Fig. 16, in this microwave device
the signal first encounters a power divider, illustrated here as a
beam splitter accounting for added noise due to internal
modes, followed in each branch by mixers with local
oscillators (LOs) that are offset in phase by π=2. The LO
consists of a reference signal of well-defined amplitude ALO,
frequency ωLO, and phase ϕLO:

VLOðtÞ ¼ ALO cosðωLOt − ϕLOÞ: ð96Þ

Mixers use nonlinearity to down-convert the input signal to a
lower frequency referred to as the intermediate frequency (IF)
signal.
First describing the signal as a classical voltage

VRFðtÞ ¼ ARF cosðωRFtþ ϕRFÞ, the output at one of these
mixers is (Pozar, 2011)

VmixerðtÞ ¼ KVRFðtÞVLOðtÞ
¼ 1

2
KALOARFfcos½ðωLO − ωRFÞt − ϕLO�

þ cos½ðωLO þ ωRFÞt − ϕLO�g; ð97Þ

where K accounts for voltage conversion losses. According to
Eq. (97), mixing with the LO results in two sidebands of
frequencies ωLO � ωRF. The high-frequency component is
filtered out with a low-pass filter (not shown) leaving only the

FIG. 16. Schematic representation of an IQ mixer. The rf signal
âamp is split into two parts at a power divider, here illustrated as a
beam splitter to account for added noise due to internal modes.
Ideally, only vacuum noise v̂ is introduced at that stage. The two
outputs are combined with a LO at mixers. By phase shifting the
LO by π=2 in one of the two arms, it is possible to simultaneously
measure the two quadratures of the field.
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lower sideband of frequency ωIF ¼ ωLO − ωRF. The choice
ωIF ≠ 0 is known as heterodyne detection. Taking the LO
frequency such that ωIF is in the range of a few tens of
megahertz to a few hundred, the signal can be digitized using
an analog-to-digital converter (ADC) with a sampling rate
chosen in accordance with the bandwidth requirements of the
signal to be recorded. This bandwidth is set by the choice of IF
frequency and the signal bandwidth. For qubit readout, this is
typically a few megahertz to a few tens of megahertz and is set
by the bandwidth κ=2π of the readout cavity. The recorded
signal can then be averaged, or processed and analyzed in
more complex ways, using real-time FPGA electronics or
processed off-line. A detailed discussion of digital signal
processing in the context of circuit QED was given by Salathé
et al. (2018).
Going back to a quantum-mechanical description of the

signal by combining Eqs. (95) and (97), the IF signals at the I
and Q ports of the IQ mixer read

V̂IðtÞ ¼ VIF½X̂fðtÞ cosðωIFtÞ − P̂fðtÞ sinðωIFtÞ�
þ V̂noise;IðtÞ; ð98aÞ

V̂QðtÞ ¼ −VIF½P̂fðtÞ cosðωIFtÞ þ X̂fðtÞ sinðωIFtÞ�
þ V̂noise;QðtÞ; ð98bÞ

where we take ϕLO ¼ 0 in the I arm of the IQ mixer,
and ϕLO ¼ π=2 in the Q arm. We have defined
VIF ¼ KALO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κGZtmlℏωRF=2

p
, and V̂noise;I=Q as the contribu-

tions from the amplifier noise and any other added noise. We
have also introduced the quadratures

X̂f ¼ â†f þ âf
2

; P̂f ¼ iðâ†f − âfÞ
2

; ð99Þ

the dimensionless position and momentum operators of
the simple harmonic oscillator, here defined such that
½X̂f; P̂f� ¼ i=2. Taken together V̂IðtÞ and V̂QðtÞ trace a circle
in the xf − pf plane and contain information about the
quadratures X̂f and P̂f at all times. It is therefore possible
to digitally transform the signals by going to a frame where
they are stationary using the rotation matrix

RðtÞ ¼
�
cosðωIFtÞ − sinðωIFtÞ
sinðωIFtÞ cosðωIFtÞ

	
ð100Þ

to extract X̂fðtÞ and P̂fðtÞ.
We note that the case ωIF ¼ 0 is generally known as

homodyne detection (Leonhardt, 1997; Gardiner and Zoller,
1999; Wiseman and Milburn, 2010; Pozar, 2011). Leaving the
LO phase arbitrary, we find in this situation that the IF signal
after down-conversion by a mixer is directly proportional to
time-independent quadrature

X̂f;ϕLO
¼ â†fe

iϕLO þ âfe−iϕLO

2

¼ X̂f cosϕLO þ P̂f sinϕLO: ð101Þ

While this is in appearance simpler than the previous
appproach since a quadrature is immediately obtained, this
measurement is susceptible to 1=f noise and drift because the
homodyne signal is at dc. It is also worthwhile to note that
homodyne detection as realized with the approach described
here differs from optical homodyne detection, which can be
performed in a noiseless fashion (in the present case, noise is
added at the least by the phase-preserving amplifiers and the
noise port of the IQ mixer) (Eichler, Bozyigit, and Wallraff,
2012). Schuster et al. (2005) and Krantz et al. (2019) provided
more detailed discussions of the different field measurement
techniques in the context of circuit QED.

B. Phase-space representations and their relation to field
detection

In the context of field detection, it is particularly useful to
represent the quantum state of the electromagnetic field using
phase-space representations. There are several such represen-
tations, and here we focus on the Wigner function and the
Husimi-Q distribution (Carmichael, 2002; Haroche and
Raimond, 2006). This discussion applies equally well to
the intracavity field â and to the filtered output field âf.
The Wigner function is a quasiprobability distribution given

by the Fourier transform

Wρðx; pÞ ¼
1

π2

ZZ
∞

−∞
dx0dp0Cρðx0; p0Þe2iðpx0−xp0Þ ð102Þ

of the characteristic function

Cρðx; pÞ ¼ Trfρe2iðpX̂−xP̂Þg: ð103Þ

With ρ the state of the electromagnetic field, Cρðx; pÞ can be
understood as the expectation value of the displacement
operator

D̂ðαÞ ¼ e2iðpX̂−xP̂Þ ¼ eαâ
†−α�â; ð104Þ

with α ¼ xþ ip; see Eq. (88).
The coherent states introduced in Eq. (87) have particularly

simple Wigner functions. Indeed, as illustrated schematically
in Fig. 17, the Wigner function WjβiðαÞ of the coherent state
jβi is simply a Gaussian centered at β in phase space

FIG. 17. Pictorial phase-space distribution of a coherent state
and its marginal along an axis Xϕ rotated by ϕ from X.
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WjβiðαÞ ¼
2

π
e−2jα−βj2 : ð105Þ

The width 1=
ffiffiffi
2

p
of the Gaussian is a signature of quantum

noise and implies that coherent states saturate the Heisenberg
inequality ΔXΔP ¼ 1=4 with ΔO2 ¼ hÔ2i − hÔi2. We note
that, in contrast to Eq. (105), Wigner functions take negative
values for nonclassical states of the field.
In the context of dispersive qubit measurements, the Wigner

function is particularly useful because it is related to the
probability distribution for the outcome of measurements of
the quadratures X̂ and P̂. Indeed, the marginals PðxÞ and
PðpÞ, obtained by integrating Wρðx; pÞ along the orthogonal
quadrature, are simply given by

PðxÞ ¼
Z

∞

−∞
dpWρðx; pÞ ¼ hxjρjxi; ð106aÞ

PðpÞ ¼
Z

∞

−∞
dxWρðx; pÞ ¼ hpjρjpi; ð106bÞ

where jxi and jpi are the eigenstates of X̂ and P̂, respectively.
This immediately implies that the probability distribution of
the outcomes of an ideal homodyne measurement of the
quadrature X̂ϕ is given by PðxϕÞ obtained by integrating the
Wigner function WρðαÞ along the orthogonal quadrature
X̂ϕþπ=2. This is schematically illustrated for a coherent state
in Fig. 17.
Another useful phase-space function is the Husimi-Q

distribution, which for a state ρ takes the simple form

QρðαÞ ¼
1

π
hαjρjαi: ð107Þ

This function represents the probability distribution of finding
ρ in the coherent state jαi and, in contrast to WρðαÞ, it is
therefore always positive.
Since QρðαÞ and WρðαÞ are both complete descriptions of

the state ρ, it is not surprising that one can be expressed in
terms of the other. For example, in terms of the Wigner
function, the Q function takes the form (Carmichael, 2002)

QρðαÞ¼
2

π

Z
∞

−∞
d2βWρðβÞe−2jα−βj2 ¼WρðαÞ�Wj0iðαÞ: ð108Þ

The Husimi-Q distribution QρðαÞ is thus obtained by con-
volution of the Wigner function with a Gaussian and is
therefore smoother than WρðαÞ. As made clear by the second
equality, this Gaussian is in fact the Wigner function of the
vacuum stateWj0iðαÞ, obtained from Eq. (105) with β ¼ 0. In
other words, the Q function for ρ is obtained from the Wigner
function of the same state after adding vacuum noise. As
illustrated in Fig. 16, heterodyne detection with an IQ mixer
ideally adds vacuum noise to the signal before detection. This
leads to the conclusion that the probability distributions for the
simultaneous measurement of two orthogonal quadratures in
heterodyne detection are given by the marginals of the
Husimi-Q distribution rather than those of the Wigner
function (Caves et al., 2012).

C. Dispersive qubit readout

1. Steady-state intracavity field

As discussed in Sec. III.C, in the dispersive regime the
transmon-resonator Hamiltonian is well approximated by

Ĥdisp ≈ ℏðωr þ χσ̂zÞâ†âþ ℏωq

2
σ̂z: ð109Þ

To simplify the discussion, here we truncate the transmon
Hamiltonian to its first two levels, absorbed Lamb shifts in the
system frequencies, and neglect a transmon-induced non-
linearity of the cavity [the term ∝ Ka in Eq. (52)]. As made
clear by the first term of Eq. (109), in the dispersive regime,
the resonator frequency becomes qubit-state dependent: If the
qubit is in jgi, then hσ̂zi ¼ −1 and the resonator frequency is
ωr − χ. On the other hand, if the qubit is in jei, hσ̂zi ¼ 1 and
ωr is pulled to ωr þ χ. In this situation, driving the cavity
results in a qubit-state-dependent coherent state, jαg;ei. Thus,
if the qubit is initialized in the superposition cgjgi þ cejei, the
system evolves to an entangled qubit-resonator state of
the form

cgjg; αgi þ ceje; αei: ð110Þ

To interpret Eq. (110), we recall the paradigm of the Stern-
Gerlach experiment. There an atom passes through a magnet
and the field gradient applies a spin-dependent force to the
atom that entangles the spin state of the atom with the
momentum state of the atom (which in turn determines where
the atom lands on the detector). The experiment is usually
described as measuring the spin of the atom, but in fact it
measures only the final position of that atom on the detector.
However, since the spin and position are entangled, we can
uniquely infer the spin from the position provided that there is
no overlap in the final position distributions for the two spin
states. In this case we have effectively performed a projective
measurement of the spin.
By analogy, if the spin-dependent coherent states of the

microwave field αe;g can be resolved by heterodyne detection,
then they act as pointer states (Zurek, 1981) in the qubit
measurement. Moreover, since Ĥdisp commutes with the
observable that is measured (σ̂z), this is a QND measurement8

(Braginsky, Vorontsov, and Thorne, 1980) (in contrast to the
Stern-Gerlach measurement, which is destructive). Note that
for a system initially in a superposition of eigenstates of the
measurement operator, a QND measurement does in fact
change the state by randomly collapsing it onto one of the

8Note that the original Jaynes-Cummings Hamiltonian (from
which Ĥdisp is derived) does not commute with the bare qubit
operator σ̂z. However, in writing the dispersive Hamiltonian we have
made a unitary transformation which slightly dresses (coherently
mixes) the qubit and cavity excitations and this dressed spin operator
does commute with the dispersive Hamiltonian. This dressing implies
a small Purcell-effect damping inherited by the qubit from the bare
cavity damping, which we neglect for the moment. We return to this
point later, however, when discussing the measurement fidelity and
other approaches to qubit readout.
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measurement eigenstates. The true test of “QND-ness” is that
subsequent measurement results are not random but simply
reproduce the first measurement result.
The objective in a qubit readout is to maximize the readout

fidelity in the shortest possible measurement time. To see how
this goal can be reached, it is useful to first evaluate more
precisely the evolution of the intracavity field under such a
measurement. The intracavity field is obtained from the
Langevin equation (77) with Ĥs ¼ Ĥdisp and by taking into
account the cavity drive as discussed in Sec. IV.F. Doing so,
we find that the complex field amplitude hâiσ ¼ ασ given that
the qubit is in state σ ¼ fg; eg satisfies

_αeðtÞ ¼ −iεðtÞ − iðδr þ χÞαeðtÞ − καeðtÞ=2; ð111aÞ

_αgðtÞ ¼ −iεðtÞ − iðδr − χÞαgðtÞ − καgðtÞ=2; ð111bÞ

with δr ¼ ωr − ωd the detuning of the measurement drive to
the bare cavity frequency. The time evolutions of these two
cavity fields in phase space are illustrated for three different
values of 2χ=κ by dashed gray lines in Figs. 18(a)–18(c).
Focusing on the steady-state response ( _ασ ¼ 0)

αse=g ¼
−ε

ðδr � χÞ − iκ=2
; ð112Þ

with þ for e and − for g, results in the steady-state intracavity
quadratures

hX̂ie=g ¼
εðδr � χÞ

ðδr � χÞ2 þ ðκ=2Þ2 ; ð113aÞ

hP̂ie=g ¼
εκ=2

ðδr � χÞ2 þ ðκ=2Þ2 : ð113bÞ

From Eqs. (113a) and (113b), we find that when driving
the cavity at its bare frequency δr ¼ 0 information about
the qubit state is contained only in the X quadrature; see
Figs. 18(a)–18(c).
It is also useful to define the steady-state amplitude

As
e=g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX̂i2e=g þ hP̂i2e=g

q
¼ εffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðκ=2Þ2 þ ðδr � χÞ2
p ð114Þ

and phase

ϕs
e=g ¼ arctan

�hX̂ie=g
hP̂ie=g

	
¼ arctan

�
δr � χ

κ=2

	
: ð115Þ

These two quantities are plotted in Fig. 19. As expected from
the form of Ĥdisp, a coherent tone of frequency ωr � χ on the
resonator leads to a large displacement of the resonator field
and is largely transmitted if the qubit is in the ground (excited)
state, and is mostly reflected if the qubit is in the excited
(ground) state. Alternatively, driving the resonator at its bare
frequency ωr leads to a different phase accumulation for the
transmitted signal depending on the state of the qubit. In
particular, on resonance with the bare resonator δr ¼ 0 the
phase shift of the signal associated with the two qubit states is

simply � arctanð2χ=κÞ. As a result, in the dispersive regime
measuring the amplitude and/or the phase of the transmitted or
reflected signal from the resonator reveals information about
the qubit state (Blais et al., 2004). On the other hand, when
driving the resonator at a frequency that is largely detuned
from ðωr;ωr � χÞ, for example, when driving at the qubit
frequency to realize a logical gate discussed in Sec. VII.A, the

(a)

(b)

(c)

(d)

FIG. 18. (a) Path in phase space leading up to steady state of the
intracavity pointer states αg and αe for 2χ=κ ¼ 1, a measurement
drive at the bare cavity frequency with an amplitude leading to
one measurement photon at steady state, and assuming infinite
qubit relaxation time (top panel). Corresponding marginals along
x with the signal, noise, and error defined in the text (bottom
panel). The circles of radius 1=

ffiffiffi
2

p
represent vacuum noise. Path

in phase space for (b) 2χ=κ ¼ 10 and (c) 2χ=κ ¼ 0.2. (d) Signal-
to-noise ratio as a function of 2χ=κ for an integration time τm=κ ¼
200 (dark blue) and τm=κ ¼ 10 (light blue). The maximum of the
SNR at short integration time is shifted away from 2χ=κ ¼ 1. The
letters correspond to the ratio 2χ=κ of (a)–(c).

FIG. 19. Resonator transmission (dashed lines) and correspond-
ing phase shifts (solid lines) for the two qubit states (blue, ground;
red, excited). When driving the resonator close to its pulled
frequencies, the resonator response strongly depends on the state
of the qubit. Adapted from Blais et al., 2007.
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response of the resonator field only negligibly depends on the
qubit state. This results in negligible entanglement in the
resonator, and consequently in negligible measurement-
induced dephasing on the qubit.
It is important to note that to simplify the presentation, the

previous discussion was couched in terms of the amplitude
and phase of the field internal to the microwave resonator. In
practice, we can typically measure the field only externally in
the transmission line(s) coupled to the resonator. The relation
between the two is the subject of the input-output theory
discussed in Sec. IV and Appendix C. The main ideas can be
summarized rather simply. Consider an asymmetric cavity
with one port strongly coupled to the environment and one
port weakly coupled. If driven from the weak port, nearly all
of the information about the state of the qubit is in the field
radiated by the cavity into the strongly coupled port. The same
is true if the cavity is driven from the strongly coupled side,
but now the output field is a superposition of the directly
reflected drive plus the field radiated by the cavity. If the drive
frequency is swept across the cavity resonance, the signal
undergoes a phase shift of π in the former case and 2π in the
latter. This affects the sensitivity of the output field to the
dispersive shift induced by the qubit. If the cavity is
symmetric, then half the information about the state of the
qubit appears at each output port, so this configuration is less
efficient. Further details were given by Clerk et al. (2010).

2. Signal-to-noise ratio and measurement fidelity

Except for the last paragraph, the previous discussion
concerned the steady-state intracavity field from which we
can infer the steady-state heterodyne signal. It is important,
however, to consider the temporal response of the resonator’s
output field to the measurement drive since, in the context of
quantum computing, qubit readout should be as fast as
possible. Moreover, the probability of assigning the correct
outcome to a qubit measurement, or more simply put the
measurement fidelity, must also be large. As the following
discussion illustrates, simultaneously optimizing these two
important quantities requires some care.
As discussed in Sec. V.A, the quadratures X̂fðtÞ and P̂fðtÞ

are extracted from heterodyne measurement of the resonator
output field. Combining these signals and integrating for a
time τm, the operator corresponding to this measurement takes
the form

M̂ðτmÞ ¼
Z

τm

0

dtfwXðtÞ½VIFX̂fðtÞ þ V̂noise;Xf
ðtÞ�

þ wPðtÞ½VIFP̂fðtÞ þ V̂noise;Pf
ðtÞ�g; ð116Þ

where V̂noise;Xf=Pf
ðtÞ is the noise in the Xf=Pf quadrature. The

weighting functions wXðtÞ ¼ hX̂fie − hX̂fig and wPðtÞ ¼
hP̂fie − hP̂fig are multiplied by the signal and chosen to
increase the discrimination of the two qubit states (Magesan
et al., 2015; Ryan et al., 2015; Walter et al., 2017; Bultink
et al., 2018). Intuitively, because of qubit relaxation, these
functions give less weight to the cavity response at long times
since it will always reveal the qubit to be in its ground state,
irrespective of the prepared state (Gambetta et al., 2007).

Moreover, for the situation illustrated in Fig. 18, there is no
information on the qubit state in the P quadrature. Reflecting
this, wPðtÞ ¼ 0, which prevents the noise in that quadrature
from being integrated.
Following Secs. V.A and V.B, the probability distribution

for the outcome of multiple shots of the measurement of
M̂ðτmÞ is expected to be Gaussian and characterized by the
marginal of the Q function of the intracavity field. Using
the previous expression, the signal-to-noise ratio (SNR) of this
measurement can be defined as illustrated in Fig. 18(a) for the
intracavity field: it is the separation of the average combined
heterodyne signals corresponding to the two qubit states
divided by the standard deviation of the signal, an expression
that takes the form

SNR2ðtÞ≡ jhM̂ðtÞie − hM̂ðtÞigj2
hM̂2

NðtÞie þ hM̂2
NðtÞig

: ð117Þ

Here hM̂iσ is the average integrated heterodyne signal, given
that the qubit is in state σ and M̂N ¼ M̂ − hM̂i is the noise
operator that takes into account the added noise and also the
intrinsic vacuum noise of the quantum states of the resona-
tor field.
In addition to the SNR, another important quantity is the

measurement fidelity (Gambetta et al., 2007; Walter et al.,
2017)9

Fm ¼ 1 − ½PðejgÞ þ PðgjeÞ�≡ 1 − Em; ð118Þ

where Pðσjσ0Þ is the probability that a qubit in state σ is
measured to be in state σ0. In the second equality, we have
defined the measurement error Em, which as illustrated in
Fig. 18(a) is simply the overlap of the marginals PσðxÞ of the
Q functions for the two qubit states. This can be expressed as
Em ¼ R

dxϕLOþπ=2 min½P0ðxϕLOþπ=2Þ; P1ðxϕLOþπ=2Þ�, where the
LO phase is chosen to minimize Em. Using this expression,
the measurement fidelity is found to be related to the SNR by
Fm ¼ 1 − erfcðSNR=2Þ, where erfc is the complementary
error function (Gambetta et al., 2007). It is important to note
that this last result is valid only if the marginals are Gaussian.
In practice, qubit relaxation and higher-order effects omitted
in the dispersive Hamiltonian (109) can lead to distortion of
the coherent states and therefore to non-Gaussian marginals
(Gambetta et al., 2007; Hatridge et al., 2013). Kerr-type
nonlinearities that are common in circuit QED tend to create a
banana-shaped distortion of the coherent states in phase space,
a process that is sometimes referred to as bananization (Boutin
et al., 2017; Malnou et al., 2018; Sivak et al., 2019).
Although we are interested in short measurement times, it is

useful to consider a simpler expression for the longtime
behavior of the SNR that suggests different strategies for

9An alternative definition known as the assignment fidelity is 1 −
ð1=2Þ½PðejgÞ − PðgjeÞ� (Magesan et al., 2015). This quantity takes
values in ½0; 1� and formally Fm ∈ ½−1; 1�. Negative values, however,
are not relevant in practice. Indeed, because Fm ¼ −1 corresponds to
systematically reporting the incorrect value, a fidelity of 1 is
recovered after flipping the measurement outcomes.
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maximizing the measurement fidelity. Assuming that δr ¼ 0

and ignoring the prefactors related to gain and mixing, we find
that (Gambetta et al., 2008)

SNRðτm → ∞Þ ≃ ð2ε=κÞ
ffiffiffiffiffiffiffiffiffiffi
2κτm

p
j sin 2ϕj; ð119Þ

where ϕ is given by Eq. (115); see Didier, Bourassa, and Blais
(2015) for a detailed derivation of this expression. One can
easily verify that the choice χ=κ ¼ 1=2 maximizes Eq. (119);
see Fig. 18(d) (Gambetta et al., 2008). This ratio is con-
sequently often chosen in experiments (Walter et al., 2017).
While leading to a smaller steady-state SNR, other choices of
the ratio χ=κ can be more advantageous at finite measure-
ment times.
In the small χ limit, the factor 2ϵ=κ in SNRðτm → ∞Þ can

be interpreted by using Eq. (112) as the square root of the
steady-state average intracavity measurement photon number.
Another approach for improving the SNR is therefore to work
with the large measurement photon number n̄. This idea
cannot be pushed too far since increasing the measurement
photon number leads to a breakdown of the approxima-
tions that have been used to derive the dispersive
Hamiltonian (109). Indeed, as discussed in Sec. III.C the
small parameter in the perturbation theory that leads to the
dispersive approximation is not g=Δ but instead n̄=ncrit, with
ncrit the critical photon number introduced in Eq. (46). Well
before reaching n̄=ncrit ∼ 1, higher-order terms in the dis-
persive approximation start to play a role and lead to
departures from the expected behavior. For example, it is
commonly experimentally observed that the dispersive meas-
urement loses its QND character well before n̄ ∼ ncrit and
often at measurement photon populations as small as n̄ ∼ 1–10
(Johnson et al., 2011; Minev et al., 2019). Because of these
spurious qubit flips, measurement photon numbers are typ-
ically chosen to be well below ncrit (Walter et al., 2017). While
this non-QND-ness at n̄ < ncrit is expected from the discus-
sion of dressed dephasing found in Sec. IV.D, the predicted
measurement-induced qubit flip rates are smaller than often
experimentally observed. We note that qubit transitions at n̄ >
ncrit caused by accidental resonances within the qubit-reso-
nator system were studied by Sank et al. (2016).
To reach high fidelities, it is also important for the

measurement to be fast compared to the qubit relaxation time
T1. A strategy to speed up the measurement is to use a low-Q
oscillator, which leads to a faster readout rate simply because
the measurement photons leak out more rapidly from the
resonator to be detected. However, this should not be done at
the price of increasing the Purcell rate γκ to the point where
this mechanism dominates qubit decay (Houck et al., 2008).
As discussed in Sec. IV.E, it is possible to avoid this situation
to a large extent by adding a Purcell filter at the output of the
resonator (Reed, Johnson et al., 2010; Jeffrey et al., 2014;
Bronn et al., 2015).
Fixing κ so as to avoid Purcell decay and working at the

optimal χ=κ ratio, it can be shown that the steady-state
response is reached in a time ∝ 1=χ (Walter et al., 2017).
Large dispersive shifts can therefore help to speed up the
measurement. As can be seen in Eq. (45), χ can be increased
by working at larger qubit anharmonicity or, in other words,

larger charging energy EC. Once more, this cannot be pushed
too far since the transmon charge dispersion, and therefore its
dephasing rate, increases with EC.
This discussion shows that QND qubit measurement in

circuit QED is a highly constrained problem. When readout
time is to be minimized while achieving maximum fidelity, the
state of the art for such measurements recently reached Fm ∼
98.25% in τm ¼ 48 ns and 99.2% in 88 ns, in both cases using
n̄ ∼ 2.5 intracavity measurement photons (Walter et al., 2017).
These results were obtained by careful optimization of the
system parameters, simultaneously realizing one of the largest
dispersive shifts and cavity bandwidths explored in the
literature and, following the previously introduced concepts,
exploiting the understanding of the full-time response of the
measurement signal jhM̂ðtÞi1 − hM̂ðtÞi0j. The main limitation
in these reported fidelities was a relatively short qubit
relaxation time of 7.6 μs. With qubits of sufficiently long
relaxation time, state selectively excited to higher states to
increase readout performance and at the expense of longer
integration time, fidelities of up to 99.96% have been achieved
(Elder et al., 2020). Joint simultaneous dispersive readout of
two transmon qubits capacitively coupled to the same reso-
nator has also been realized (Filipp et al., 2009).
The small photon number used in some of these readout

experiments underscores the importance of quantum-limited
amplifiers in the first stage of the measurement chain; see
Fig. 14. Before the development of these amplifiers, which
created the possibility of performing strong single-shot (i.e.,
projective) measurements, the SNR in dispersive measure-
ments was well below unity, forcing the results of these weak
measurements to be averaged over tens of thousands of
repetitions of the experiment to extract information about
the qubit state (Wallraff et al., 2005). The advent of near-
quantum-limited amplifiers has made it possible to resolve the
qubit state in a single shot, which has led to the observation of
quantum jumps of a transmon qubit (Vijay, Slichter, and
Siddiqi, 2011), and even to the possibility of catching and
reserving quantum jumps (Minev et al., 2019).
Finally, we point out that the quantum efficiency η of the

entire measurement chain can be extracted from the SNR by
using (Bultink et al., 2018)

η ¼ SNR2

2βm
; ð120Þ

where βm ¼ 2χ
R τm
0 dtIm½αgðtÞαeðtÞ�� is related to the meas-

urement-induced dephasing that is discussed further in
Sec. VI.B.2.10 This connection between quantum efficiency,
SNR, and measurement-induced dephasing results from the
fundamental link between the rate at which information is
gained in a quantum measurement and the unavoidable

10Note that Eq. (120) differs by a factor of 2 from the expression
given by Bultink et al. (2018). This is because we have used the
convention that the noise entering the SNR in Eq. (117) has
contributions from both hM̂2

NðtÞie and hM̂2
NðtÞig, while Bultink

et al. (2018) took these two terms to be equal and did not add their
contributions to their definition of the SNR.
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backaction on the measured system (Korotkov, 2001; Clerk
et al., 2010).

3. Other approaches to qubit readout

a. Josephson bifurcation amplifier

While the vast majority of circuit QED experiments rely on
the previously described approach, several other qubit-readout
methods have been theoretically explored or experimentally
implemented. One such alternative is known as the Josephson
bifurcation amplifier and relies on using a transmission-line
resonator that is made nonlinear by incorporating a Josephson
junction into its center conductor (Boaknin et al., 2007). This
circuit can be seen as a distributed version of the transmon
qubit and is well described by the Kerr-nonlinear Hamiltonian
of Eq. (27) (Bourassa et al., 2012). With a relatively weak
Kerr nonlinearity (∼ − 500 kHz) and under a coherent drive of
well-chosen amplitude and frequency, this system bifurcates
from a low photon-number state to a high photon-number state
(Dykman and Krivoglaz, 1980; Manucharyan et al., 2007). By
dispersively coupling a qubit to the nonlinear resonator, this
bifurcation can be made qubit-state dependent (Vijay,
Devoret, and Siddiqi, 2009). It is possible to exploit the fact
that the low- and high-photon-number states can be easily
distinguished to realize high-fidelity single-shot qubit readout
(Mallet et al., 2009).

b. High-power readout and qubit “punch out”

Returning to linear resonators, while the previously men-
tioned non-QND-ness at moderate measurement photon
number leads to small measurement fidelity, it was observed
that, in the limit of large measurement power, a fast and
high-fidelity single-shot readout is recovered (Reed, DiCarlo
et al., 2010). Intuitive understanding of this observation can be
obtained from the Jaynes-Cummings Hamiltonian (36)
(Bishop, Ginossar, and Girvin, 2010; Boissonneault,
Gambetta, and Blais, 2010). Indeed, for n ≫

ffiffiffi
n

p
the first

term of this Hamiltonian dominates over the qubit-oscillator
interaction ∝ g such that the cavity responds at its bare
frequency ωr despite the presence of the transmon. This is
sometimes referred to as “punching out” the qubit and can be
understood as a quantum-to-classical transition where, in the
correspondence limit, the system behaves classically and
therefore responds at the bare cavity frequency ωr. With a
multilevel system such as the transmon, the power at which
this transition occurs depends on the state of the transmon,
leading to a high-fidelity measurement. This high-power
readout is obtained, however, at the expense of completely
losing the QND nature of the dispersive readout
(Boissonneault, Gambetta, and Blais, 2010).

c. Squeezing

Finally, the previously mentioned
ffiffiffi
n

p
scaling of SNR

ðτm → ∞Þ can be interpreted as resulting from populating
the cavity with a coherent state and is known as the standard
quantum limit. It is natural to ask if replacing the coherent
measurement tone with squeezed input radiation (see
Sec. VIII.C.2) can lead to Heisenberg-limited scaling for which
the SNR scales linearly with the measurement photon number

(Giovannetti, Lloyd, and Maccone, 2004). To achieve this, one
might imagine squeezing a quadrature of the field to reduce the
overlap between the two pointer states. In Fig. 18, this
corresponds to squeezing along x. The situation is not so simple
since the large dispersive coupling required for high-fidelity
qubit readout leads to a significant rotation of the squeezing
angle as the pointer states evolve from the center of phase space
to their steady state. This rotation results in increased meas-
urement noise due to contributions from the antisqueezed
quadrature (Barzanjeh, DiVincenzo, and Terhal, 2014).
Borrowing the idea of quantum-mechanics-free subsystems
(Tsang and Caves, 2012), it has been shown that Heisenberg-
limited scaling can be reached with two-mode squeezing by
dispersively coupling the qubit to two rather than one resonator
(Didier et al., 2015).

d. Longitudinal readout

An alternative approach to qubit readout is based on the
Hamiltonian Ĥz of Eq. (65) with its longitudinal qubit-
oscillator coupling gzðâ† þ âÞσ̂z. In contrast to the dispersive
Hamiltonian that leads to a rotation in phase space, longi-
tudinal coupling generates a linear displacement of the
resonator field that is conditional on the qubit state. As a
result, while under the dispersive evolution there is little
information gain about the qubit state at short times [see the
poor pointer state separation at short times in Fig. 18(a)], Ĥz
instead generates the ideal dynamics for a measurement with a
180° out-of-phase displacement of the pointer states αg and αe.
It is therefore expected that this approach can lead to much
shorter measurement times than is possible with the dispersive
readout (Didier, Bourassa, and Blais, 2015).
Another advantage is that Ĥz commutes with the measured

observable ½Ĥz; σ̂z� ¼ 0 corresponding to a QND measure-
ment. While the dispersive Hamiltonian Ĥdisp also commutes
with σ̂z, it is not the case for the full Hamiltonian (34) from
which Ĥdisp is perturbatively derived. As already discussed,
this non-QND-ness leads to Purcell decay and to a breakdown
of the dispersive approximation when the photon populations
is not significantly smaller than the critical photon number
ncrit. On the other hand, because Ĥz is genuinely QND it does
not suffer from these problems and the measurement photon
number can, in principle, be made larger under longitudinal
than under dispersive coupling. Moreover, given that Ĥz leads
to displacement of the pointer states rather than to rotation in
phase space, single-mode squeezing can also be used to
increase the measurement SNR (Didier, Bourassa, and
Blais, 2015).
Because the longitudinal coupling can be thought of as a

cavity drive of amplitude�gz, with the sign conditional on the
qubit state, Ĥz leads in steady state to a pointer state displace-
ment �gz=ðωr þ iκ=2Þ; see Eq. (112). With ωr ≫ gz; κ in
practice this displacement is negligible and cannot realistically
be used for qubit readout. One approach to increasing the
pointer state separation is to activate the longitudinal coupling
by modulating gz at the resonator frequency (Kerman, 2013;
Didier, Bourassa, and Blais, 2015). Taking gzðtÞ ¼ g̃z cosðωrtÞ
leads, in a rotating frame and after dropping rapidly oscillating
terms, to the Hamiltonian
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H̃z ¼
g̃z
2
ðâ† þ aÞσ̂z: ð121Þ

Under this modulation, the steady-state displacement now
becomes �g̃z=κ and can be significant even for moderate
modulation amplitudes g̃z.
Circuits realizing the longitudinal coupling with transmon

or flux qubits have been studied (Kerman, 2013; Billangeon,
Tsai, and Nakamura, 2015a, 2015b; Didier, Bourassa, and
Blais, 2015; Richer and DiVincenzo, 2016; Richer et al.,
2017). Another approach to realizing these ideas is to strongly
drive a resonator dispersively coupled to a qubit (Blais et al.,
2007; Dassonneville et al., 2020). Indeed, the strong drive
leads to a large displacement of the cavity field â → âþ α,
which on the dispersive Hamiltonian leads to

χâ†âσ̂z → χâ†âσ̂z þ αχðâ† þ âÞσ̂z þ χα2σ̂z; ð122Þ

where we have assumed α to be real for simplicity. For χ small
and α large, the second term dominates, therefore realizing a
synthetic longitudinal interaction of amplitude gz ¼ αχ. In
other words, longitudinal readout can be realized as a limit of
the dispersive readout where χ approaches zero, while α grows
such that χα is constant. A simple interpretation of this
observation is that for strong drives the circle on which the
pointer states rotate due to the dispersive interaction has a
large radius α such that, for all practical purposes, the motion
appears to be linear.
A variation of this approach that allows for larger longi-

tudinal coupling strength was experimentally realized by
Ikonen et al. (2019) and Touzard et al. (2019) and relies
on driving the qubit at the frequency of the resonator. This is
akin to the cross-resonance gate discussed further in
Sec. VII.B.3, which leads to the desired longitudinal inter-
action; see the last term of Eq. (146). A more subtle approach
to realizing a synthetic longitudinal interaction is to drive a
qubit with a Rabi frequency ΩR while driving the resonator at
the sideband frequencies ωr � ΩR. This idea was imple-
mented by Eddins et al. (2018), who also showed improve-
ment of qubit readout with single-mode squeezing. Because
these realizations are based on the dispersive Hamiltonian,
they suffer from Purcell decay and non-QND-ness. Circuits
realizing dispersivelike interactions that are not derived from a
Jaynes-Cummings interaction have been studied (Didier,
Bourassa, and Blais, 2015; Dassonneville et al., 2020).

VI. QUBIT-RESONATOR COUPLING REGIMES

We now turn to a discussion of the different coupling
regimes that are accessible in circuit QED and of their
experimental signatures. We first consider the resonant regime
where the qubit is tuned in resonance with the resonator, then
move on to the dispersive regime characterized by a large
qubit-resonator detuning. While the situation of most exper-
imental interest is the strong-coupling regime where the
coupling strength g overwhelms the decay rates, we also
touch upon the so-called bad-cavity and bad-qubit limits
because of their historical importance and their current
relevance to hybrid quantum systems. Finally, we consider
the ultrastrong-coupling regime where g is comparable, or

even larger, than the system’s frequencies. To simplify the
discussion, we treat the artificial atom as a simple two-level
system throughout this section.

A. Resonant regime

The low-energy physics of the Jaynes-Cummings model is
well described by the ground state jg; 0i ¼ jg; 0i and the first
two excited states

jg; 1i ¼ ðjg; 1i − je; 0iÞ=
ffiffiffi
2

p
;

je; 0i ¼ ðjg; 1i þ je; 0iÞ=
ffiffiffi
2

p
; ð123Þ

which, as illustrated in Fig. 8, are split in frequency by 2g. As
discussed in Sec. V.C in the context of the dispersive readout,
the coupled qubit-resonator system can be probed by applying
a coherent microwave tone to the input of the resonator and
measuring the transmitted or reflected signal.
To arrive at an expression for the expected signal in such an

experiment, we consider the equations of motion for the field
and qubit annihilation operators in the presence of a coherent
drive of amplitude ε and frequency ωd on the resonator. In a
frame rotating at the drive frequency, these equations take the
form

h _̂ai ¼ −
�
κ

2
þ iδr

	
hâi − ighσ̂−i − iε; ð124Þ

h _̂σ−i ¼ −ðγ2 þ iδqÞhσ̂−i þ ighâσ̂zi; ð125Þ

with δr ¼ ωr − ωd and δq ¼ ωq − ωd, and where γ2 is defined
in Eq. (82b). Equations (124) and (125) are obtained using
∂thÔi ¼ Tr _ρ Ô and themaster equations ofEqs. (70) and (81) at
zero temperature and in the two-level approximation for the
transmon. Alternatively, the expression for ∂thâi is simply the
average of Eq. (77), with Ĥs the Jayne-CummingsHamiltonian.
At low excitation amplitude ε, it is reasonable to truncate

the Hilbert space to the previously defined first three levels. In
this subspace, hâσ̂zi ¼ −hâi since â acts nontrivially only if
the qubit is in the ground state (Kimble, 1994). It is then
simple to compute the steady-state transmitted homodyne
power by solving the previous expressions with ∂thâi ¼∂thσ−i ¼ 0 and using Eq. (114) to find

jAj2 ¼
�
εVIF

2

	
2
���� δq − iγ2
ðδq − iγ2Þðδr − iκ=2Þ − g2

����2: ð126Þ

Taking the qubit and the oscillator to be on resonance
(Δ ¼ ωq − ωr ¼ 0), we now consider the result of cavity
transmission measurements in three different regimes of qubit-
cavity interaction.

1. Bad-cavity limit

We first consider the bad-cavity limit realized when the
cavity decay rate overwhelms the coupling g, which is itself
larger than the qubit linewidth: κ > g ≫ γ2. This situation
corresponds to an overdamped oscillator and, at qubit-
oscillator resonance, leads to rapid Purcell decay of the qubit.
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A simple model for this process is obtained using the
truncated Hilbert space discussed earlier, where we now drop
the cavity drive for simplicity. Because of the large decay rate
κ, we can assume that the oscillator will rapidly reach its
steady state ∂thâi ¼ 0. Using the resulting expression for hâi
in Eq. (125) immediately leads to

h _̂σ−i ¼ −
�
γ1 þ γ0k

2
þ γφ

	
hσ̂−i; ð127Þ

where we have defined the Purcell decay rate γ0κ ¼ 4g2=κ. The
expression for this rate has a different form than the Purcell
rate γκ ¼ ðg=ΔÞ2κ given in Eq. (85). These two results,
however, are not incompatible but have been obtained in
significantly different regimes. An expression for the Purcell
rate that interpolates between the two previous expressions
can be obtained and takes the form of κg2=½ðκ=2Þ2 þ Δ2�
(Sete, Gambetta, and Korotkov, 2014).
The situation described here is illustrated for κ=g ¼ 10 and

γ1 ¼ 0 in Fig. 20(a), which shows the probability of the qubit

being in its excited state versus time after initializing the qubit
in its excited state and the resonator in vacuum. Even in the
absence of qubit T1, the qubit is seen to quickly relax to its
ground state, which as discussed in Sec. IV.D is due to qubit-
oscillator hybridization. Figure 20(b) shows the steady-state
transmitted power versus drive frequency in the presence of a
weak coherent tone populating the cavity with n̄ ≪ 1 photons.
The response shows a broad Lorentzian peak of width κ
together with a narrow electromagnetically induced trans-
parency (EIT) window of width γ0κ (Rice and Brecha, 1996;
Mlynek et al., 2014). This effect that is due to interference
between the intracavity field and the probe tone vanishes in
the presence of qubit dephasing.
Although not the main regime of interest in circuit QED, the

bad-cavity limit offers an opportunity to engineer the dis-
sipation seen by the qubit. This regime has been used to
control the lifetime of long-lived donor spins in silicon in a
hybrid quantum system (Bienfait et al., 2016).

2. Bad-qubit limit

The bad-qubit limit corresponds to the situation where a
high-Q cavity with large qubit-oscillator coupling is realized,
while the qubit dephasing and/or energy relaxation rates is
large: γ2 > g ≫ κ. Although this situation is not typical of
circuit QED with transmon qubits, it is relevant for some
hybrid systems that suffer from significant dephasing. This is
the case in early experiments with charge qubits based on
semiconductor quantum dots coupled to superconducting
resonators (Frey et al., 2012; Petersson et al., 2012;
Viennot et al., 2014).
In analogy to the bad-cavity case, the strong damping of the

qubit together with the qubit-resonator coupling leads to the
photon decay rate κ0γ ¼ 4g2=γ1, which is sometimes known as
the “inverse” Purcell rate. This is illustrated in Fig. 20(c),
which shows the time evolution of the coupled system starting
with a single photon in the resonator and the qubit in the
ground state. In this situation, the cavity response is a
simple Lorentzian broadened by the inverse Purcell rate;
see Fig. 20(d). If the qubit were to be probed directly rather
than indirectly via the cavity, the atomic response would show
the EIT-like feature of Fig. 20(b), now with a dip of width κ0γ
(Rice and Brecha, 1996). One should also be aware that qubit-
resonator detuning-dependent dispersive shifts of the cavity
resonance can be observed in this bad-qubit limit. The
observation of such dispersive shifts on its own should not
be mistaken for an observation of strong coupling (Wallraff
et al., 2013).

3. Strong-coupling regime

We now turn to the case where the coupling strength
overwhelms the qubit and cavity decay rates g > κ; γ2. In this
regime, light-matter interaction is strong enough for a single
quantum to be coherently exchanged between the electro-
magnetic field and the qubit before it is irreversibly lost to the
environment. In other words, at resonance Δ ¼ 0 the splitting
2g between the two dressed eigenstates fjg; 1i; je; 0ig of
Eq. (123) is larger than their linewidth κ=2þ γ2 and can be
resolved spectroscopically. We note that with the eigenstates

(a) (b)

(c) (d)

(e) (f)

FIG. 20. Numerical simulations of the qubit-oscillator master
equation for (a),(c),(e) the time evolution starting from the
bare state j0; ei (light blue lines) or j1; gi (blue lines), and (b),
(d),(f) steady-state response A2 ¼ jhâij2 as a function of the
cavity drive frequency (dark blue lines) for the three coupling
regimes. Pe: qubit excited state population. (a),(b) Bad-
cavity limit: ðκ; γ1; gÞ=2π ¼ ð10; 0; 1Þ MHz. (c),(d) Bad-qubit
limit: ðκ;γ1;gÞ=2π¼ð0;10;1ÞMHz. (e),(f) Strong coupling:
ðκ;γ1;gÞ=2π¼ð0.1;0.1;100ÞMHz [dashed lines in (e) and solid
lines in (f)] and ðκ; γ1; gÞ=2π ¼ ð1; 1; 100Þ [solid lines in (e)]. The
light blue line in (f) is computed with a thermal photon number of
n̄κ ¼ 0.35, as opposed to n̄κ ¼ 0 for all other results.
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being half photon and half qubit11 the previous expression for
the dressed-state linewidth is simply the average of the cavity
and of the qubit linewidth (Haroche, 1992). Figure 20(f)
shows the cavity transmission for ðκ; γ1; γφÞ=g ¼ ð0.1; 0.1; 0Þ
and at low excitation power such that, on average, there is
significantly less than one photon in the cavity. The resulting
doublet of peaks located at ωr � g is the direct signature of the
dressed states fjg; 1i; je; 0ig and is known as the vacuum Rabi
splitting. The observation of this doublet is the hallmark of the
strong-coupling regime.
The first observation of this feature in cavity QED with a

single atom and a single photon was reported by Thompson,
Rempe, and Kimble (1992). In this experiment, the number of
atoms in the cavity was not well controlled and it could be
determined only that there was on average one atom in
interaction with the cavity field. This distinction is important
because, in the presence of N atoms, the collective interaction
strength is g

ffiffiffiffi
N

p
and the observed splitting is correspondingly

larger (Tavis and Cummings, 1968; Fink et al., 2009). Atom
number fluctuation is not a problem in circuit QED and, with
the strong coupling and relatively small linewidths that can
routinely be experimentally achieved, reaching the strong-
coupling regime is not particularly challenging in this system.
In fact, the first circuit QED experiment performed byWallraff
et al. (2004) reported the observation of a vacuum Rabi
splitting with 2g=ðκ=2þ γ2Þ ∼ 10; see Fig. 21(a). This first
demonstration used a charge qubit that by construction has a
much smaller coupling g than typical transmon qubits. As a
result, more recent experiments with transmon qubits can
display ratios of peak separation to linewidth in the several
hundreds; see Fig. 21(b) (Schoelkopf and Girvin, 2008).
Like Fig. 21, Fig. 22 shows the qubit-oscillator spectrum as a

function of probe frequency, but now also as a function of the
qubit frequency, allowing one to see the full qubit-resonator
avoided crossing. The horizontal dashed line corresponds to the
bare cavity frequencywhile the diagonal dashed line is the bare
qubit frequency. The vacuum Rabi splitting of Fig. 20(f) is
obtained from a linecut (dotted vertical line) at resonance
between the bare qubit frequency ωq and the bare cavity
frequency ωr. Because it is the cavity that is probed here, the
response is larger when the dressed states are mostly cavitylike
and disappears away from the cavity frequency, where the
cavity no longer responds to the probe (Haroche, 1992).
Note that the splitting predicted by Eq. (126) for the

transmitted homodyne signal is in fact smaller than 2g in
the presence of finite relaxation and dephasing. Although not
significant in circuit QED with transmon qubits, this correc-
tion can become important in systems such as charge qubits in
quantum dots that are not deep in the strong-coupling regime.
We also note that the observed splitting can be smaller when
measured in reflection rather than in transmission.
In addition to spectroscopic measurements, strong light-

matter coupling can also be displayed in time-resolved
measurements (Brune et al., 1996). Starting from the qubit-
oscillator ground state, this can be done by first pulsing the
qubit to its first excited state and then bringing it on resonance

with the cavity. As illustrated in Fig. 20(e), this results in
oscillations in the qubit and cavity populations at the vacuum
Rabi frequency 2g. Time-resolved vacuum Rabi oscillations in
circuit QED were first performed with a flux qubit coupled to
a discrete LC oscillator realized in the bias circuitry of the
device (Johansson et al., 2006). This experiment was followed

(a)

(b)

FIG. 21. (a) Transmission-line resonator transmission vs probe
frequency in the first observation of vacuum Rabi splitting in
circuit QED (solid blue line). The qubit is a Cooper pair box qubit
with EJ=h ≈ 8 GHz and EC=h ≈ 5.2 GHz. The solid red line is a
calculated spectrum with 2g=2π ≈ 11.6 MHz, κ=2π ≈ 0.8 MHz,
and γ2=2π ≈ 0.7 MHz. As a reference, the dashed light blue line
is the measured transmission with the qubit strongly detuned
from the resonator. Adapted from Wallraff et al., 2004.
(b) Resonator transmission with a transmon qubit. The vacuum
Rabi splitting is even more resolved with 2g=2π ¼ 350 MHz,
κ=2π ∼ 800 kHz, and γ2=2π ∼ 200 kHz. Notice the change in
probe frequency range from (a). Adapted from Schoelkopf and
Girvin, 2008.

FIG. 22. Vacuum Rabi splitting revealed in numerical simu-
lations of the cavity transmission A2 ¼ jhâij2 as a function of
probe frequency and qubit transition frequency for the same
parameters as in Fig. 20(f) The bare cavity and qubit frequencies
are indicated by the horizontal and diagonal dashed lines,
respectively. The vacuum Rabi splitting of Fig. 20(f) is obtained
at resonance (ωr ¼ ωq) along the vertical dotted line.

11According to some authors, these dressed states should therefore
be referred to as quton and phobit (Schuster, 2007).
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by a similar observation with a phase qubit coupled to a
coplanar waveguide resonator (Hofheinz et al., 2008).
In the limit of weak excitation power that we have

considered thus far, the coupled qubit-oscillator system is
indistinguishable from two coupled classical linear oscillators.
As a result, while the dressed states that are probed in these
experiments are entangled, the observation of an avoided
crossing cannot be taken as a conclusive demonstration that
the oscillator field is quantized or of qubit-oscillator entan-
glement. Indeed, the vacuum Rabi splitting can be interpreted
as the familiar normal mode splitting of two coupled classical
oscillators.
A signature of the quantum nature of the system can be

obtained by probing the
ffiffiffi
n

p
dependence of the spacing of the

higher excited states of the Jaynes-Cummings ladder already
discussed in Sec. III.B. This dependence results from the
matrix element of the operator â and consequently is linked to
the quantum nature of the field (Carmichael, Kochan, and
Sanders, 1996). Experimentally, these transitions can be
accessed in several ways, including by two-tone spectroscopy
(Fink et al., 2008), by increasing the probe-tone power
(Bishop et al., 2009) or by increasing the system temperature
(Fink et al., 2010). The light blue line in Fig. 20(f) shows
cavity transmission with a thermal photon number of n̄κ ¼
0.35 rather than n̄κ ¼ 0 (dark blue line). At this more elevated
temperature, additional pairs of peaks with smaller separation
are now observed in addition to the original peaks separated
by 2g. As illustrated in Fig. 23, these additional structures are
due to multiphoton transitions and their

ffiffiffi
n

p
scaling reveal the

anharmonicity of the Jaynes-Cummings ladder. The matrix
elements of transitions that lie outside of the original vacuum
Rabi splitting peaks are suppressed and these transitions
are therefore not observed; see the red arrow in Fig. 23

(Rau, Johansson, and Shnirman, 2004). We also note that, at
much larger power or at elevated temperature, the system
undergoes a quantum-to-classical transition and a single peak
at the resonator frequency ωr is observed (Fink et al., 2010).
In short, the impact of the qubit on the system is washed away
in the correspondence limit. This is to be expected from the
form of the Jaynes-Cummings Hamiltonian (36), where the
qubit-cavity coupling ℏgðâ†σ̂− þ âσ̂þÞ with its

ffiffiffi
n

p
scaling is

overwhelmed by the free cavity Hamiltonian ℏωrâ†â, which
scales as n. This is the same mechanism that leads to the high-
power readout discussed in Sec. V.C.3.
Beyond this spectroscopic evidence and as further dis-

cussed in Sec. VIII.A, the
ffiffiffi
n

p
dependence of the Jaynes-

Cummings ladder was exploited to prepare the Fock state of
the oscillator field (Hofheinz et al., 2008; Wang et al., 2008).
The quantum nature of the field and qubit-oscillator entan-
glement were also demonstrated in a number of experiments
directly measuring the joint density matrix of the dressed
states. Eichler et al. (2012) achieved this by creating one of the
entangled states fjg; 1i; je; 0ig in a time-resolved vacuum
Rabi oscillation experiment and, subsequently, measuring the
qubit state in a dispersive measurement and the photon state
using a linear detection method (Eichler, Bozyigit, and
Wallraff, 2012). A range of experiments used the ability to
create entanglement between a qubit and a photon through the
resonant interaction with a resonator in the context of quantum
computation (Mariantoni et al., 2011), to entangle two
independent resonators (Wang et al., 2011), and to transfer
quantum states (Sillanpää, Park, and Simmonds, 2007).

B. Dispersive regime

For most quantum computing experiments, it is common to
work in the dispersive regime where, as discussed in
Sec. III.C, the qubit is strongly detuned from the oscillator
with jΔj ≫ g. There the dressed eigenstates are merely weakly
entangled qubit-oscillator states. This is in contrast to the
resonant regime, where these eigenstates are highly entangled,
resulting in the qubit and the oscillator completely losing their
individual character.
In the two-level system approximation, the dispersive regime

is well described by the Hamiltonian Ĥdisp of Eq. (109). In
the discussion surrounding that equation, we interpreted
the dispersive coupling as a qubit-state-dependent shift of
the oscillator frequency. This shift can be seen in Fig. 22 as the
deviation of the oscillator response from the bare oscillator
frequency away from resonance (horizontal dashed line). The
figure also makes it clear that the qubit frequency, whose bare
value is given by the diagonal dashed line, is also modified by
the dispersive coupling to the oscillator. To better understand
this qubit-frequency shift, it is instructive to rewrite Ĥdisp as

Ĥdisp ≈ ℏωrâ†âþ ℏ
2

�
ωq þ 2χ

�
â†âþ 1

2

	�
σ̂z; ð128Þ

where it is now clear that the dispersive interaction of amplitude
χ leads not only to a qubit-state-dependent frequency pull of the
oscillator but also to a photon-number-dependent frequency
shift of the qubit given by 2χâ†â. This is known as the ac-Stark

FIG. 23. Ground state and first two doublets of the Jaynes-
Cummings ladder. The dark blue arrows correspond to the
transitions that are probed in a vacuum Rabi experiment. The
transitions illustrated with light blue arrows lead to additional
peaks at transition frequencies lying inside the vacuum Rabi
doublet at elevated temperature or increased probe power. On the
other hand, the matrix element associated with the red transitions
would lead to a response at transition frequencies outside of the
vacuum Rabi doublet. Those transitions, however, are suppressed
and are not observed (Rau, Johansson, and Shnirman, 2004).
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shift (or the quantized light shift) and is accompanied here by a
Lamb shift corresponding to the factor of 1=2 in the last term of
Eq. (128), which we dropped in Eq. (109). In this section, we
explore some consequences of this new point of view on the
dispersive interaction, starting by first reviewing some of the
basic aspects of qubit spectroscopic measurements.

1. Qubit spectroscopy

To simplify the discussion, we first consider spectroscopi-
cally probing the qubit while assuming that the oscillator
remains in its vacuum state. This is done by applying a coherent
field of amplitude αd and frequency ωd to the qubit, either via a
dedicated voltage gate on the qubit or to the input port of the
resonator. Ignoring the resonator for the moment, this situation
is described by theHamiltonian δqσ̂z=2þ ΩRσ̂x=2, where δq ¼
ðωq þ χÞ − ωd is the detuning between the Lamb-shifted qubit
transition frequency and the drive frequency andΩR ∝ αd is the
Rabi frequency. Under this Hamiltonian and using the master
equation (81) projected on the two qubit levels, the steady-state
probabilityPe ¼ ðhσ̂zis þ 1Þ=2 of the qubit being in its excited
state (or, equivalently, the probability of it being in the ground
state Pg) is found to be (Abragam, 1961)

Pe ¼ 1 − Pg ¼
1

2

Ω2
R

γ1γ2 þ δ2qγ1=γ2 þ Ω2
R
: ð129Þ

The Lorantzian line shape of Pe as a function of the drive
frequency is illustrated in Fig. 24(a). In the limit of strong qubit
drive, i.e., large Rabi frequency ΩR, the steady-state qubit
population reaches saturation with Pe ¼ Pg ¼ 1=2; see
Fig. 24(b). Moreover, as the power increases, the FWHM of

the qubit line shape evolves from the bare qubit linewidth given
by γq ¼ 2γ2 to 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=T2

2 þ Ω2
RT1=T2

p
, an effect known as power

broadening and illustrated in Fig. 24(c). In practice, the
unbroadened dephasing rate γ2 can be determined from
spectroscopic measurements by extrapolating to zero spectros-
copy tone power the linear dependence of ν2HWHM. This quantity
can also be determined in the time domain fromaRamsey fringe
experiment (Vion et al., 2002).12

In typical optical spectroscopy of atoms in a gas, one directly
measures the absorption of photons by the gas as a function of
the frequency of the photons. In circuit QED, one typically
performs quantum jump spectroscopy by measuring the prob-
ability that an applied microwave drive will place the qubit into
its excited state. The variation in qubit population with qubit
drive can be measured by monitoring the change in response of
the cavity to the spectroscopy drive. This is realized by
measuring the cavity transmission, or reflection, of an addi-
tional drive of frequency close to ωr. In the literature this
approach is referred to as two-tone spectroscopy, with the
second drive often called the probe or measurement tone, while
the spectroscopy drive is also known as the pump tone. As
shown in Eq. (115), the phase of the transmitted probe tone is
related to the qubit population. In particular, with the probe tone
at the bare cavity frequency and in the weak dispersive limit
χ ≪ κ, this phase is simply proportional to the qubit popula-
tion ϕs ¼ arctanð2χhσ̂zis=2Þ ≈ 2χhσ̂zis=κ. Monitoring ϕs as a
function of the spectroscopy tone frequency therefore directly
reveals the Lorentzian qubit line shape (Schuster et al., 2005).

2. ac-Stark shift and measurement-induced broadening

In our discussion, we have implicitly assumed that the
amplitude of the measure tone is such that the intracavity
photon population is vanishingly small (hâ†âi → 0). As is
made clear by Eq. (128), an increase in photon population
leads to a qubit-frequency shift by an average value of
2χhâ†âi. Figure 25(a) shows this ac-Stark shift in the
steady-state qubit population as a function of spectroscopy
frequency for three different probe drive powers populating
the cavity with different hn̂i. Taking advantage of the
dependence of the qubit frequency on measurement power,
prior knowledge of the value of χ allows one to infer the
intracavity photon number as a function of input pump power

(b)

(c)

(a)

FIG. 24. Power broadening of the qubit line. (a) Excited qubit
population (left vertical axis) and phase (right vertical axis) as a
function of the drive detuning δq for the Rabi amplitudesΩR=2π ¼
0.1 (light blue line), 0.5 (blue line), and 1 MHz (dark blue line).
The phase is obtained from ϕ ¼ arctanð2χhσ̂zi=2Þ, with 2χ=κ ¼ 1.
(b) Excited qubit population and phase at δq ¼ 0 and as a function
of Ω2

R. The horizontal dashed gray line corresponds to qubit
saturation Pe ¼ 1=2. (c) Qubit linewidth as a function of Ω2

R. All
three panels have been obtained from numerical simulations of the
dispersive qubit master equation with γ1=2π ¼ 0.1 MHz and
γφ=2π ¼ 0.1 MHz, with the exception of the dashed blue lines
in (b) and (c) that correspond to the analytical expressions found in
the text.

12Different quantities associated with the dephasing time are used
in the literature, with the most common being T2, T�

2, and Techo
2 .

While T2 corresponds to the intrinsic or “natural” dephasing time of
the qubit, T�

2 ≤ T2 accounts for inhomogeneous broadening. For a
flux-tunable transmon this broadening can be due to random
fluctuations of the flux treading the qubit’s SQUID loop. A change
of the flux over the time of the experiment needed to extract T2

results in qubit-frequency shifts, which is measured as a broadening
of the qubit’s intrinsic linewidth. The slow frequency fluctuations can
be canceled out by applying a π pulse midway through a Ramsey
fringe experiment. The measured dephasing time is then known as
Techo
2 and is usually longer than T�

2, with its exact value depending on
the spectrum of the low-frequency noise affecting the qubit (Martinis
et al., 2003). The method of dynamical decoupling that relies on
more complex pulse sequences can be used to cancel out higher-
frequency components of the noise (Bylander et al., 2011).
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from such measurements (Schuster et al., 2005). However,
care must be taken since the linear dependence of the qubit
frequency on power predicted in Eq. (109) is valid only well
inside the dispersive regime or, more precisely, at small
n̄=ncrit. We return to this shortly.
As is apparent from Fig. 25(a), in addition to causing a

frequency shift of the qubit the cavity photon population also
causes a broadening of the qubit linewidth. This can be
understood simply by again considering the form of Ĥdisp in
Eq. (128). Indeed, while in the previous discussion we
considered only the average qubit-frequency shift 2χhâ†âi,
the actual shift is instead given by 2χâ†â such that the full
photon-number distribution is important. As a result, when the
cavity is prepared in a coherent state by the measurement tone,
each Fock state jni of the coherent field leads to its own qubit-
frequency shift 2χn. In the weak dispersive limit correspond-
ing to small χ=κ, the observed qubit line shape is thus the
result of the inhomogeneous broadening due to the Poisson
statistics of the coherent state populating the cavity. This effect
becomes more apparent as the average measurement photon
number n̄ increases and results in a crossover from a broad-
enned Lorentzian qubit line shape whose linewidth scales with
n̄ to a broadened Gaussian line shape whose linewidth instead
scales as

ffiffiffī
n

p
(Schuster et al., 2005; Gambetta et al., 2006).

This square-root dependence can be traced to the coherent
nature of the cavity field. For a thermal cavity field, a n̄ðn̄þ 1Þ
dependence is instead expected and observed (Bertet et al.,
2005; Kono et al., 2017).

This change in qubit linewidth due to photon shot noise in
the coherent measurement tone populating the cavity can be
interpreted as the unavoidable dephasing that a quantum
system undergoes during measurement. Using a polaron-type
transformation familiar from condensed-matter theory, the
cavity can be integrated out of the qubit-cavity master
equation, and in this way the associated measurement-induced
dephasing rate can be expressed in the dispersive regime as
γmðtÞ ¼ 2χIm½αgðtÞα�eðtÞ�, where αg=eðtÞ are the time-depen-
dent coherent state amplitudes associated with the two qubit
states obtained from Eq. (111) (Gambetta et al., 2008). In the
longtime limit, the previous rate can be expressed in the more
intuitive form γm ¼ κjαse − αsgj2=2, where jαse − αsgj is the
distance between the two steady-state pointer states
(Gambetta et al., 2008). Measurement-induced dephasing is
faster when the pointer states are more easily distinguishable
and the measurement is thus more efficient. This last expres-
sion can also be directly obtained from the dynamics of the
entangled qubit-pointer state [Eq. (110)] whose coherence
decays, at short times, at the rate γm under photon loss
(Haroche and Raimond, 2006).
Using Eqs. (111a) and (111b) for the steady-state pointer

state amplitude, γm can be expressed as

γm ¼ κχ2ðn̄g þ n̄eÞ
δ2r þ χ2 þ ðκ=2Þ2 ; ð130Þ

with n̄σ ¼ jασ j2 the average cavity photon number given that
the qubit is state σ. The distinction between n̄g and n̄e is
important if the measurement drive is not symmetrically
placed between the two pulled cavity frequencies correspond-
ing to the two qubit states. Taking δr ¼ ωr − ωd ¼ 0 and thus
n̄g ¼ n̄e ≡ n̄ for a two-level system, the measurement-induced
dephasing rate takes in the small χ=κ limit the simple form
γm ∼ 8χ2n̄=κ. Thus, as mentioned, the qubit linewidth scales
with n̄. Keeping the cautionary remarks found at the end of
this subsection in mind, measuring this linewidth versus the
drive power is thus another way to infer n̄ experimentally.
Thus far we have been concerned with the small χ=κ limit.

However, given the strong coupling and high quality factor
that can be experimentally realized in circuit QED, it is also
interesting to consider the opposite limit where χ=κ is large. A
first consequence of this strong-dispersive regime, illustrated
in Fig. 25(b), is that the qubit-frequency shift per photon can
then be large enough to be resolved spectroscopically
(Gambetta et al., 2006; Schuster et al., 2007). More precisely,
this occurs if 2χ is larger than γ2 þ ðn̄þ nÞκ=2, the width of
the nth photon peak (Gambetta et al., 2006). Moreover, the
amplitude of each spectroscopic line is a measure of the
probability of finding the corresponding photon number in
the cavity. Using this idea, it is possible to experimentally
distinguish between coherent and thermal population of the
cavity (Schuster et al., 2007). This strong dependence of the
qubit frequency on the exact photon number also allows
for conditional qubit-cavity logical operations where a micro-
wave pulse is applied such that the qubit state is flipped
if and only if there are n photons in the cavity (Johnson et al.,
2010). Although challenging, this strong dispersive limit
has also been achieved in some cavity QED experiments

(a)

(b)

FIG. 25. Excited state population as a function of the qubit drive
frequency. (a) Dispersive regime with χ=2π ¼ 0.1 MHz and
(b) strong dispersive limit with χ=2π ¼ 5 MHz. The resolved
peaks correspond to different cavity photon numbers jni. The
spectroscopy drive amplitude is fixed to ΩR=2π ¼ 0.1 MHz and
the damping rates to γ1=2π ¼ κ=2π ¼ 0.1 MHz. In (a) the
measurement drive is on resonance with the bare cavity fre-
quency, with amplitude ϵ=2π ¼ 0; 0.2; and 0.4 MHz for the light
blue, blue, and dark blue lines, respectively. In (b) the measure-
ment drive is at the pulled cavity frequency ωr − χ with
amplitude ϵ=2π ¼ 0.1 MHz.
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(Gleyzes et al., 2007; Guerlin et al., 2007). This regime has
also been achieved in hybrid quantum systems, such as in
phonon-number-resolving measurements of nanomechanical
oscillators (Arrangoiz-Arriola et al., 2019; Sletten et al., 2019)
and magnon-number-resolving measurements (Lachance-
Quirion et al., 2017).
We now return to the issue of inferring the intracavity

photon number from ac-Stark shift or qubit linewidth broad-
ening measurements. As mentioned, the linear dependence of
the ac-Stark shift on the measurement drive power predicted
from the dispersive Hamiltonian (109) is valid only at small
n̄=ncrit. Indeed, because of higher-order corrections, the cavity
pull itself is not constant with n̄ but instead decreases with
increasing n̄ (Gambetta et al., 2006). This change in cavity
pull is illustrated in Fig. 26(a), which shows the effective
resonator frequency given that the qubit is in state σ
as a function of drive amplitude ωrσðnÞ ¼ Eσ;nþ1 − Eσ;n,
with Eσ;nþ1 the dressed-state energies defined in Eq. (40)
(Boissonneault, Gambetta, and Blais, 2010). At low drive
amplitude, the cavity frequency is pulled to the expected value
ωr � χ depending on the state of the qubit. As the drive
amplitude increases, and with it the intracavity photon
number, the pulled cavity frequency goes back to its bare
value ωr. Figures 26(b) and 26(c) show the pulled frequencies
accounting for three and six transmon levels, respectively. In
contrast to the two-level approximation and as expected from
Eq. (42), in this many-level situation the symmetry that was
present in the two-level case is broken and the pulled
frequencies are not symmetrically placed around ωr. We note
that this change in effective cavity frequency is at the heart of
the high-power readout discussed in Sec. V.C.2.
Because of this change in cavity pull, which can be

interpreted as χ itself changing with photon numbers, the
ac-Stark shift and the measurement-induced dephasing do not
necessarily follow the simple linear dependence expected
from Ĥdisp. For this reason, it is possible to safely infer the
intracavity photon number only from measurement of the ac-
Stark shift or qubit linewidth broadening at small photon
number. It is worth nothing that in some cases the reduction in
cavity pull can move the cavity frequency closer to the drive

frequency, thereby leading to a nonlinear increase in cavity
population with power. For some system parameters, these
two nonlinear effects (reduction in cavity pull and increase in
cavity population) can partly compensate for each other,
leading to an apparent linear dependence of the qubit ac-
Stark with power (Gambetta et al., 2006). We repeat that care
must be taken when extracting the intracavity photon number
in the dispersive regime.

C. Beyond strong coupling: Ultrastrong-coupling regime

We have discussed consequences of the strong-coupling
(g > κ; γ2) and strong-dispersive (χ > κ; γ2) regimes, which
both can be easily realized in circuit QED. Although the effect
of light-matter interaction has important consequences, in
both regimes g is small with respect to the system frequencies
ωr;ωq ≫ g, a fact that allowed us to safely drop counter-
rotating terms from Eq. (32). In the case of a two-level system
this allowed us to work with the Jaynes-Cummings
Hamiltonian (36). The situation where these terms can no
longer be neglected is known as the ultrastrong-coupling
regime.
As discussed in Sec. III.A, the relative smallness of g with

respect to the system frequencies can be traced to Eq. (35),
where we see that g=ωr ∝

ffiffiffi
α

p
, with α ∼ 1=137 the fine-

structure constant. This is, however, not a fundamental limit
and it is possible to take advantage of the flexibility of
superconducting quantum circuits to engineer situations
where light-matter coupling instead scales as ∝ 1=

ffiffiffi
α

p
. In

this case, the smallness of α now helps boost the coupling
rather than constraining it. A circuit realizing this idea was
first proposed by Devoret, Girvin, and Schoelkopf (2007) and
is commonly known as the in-line transmon. It consists simply
of a transmission-line resonator whose center conductor is
interrupted by a Josephson junction. Coupling strengths as
large as g=ωr ∼ 0.15 can in principle be obtained in this way,
but increasing this ratio further can be challenging because it
is done at the expense of reducing the transmon anharmonicity
(Bourassa et al., 2012).
An alternative approach relies on galvanically coupling a

flux qubit to the center conductor of a transmission-line
resonator. In this configuration, light-matter coupling can
be made large by increasing the impedance of the center
conductor of the resonator in the vicinity of the qubit, which
can be realized by interrupting the center conductor of the
resonator with a Josephson junction or a junction array
(Bourassa et al., 2009). In this way, coupling strengths of
g=ωq ∼ 1 or larger can be achieved. These ideas were first
realized by Forn-Díaz et al. (2010) and Niemczyk et al. (2010)
with g=ωq ∼ 0.1, and more recently with coupling strengths as
large as g=ωq ∼ 1.34 by Yoshihara et al. (2017). Similar
results have also been obtained in the context of waveguide
QED, where the qubit is coupled to an open transmission line
rather than a localized cavity mode (Forn-Díaz, Garcia-Ripoll
et al., 2017).
A first consequence of reaching this ultrastrong-coupling

regime is that, in addition to a Lamb shift g2=Δ, the qubit
transition frequency is further modified by the so-called
Bloch-Siegert shift of magnitude g2=ðωq þ ωrÞ (Bloch and

(a) (b) (c)

FIG. 26. Change of effective resonator frequency ωrσ with
increasing measurement drive power for the different states σ
of the transmon qubit (dotted blue line, ground state; solid red
line, first excited state; dashed gray line, second excited state).
The horizontal green dashed line is the bare resonator frequency.
(a) Two-level artificial atom taking into account (b) three levels
of the transmon and (c) six levels of the transmon. The
system parameters are chosen such that ðω01;ω12; gÞ=2π ¼
ð6; 5.75; 0.1Þ GHz. Adapted from Boissonneault, Gambetta,
and Blais, 2010.
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Siegert, 1940). Another consequence is that the ground state
of the combined system is no longer the factorizable state jg0i
but instead an entangled qubit-resonator state. An immediate
implication of this observation is that the master equation (83),
whose steady state is jg0i, is not an appropriate description of
damping in the ultrastrong-coupling regime (Beaudoin,
Gambetta, and Blais, 2011). It is also worth mentioning that
the two-level approximation for the artificial atom and the
single-mode approximation for the oscillator that we use in
this section may no longer be valid in this regime. Additional
details about this regime of light-matter interaction were given
by Forn-Díaz et al. (2019) and Frisk Kockum et al. (2019).

VII. QUANTUM COMPUTING WITH CIRCUIT QED

One of the reasons for the rapid growth of circuit QED as a
field of research is its prominent role in gate-based quantum
computing. The transmon is today the most widely used
superconducting qubit, and the dispersive measurement
described in Sec. V is the standard approach to qubit readout.
Moreover, the capacitive coupling between transmons that are
fabricated in proximity can be used to implement two-qubit
gates. Alternatively, the transmon-resonator interaction can
also be used to implement gates between qubits that are
separated by distances as large as a centimeter, with the
resonator acting as a quantum bus to mediate qubit-qubit
interactions. As illustrated in Fig. 27, realizing a quantum
computer architecture, even of modest size, requires bringing
together in a single working package essentially all of the
elements discussed in this review.
In this section, we describe the basic principles behind one-

and two-qubit gates in circuit QED. Our objective is not to
give a complete overview of the many different gates and gate-
optimization techniques that have been developed. We instead
focus on the key aspects of how a light-matter interaction

facilitates coherent quantum operations for superconducting
qubits, and we describe some of the more commonly used
gates to illustrate the basic principles. Unless otherwise noted,
in this section we assume the qubits to be dispersively coupled
to the resonator.

A. Single-qubit gates

Arbitrary single-qubit rotations can be realized in a NMR-
like fashion with voltage drives at the qubit frequency (Blais
et al., 2004, 2007). One approach is to drive the qubit via one
of the resonator ports (Wallraff et al., 2005). Because of the
large qubit-resonator detuning, a large fraction of the input
power is reflected at the resonator, a situation that can be
compensated for by increasing the power emitted by the
source. This approach is similar to a qubit measurement but
with a large detuning δr ≫ χ such that jαe − αgj ∼ 0 according
to Eq. (112). As illustrated in Fig. 19, this far off-resonance
drive therefore causes negligible measurement-induced
dephasing (Blais et al., 2007). We also note that, in the
presence of multiple qubits coupled to the same resonator, it is
important that the qubits be sufficiently detuned in frequency
from each other to avoid the control drive intended for one
qubit to inadvertently affect the other qubits.
Given the last constraint, an often more convenient

approach, illustrated in Figs. 13 and 27, is to capacitively
couple the qubit to an additional transmission line, from which
the control drives are applied. The coupling to this additional
control port must be small enough to avoid any impact on the
qubit relaxation time. Following Sec. IV.F, the amplitude of
the drive as seen by the qubit is given by ε ¼ −i ffiffiffi

γ
p

β, where β
is the amplitude of the drive at the input port and γ is set by the
capacitance between the qubit and the transmission line. A
small γ, corresponding to a long relaxation time, can be
compensated for by increasing the drive amplitude jβj while

FIG. 27. False colored optical microscope image of a four-transmon device. The transmon qubits are shown in yellow, the coupling
resonators are shown in cyan, the flux lines for single-qubit tuning are shown in green, the charge lines for single-qubit manipulation are
shown in pink, and a common feedline for multiplexed readout is shown in purple, with transmission-line resonators for dispersive
readout (red) employing Purcell filters (blue). Adapted from Andersen et al., 2019.
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making sure that any heating due to power dissipation close to
the qubit does not affect qubit coherence. Design guidelines
for wiring, an overview of the power dissipation induced by
drive fields in qubit drive lines, and their effect on qubit
coherence were discussed by Krinner et al. (2019).
As in Eq. (86), a coherent drive of time-dependent

amplitude εðtÞ, frequency ωd, and phase ϕd on a transmon
is then modeled by

ĤðtÞ ¼ Ĥq þ ℏεðtÞðb̂†e−iωdt−iϕd þ b̂eiωdtþiϕdÞ; ð131Þ

where Ĥq ¼ ℏωqb̂
†b̂ − ðEC=2Þðb̂†Þ2b̂2 is the transmon

Hamiltonian. Going to a frame rotating at ωd, ĤðtÞ takes
the simpler form

Ĥ0 ¼ Ĥ0
q þ ℏεðtÞðb̂†e−iϕd þ b̂eiϕdÞ; ð132Þ

where Ĥ0
q ¼ ℏδqb̂

†b̂ − ðEC=2Þðb̂†Þ2b̂2, with δq ¼ ωq − ωd

the detuning between the qubit and the drive frequencies.
When we truncate to two levels of the transmon as in

Eq. (36), Ĥ0 takes the form

Ĥ0 ¼ ℏδq
2

σ̂z þ
ℏΩRðtÞ

2
½cosðϕdÞσ̂x þ sinðϕdÞσ̂y�; ð133Þ

where we introduce the standard notation ΩR ¼ 2ε for the
Rabi frequency. This form of Ĥ0 makes it clear how the phase
of the drive ϕd controls the axis of rotation on the qubit Bloch
sphere. Indeed, for δq ¼ 0 the choice ϕd ¼ 0 leads to rotations
around the X axis, while ϕd ¼ π=2 leads to rotations around
the Y axis. Since any rotation on the Bloch sphere can be
decomposed into X and Y rotations, arbitrary single-qubit
control is therefore possible using sequences of on-resonant
drives with appropriate phases.
Implementing a desired gate requires turning on and off the

drive amplitude. To realize as many logical operations as
possible within the qubit coherence time, the gate time should
be as short as possible and square pulses are optimal from that
point of view. In practice, however, such pulses suffer from
deformation as they propagate down the finite-bandwidth
transmission line from the source to the qubit. Moreover, for a
weakly anharmonic multilevel system such as a transmon,
high-frequency components of the square pulse can cause
unwanted transitions to levels outside the two-level computa-
tional subspace. This leakage can be avoided by using smooth
(e.g., Gaussian) pulses, but this leads to longer gate times.
Another solution is to shape the pulse so as to remove the
unwanted frequency components. A widely used approach
that achieves this is known as derivative removal by adiabatic
gate (DRAG). It is based on driving the two quadratures of the
qubit with the envelope of the second quadrature chosen to be
the time derivative of the envelope of the first quadrature
(Motzoi et al., 2009; Gambetta et al., 2011). More generally,
one can cast the problem of finding an optimal drive as a
numerical optimization problem, which can be tackled with
optimal control approaches such as the gradient ascent pulse
engineering algorithm (Khaneja et al., 2005).
Experimental results from Chow et al. (2010) comparing

the error in single-qubit gates with and without DRAG are

shown in Fig. 28. At long gate times, decoherence is the
dominant source of error such that both Gaussian and DRAG
pulses initially improve as the gate time is reduced. However,
as the pulses get shorter and their frequency bandwidths
become comparable to the transmon anharmonicity, leakage
leads to large errors for the Gaussian pulses (red squares). In
contrast, the DRAG results (blue circles) continue to improve
as gates are made shorter and the results are consistent with a
two-level system model of the transmon (Chow et al., 2010;
Lucero et al., 2010). These observations show that small
anharmonicity is not a fundamental obstacle to fast and high-
fidelity single-qubit gates. Indeed, thanks to pulse shaping
techniques and long coherence times, state-of-the-art single-
qubit gate errors are below 10−3, well under the predicted
threshold for topological error-correcting codes (Fowler et al.,
2012; Barends et al., 2014; Chen et al., 2016).
While rotations about the Z axis can be realized by

concatenating the X and Y rotations described earlier, several
other approaches are used experimentally. Working in a
rotating frame as in Eq. (133) with δq ¼ 0, one alternative
method relies on changing the qubit transition frequency such
that δq ≠ 0 for a determined duration. In the absence of drive
(ΩR ¼ 0), this leads to phase accumulation by the qubit state
and therefore to a rotation about the Z axis. As discussed in
Sec. II.E, fast changes of the qubit transition frequency are
possible by applying a magnetic field to a flux-tunable
transmon. However, working with flux-tunable transmons is
done at the cost of making the qubit susceptible to dephasing
due to flux noise. To avoid this, the qubit transition frequency
can also be tuned without relying on a flux-tunable device by
applying a strongly detuned microwave tone on the qubit. For
ΩR=δq ≪ 1, this drive does not lead to Rabi oscillations but
induces an ac-Stark shift of the qubit frequency due to virtual
transition caused by the drive (Blais et al., 2007). Indeed, as

FIG. 28. Single-qubit gate errors extracted from randomized
benchmarking for Gaussian and DRAG pulses as a function of
total gate time and pulse width σ for Gaussian pulses. The
experimental results (symbols) are compared to numerical
simulations (lines) with two or three transmon levels. Adapted
from Chow et al., 2010.
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shown in Appendix B.4, to second order in ΩR=δq and
assuming for simplicity a constant drive amplitude, this
situation is described by the effective Hamiltonian

Ĥ00 ≃
1

2

�
ℏωq −

EC

2

Ω2
R

δ2q

	
σ̂z: ð134Þ

The last term can be turned on and off with the amplitude of
the detuned microwave drive and can therefore be used to
realize Z rotations. Care must, however, be taken to avoid
unwanted transitions due to the potentially strong drive.
Finally, since the X and Y axis in Eq. (133) are defined by

the phase ϕd of the drive, a particularly simple approach to
realizing a Z gate is to add the desired phase offset to the drive
fields of all subsequent X and Y rotations and two-qubit gates.
This so-called virtual Z gate can be especially useful if the
computation is optimized to use a large number of Z rotations
(McKay et al., 2017).

B. Two-qubit gates

Two-qubit gates are generally more challenging to realize
than single-qubit gates. Error rates for current two-qubit gates
are often around 1% to a few percent, which is an order of
magnitude higher than those of single-qubit gates. Recent
experiments are, however, closing this gap (Foxen et al., 2020;
Negîrneac et al., 2020). Improving two-qubit gate fidelities at
short gate times is an active area of research, and a variety of
approaches have been developed. A key challenge in realizing
two-qubit gates is the ability to rapidly turn interactions on
and off. While for single-qubit gates this is done by simply
turning on and off a microwave drive, two-qubit gates require
turning on a coherent qubit-qubit interaction for a fixed time.
Achieving large on-off ratios is far more challenging in this
situation.
Broadly speaking, one can divide two-qubit gates into

different categories depending on how the qubit-qubit

interaction is activated. The main approaches discussed in
the following are illustrated schematically in Fig. 29. An
important distinction between these different schemes is
whether or not they rely on frequency-tunable qubits.
Frequency tunability is convenient because it can be used
to controllably tune qubits into resonance with one other qubit
or with a resonator. Using flux-tunable transmons has led to
some of the fastest and highest fidelity two-qubit gates to date;
see Figs. 29(a) and 29(b) (Barends et al., 2014; Chen et al.,
2014; Arute et al., 2019). However, as mentioned this leads to
additional qubit dephasing due to flux noise. An alternative
involves all-microwave gates that use only microwave drives,
either on the qubits or on a coupler bus such as a resonator to
activate an effective qubit-qubit interaction; see Fig. 29(c).
Finally, yet another category of gates is parametric gates
where a system parameter is modulated in time at a frequency
that bridges an energy gap between the states of two qubits.
Parametric gates can be all microwave but in some instances
involve modulating system frequencies using external mag-
netic flux; see Fig. 29(d).

1. Qubit-qubit exchange interaction

a. Direct capacitive coupling

One of the conceptually simplest ways to realize two-qubit
gates is through direct capacitive coupling between the qubits;
see Fig. 29(a). In analogy with Eq. (34), the Hamiltonian
describing this situation reads

Ĥ ¼ Ĥq1 þ Ĥq2 þ ℏJðb̂†1b̂2 þ b̂1b̂
†
2Þ; ð135Þ

where Ĥqi ¼ ℏωqib̂
†
i b̂i − ECi

ðb̂†i Þ2b̂2i =2 is the Hamiltonian of

the ith transmon and b̂i is the corresponding annihilation
operator. The interaction amplitude J takes the form

ℏJ ¼ 2EC1EC2

ECc

�
EJ1

2EC1
×

EJ2

2EC2

	
1=4

; ð136Þ

(a) (b)

(c) (d)

FIG. 29. Schematic illustration of some of the two-qubit gate schemes discussed in the text. Exchange interaction between two qubits
(a) from direct capacitive coupling and (b) mediated by a coupler such as a bus resonator. The qubits are tuned in and out of resonance
with each other to activate and deactivate the interaction, respectively. (c) All-microwave gates activated by microwave drives on the
qubits and/or a coupler such as a bus resonator. In this scheme, the qubits can have a fixed frequency. (d) Parametric gates involving
modulation of a system parameter, such as a tunable coupler. Adapted from Yan et al., 2018.

Blais, Grimsmo, Girvin, and Wallraff: Circuit quantum electrodynamics

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025005-41



with EJi and ECi the transmon Josephson and charging
energies and ECc

¼ e2=2Cc the charging energy of the
coupling capacitance labeled Cc. This beam-splitter
Hamiltonian describes the coherent exchange of an excitation
between the two qubits. In the two-level approximation,
assuming the qubits to be tuned in resonance with each other,
ωq1 ¼ ωq2, and moving to a frame rotating at the qubit
frequency, Eq. (135) takes the familiar form

Ĥ0 ¼ ℏJðσ̂þ1σ̂−2 þ σ̂−1σ̂þ2Þ: ð137Þ

Evolution under this Hamiltonian for a time π=ð4JÞ leads to
the two-qubit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate, which is an entangling gate

(Burkard et al., 1999; Zhang et al., 2003).
As mentioned, to precisely control the evolution under Ĥ0, it

is essential to be able to vary the qubit-qubit interaction with a
large on-off ratio. There are essentially two approaches to
realizing this. The most straightforward way is to tune the
qubits in resonance to perform a two-qubit gate, and to
strongly detune them to stop the coherent exchange induced
by Ĥ0 (Blais, van den Brink, and Zagoskin, 2003; Bialczak
et al., 2010; Dewes et al., 2012). Indeed, for J=Δ12 ≪ 1,
where Δ12 ¼ ωq1 − ωq2 is the detuning between the two
qubits, the coherent exchange J is suppressed and can be
dropped from Eq. (135) under the RWA. A more careful
analysis following the same arguments and approach used to
describe the dispersive regime (see Sec. III.C) shows that, to
second order in J=Δ12, a residual qubit-qubit interaction of the
form ðJ2=Δ12Þσ̂z1σ̂z2 remains. This unwanted interaction in
the off state of the gate leads to a conditional phase
accumulation on the qubits. As a result, the on-off ratio of
this direct coupling gate is estimated to be ∼Δ12=J. This direct
coupling approach was implemented by Barends et al. (2014)
using frequency-tunable transmons with a coupling J=2π ¼
30 MHz and an on-off ratio of 100. In practice, the on-off ratio
cannot be made arbitrarily small because increasing the
detuning of one pair of qubits in a multiqubit architecture
might lead to accidental resonance with a third qubit. The
unwanted phase accumulation due to the residual σ̂z1σ̂z2 can,
in principle, be eliminated using refocusing techniques bor-
rowed from nuclear magnetic resonance (Slichter, 1990).
Another approach to turn the swap interaction on and off is

to make the J coupling itself tunable in time. This is
conceptually simple but requires more complex coupling
circuitry typically involving flux-tunable elements that can
open additional decoherence channels for the qubits. One
advantage is that tuning a coupler rather than qubit transition
frequencies helps in reducing the frequency crowding prob-
lem. This approach was used by Chen et al. (2014), who
coupled two transmon qubits via a flux-tunable inductive
coupler. In this way, it was possible to realize an on-off ratio of
1000, with a maximum coupling of 100 MHz corresponding
to an

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate in 2.5 ns. A simpler approach based on a

frequency-tunable transmon qubit acting as coupler, suggested
by Yan et al. (2018), was also used to tune qubit-qubit
coupling from 5 to −40 MHz, going through zero coupling
with a gate time of ∼12 ns and a gate infidelity of ∼0.5%
(Arute et al., 2019).

b. Resonator mediated coupling

An alternative to the previous approach is to use a resonator
as a quantum bus mediating interactions between two qubits;
see Fig. 29(b) (Blais et al., 2004, 2007; Majer et al., 2007). An
advantage compared to direct coupling is that the qubits do not
have to be fabricated in proximity to each other. With the
qubits coupled to the same resonator, and in the absence of
any direct coupling between the qubits, the Hamiltonian
describing this situation is

Ĥ ¼ Ĥq1 þ Ĥq2 þ ℏωrâ†âþ
X2
i¼1

ℏgiðâ†b̂i þ âb̂†i Þ: ð138Þ

One way to make use of this pairwise interaction (assuming
the resonator to be in the vacuum state) is to first tune one of
the two qubits in resonance with the resonator for half a
vacuum Rabi oscillation cycle, swapping an excitation from
the qubit to the resonator before tuning it back out of
resonance. The second qubit is then tuned in resonance,
mapping the excitation from the resonator to the second qubit
(Sillanpää, Park, and Simmonds, 2007). While this sequence
of operations can swap the quantum state of the first qubit to
the second, thereby demonstrating the role of the resonator as
a quantum bus, it does not correspond to an entangling two-
qubit gate.
Alternatively, a two-qubit gate can be performed by only

virtually populating the resonator mode by working in the
dispersive regime where both qubits are far detuned from the
resonator (Blais et al., 2004, 2007; Majer et al., 2007).
Building on the results of Sec. III.C, we find that in this
situation the effective qubit-qubit interaction is revealed by
applying the approximate dispersive transformation Û ¼
exp ½Piðgi=ΔiÞðâ†b̂i − âb̂†i Þ� on Eq. (138). Making use of
the Baker-Campbell-Hausdorff expansion (B2) to second
order in gi=Δi, we find that

Ĥ0 ¼ Ĥ0
q1 þ Ĥ0

q2 þ ℏJðb̂†1b̂2 þ b̂1b̂
†
2Þ

þ ℏω̃râ†âþ
X2
i¼1

ℏχabi â
†âb̂†i b̂i

þ
X
i≠j

ℏΞijb̂
†
i b̂iðb̂†j b̂i þ b̂†i b̂jÞ; ð139Þ

with H0
qi ≃ ℏω̃qib̂

†
i b̂i − ðECi=2Þðb̂†i Þ2b̂2i the transmon

Hamiltonians and χabi ≃ −2ECig2i =Δ2
i a cross-Kerr coupling

between the resonator and the ith qubit. The frequencies ω̃qi

and ω̃r include Lamb shifts. The last line can be understood as
an excitation-number-dependent exchange interaction with
Ξij ¼ ECigigj=ð2ΔiΔjÞ. Since this term is much smaller than
the J coupling, it can typically be neglected. Note that we have
dropped a self-Kerr term of magnitude close to χabi on the
resonator. This term is of no practical consequence in the
dispersive regime, where the resonator is only virtually
populated. The resonator-induced J coupling in Ĥ0 takes
the form
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J ¼ g1g2
2

�
1

Δ1

þ 1

Δ2

	
ð140Þ

and reveals itself in the frequency domain by an anticrossing
of size 2J between the qubit states j01i and j10i. This is
illustrated in Fig. 30(b), which shows the eigenenergies of the
Hamiltonian (138) in the one-excitation manifold. In this
figure, the frequency of qubit 1 is swept, while that of qubit 2
is kept constant at ∼8 GHz with the resonator at ∼7 GHz.
Moving from left to right, we first see the vacuum Rabi
splitting of size 2g at ωq1 ¼ ωr, followed by a smaller
anticrossing of size 2J at the qubit-qubit resonance.
Equation (140) is valid only for single-mode oscillators and
is renormalized in the presence of multiple modes (Filipp
et al., 2011; Solgun, DiVincenzo, and Gambetta, 2019).
To understand the consequence of the J coupling in the time

domain, it is useful to note that if the resonator is initially in
the vacuum state, it will remain in that state under the
influence of Ĥ0. In other words, the resonator is only virtually
populated by its dispersive interaction with the qubits. For this
reason, with the resonator initialized in the vacuum state, the

second line of Eq. (139) can for all practical purposes be
ignored and we are back to the form of the direct coupling
Hamiltonian of Eq. (135). Consequently, when both qubits are
tuned in resonance with each other but still dispersive with
respect to the resonator, the latter acts as a quantum bus
mediating interactions between the qubits. An entangling gate
can thus be performed in the same way as with direct
capacitive coupling, either by tuning the qubits in and out
of resonance with each other (Majer et al., 2007) or by making
the couplings gi themselves tunable (Gambetta, Houck, and
Blais, 2011; Srinivasan et al., 2011).

2. Flux-tuned 11-02 phase gate

The 11-02 phase gate is a controlled-phase gate that is well
suited to weakly anharmonic qubits such as transmons
(DiCarlo et al., 2009, 2010; Barends et al., 2014; Martinis
and Geller, 2014; Rol et al., 2019; Foxen et al., 2020;
Kjaergaard et al., 2020). It is obtained from the exchange
interaction of Eq. (135) and can thus be realized through direct
static or tunable qubit-qubit coupling or indirect coupling via a
resonator bus.
In contrast to the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
gate, the 11-02 phase gate is not

based on tuning the qubit transition frequencies between the
computational states into resonance with each other, but
instead exploits the third energy level of the transmon. The
11-02 gate thus relies on tuning the qubits to a point where the
states j11i and j02i are degenerate in the absence of J
coupling. As illustrated in Fig. 30(a), the qubit-qubit coupling
lifts this degeneracy by an energy ζ whose value can be found
perturbatively (DiCarlo et al., 2009). Because of this repulsion
caused by coupling to the state j02i, the energy E11 of the state
j11i is smaller than E01 þ E10 by ζ. Adiabatically flux tuning
the qubits in and out of the 11-02 anticrossing therefore leads
to a conditional phase accumulation that is equivalent to a
controlled-phase gate.
To show this more clearly, we write the unitary correspond-

ing to this adiabatic time evolution as

ĈZðϕ01;ϕ10;ϕ11Þ ¼

0
BBB@

1 0 0 0

0 eiϕ01 0 0

0 0 eiϕ10 0

0 0 0 eiϕ11

1
CCCA; ð141Þ

where ϕab ¼
R
dtEabðtÞ=ℏ is the dynamical phase accumu-

lated over the total flux excursion. Up to single-qubit
rotations, this is equivalent to a standard controlled-phase
gate since

ĈZðϕÞ ¼ diagð1; 1; 1; eiϕÞ
¼ R̂1

Zð−ϕ10ÞR̂2
Zð−ϕ01ÞĈZðϕ01;ϕ10;ϕ11Þ; ð142Þ

with ϕ ¼ ϕ11 − ϕ01 − ϕ10 ¼
R
dtζðtÞ and where R̂i

ZðθÞ ¼
diagð1; eiθÞ is a single-qubit phase gate acting on qubit i.
For ϕ ≠ 0 this is an entangling two-qubit gate and, in
particular, for ϕ ¼ π it is a controlled-Z gate (CPHASE).
An alternative to adiabatically tuning the flux in and out of

the 11-02 resonance is to nonadiabatically pulse to this

(a)

(b)

FIG. 30. Spectrum of two transmon qubits coupled to a common
resonator as a function of the frequency of the second qubit in the
(a) two-excitation and (b) one-excitation manifolds. The solid
lines are obtained by numerical diagonalization of Eq. (138) in
the charge basis with five transmon levels and five resonator
levels, and with parameters adapted from DiCarlo et al. (2009):
EJ1ð2Þ=h ¼ 28.48ð42.34Þ GHz, EC1ð2Þ=h ¼ 317ð297Þ MHz, and
g1ð2Þ=2π ¼ 199ð190Þ MHz. In the one-excitation manifold, both
the 2g anticrossing of the first qubit with the resonator and the 2J
anticrossing of the two qubits are visible. In the two-excitation
manifold, the 11-02 anticrossing of magnitude ζ can be seen.
Notice the change in horizontal scale between the two panels. The
states are labeled as j1st qubit; 2nd qubit; resonatori. The
dashed light blue lines are guides for the eye following the bare
frequency of the first qubit.
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anticrossing (Strauch et al., 2003; DiCarlo et al., 2010;
Yamamoto et al., 2010). In this sudden approximation, leaving
the system there for a time t, the state j11i evolves into
cosðζt=2ℏÞj11i þ sinðζt=2ℏÞj02i. For t ¼ h=ζ, j11i is
mapped back onto itself but acquires a minus sign in the
process. On the other hand, since they are far from any
resonance, the other logical states evolve trivially. This
therefore again results in a CPHASE gate. In this way, fast
controlled-Z gates are possible. Some of the fastest and highest
fidelity two-qubit gates have been achieved this way with
error rates below the percent level and gate times of a few tens
of nanoseconds (Barends et al., 2014; Chen et al., 2014). A
fidelity of 99.93% with a 50 ns gate time was reported by
Negîrneac et al. (2020).
Despite its advantages, a challenge associated with this gate

is the distortions in the flux pulses due to the finite bandwidth
of the control electronics and line. In addition to modifying the
waveform experienced by the qubit, this can lead to long
timescale distortions where the flux at the qubit at a given time
depends on the previous flux excursions. This situation can be
partially solved by predistorting the pulses while taking into
account the known distortion, but also by adapting the applied
flux pulses to take advantage of the symmetry around the
transmon sweet spot to cancel out unwanted contributions
(Gustavsson et al., 2013; Rol et al., 2019).

3. All-microwave gates

Because the on-off ratio of the previously discussed gates is
controlled by the detuning between the qubits, it is necessary
to tune the qubit frequencies over relatively large frequency
ranges or, alternatively, to have tunable coupling elements. In
both cases, having a handle on the qubit frequency or qubit-
qubit coupling opens the system to additional dephasing.
Moreover, changing the qubit frequency over large ranges can
lead to accidental resonance with other qubits or uncontrolled
environmental modes, resulting in energy loss. For these
reasons, it can be advantageous to control two-qubit gates in
much the same way as single-qubit gates: by simply turning a
microwave drive on and off. In this section, we describe two
so-called all-microwave gates: the resonator-induced phase
(RIP) gate and the cross-resonance (CR) gate. Both are based
on fixed-frequency far off-resonance qubits with an always-on
qubit-resonator coupling. The RIP gate is activated by driving
a common resonator and the CR gate by driving one of the
qubits. Other all-microwave that which are not discussed
further here include the sideband-based iSWAP (Leek et al.,
2009), the bSWAP (Poletto et al., 2012), the microwave-
activated CPHASE (Chow et al., 2013), and the fg-ge gate
(Zeytinoğlu et al., 2015; Egger et al., 2019).

a. Resonator-induced phase gate

The RIP gate relies on two strongly detuned qubits that are
dispersively coupled to a common resonator mode. The
starting point is thus Eq. (139), where we now neglect the
J coupling by taking jωq1 − ωq2j ≫ J. In the two-level
approximation and accounting for a drive on the resonator,
this situation is described by the Hamiltonian

Ĥ0 ¼ ℏω̃q1

2
σ̂z1 þ

ℏω̃q2

2
σ̂z2 þ ℏω̃râ†â

þ
X2
i¼1

ℏχiâ†âσ̂zi þ ℏεðtÞðâ†e−iωdt þ âeiωdtÞ; ð143Þ

where εðtÞ is the time-dependent amplitude of the resonator
drive and ωd is its frequency. Note that we also neglect the
resonator self-Kerr nonlinearity.
The gate is realized by adiabatically ramping the drive εðtÞ

on and off, such that the resonator starts and ends in the
vacuum state. This means that the resonator is unentangled
from the qubits at the start and end of the gate. Moreover, to
avoid measurement-induced dephasing, the drive frequency is
chosen to be far from the cavity mode: jδ̃rj ¼ jω̃r − ωdj ≫ κ.
Despite this strong detuning, the dispersive shift causes the
resonator frequency to depend on the state of the two qubits,
and as a result the resonator field evolves in a closed path in
phase space that is qubit-state dependent. This leads to
different phase accumulations for the various qubit states,
and therefore to a controlled-phase gate of the form of
Eq. (141).
This conditional phase accumulation can be made more

apparent by moving Eq. (143) to a frame rotating at the drive
frequency and by applying the polaron transformation Û ¼
exp½α̂0ðtÞâ† − α̂�0ðtÞâ� with α̂0ðtÞ ¼ αðtÞ −P

i χiσ̂zi=δ̃r on the
resulting Hamiltonian. This leads to the approximate effective
Hamiltonian (Puri and Blais, 2016)

Ĥ00 ≃
X
i

ℏ

�
δ̃qi
2

þ χjαðtÞj2
�
σ̂zi þ ℏδrâ†â

þ
X2
i¼1

ℏχiâ†âσ̂zi − ℏ
2χ1χ2jαðtÞj2

δr
σ̂z1σ̂z2; ð144Þ

with δ̃x ¼ ω̃x − ωd and where the field amplitude αðtÞ satisfies
_α ¼ −iδ̃rα − iϵðtÞ. In this frame, it is clear how the resonator
mediates a σ̂z1σ̂z2 interaction between the two qubits and
therefore leads to a conditional phase gate. Equation (144)
also makes it clear that the need to avoid measurement-
induced dephasing with jδ̃rj ≫ κ limits the effective inter-
action strength and therefore leads to relatively long gate
times. This can be mitigated, however, by taking advantage of
pulse shaping techniques (Cross and Gambetta, 2015) or by
using squeezed radiation to erase the “which-qubit” informa-
tion in the output field of the resonator (Puri and Blais, 2016).
As with the longitudinal readout protocol discussed in
Sec. V.C.3, longitudinal coupling also offers a way to over-
come many of the limitations of the conventional RIP gate
(Kerman, 2013; Royer et al., 2017).
Some of the advantages of this two-qubit gate are that it can

couple qubits that are far detuned from each other and that it
does not introduce significant leakage errors (Paik et al.,
2016). This gate was demonstrated by Paik et al. (2016) with
multiple transmons coupled to a 3D resonator, achieving error
rates of a few percent and gate times of several hundred
nanoseconds.
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b. Cross-resonance gate

The cross-resonance gate is based on qubits that are detuned
from each other and coupled by an exchange term J of the
form of Eq. (135) or (139) (Rigetti and Devoret, 2010; Chow
et al., 2011). While the RIP gate relies on off-resonant driving
of a common oscillator mode, this gate is based on directly
driving one of the qubits at the frequency of the other.
Moreover, since the resonator is not directly used and, in
fact, ideally remains in its vacuum throughout the gate, the J
coupling can be mediated by a resonator or by direct
capactitive coupling.
In the two-level approximation and in the absence of the

drive, this interaction takes the form

Ĥ ¼ ℏωq1

2
σ̂z1 þ

ℏωq2

2
σ̂z2 þ ℏJðσ̂þ1σ̂−2 þ σ̂−1σ̂þ2Þ: ð145Þ

To see how this gate operates, it is useful to diagonalize Ĥ
using the two-level system version of the transformation (49).
The result takes the same general form as Eqs. (50) and (51)
after projecting to two levels. In this frame, the presence of the
J coupling leads to a renormalization of the qubit frequencies,
which for strongly detuned qubits jΔ12j ¼ jωq1 − ωq2j ≫ jJj
take the values ω̃q1 ≈ ωq1 þ J2=Δ12 and ω̃q2 ≈ ωq2 − J2=Δ12

to second order in J=Δ12. In the same frame, a drive on the
first qubit ℏΩRðtÞ cosðωdtÞσ̂x1 takes the form (Chow et al.,
2011)

ℏΩRðtÞ cosðωdtÞðcos θσ̂x1 þ sin θσ̂z1σ̂x2Þ

≈ ℏΩRðtÞ cosðωdtÞ
�
σ̂x1 þ

J
Δ12

σ̂z1σ̂x2

	
; ð146Þ

with θ ¼ arctanð2J=Δ12Þ=2 and where the second line is valid
to first order in J=Δ12. As a result, driving the first qubit at the
frequency of the second qubit (ωd ¼ ω̃q2) activates the term
σ̂z1σ̂x2, which can be used to realize a CNOT gate.
More accurate expressions for the amplitude of the CR term

σ̂z1σ̂x2 can be obtained by taking into account more levels of
the transmons. In this case, the starting point is the
Hamiltonian (135) with a drive term on the first qubit

Ĥ ¼ Ĥq1 þ Ĥq2 þ ℏJðb̂†1b̂2 þ b̂1b̂
†
2Þ

þ ℏεðtÞðb̂†1e−iωdt þ b̂1eiωdtÞ; ð147Þ

where ωd ∼ ωq2. As in the previous two-level system example,
it is useful to eliminate the J coupling.We do this bymoving to a
rotating frame at the drive frequency for both qubits, followed
by a Schrieffer-Wolff transformation to diagonalize the first line
of Eq. (147) to second order in J; see Appendix B.1. The drive
term is modified under the same transformation by using the
explicit expression for the Schrieffer-Wolff generator Ŝ ¼
Ŝð1Þ þ � � � given in Eq. (B5), and the Baker-Campbell-

Hausdorff formula (B2) to first order: eŜb̂1e−Ŝ ≃ b̂1þ
½Ŝð1Þ; b̂1�. The full calculation is fairly involved and here we
quote only the final result after truncating it to the two lowest
levels of the transmon qubits (Tripathi, Khezri, and Korotkov,
2019; Magesan and Gambetta, 2020)

Ĥ0 ≃
ℏδ̃q1
2

σ̂z1 þ
ℏδ̃q2
2

σ̂z2 þ
ℏχ12
2

σ̂z1σ̂z2

þ ℏεðtÞ
�
σ̂x1 − J0σ̂x2 −

EC1

ℏ
J0

Δ12

σ̂z1σ̂x2

	
: ð148Þ

In Eq. (148), the detunings include frequency shifts due
to the J coupling with δ̃q1 ¼ ωq1 þ J2=Δ12 þ χ12 − ωd and
δ̃q2 ¼ ωq2 − J2=Δ12 þ χ12 − ωd. The parameters χ12 and J0 are
given by

χ12 ¼
J2

Δ12 þ EC2
=ℏ

−
J2

Δ12 − EC1
=ℏ

; ð149aÞ

J0 ¼ J
Δ12 − EC1

=ℏ
: ð149bÞ

Equations (146) and (148) agree in the limit of large
anharmonicity EC1;2

, and we again find that a drive on the
first qubit at the frequency of the second qubit activates the CR
term σ̂z1σ̂x2. However, there are important differences at finite
EC1=2

, which highlights the importance of taking into account
the multilevel nature of the transmon. Indeed, the amplitude of
the CR term is smaller here than in Eq. (146) with a two-level
system. Moreover, in contrast to the latter case, when taking
multiple levels of the transmon qubits into account we find a
spurious interaction σ̂z1σ̂z2 of amplitude χ12 between the two
qubits, as well as a drive on the second qubit of amplitude
J0εðtÞ. This unwanted drive can be echoed away with addi-
tional single-qubit gates (Córcoles et al., 2013; Sheldon et al.,
2016). The σ̂z1σ̂z2 interaction is detrimental to the gate fidelity
as it effectively makes the frequency of the second qubit
dependent on the logical state of the first qubit. Because of
this, it is not possible to choose the drive frequency ωd to
always be exactly on resonance with the second qubit,
irrespective of the state of the first. As a consequence, the
CR term σ̂z1σ̂x2 in Eq. (148) rotates at an unknown qubit-state-
dependent frequency, leading to a gate error. The σ̂z1σ̂z2 term
should therefore be made small, ultimately limiting the gate
speed. For a pair of qubits with equal and opposite anharmo-
nicities, χ12 ¼ 0 and this unwanted effect is absent. This
cannot be realized with a pair of conventional transmons but is
possible with other types of qubits (Ku et al., 2020).
Since J0 is small, another caveat of the CR gate is that large

microwave amplitudes ε are required for fast gates. For the
typical low anharmonicity of transmon qubits, this can lead to
leakages and to effects that are not captured by the second-
order perturbative results of Eqs. (146) and (148). More
detailed modeling based on the Hamiltonian of Eq. (147)
suggests that classical cross talk induced on the second qubit
from driving the first qubit can be important and is a source of
discrepancy between the simple two-level system model and
experiments (Tripathi, Khezri, and Korotkov, 2019; Ware
et al., 2019; Magesan and Gambetta, 2020). Because of these
spurious effects, CR gate times have typically been relatively
long, of the order of 300 to 400 ns with gate fidelities
∼94%–96% (Córcoles et al., 2013). However, with careful
calibration and modeling beyond Eq. (148), it has been
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possible to push gate times down to the 100–200 ns range with
errors per gate at the percent level (Sheldon et al., 2016).
Advantages of the CR gate, which are similar to those of the

RIP gate, include the fact that realizing this gate can be
realized using the same drive lines that are used for single-
qubit gates. Moreover, it works with fixed-frequency qubits
that often have longer phase coherence times than their flux-
tunable counterparts. However, both the RIP and CR gates are
slower than what can now be achieved with additional flux
control of the qubit frequency or the coupler. We also note
that, due to the factor EC1=ℏΔ12 in the amplitude of the σ̂z1σ̂x2
term, the detuning of the two qubits cannot be too large
relative to the anharmonicity, putting further constraints on the
choice of the qubit frequencies. This may lead to frequency
crowding issues when working with large numbers of qubits.

4. Parametric gates

Another approach to enacting a two-qubit gate with a large
on-off ratio is to activate an off-resonant interaction by
modulating a parameter of the system at an appropriate
frequency. This parametric modulation provides the energy
necessary to bridge the energy gap between the far detuned
qubit states. Several such schemes, known as parametric gates,
have been theoretically developed and experimentally real-
ized; see Bertet, Harmans, and Mooij (2006), Niskanen,
Nakamura, and Tsai (2006), Liu et al. (2007), Niskanen et al.
(2007), Beaudoin et al. (2012), Strand et al. (2013), Kapit
(2015), Sirois et al. (2015), McKay et al. (2016), Naik et al.
(2017), Caldwell et al. (2018), Didier et al. (2018), and
Reagor et al. (2018).
The key idea behind parametric gates is that modulation of

a system parameter can induce transitions between energy
levels that would otherwise be too far off resonance to give
appreciable coupling. We illustrate the idea first with two
directly coupled qubits described by the Hamiltonian

Ĥ ¼ ℏωq1

2
σ̂z1 þ

ℏωq2

2
σ̂z2 þ JðtÞσ̂x1σ̂x2; ð150Þ

where we assume that the coupling is periodically modulated
at the frequency ωm, JðtÞ ¼ J0 þ J̃ cosðωmtÞ. Moving to a
rotating frame at the qubit frequencies, Eq. (150) takes the
form

Ĥ0 ¼ JðtÞðeiðωq1−ωq2Þtσ̂þ1σ̂−2

þ eiðωq1þωq2Þtσ̂þ1σ̂þ2 þ H:c:Þ: ð151Þ

As in Sec. VII.B.1.a, if the coupling is constant [JðtÞ ¼ J0]
and jJ0=ðωq1 − ωq2Þj, jJ0=ðωq1 þ ωq2Þj ≪ 1, then Ĥ0 is fast
rotating and can be neglected. In this situation, the gate is in
the off state. On the other hand, by appropriately choosing the
modulation frequency ωm, it is possible to selectively activate
some of these terms. Indeed, for ωm ¼ ωq1 − ωq2 the terms
σ̂þ1σ̂−2 þ H:c: are no longer rotating and are effectively
resonant. Dropping the rapidly rotating terms leads to

Ĥ0 ≃
J̃
2
ðσ̂þ1σ̂−2 þ σ̂−1σ̂þ2Þ: ð152Þ

As discussed, this interaction can be used to generate
entangling gates such as the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
. If instead

ωm ¼ ω1 þ ω2, then σ̂þ1σ̂þ2 þ H:c: is selected.
In practice, it can sometimes be easier to modulate a qubit

or resonator frequency than a coupling strength. To see how
this leads to a similar result, consider the Hamiltonian

Ĥ ¼ ℏωq1ðtÞ
2

σ̂z1 þ
ℏωq2

2
σ̂z2 þ Jσ̂x1σ̂x2: ð153Þ

Taking ωq1ðtÞ ¼ ωq1 þ ε sinðωmtÞ, the transition frequency of
the first qubit develops frequency modulation (FM) sidebands.
The two qubits can then be effectively brought into resonance
by choosing the modulation to align one of the FM sidebands
with ωq2, thereby rendering the J effectively coupling
resonant. This can be seen by moving to a rotating frame
defined by the unitary

Û ¼ e−ði=2Þ
R

t

0
dt0ωq1ðt0Þσ̂z1e−iωq2tσ̂z2=2; ð154Þ

where the Hamiltonian takes the form (Beaudoin et al., 2012;
Strand et al., 2013)

Ĥ0 ¼ J
X∞
n¼−∞

Jn

�
ε

ωm

	
ðineiðΔ12−nωmÞtσ̂þ1σ̂−2

þ ineiðωq1þωq2−nωmtÞtσ̂þ1σ̂þ2 þ H:c:Þ: ð155Þ

To arrive at Eq. (155), we use the Jacobi-Anger expansion
eiz cos θ ¼ P∞

n¼−∞ inJnðzÞeinθ, with JnðzÞ Bessel functions of
the first kind. Choosing the modulation frequency such that
nωm ¼ Δ12 aligns the nth sideband with the resonator
frequency such that a resonant qubit-resonator interaction is
recovered. The largest contribution comes from the first
sideband with J1, which has a maximum around
J1ð1.84Þ ≃ 0.58, thus corresponding to an effective coupling
that is a large fraction of the bare J coupling. Note that the
assumption of having a simple sinusoidal modulation of the
frequency neglects the fact that the qubit frequency has a
nonlinear dependence on external flux for tunable transmons.
This behavior can still be approximated by appropriately
varying ΦxðtÞ (Beaudoin et al., 2012).
Parametric gates can also be mediated by modulating the

frequency of a resonator bus to which qubits are dispersively
coupled (McKay et al., 2016). Much as with flux-tunable
transmons, the resonator is made tunable by inserting a
SQUID loop in the center conductor of the resonator
(Castellanos-Beltran and Lehnert, 2007; Sandberg et al.,
2008). Changing the flux threading the SQUID loop changes
the SQUID’s inductance and therefore the effective length of
the resonator. As in a trombone, this leads to a change of the
resonator frequency. An advantage of modulating the reso-
nator bus over modulating the qubit frequency is that the latter
can have a fixed frequency, thus reducing its susceptibility to
flux noise.
Finally, it is worth pointing out that while the speed of the

cross-resonance gate is reduced when the qubit-qubit detuning
is larger than the transmon anharmonicity, parametric gates do
not suffer from this problem. As a result, there is more
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freedom in the choice of the qubit frequencies with parametric
gates, which is advantageous to avoid frequency crowding
related issues such as addressability errors and cross talk. We
also note that the modulation frequencies required to activate
parametric gates can be a few hundred megahertz, in contrast
to the RIP and CR gates, which require microwave drives.
Removing the need for additional microwave generators
simplifies the control electronics and may help make the
process more scalable. A counterpoint is that fast parametric
gates often require large modulation amplitudes, which can be
challenging.

C. Encoding a qubit in an oscillator

Thus far we have discussed encoding quantum information
into the first two energy levels of an artificial atom, the cavity
being used for readout and two-qubit gates. However, cavity
modes often have superior coherence properties to super-
conducting artificial atoms, something that is especially true
for the 3D cavities discussed in Sec. II.C (Reagor et al., 2016).
This suggests that encoding quantum information in the
oscillator mode can be advantageous. Using oscillator modes
to store and manipulate quantum information can also be
favorable for quantum-error correction, which is an essential
aspect of scalable quantum computer architectures (Nielsen
and Chuang, 2000).
Indeed, in addition to their long coherence time, oscillators

have a simple and relatively well-understood error model: to a
large extent, the dominant error is single-photon loss. Taking
advantage of this, it is possible to design quantum-error
correction codes that specifically correct for this most likely
error. This is to be contrasted to more standard codes, such as
the surface code, which aim at detecting and correcting both
amplitude and phase errors (Fowler et al., 2012). Moreover, as
we discuss later, the infinite-dimensional Hilbert space of a
single oscillator can be exploited to provide the redundancy
that is necessary for error correction, thereby in principle
allowing one to use fewer physical resources to protect
quantum information than when using two-level systems.
Finally, qubits encoded in oscillators can be concatenated with
conventional error-correcting codes, where the latter should be
optimized to exploit the noise resilience provided by the
oscillator encoding (Tuckett, Bartlett, and Flammia, 2018;
Guillaud and Mirrahimi, 2019; Tuckett et al., 2019; Grimsmo,
Combes, and Baragiola, 2020; Puri et al., 2020; Tuckett
et al., 2020).
As we have already argued, nonlinearity is essential to

prepare and manipulate quantum states of the oscillator. When
encoding quantum information in a cavity mode, a disper-
sively coupled artificial atom (or other Josephson-junction-
based circuit element) remains present, but only to provide
nonlinearity to the oscillator, ideally without playing much of
an active role.
Oscillator encodings of qubits investigated in the context of

quantum optics and circuit QED include cat codes (Cochrane,
Milburn, and Munro, 1999; Gilchrist et al., 2004; Mirrahimi
et al., 2014; Ofek et al., 2016; Puri, Boutin, and Blais, 2017;
Grimm et al., 2020; Lescanne, Villiers et al., 2020), the related
binomial codes (Michael et al., 2016; Hu et al., 2019), and
Gottesman-Kitaev-Preskill (GKP) codes (Gottesman, Kitaev,

and Preskill, 2001; Flühmann et al., 2019; Campagne-Ibarcq
et al., 2020), as well as the two-mode amplitude-damping
code described by Chuang, Leung, and Yamamoto (1997).
To understand the basic idea behind this approach, we first

consider the simplest instance of the binomial code in which a
qubit is encoded in the following two states of a resonator
mode (Michael et al., 2016):

j0Li ¼
1ffiffiffi
2

p ðj0i þ j4iÞ; j1Li ¼ j2i; ð156Þ

with Fock states jni. The first aspect to notice is that for both
logical states the average photon number is n̄ ¼ 2 and, as a
result, the likelihood of a photon-loss event is the same for
both states. An observer detecting a loss event will therefore
not gain any information allowing her to distinguish whether
the loss came from j0Li or from j1Li. This is a necessary
condition for a quantum state encoded using the logical states
in Eq. (156) not to be “deformed” by a photon-loss event.
Moreover, under the action of â the arbitrary superposition
c0j0Li þ c1j1Li becomes c0j3i þ c1j1i after normalization.
The coefficients c0 and c1 encoding the quantum information
are intact and the original state can in principle be recovered
with a unitary transformation. By noting that, while the
original state has support only on even photon numbers,
the state after a photon loss only has support on odd photon
numbers. We see that the photon-loss event can be detected by
measuring photon-number parity P̂ ¼ ð−1Þn̂. The parity
operator thus plays the role of a stabilizer for this code
(Nielsen and Chuang, 2000; Michael et al., 2016).
This simple encoding should be compared to directly using

the Fock states fj0i; j1ig to store quantum information. In this
case, a single-photon loss on c0j0i þ c1j1i leads to j0i and the
quantum information has been irreversibly lost. This disad-
vantage is in contrast to the fact that the rate at which photons
are lost, which scales with n̄, is (averaged over the code
words) 4 times as large when using the encoding in Eq. (156)
as when using the Fock states fj0i; j1ig. This observation
reflects the usual conundrum of quantum-error correction:
using more resources (here more photons) to protect quantum
information actually increases the natural error rate. The
protocol for detecting and correcting errors must be fast
enough and accurate enough to counteract this increase. The
challenge for experimental implementations of quantum-error
correction is thus to reach and go beyond the break-even point
where the encoded qubit [here Eq. (156)] has a coherence time
exceeding the coherence time of the unencoded constituent
physical components (here the Fock states fj0i; j1ig). Near
break-even performance with the previously mentioned bino-
mial code was experimentally reported by Hu et al. (2019).
The simple instance of the previously introduced binomial

code is able to correct a single amplitude-damping error
(photon loss). Thus if the correction protocol is applied after a
time interval δt, the probability of an uncorrectable error is
reduced from OðκδtÞ to O(ðκδtÞ2), where κ is the cavity
energy decay rate.
To better understand the simplicity and efficiency advan-

tages of bosonic quantum-error correction (QEC) codes, it is
instructive to do a head-to-head comparison of the simplest
binomial code with the simplest qubit code for amplitude
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damping. The smallest qubit code able to protect logical
information against a general single-qubit error requires five
qubits (Bennett et al., 1996; Laflamme et al., 1996; Knill,
Laflamme, and Milburn, 2001). However, the specific case of
the qubit amplitude-damping channel can be corrected to first
order against single-qubit errors using a four-qubit code
(Leung et al., 1997) that, like the binomial code, satisfies
the Knill-Laflamme conditions (Knill and Laflamme, 1997) to
lowest order and whose two logical code words are

j0Li ¼
1ffiffiffi
2

p ðj0000i þ j1111iÞ; ð157aÞ

j1Li ¼
1ffiffiffi
2

p ðj1100i þ j0011iÞ: ð157bÞ

This four-qubit amplitude-damping code and the single-
mode binomial bosonic code for amplitude damping are
compared in Table I. Note that, just as in the binomial code,
both code words have mean excitation numbers equal to 2 and
thus are equally likely to suffer an excitation loss. The logical
qubit of Eq. (157) lives in a Hilbert space of dimension 24 ¼
16 and has four different physical sites at which the damping
error can occur. Counting the case of no errors, there are
therefore a total of five different error states that require
measurement of three distinct error syndromes Ẑ1Ẑ2, Ẑ3Ẑ4,
and X̂1X̂2X̂3X̂4 to diagnose (where P̂i refers to Pauli operator
P̂ acting on qubit i). The required weight-2 and weight-4
operators have not been easy to measure to date in a highly
QND manner and with high fidelity, but some progress has
been made toward this goal (Chow et al., 2014, 2015;
Córcoles et al., 2015; Ristè et al., 2015; Takita et al.,
2016). In contrast, the simple bosonic code in Eq. (156)
requires only the lowest five states out of the formally infinite
oscillator Hilbert space. Moreover, since there is only a single
mode, there is only a single error, namely, photon loss (or no
loss), and it can be detected by measuring a single stabilizer,
the photon-number parity. It turns out that, unlike in ordinary
quantum optics, photon-number parity is relatively easy to

measure in circuit QED with high fidelity and minimal state
demolition (Sun et al., 2014; Ofek et al., 2016). It is for all
these reasons that, unlike the four-qubit code, the bosonic
code in Eq. (156) has already been demonstrated experimen-
tally to nearly reach the break-even point for QEC (Hu et al.,
2019; Ma et al., 2020). Generalizations of this code to protect
against more than a single-photon loss event, as well as photon
gain and dephasing, were described by Michael et al. (2016a).
Operation slightly exceeding break even was reported by

Ofek et al. (2016) with cat-state bosonic encoding, which we
describe now. In the encoding used in that experiment, each
logical code word is a superposition of four coherent states
referred to as a four-component cat code (Mirrahimi et al.,
2014)

j0Li ¼ N 0ðjαi þ jiαi þ j − αi þ j − iαiÞ; ð158aÞ

j1Li ¼ N 1ðjαi − jiαi þ j − αi − j − iαiÞ; ð158bÞ

where N i are normalization constants, with N 0 ≃N 1 for
large jαj. The Wigner function for the j0Li code word is shown
in Fig. 31(a) for α ¼ 4. The relationship between this encod-
ing and the simple code in Eq. (156) can be seen by writing
Eq. (158) using Eq. (87) for jαi in terms of Fock states. One
immediately finds that j0Li has support on Fock states j4ni
only with n ¼ 0; 1;…, while j1Li has support on Fock states
j4nþ 2i, and again for n ¼ 0; 1;…. It follows that the two
code words are mapped onto orthogonal states under the
action of â, similar to the binomial code of Eq. (156).
Moreover, the average photon number n̄ is approximately
equal for the two logical states in the limit of large jαj. The
protection offered by this encoding is thus similar to that of the
binomial code in Eq. (156). In fact, these two encodings
belong to a larger class of codes characterized by rotation
symmetries in phase space (Grimsmo, Combes, and
Baragiola, 2020).
We end this section by discussing an encoding that is even

simpler than Eq. (158), sometimes referred to as a two-
component cat code. In this case, the code words are defined
as jþLi ¼ N 0ðjαi þ j − αiÞ and j−Li ¼ N 1ðjαi − j − αiÞ
(Cochrane, Milburn, and Munro, 1999; Ralph et al., 2003;
Gilchrist et al., 2004; Mirrahimi et al., 2014; Puri, Boutin, and
Blais, 2017). The Wigner function for jþLi is shown in
Fig. 31(b). The choice to define these code words in the
logical X̂L basis instead of the ẐL basis is simply a convention

TABLE I. Comparison of qubit and bosonic codes for amplitude
damping. γ and κ are, respectively, the qubit and oscillator energy
relaxation rates.

Four-qubit code
Simplest

binomial code

Code word j0Li ð1= ffiffiffi
2

p Þðj0000iþj1111iÞ ð1= ffiffiffi
2

p Þðj0iþj4iÞ
Code word j1Li ð1= ffiffiffi

2
p Þðj1100iþj0011iÞ j2i

Mean excitation
number n̄ 2 2

Hilbert space
dimension 24 ¼ 16 f0; 1; 2; 3; 4g ¼ 5

Number of
correctable errors fÎ; σ−1 ; σ−2 ; σ−3 ; σ−4 g ¼ 5 fÎ; ag ¼ 2

Stabilizers
Ŝ1¼ Ẑ1Ẑ2, Ŝ2¼ Ẑ3Ẑ4,

Ŝ3 ¼ X̂1X̂2X̂3X̂4

P̂ ¼ ð−1Þn̂

Numberof stabilizers 3 1
Approximate QEC? Yes, first order in γt Yes, first order

in κt

(a) (b)

FIG. 31. Wigner function WðβÞ obtained numerically for
(a) four-component and (b) two-component cat states with
α ¼ 4. Red is positive and blue is negative.
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but turns out to be convenient for this cat code. In contrast to
Eqs. (156) and (158), these two states are not mapped to two
orthogonal states under the action of â. To understand this
encoding, it is useful to consider the logical ẐL basis states in
the limit of large jαj:

j0Li ¼
1ffiffiffi
2

p ðjþLi þ j−LiÞ ¼ jαi þOðe−2jαj2Þ; ð159aÞ

j1Li ¼
1ffiffiffi
2

p ðjþLi − j−LiÞ ¼ j − αi þOðe−2jαj2Þ: ð159bÞ

As is made clear by the second equality, for large enough
jαj these logical states are close to coherent states of the same
amplitude but opposite phase. The action of â is thus, to a
good approximation, a phase flip since âj0L=1Li ∼�j0L=1Li.
The advantage of this encoding is that, while photon loss

leads to phase flips, the bit-flip rate is exponentially small
with jαj. This can be immediately understood from the golden
rule, whose relevant matrix element for bit flips is
h1Ljâj0Li ∼ h−αjâjαi ¼ αe−2jαj2 . In other words, if the qubit
is encoded in a coherent state with many photons, losing one
simply does not do much. This is akin to the redundancy
required for quantum-error correction. As a result, the bit-flip
rate (1=T1) decreases exponentially with jαj2, while the phase-
flip rate increases only linearly with jαj2. The crucial point is
that the bias between bit- and phase-flip error rates increases
exponentially with α, which has been verified experimentally
(Grimm et al., 2020; Lescanne, Villiers et al., 2020). While
the logical states in Eq. (159) do not allow for recovery from
photon-loss errors, the strong asymmetry between different
types of errors can be exploited to significantly reduce the
qubit overhead necessary for fault-tolerant quantum compu-
tation (Guillaud and Mirrahimi, 2019; Puri et al., 2020). The
basic intuition behind this statement is that the qubit defined
by Eq. (159) can be used in an error-correcting code tailored to
predominantly correct the most likely error (here phase flips)
rather than devoting resources to correcting both amplitude
and phase errors (Tuckett, Bartlett, and Flammia, 2018;
Tuckett et al., 2019, 2020).
Another bosonic encoding that was recently demonstrated

in circuit QED is the GKP code (Campagne-Ibarcq et al.,
2020). This demonstration is the first QEC experiment able to
correct all logical errors, and it came close to reaching the
break-even point. While all the previously described bosonic
codes are based on code words that obey rotation symmetry in
phase space, the GKP code is instead based on translation
symmetry. We will not describe the GKP encoding in more
detail here but refer the interested reader to the review given
by Terhal, Conrad, and Vuillot (2020).

VIII. QUANTUM OPTICS ON A CHIP

The strong light-matter interaction realized in circuit QED
together with the flexibility allowed in designing and operat-
ing superconducting quantum circuits has created the pos-
sibility of exploring the rich physics of quantum optics at
microwave frequencies in circuits. As previously discussed it
has made possible the observation of vacuum Rabi splitting,

photon-number splitting in the strong-dispersive regime, and
signatures of ultrastrong light-matter coupling. The new
parameter regimes that can be achieved in circuit QED have
also made it possible to test some of the theoretical predictions
from the early days of quantum optics and to explore new
research avenues. A first indication that circuit QED is an
ideal playground for these ideas is the strong Kerr nonlinearity
relative to the decay rate K=κ that can readily be achieved in
circuits. Indeed, from the point of view of quantum optics, a
transmon is aKerr-nonlinear oscillator that is so nonlinear that it
exhibits photon blockade. Given the highQ factors that can be
achieved in 3D superconducting cavities, such levels of non-
linearity can also be readily obtained in microwave resonators
by using transmons or other Josephson-junction-based circuits
to induce nonlinearity in electromagnetic modes.
Many of the links between circuit QED and quantum optics

have already been highlighted in this review. In this section,
we continue this discussion by presenting further examples.
More information about quantum optics at microwave
frequencies was given in the review by Gu et al. (2017).

A. Intracavity fields

Because superconducting qubits can rapidly be tuned over a
wide frequency range, it is possible to bring them in and out of
resonance with a cavity mode on a timescale that is fast with
respect to 1=g, the inverse of the qubit-cavity coupling
strength. For all practical purposes, this is equivalent to the
thought experiment of moving an atom in and out of the cavity
in cavity QED. An experiment by Hofheinz et al. (2008) took
advantage of this possibility to prepare the cavity in Fock
states up to jn ¼ 6i. With the qubit and the cavity in their
respective ground states and the two systems largely detuned,
their approach is to first π pulse the qubit to its excited state.
The qubit frequency is then suddenly brought into resonance
with the cavity for a time 1=2g such as to swap the qubit
excitation to a cavity photon as the system evolves under the
Jaynes-Cummings Hamiltonian (36). The interaction is then
effectively stopped by moving the qubits to its original
frequency, after which the cycle is repeated until n excitations
have been swapped in this way. Because the swap frequency
between the states je; n − 1i and jg; ni is proportional to ffiffiffi

n
p

,
the time during which the qubit and cavity are kept in
resonance must be adjusted accordingly at each cycle. The
same

ffiffiffi
n

p
dependence is then used to probe the cavity state

using the qubit as a probe (Brune et al., 1996; Hofheinz
et al., 2008).
Building on this technique and using a protocol proposed

by Law and Eberly (1996) for cavity QED, the preparation of
arbitrary states of the cavity field and the characterization of
these states by measuring the cavity Wigner function was
demonstrated (Hofheinz et al., 2009). Figure 32 shows the
result of this Wigner tomography for superpositions involving
up to six cavity photons (top row, theory; bottom row, data).
As noted by Hofheinz et al. (2008), a downside of this
sequential method is that the preparation time rapidly becomes
comparable to the Fock state lifetime, limiting the Fock states
that can be reached and the fidelity of the resulting states.
Taking advantage of the large χ=κ that can be reached in 3D

cavities, an alternative to create such states is to exploit qubit

Blais, Grimsmo, Girvin, and Wallraff: Circuit quantum electrodynamics

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025005-49



transitions conditioned on the Fock state of the cavity.
Together with cavity displacements, these photon-number-
dependent qubit transitions can be used to prepare arbitrary
cavity states (Heeres et al., 2015; Krastanov et al., 2015).
Combining these ideas with numerical optimal control
allowed Heeres et al. (2017) to synthesize cavity states with
high fidelity such as Fock states up to jn ¼ 6i and four-legged
cat states.
The long photon lifetime that is possible in 3D super-

conducting cavities together with the possibility to realize a
single-photon Kerr nonlinearity that overwhelms the cavity
decay (K=κ > 1) has enabled a number of similar experi-
ments, such as the observation of collapse and revival of a
coherent state in a Kerr medium (Kirchmair et al., 2013) and
the preparation of cat states with nearly 30 photons (Vlastakis
et al., 2013). Another example is the experimental encoding of
qubits in oscillator states discussed in Sec. VII.C.

B. Quantum-limited amplification

Driven by the need for fast, high-fidelity single-shot readout
of superconducting qubits, superconducting low-noise
linear microwave amplifiers are a subject of intense research.
There are two broad classes of linear amplifiers. First,
phase-preserving amplifiers that equivalently amplify both
quadratures of the signal. Quantum mechanics imposes the
condition that these amplifiers add a minimum of half a
photon of noise to the input signal (Caves, 1982, 2012; Clerk
et al., 2010). Second, phase-sensitive amplifiers that amplify
one quadrature of the signal while squeezing the orthogonal
quadrature. This type of amplifier can in principle operate
without adding noise (Caves, 1982; Clerk et al., 2010).
Amplifiers adding the minimum amount of noise allowed
by quantum mechanics, phase preserving or not, are referred
to as quantum-limited amplifiers. We note that, in practice,
phase-sensitive amplifiers are useful if the quadrature con-
taining the relevant information is known in advance, a
condition that is realized when trying to distinguish between
two coherent states in the dispersive qubit readout discussed
in Sec. V.C.
While much of the development of near-quantum-limited

amplifiers has been motivated by the need to improve qubit

readout, Josephson-junction-based amplifiers have been theo-
retically investigated (Yurke, 1987) and experimentally demo-
nstrated as early as the late 1980s (Yurke et al., 1988, 1989).
These amplifiers have now found applications in a broad range
of contexts. In their simplest form, such an amplifier is
realized as a driven oscillator mode rendered weakly nonlinear
by incorporating a Josephson junction and are generically
known as a Josephson parametric amplifier (JPA).
For weak nonlinearity, the Hamiltonian of a driven non-

linear oscillator is well approximated by

H ¼ ℏω0â†âþ ℏ
K
2
â†2â2 þ ℏϵpðâ†e−iωpt þ âeiωptÞ; ð160Þ

where ω0 is the system frequency, K is the negative Kerr
nonlinearity, and ϵp and ωp are the pump amplitude and
frequency, respectively. The physics of the JPA is best revealed
by applying a displacement transformation D̂†ðαÞâ D̂ðαÞ ¼
aþ α to H, with α chosen to cancel the pump term. Doing so
leads to the transformed Hamiltonian

HJPA ¼ ℏδâ†âþ ℏ
2
ðϵ2â†2 þ ϵ�2â

2Þ þHcorr; ð161Þ

where δ ¼ ω0 þ 2jαj2K − ωp is the effective detuning,
ϵ2 ¼ α2K, and there are Hcorr correction terms that can be
dropped for weak enough pump amplitude and Kerr non-
linearity, i.e., when the single-photon loss rate κ is large relative
to K and thus the drive does not populate the mode enough for
higher-order nonlinearity to become important (Boutin et al.,
2017). The second term, of amplitude ϵ2, is a two-photon pump
that is the generator of quadrature squeezing. Amplification is
obtained when operating the device close to but under the
parametric threshold ϵ2 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ðκ=2Þ2

p
(Wustmann and

Shumeiko, 2013). Rather than driving the nonlinear oscillator
as in Eq. (160), an alternative approach to arriving atHJPA is to
replace the junction with a SQUID and to apply a flux
modulation at 2ω0 (Yamamoto et al., 2008).
Equation (161) is the Hamiltonian for a parametric ampli-

fier working with a single physical oscillator mode. Using
appropriate filtering in the frequency domain, single-mode

FIG. 32. Wigner function of the intracavity field for Fock state superpositions j0i þ eiφj3i þ j6i for five values of the phase φ; see the
panel titles. Top row: theory. Bottom row: experimental data. Adapted from Hofheinz et al., 2009.
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parametric amplifiers can be operated in a phase-sensitive
mode when detecting the emitted radiation over the full
bandwidth of the physical mode; see Eichler, Bozyigit,
Lang, Baur et al. (2011). This is also called the degenerate
mode of operation. Alternatively, the same single-oscillator-
mode amplifier can be operated in the phase-preserving mode
when separating frequency components above and below the
pump in the experiment by using appropriately chosen
narrow-band filters; see Eichler, Bozyigit, Lang, Baur et al.
(2011). Parametric amplifiers with two or multiple physical
modes are also frequently put to use (Roy and Devoret, 2016)
and can be operated in both the phase-sensitive and phase-
preserving modes, in degenerate and nondegenerate modes of
operation, as demonstrated by Eichler et al. (2014).
Important parameters that different approaches to imple-

menting JPAs aim at optimizing include amplifier gain,
bandwidth, and dynamic range. The last item refers to the
range of power over which the amplifier acts linearly, i.e.,
powers at which the amplifier output is linearly related to its
input. Above a certain input power level, the correction terms
in Eq. (161) resulting from the junction nonlinearity can no
longer be ignored and lead to saturation of the gain (Abdo,
Kamal, and Devoret, 2013; Kochetov and Fedorov, 2015;
Boutin et al., 2017; Liu et al., 2017; Planat et al., 2019). For
this reason, while transmon qubits are operated in a regime
where the single-photon Kerr nonlinearity is large and over-
whelms the decay rate, JPAs are operated in a different regime
with jKj=κ ∼ 10−2 or smaller.
An approach to increasing the dynamic range of JPAs is to

replace the Josephson junction of energy EJ with an array of
M junctions, each of energy MEJ (Castellanos-Beltran and
Lehnert, 2007; Castellanos-Beltran et al., 2008; Eichler and
Wallraff, 2014). Because the voltage drop is now distributed
over the array, the bias on any single junction is M times
smaller, and therefore the effective Kerr nonlinearity of the
device is reduced from K to K=M2. As a result, nonlinear
effects take effect only at increased input signal powers
leading to an increased dynamic range. This can be done
without degrading the amplifier’s bandwidth (Eichler and
Wallraff, 2014). Typical values are ∼50 MHz bandwidth with
∼ − 117 dBm saturation power for ∼20 dB gain (Planat et al.,
2019). Variations of this idea based on modified SQUID loops
known as a superconducting nonlinear asymmetric inductive
element (SNAIL) have been realized with a larger saturation
power of ∼ − 100 dBm and otherwise similar characteristics
(Frattini et al., 2018; Sivak et al., 2019, 2020). A reason for
this increased dynamic range is that the SNAIL allows for
more flexibility in its design and operation to reduce the
amplitude of the unwanted nonlinear effects (Frattini et al.,
2017). It is also useful to point out that impedance engineering
can be used to improve these numbers further (Roy et al.,
2015).
Because the JPA is based on a localized oscillator mode, the

product of its gain and bandwidth is approximately constant.
Therefore, increase in one must be done at the expense of the
other (Clerk et al., 2010; Eichler and Wallraff, 2014). As a
result, it has proven to be difficult to design JPAs with enough
bandwidth and dynamic range to simultaneously measure
more than a few transmons (Jeffrey et al., 2014).

To avoid the constant gain-bandwidth product that results
from relying on a resonant mode, a drastically different
strategy, known as the Josephson traveling-wave parametric
amplifier (JTWPA), is to use an open nonlinear medium in
which the signal copropagates with the pump tone. While in a
JPA the signal interacts with the nonlinearity for a long time
due to the finite Q of the circuit, in the JTWPA the long
interaction time is instead a result of the long propagation
length of the signal through the nonlinear medium (O’Brien
et al., 2014). In practice, JTWPAs are realized with a
metamaterial transmission line whose center conductor is
made from thousands of Josephson junctions in series
(Macklin et al., 2015). This device does not have a fixed
gain-bandwidth product and has been demonstrated to have
20 dB over as much as 3 GHz bandwidth while operating
close to the quantum limit (Macklin et al., 2015; White et al.,
2015; Planat et al., 2020). Because every junction in the array
can be made only weakly nonlinear, the JTWPA also offers a
large enough dynamic range for rapidly multiplexed simulta-
neous readout of multiple qubits (Heinsoo et al., 2018).

C. Propagating fields and their characterization

1. Itinerant single and multiphoton states

In addition to using qubits to prepare and characterize
quantum states of intracavity fields, it is also possible to take
advantage of the strong nonlinearity provided by a qubit to
prepare states of propagating fields at the output of a cavity.
This can be done in a cavity with a relatively large decay rate κ
by tuning a qubit into and out of resonance with the cavity
(Bozyigit et al., 2011) or by applying appropriately chosen
drive fields (Houck et al., 2007). Alternatively, it is also
possible to change the cavity decay rate in time to create
single-photon states (Sete et al., 2013; Yin et al., 2013).
The first on-chip single-photon source in the microwave

regime was realized with a dispersively coupled qubit engi-
neered such that the Purcell decay rate γκ dominates the
qubit’s intrinsic nonradiative decay rate γ1 (Houck et al.,
2007). In this situation, exciting the qubit leads to rapid qubit
decay by photon emission. In the absence of single-photon
detectors working at microwave frequencies, the presence of a
photon was observed by using a nonlinear circuit element (a
diode) whose output signal was proportional to the square of
the electric field [∝ ðâ† þ âÞ2], and therefore indicative of the
average photon number hâ†âi, in repeated measurements.
Rather than relying on direct power measurements,

researchers have developed techniques to reconstruct arbitrary
correlation functions of the cavity output field from the
measurement records of the field quadratures (da Silva et al.,
2010; Menzel et al., 2010). These approaches rely on multiple
detection channels with uncorrelated noise to quantify and
subtract from the data the noise introduced by the measure-
ment chain. In this way, it is possible to extract first- and
second-order coherence functions of the microwave field.
With enough averaging, this approach does not require
quantum-limited amplifiers, although the number of required
measurement runs is drastically reduced when such amplifiers
are used in place of HEMT amplifiers.
This approach was used to measure second-order coherence

functions G2ðt; tþ τÞ ¼ hâ†ðtÞâ†ðtþ τÞâðtþ τÞâðtÞi in the
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first demonstration of antibunching of a pulsed single-micro-
wave-frequency photon source (Bozyigit et al., 2011). The
same technique also enabled the observation of a resonant
photon blockade at microwave frequencies (Lang et al.,
2011), and, using two single-photon sources at the input of
a microwave beam splitter, the indistinguishability of micro-
wave photons was demonstrated in a Hong-Ou-Mandel
correlation function measurement (Lang et al., 2013). A
similar approach was used to characterize the blackbody
radiation emitted by a 50 Ω load resistor (Mariantoni
et al., 2010).
Building on these results, it is also possible to reconstruct

the quantum state of itinerant microwave fields from meas-
urement of the fields moments. This technique relies on
interleaving two types of measurements: measurements on
the state of interest and ones in which the field is left in the
vacuum as a reference to subtract the measurement chain noise
(Eichler, Bozyigit, Lang, Steffen et al., 2011). In this way, the
Wigner function of arbitrary superpositions of vacuum and
one-photon Fock states has been reconstructed (Eichler,
Bozyigit, Lang, Steffen et al., 2011; Kono et al., 2018).
This technique was extended to propagating modes containing
multiple photons (Eichler, Bozyigit, and Wallraff, 2012).
Similarly, entanglement between a stationary qubit and a
propagating mode was quantified in this approach with joint
state tomography (Eichler, Bozyigit, and Wallraff, 2012;
Eichler et al., 2012). Quadrature-histogram analysis also
enabled the measurement of correlations between radiation
fields (Flurin et al., 2015) and the observation of entanglement
of itinerant photon pairs in waveguide QED (Kannan
et al., 2020).

2. Squeezed microwave fields

Operated in the phase-sensitive mode, quantum-limited
amplifiers are sources of squeezed radiation. Indeed, for δ ¼ 0
and ignoring the correction terms, the JPA Hamiltonian of
Eq. (161) is the generator of the squeezing transformation

SðζÞ ¼ eð1=2Þζ�â2−ð1=2Þζâ†2 ; ð162Þ

which takes the vacuum to the squeezed vacuum
[jζi ¼ SðζÞj0i]. In Eq. (162), ζ ¼ reiθ, with r the squeezing
parameter and θ the squeezing angle. As illustrated in
Fig. 33(a), the action of SðζÞ on vacuum is to “squeeze”
one quadrature of the field at the expense of “antisqueezing”
the orthogonal quadrature while leaving the total area in phase
space unchanged. As a result, squeezed states, like coherent
states, saturate the Heisenberg inequality.
This can be seen more clearly in the variance of the

quadrature operator X̂ϕ, which takes the form

ΔX2
ϕ ¼ 1

4
ðe2rsin2ϕ̃þ e−2rcos2ϕ̃Þ; ð163Þ

where we define ϕ̃ ¼ ϕ − θ=2. In experiments, the squeezing
level is often reported in decibels computed using

S ¼ 10 log10
ΔX2

ϕ

ΔX2
vac

: ð164Þ

Figure 33(b) shows this quantity as a function of ϕ.
The variance ΔX2

ϕ reaches its minimal value e−2r=4 at
ϕ ¼ ½θ þ ð2nþ 1Þπ�=2, where it dips below the vacuum noise
level ΔX2

vac ¼ 1=4 (horizontal line).
Squeezing in Josephson devices was already observed in

the late 1980s (Yurke et al., 1988, 1989; Movshovich et al.,
1990), experiments that have been revisited with the develop-
ment of near-quantum-limited amplifiers (Castellanos-Beltran
et al., 2008; Zhong et al., 2013). Quantum-state tomography
of an itinerant squeezed state at the output of a JPA was
reported by Mallet et al. (2011). There homodyne detection
with different LO phases on multiple preparations of the same
squeezed state, together with maximum likelihood techniques,
was used to reconstruct the Wigner function of the propagat-
ing microwave field. Moreover, the photon-number distribu-
tion of a squeezed field was measured using a qubit in the
strong-dispersive regime (Kono et al., 2017). As is clear from
the form of the squeezing transformation SðζÞ, a squeezed
vacuum is composed of a superposition of only even photon
numbers (Schleich and Wheeler, 1987), something that Kono
et al. (2017) confirmed in experiments.
Thanks to the new parameter regimes that can be achieved

in circuit QED, it is possible to experimentally test some long-
standing theoretical predictions of quantum optics involving
squeezed radiation. For example, in the mid 1980s theorists
predicted how dephasing and resonance fluorescence of an
atom would be modified in the presence of squeezed radia-
tion (Gardiner, 1986; Carmichael, Lane, and Walls, 1987).
Experimentally testing these ideas in the context of traditional

(c)

(a) (b)

FIG. 33. (a) Wigner function of a squeezed vacuum state SðζÞj0i
with r ¼ 0.75 and θ ¼ π=2. The white contour line is an ellipse of
semiminor axis e−r=2 and semimajor axis er=2. (b) Squeezing
level vs ϕ for r ¼ 0.5.1.0; 1.5 and θ ¼ π. The horizontal line
corresponds to vacuum noise ΔX2

vac ¼ 1=4. (c) Experimental
setup used by Murch, Weber, Macklin, and Siddiqi (2013) to
prepare a squeezed vacuum state using a Josephson parametric
amplifier and to send, via a circulator (gray box), this state to a
transmon qubit in a 3D cavity (blue box). Adapted from Murch,
Weber, Macklin, and Siddiqi, 2013.
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quantum optics with atomic systems, however, represents a
formidable challenge (Turchette et al., 1998; Carmichael,
2016). The situation is different in circuits where squeezed
radiation can easily be guided from the source of squeezing to
the qubit playing the role of artificial atom. Moreover, the
reduced dimensionality in circuits compared to free-space
atomic experiments limits the number of modes that are
involved, such that the artificial atom can be engineered so as
to preferentially interact with a squeezed radiation field.
Taking advantage of the possibilities offered by circuit

QED, Murch, Weber, Beck et al. (2013) confirmed the
prediction that squeezed radiation can inhibit phase decay
of an artificial atom (Gardiner, 1986). In this experiment, the
role of the two-level atom was played by the hybridized
cavity-qubit state fjg; 0i; je; 0ig. Moreover, squeezing was
produced by a JPA over a bandwidth much larger than the
natural linewidth of the two-level system; see Fig. 33(c).
According to theory, quantum noise below the vacuum level
along the squeezed quadrature leads to a reduction of
dephasing. Conversely, along the antisqueezed quadrature,
the enhanced fluctuations lead to increased dephasing. For the
artificial atom, this results in different timescales for dephas-
ing along the orthogonal axis of the Bloch sphere. In the
experiment, phase decay inhibition along the squeezed quad-
rature was such that the associated dephasing time increased
beyond the usual vacuum limit of 2T1. By measuring the
dynamics of the two-level atom, it was, moreover, possible to
reconstruct the Wigner distribution of the itinerant squeezed
state produced by the JPA. Using a similar setup, Toyli et al.
(2016) studied resonance fluorescence in the presence of
squeezed vacuum and found excellent agreement with theo-
retical predictions (Carmichael, Lane, and Walls, 1987). In
this way, it was possible to infer the level of squeezing (3.1 dB
below vacuum) at the input of the cavity.
The discussion thus far has been limited to squeezing of a

single mode. It is also possible to squeeze a pair of modes,
which is often referred to as two-mode squeezing. If we label
the modes as â1 and â2, the corresponding squeezing trans-
formation reads

S12ðζÞ ¼ eð1=2Þζ�â1â2−ð1=2Þζâ
†
1
â†
2 : ð165Þ

Acting on vacuum, S12 generates a two-mode squeezed state
that is an entangled state of modes â1 and â2. As a result, in
isolation the state of one of the two entangled modes appears
to be in a thermal state where the role of the Boltzmann factor
expð−βℏωiÞ, with ωi¼1;2 the mode frequency, is played by
tanh2 r (Barnett and Radmore, 2002). In this case, correla-
tions, and therefore squeezing, is revealed when considering
joint quadratures of the form X̂1 � X̂2 and P̂1 � P̂2, rather
than the quadratures of a single mode as in Fig. 33(a). In
Josephson-based devices, two-mode squeezing can be pro-
duced using nondegenerate parametric amplifiers of different
types (Roy and Devoret, 2016). Over 12 dB of squeezing
below vacuum level between modes of different frequencies,
often referred to as the signal and idler in this context, has
been reported (Eichler et al., 2014). Other experiments have
demonstrated two-mode squeezing in two different spatial

modes, i.e., entangled signals propagating along different
transmission lines (Bergeal et al., 2012; Flurin et al., 2012).

D. Remote entanglement generation

Several approaches to entangling nearby qubits were
discussed in Sec. VII. In some instances it can be useful,
however, to prepare entangled states of qubits separated by
larger distances. Together with protocols such as quantum
teleportation, entanglement between distant quantum nodes
can be the basis of a quantum Internet (Kimble, 2008; Wehner,
Elkouss, and Hanson, 2018). Because optical photons can
travel for relatively long distances in room-temperature optical
fiber while preserving their quantum coherence, this vision
appears to be easier to realize at optical rather than microwave
frequencies. Nevertheless, given that superconducting cables
at millikelvin temperatures have similar losses per meter to
optical fibers (Kurpiers et al., 2017), there is no reason to
believe that complex networks of superconductor-based
quantum nodes cannot be realized. One application of this
type of network is a modular quantum computer architecture
where the nodes are relatively small-scale error-corrected
quantum computers connected by quantum links (Monroe
et al., 2014; Chou et al., 2018).
One approach to entangling qubits fabricated in distant

cavities relies on entanglement by measurement, which is easy
to understand in the case of two qubits coupled to the same
cavity. Assuming the qubits to have the same dispersive shift χ
due to their coupling to the cavity, the dispersive Hamiltonian
in a doubly rotating frame takes the form

H ¼ χðσ̂z1 þ σ̂z2Þâ†â: ð166Þ

The cavity pull associated with odd-parity states fj01i; j10ig
is 0, while it is �2χ for the even-parity states fj00i; j11ig. As
a result, for χ ≫ κ a tone at the bare cavity frequency leads to a
large cavity field displacement for the even-parity subspace.
On the other hand, the displacement is small or negligible for
the odd-parity subspace. Starting with a uniform unentangled
superposition of the states of the qubits, homodyne detection
therefore stochastically collapses the system to one of these
subspaces, thereby preparing an entangled state of the two
qubits (Lalumière, Gambetta, and Blais, 2010), an idea that
was realized experimentally (Ristè et al., 2013).
The same concept was used by Roch et al. (2014) to

entangle two transmon qubits coupled to two 3D cavities
separated by more than a meter of coaxial cable. There the
measurement tone transmitted through the first cavity was sent
to the second cavity, only after which it was measured by
homodyne detection. In the experiment, losses between the
two cavities (mainly due to the presence of a circulator
preventing any reflection from the second cavity back to
the first cavity) as well as finite detection efficiency were the
main limit to the achievable concurrence, a measure of
entanglement, to 0.35. Alternatively, a protocol where losses
reduce the success probability but not the fidelity of the
resulting entangled state was implemented by Narla et al.
(2016). Although the concurrence was only 0.1 in this
realization, an advantage of the approach is that it results
in a larger on-off ratio between the nodes of the network.
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While these entanglement-by-measurement protocols prob-
abilistically entangle a pair of qubits, a more powerful but also
more experimentally challenging approach allows one, in
principle, to realize this in a fully deterministic fashion (Cirac
et al., 1997). Developed in the context of cavity QED, this
scheme relies on mapping the state of an atom strongly
coupled to a cavity to a propagating photon. By choosing its
wave packet to be time symmetric, one finds that the photon is
absorbed with unit probability by a second cavity also
containing an atom. In this way, it is possible to exchange
a quantum state between the two cavities. This protocol relies
on the presence of a unidirectional channel between the
cavities such that no signal can propagate from the second
to the first cavity. At microwave frequencies, this is achieved
by inserting a circulator between the cavities. By first
entangling the emitter qubit to a partner qubit located in
the same cavity, this quantum-state transfer protocol can be
used to entangle the two nodes.
Variations on this more direct approach to entangling remote

nodes have been implemented in circuit QED (Axline et al.,
2018; Campagne-Ibarcq et al., 2018; Kurpiers et al., 2018). All
three experiments rely on producing time-symmetric propa-
gating photons by using the interaction between a transmon
qubit and a cavity mode. Multiple approaches to shape and
catch propagating photons have been developed in circuit
QED. For example, Wenner et al. (2014) used a transmission-
line resonator with a tunable input port to catch a shaped
microwave pulse with over 99% probability. Time-reversal-
symmetric photons were created by Srinivasan et al. (2014)
using three-island transmon qubits (Gambetta, Houck, and
Blais, 2011; Srinivasan et al., 2011) in which the coupling to a
microwave resonator is controlled in time so as to shape the
mode function of spontaneously emitted photons. In a similar
fashion, shaped single photons can be generated bymodulating
the boundary condition of a semi-infinite transmission line
using a SQUID (Forn-Díaz, Warren et al., 2017), which
effectively controls the spontaneous emission rate of a qubit
coupled to the line and emitting the photon.
Alternatively, the remote entanglement generation experi-

ment of Kurpiers et al. (2018) instead relied on a microwave-
induced amplitude- and phase-tunable coupling between the
qubit-resonator jf0i and jg1i states akin to the fg-ge gate
mentioned in Sec. VII.B.3 (Zeytinoğlu et al., 2015). Exciting
the qubit to its jfi state followed by a π pulse on the f0-g1
transition transfers the qubit excitation to a single resonator
photon that is emitted as a propagating photon. This single-
photon wave packet can be shaped to be time symmetric by
tailoring the envelope of the f0-g1 pulse (Pechal et al., 2014).
By inducing the reverse process with a time-reversed pulse on
a second resonator also containing a transmon, the itinerant
photon is absorbed by this second transmon. In this way, an
arbitrary quantum state can be transferred with a probability of
98.1% between two cavities separated by 0.9 m of coaxial line
bisected by a circulator (Kurpiers et al., 2018). By instead
preparing the emitter qubit in a ðjei þ jfiÞ= ffiffiffi

2
p

superposition,
one finds that the same protocol deterministically prepares an
entangled state of the two transmons with a fidelity of 78.9%
at a rate of 50 kHz (Kurpiers et al., 2018). The experiments of
Axline et al. (2018) and Campagne-Ibarcq et al. (2018)
reported similar Bell-state fidelities using different approaches

to prepare time-symmetric propagating photons (Pfaff et al.,
2017). The fidelity reported by the three experiments suffered
from the presence of a circulator bisecting the nearly 1-m-long
coaxial cable separating the two nodes. Replacing the lossy
commercial circulator by an on-chip quantum-limited version
could improve the fidelity (Kamal, Clarke, and Devoret, 2011;
Metelmann and Clerk, 2015; Chapman et al., 2017). By taking
advantage of the multimode nature of a meter-long trans-
mission line, it is also possible to deterministically entangle
remote qubits without the need of a circulator. In this way, a
bidirectional communication channel between the nodes is
established and deterministic Bell pair production with 79.3%
fidelity has been reported (Leung et al., 2019). Finally, the same
protocol as in Kurpiers et al. (2018) was extended to two
transmon qubits located in separate dilution refrigerators
connected by a 5-m-long cryogenic link (Magnard et al., 2020).

E. Waveguide QED

The bulk of this review is concerned with the strong
coupling of artificial atoms to the confined electromagnetic
field of a cavity. Strong light-matter coupling is also possible
in free space with an atom or large dipole-moment molecule
by tightly confining an optical field in the vicinity of the atom
or molecule (Schuller et al., 2010). A signature of strong
coupling in this setting is the extinction of the transmitted light
by the single atom or molecule acting as a scatterer. This
extinction results from destructive interference of the light
beam with the collinearly emitted radiation from the scatterer.
Ideally, this results in 100% reflection. In practice, because the
scatterer emits in all directions, there is poor mode matching
with the focused beam and reflection of ∼10% is observed
with a single atom (Tey et al., 2008) and ∼30% with a single
molecule (Maser et al., 2016).
Mode matching can, however, be made to be close to ideal

with electromagnetic fields in 1D superconducting trans-
mission lines and superconducting artificial atoms, where
the artificial atoms can be engineered to essentially emit only
in the forward and backward directions along the line (Shen
and Fan, 2005). In the first realization of this idea in super-
conducting quantum circuits, Astafiev et al. (2010) observed
extinction of the transmitted signal by as much as 94% by
coupling a single flux qubit to a superconducting transmission
line. Experiments with a transmon qubit have seen extinction
as large as 99.6% (Hoi et al., 2011). Pure dephasing and
nonradiative decay into modes other than the transmission line
are the cause of the small departure from ideal behavior in
these experiments. Nevertheless, the large observed extinction
is a sign that radiative decay in the transmission line γr (i.e.,
Purcell decay) overwhelms nonradiative decay γnr. In short, in
this cavity-free system, referred to as waveguide QED,
γr=γnr ≫ 1 is the appropriate definition of strong coupling
and is associated with an experimental signature: the extinc-
tion of transmission by a single scatterer.
Despite its apparent simplicity, waveguide QED is a rich

toolbox with which a number of physical phenomena have
been investigated (Roy, Wilson, and Firstenberg, 2017). This
includes Autler-Townes splitting (Abdumalikov et al., 2010),
single-photon routing (Hoi et al., 2011), the generation of
propagating nonclassical microwave states (Hoi et al., 2012),
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and large cross-Kerr phase shifts at the single-photon level
(Hoi et al., 2013).
In another experiment, Hoi et al. (2015) studied the

radiative decay of an artificial atom placed in front of a
mirror, here formed by a short to the ground of the wave-
guide’s center conductor. In the presence of a weak drive field
applied to the waveguide, the atom relaxes by emitting a
photon in both directions of the waveguide. The radiation
emitted toward the mirror, assumed here to be on the left side
of the atom, is reflected back to interact again with the atom
after having acquired a phase shift θ ¼ 2 × 2πl=λþ π, where l
is the atom-mirror distance and λ is the wavelength of the
emitted radiation. The additional phase factor of π accounts
for the hard reflection at the mirror. When one takes into
account the resulting multiple round trips, this modifies
the atomic radiative decay rate that takes the form γðθÞ ¼
2γr cos2ðθ=2Þ (Glaetzle et al., 2010; Koshino and Nakamura,
2012; Hoi et al., 2015).
For l=λ ¼ 1=2, the radiative decay rate vanishes correspond-

ing to destructive interference of the right-moving field and the
left-moving field after multiple reflections on the mirror. In
contrast, for l=λ ¼ 1=4, these fields interfere constructively,
leading to enhanced radiative relaxation with γðθÞ ¼ 2γr. The
ratio l=λ can be modified by shorting the waveguide’s center
conductor with a SQUID. In this case, the flux threading the
SQUID can be used to change the boundary condition seen by
the qubit, effectively changing the distance l (Sandberg et al.,
2008). The experiment conducted by Hoi et al. (2015) instead
relied on flux tuning of the qubit transition frequency, thereby
changing λ. In this way, a modulation of the qubit decay rate by
a factor of close to 10 was observed. A similar experiment has
been reported with a trapped ion in front of a movable mirror
(Eschner et al., 2001).
Engineering vacuum fluctuations in this system has been

pushed even further by creating microwave photonic band
gaps in waveguides to which transmon qubits are coupled (Liu
and Houck, 2017; Mirhosseini et al., 2018). For example,
Mirhosseini et al. (2018) coupled a transmon qubit to a
metamaterial formed by periodically loading the waveguide
with lumped-element microwave resonators. By tuning the
transmon frequency in the band gap where there is zero or
only a limited density of states to accept photons emitted by
the qubit, they observed an increase by a factor of 24 in the
qubit lifetime.
An interpretation of the “atom in front of a mirror”

experiments is that the atom interacts with its mirror image.
Rather than using a boundary condition (i.e., a mirror) to study
the resulting constructive and destructing interferences and
change in the radiative decay rate, it is also possible to couple
a second atom to the same waveguide (Lalumière et al., 2013;
van Loo et al., 2013). In this case, photons (real or virtual)
emitted by one atom can be absorbed by the second atom,
leading to interactions between the atoms separated by a
distance 2l. As in the case of a single atom in front of a mirror,
when the separation between the atoms is such that
2l=λ ¼ 1=2, correlated decay of the pair of atoms at the
enhanced rate 2γ1 is expected (Chang et al., 2012; Lalumière
et al., 2013) and experimentally observed (van Loo et al.,
2013). On the other hand, at a separation of 2l=λ ¼ 3=4

correlated decay is replaced by coherent energy exchange
between the two atoms mediated by virtual photons (Chang
et al., 2012; Lalumière et al., 2013; van Loo et al., 2013).
Moreover, adding a boundary condition acting as a mirror to a
device holding two artificial atoms allowed Wen et al. (2019)
to measure a collective Lamb shift as large as 0.8% of the
qubit transition frequency. We note that these experiments
with transmon qubits agree with a Markovian model of the
interaction of the qubits with the waveguide (Lehmberg, 1970;
Chang et al., 2012; Lalumière et al., 2013). Deviations from
these predictions are expected as the distance between the
atoms increases (Zheng and Baranger, 2013).
Finally, following a proposal by Chang et al. (2012), an

experiment by Mirhosseini et al. (2019) used a pair of
transmon qubits to act as an effective cavity for a third
transmon qubit, with all qubits coupled to the same wave-
guide. In this way, vacuum Rabi oscillations between the dark
state of the effective cavity and the qubit playing the role of
atom were observed, confirming that the strong-coupling
regime of cavity QED was achieved.

F. Single-microwave photon detection

The development of single-photon detectors at infrared,
optical, and ultraviolet frequencies has been crucial to the field
of quantum optics and in fundamental tests of quantum physics
(Hadfield, 2009; Eisaman et al., 2011). High-efficiency photon
detectors are one of the elements that has allowed a loophole-
free violation of Bell’s inequality (Giustina et al., 2015;Hensen
et al., 2015; Shalm et al., 2015). Because microwave photons
have orders ofmagnitude less energy than infrared, optical, and
ultraviolet photons, the realization of a photon detector at
microwave frequencies is more challenging. Yet photon detec-
tors in that frequency range would find a number of applica-
tions, including those in quantum information processing
(Kimble, 2008; Narla et al., 2016), for quantum radars
(Barzanjeh et al., 2015, 2020; Chang et al., 2019), and for
the detection of dark matter axions (Lamoreaux et al., 2013;
Zheng et al., 2016; Dixit et al., 2020).
Nondestructive counting of microwave photons localized in

a cavity has already been demonstrated experimentally by
using an atom (artificial or not) as a probe in the strong-
dispersive regime (Gleyzes et al., 2007; Schuster et al., 2007).
Similar measurements have also been done using a transmon
qubit mediating interactions between two cavities, one con-
taining the photons to be measured and a second acting as a
probe (Johnson et al., 2010). The detection of itinerant
microwave photons remains, however, more challenging. A
number of theoretical proposals have appeared (Helmer et al.,
2009; Romero, García-Ripoll, and Solano, 2009; Koshino
et al., 2013, 2016; Fan et al., 2014; Sathyamoorthy et al.,
2014; Kyriienko and Sorensen, 2016; Leppäkangas et al.,
2018). One common challenge for these approaches based on
absorbing itinerant photons in a localized mode before
detecting them can be linked to the quantum Zeno effect.
Indeed, continuous monitoring of the probe mode prevents the
photon from being absorbed in the first place. Approaches to
mitigating this problem have been introduced, including use
of an engineered, impedance matched Λ system to determin-
istically capture the incoming photon (Koshino et al., 2016)
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and use of the bright and dark states of an ensemble of
absorbers (Royer et al., 2018).
Despite these challenges, the first itinerant microwave

photon detectors have been achieved in the laboratory
(Chen et al., 2011; Inomata et al., 2016; Oelsner et al.,
2017), in some cases achieving photon detection without
destroying the photon in the process (Narla et al., 2016; Besse
et al., 2018; Kono et al., 2018; Lescanne, Deléglise et al.,
2020). A microwave photon counter was used to measure a
superconducting qubit with a fidelity of 92% without using a
linear amplifier between the source and the detector
(Opremcak et al., 2018). Despite these advances, the reali-
zation of a high-efficiency, large-bandwidth, QND single-
microwave photon detector remains a challenge for the field.

IX. OUTLOOK

Fifteen years after its introduction (Blais et al., 2004;
Wallraff et al., 2004), circuit QED is a leading architecture
for quantum computing and an exceptional platform to
explore the rich physics of quantum optics in new parameter
regimes. Circuit QED has, moreover, found applications in
numerous other fields of research. In closing this review, we
turn to some of these recent developments.
Because they are a versatile platform to interface quantum

devices with transition frequencies in the microwave domain
to photons stored in superconducting resonators at similar
frequencies, the ideas of circuit QED are now used to couple
to a variety of physical systems. An example of such hybrid
quantum systems is semiconducter-based double quantum
dots coupled to superconducting microwave resonators. Here
the position of an electron in a double dot leads to a dipole
moment to which the resonator electric field couples. First
experiments with gate-defined double quantum dots in nano-
tubes (Delbecq et al., 2011), GaAs (Frey et al., 2012; Toida,
Nakajima, and Komiyama, 2013; Wallraff et al., 2013), and
InAs nanowires (Petersson et al., 2012) have demonstrated
dispersive coupling and its use for characterizing charge states
of quantum dots (Burkard et al., 2020). These first experi-
ments were, however, limited by the large dephasing rate of
the quantum dot’s charge states, but subsequent experiments
have been able to reach the strong-coupling regime (Mi et al.,
2017; Stockklauser et al., 2017; Bruhat et al., 2018). Building
on these results and by engineering an effective spin-orbit
interaction (Pioro-Ladrière et al., 2008; Beaudoin et al.,
2016), it has been possible to reach the strong-coupling
regime with single spins (Landig et al., 2018; Mi et al.,
2018; Samkharadze et al., 2018).
When the coupling to a single spin cannot be made large

enough to reach the strong-coupling regime, it is possible to
rely on an ensemble of spins to boost the effective coupling.
Indeed, in the presence of an ensemble of N emitters, the
coupling strength to the ensemble is enhanced by

ffiffiffiffi
N

p
(Fink

et al., 2009; İmamoğlu, 2009), such that for large enough
g

ffiffiffiffi
N

p
the strong-coupling regime can be reached. First

realizations of these ideas used ensembles of ∼1012 spins
to bring the coupling from a few hertz to ∼10 MHz with NV
centers in diamond (Kubo et al., 2010) and Cr3þ spins in ruby
(Schuster et al., 2010). One objective of these explorations is

to increase the sensitivity of electron paramagnetic resonance
or electron spin resonance spectroscopy for spin detection
with the ultimate goal of reaching the single-spin limit. A
challenge in reaching this goal is the long lifetime of single
spins in these systems, which limits the repetition rate of the
experiment. By engineering the coupling between the spins
and an LC oscillator fabricated in proximity, it has been
possible to take advantage of the Purcell effect to reduce the
relaxation time from 103 to 1 s (Bienfait et al., 2016). This
faster timescale allows for faster repetition rates, thereby
boosting the sensitivity, which could lead to spin sensitivities
of the order of 0.1 spin=

ffiffiffiffiffiffi
Hz

p
(Haikka et al., 2017).

Mechanical systems operated in the quantum regime have
also benefited from the ideas of circuit QED (Aspelmeyer,
Kippenberg, and Marquardt, 2014). An example is a sus-
pended aluminum membrane that plays the role of a vacuum
gap capacitor in a microwave LC oscillator. The frequency of
this oscillator depends on the separation between the plates
of the capacitor, leading to a coupling between the oscillator
and the flexural mode of the membrane. Strong coupling
between the mechanical motion and the LC oscillator has been
demonstrated (Teufel, Li et al., 2011), allowing one to
sideband cool the motion of the mechanical oscillator to a
phonon occupation number as small as nphonon ∼ 0.34 (Teufel,
Donner et al., 2011). Squeezed radiation generated by a
Josephson parametric amplifier was also used to cool beyond
the quantum backaction limit to nphonon ∼ 0.19 (Clark et al.,
2017). Building on these ideas, Palomaki, Teufel et al. (2013)
demonstrated entanglement of the mechanical motion and the
microwave fields, and Palomaki, Harlow et al. (2013) demo-
nstrated coherent state transfer between itinerant microwave
fields and a mechanical oscillator.
Hybrid systems are also important in the context of

microwave to optical frequency transduction in the quantum
regime. This is a desirable primitive for quantum networks, as
it would allow quantum processors based on circuit QED to be
linked optically over large distances. A variety of hybrid
systems are currently being investigated for this purpose,
including electro-optomechanical, electro-optic, and mag-
neto-optic ones (Higginbotham et al., 2018; Lambert et al.,
2020; Lauk et al., 2020; Zhu et al., 2020). Two other hybrid
quantum systems that have recently emerged are quantum
surface acoustic waves interacting with superconducting
qubits (Gustafsson et al., 2014; Manenti et al., 2017) and
quantum magnonics where quanta of excitation of spin-wave
modes known as magnon are strongly coupled to the field of a
3D microwave cavity (Lachance-Quirion et al., 2019).
In addition to these emerging directions, the prospect of

realizing circuit-QED-based fault-tolerant quantum computers
is one of the main reasons for the enthusiasm toward this field
of research. Although formidable challenges remain before
large-scale quantum computation becomes a reality, the
increasing number of qubits that can be wired up, as well
as the improvements in coherence time, gate fidelity, and
readout fidelity, suggests that it will eventually be possible
to perform computations on circuit-QED-based quantum
processors that are out of the reach of current classical
computers. As a testament to these advances, quantum
supremacy on a 53-qubit device has already been claimed
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(Arute et al., 2019), albeit on a problem of no immediate pra-
ctical interest, and 65-qubit devices are now available online.
Before fault-tolerant quantum computation becomes a real-

ity, there is much effort being devoted to finding useful
computational tasks that can be performed on current and
near-term noisy intermediate-scale quantum devices (Preskill,
2018). The first experimental steps in this direction have
included the determination of molecular energies with varia-
tional quantum eigensolvers (O’Malley et al., 2016; Kandala
et al., 2017; Colless et al., 2018; Arute et al., 2020b) or boson
sampling approaches (Wang et al., 2020), andmachine learning
with quantum-enhanced features (Havlíček et al., 2019).
Engineered circuit-QED-based devices also present an

exciting avenue for performing analog quantum simulations.
In contrast to gate-based quantum computing architectures,
quantum simulators can be tailored to explore a single specific
problem. An example is arrays of resonators capacitively
coupled to allow photons to hop from resonator to resonator
creating photonic materials (Carusotto et al., 2020). Taking
advantage of the flexibility of superconducting quantum
circuits, it is possible to create exotic networks of resonators
such as lattices in an effective hyperbolic space with constant
negative curvature (Kollár, Fitzpatrick, and Houck, 2019).
Coupling a qubit to each resonator realizes a Jaynes-
Cummings lattice exhibiting a quantum phase transition
similar to the superfluid-Mott insulator transition in Bose-
Hubbard lattices (Houck, Türeci, and Koch, 2012). Moreover,
the nonlinearity provided by capacitively coupled qubits, or of
Josephson junctions embedded in the center conductor of the
resonators, creates photon-photon interactions. This leads to
effects such as photon blockade bearing some similarities to
Coulomb blockade in mesoscopic systems (Schmidt and
Koch, 2013). Few resonator and qubit devices are also
promising for analog quantum simulations: examples include
the exploration of a simple model of the light-harvesting
process in photosynthetic complexes in a circuit QED device
under the influence of both coherent and incoherent drives
(Potočnik et al., 2018) and the simulation of dissipatively
stabilized strongly correlated quantum matter in a small
photon Bose-Hubbard lattice (Ma et al., 2019). Super-
conducting quantum circuits with few qubits have also been
used in the context of digital quantum simulations including
fermionic models (Barends et al., 2015; Arute et al., 2020a),
many-body localization (Roushan et al., 2017; Xu et al.,
2018), and spin models (Salathé et al., 2015).
To go beyond these proof-of-principle experiments, an

important goal for the field is to scale to larger number of
qubits. The strategies to do so broadly fall into two categories:
(i) qubits coupled by oscillator buses, parametric couplers, or
the direct linear capacitive or inductive couplers discussed in
most of Sec. VII, and (ii) the bosonic approach, where
oscillators are coupled and controlled by the qubits specifi-
cally discussed in Sec. VII.C. While each has its own set of
challenges, some are shared by the two approaches (Blais,
Girvin, and Oliver, 2020). One such challenge lies in engineer-
ing architectures with high qubit connectivity, which can
facilitate the execution of complex quantum algorithms. A
price to pay for increased connectivity can, however, be
frequency collisions between the qubits, couplers, and readout
oscillators, leading to unwanted interactions, a process that is

generally referred to as frequency crowding. Related nuisan-
ces are cross talk, where a drive intended for a given qubit or
oscillator affects neighboring circuits, and coherent errors,
where residual qubit-qubit dispersive interactions lead to the
accumulation of unwanted dynamical phases (Krinner et al.,
2020). In practice, these considerations limit the number of
qubits that can be coupled to the same oscillator mode. One
approach to minimize unwanted interactions is to rely on
modular architectures where small quantum computers with
limited numbers of qubits, the modules, are interconnected by
quantum links; see Sec. VIII.D.
Another challenge is that increasing the qubit count also

comes with an increase in the number of required control
lines. In current architectures, individual input-output lines
(IOs) may be associated with every qubit for single-qubit
gates, two-qubit gates, and readout. This contrasts with
classical computer architectures which, even with billions
of transistors, have only of the order of 103 IOs (Vandersypen
et al., 2017). Frequency multiplexing where a single IO is
used to control or read out multiple qubits can be used to
reduce the total number of IOs; see Fig. 27, where a common
feedline (purple) is used to dispersively measure several
qubits. Even with frequency multiplexing, routing control
and readout signals to all the qubits and resonators is already
challenging in current processors comprising only a few tens
of qubits. Three-dimensional integration in which signals are
routed using through-silicon vias appears to be a promising
path forward for both 2D planar circuits (Rosenberg et al.,
2017) and the 3D cavities often associated with the bosonic
qubit approach (Brecht et al., 2016, 2017).
Looking ahead, for fault-tolerant quantum computation to

become a reality, then in addition to addressing these challenges
it remains crucial to continue to improve qubit coherence times
as well as gate and readout fidelities. This may require the
development of more robust qubits, and of new mechanisms to
control and measure these qubits. In short, progress will likely
require new ideas beyond those discussed in this review, and this
is one of the many reasons why the field of circuit QED will
continue to be exciting for years to come.
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APPENDIX A: HAMILTONIAN OF A VOLTAGE BIASED
TRANSMON

An excellent introduction to the quantization of electro-
magnetic circuits was given by Vool and Devoret (2017).
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Here we give only an introduction to this topic by means of
two examples that are used throughout this review: a transmon
qubit biased by an external voltage source and a transmon
coupled to an LC oscillator.

1. Classical gate voltage

Consider first the circuit shown in Fig. 34(a), which
illustrates a transmon biased by an external voltage Vg.
Following Vool and Devoret (2017), we start by associating
a branch flux ΦiðtÞ ¼

R
t
−∞ dt0Viðt0Þ to each branch of the

circuit, with Vi the voltage across branch i ¼ A; B; C indi-
cated in Fig. 34(a). Because Kirchoff’s laws impose con-
straints between the branch fluxes, these fluxes are not
independent variables and are therefore not independent
degrees of freedom of the circuit. Indeed, Kirchoff’s voltage
law dictates that VC þ VB þ VA ¼ Vg þ _ΦB þ _ΦA ¼ 0,
where we use the sign convention dictated by the arbitrarily
chosen orientation of the arrows in Fig. 34(a). This constraint
allows us to eliminateΦB in favor ofΦA. Moreover, following
Kirchoff’s current law, the currents IA and IB flowing into and
out of the node indicated by the black dot in Fig. 34(a) obey
IA ¼ IB. This constraint can be expressed in terms of the
branch fluxes using the constitutive relations for the capac-
itances Cg and CΣ ¼ CS þ CJ:

QA ¼ CΣ _ΦA; QB ¼ Cg
_ΦB; ðA1Þ

as well as the Josephson current relation

IJ ¼ Ic sinφA; ðA2Þ

where φA ¼ ð2π=Φ0ÞΦA and Ic is the critical current. We can
thus write IA ¼ _QA þ IJ ¼ CΣΦ̈A þ Ic sinφA and IB ¼ _QB ¼
CgΦ̈B. Combining the previous expressions, we arrive at

CΣΦ̈A þ Ic sinφA ¼ −CgðΦ̈A þ Φ̈CÞ: ðA3Þ

Here _ΦC ¼ Vg is the applied bias voltage and the only
dynamical variable in the equation is thus ΦA. As can be
easily verified, this equation of motion for ΦA can equiv-
alently be derived from the Euler-Lagrange equation for ΦA
with the Lagrangian

LT ¼ CΣ

2
_Φ2
A þ Cg

2
ð _ΦA þ _ΦCÞ2 þ EJ cosφA; ðA4Þ

where EJ ¼ ðΦ0=2πÞIc.
The corresponding Hamiltonian can be found by first

identifying the canonical momentum associated with the
coordinate ΦA, QA ¼ ∂LT=∂ _ΦA ¼ ðCΣ þ CgÞ _ΦA þ Cg

_ΦC,
and performing a Legendre transform to obtain (Goldstein,
Poole, and Safko, 2001)

HT ¼ QA
_ΦA − LT ¼ ðQA − CgVgÞ2

2ðCΣ þ CgÞ
− EJ cosφA; ðA5Þ

where we make the replacement _ΦC ¼ Vg and drop the term
CgV2

g=2, which leads to an overall shift of the energies.
Promoting the conjugate variables to noncommuting operators
½Φ̂A; Q̂A� ¼ iℏ, we arrive at Eq. (22), where we assume that
Cg ≪ CΣ to simplify the notation.

2. Coupling to an LC oscillator

As a model for the simplest realization of circuit QED, we
now replace the voltage source with an LC oscillator; see
Fig. 34(b). The derivation follows the same steps as before,
now with Vg þ _ΦB − _ΦA ¼ 0 and IA þ IB ¼ 0 because of the
different choice of orientation for branch A. Moreover, at
the node labeled BC we have IB ¼ IC. Eliminating ΦB
as before and using the constitutive relations for the capaci-
tance C and inductance L of the LC oscillator to express the
current through the oscillator branch as IC ¼ CΦ̈C þΦC=L,
we find that

CΦ̈C þΦC

L
¼ CgðΦ̈A − Φ̈CÞ: ðA6Þ

In contrast to the previous example, ΦC is now a dynamical
variable in its own right rather than being simply set by a
voltage source. Together with Eq. (A3), which still holds,
Eq. (A6) can equivalently be derived using the Euler-Lagrange
equations with the Lagrangian

L ¼ LT þ LLC; ðA7Þ

where LT is given in Eq. (A4) and LLC ¼ ðC=2Þ _Φ2
C−

ð1=2LÞΦC.
It is convenient to write Eq. (A7) as L ¼ T − V with T ¼

ð1=2ÞΦTCΦ and V ¼ ΦC=2L − EJ cosφA, where we define
the vector Φ ¼ ðΦA;ΦCÞT and the capacitance matrix

C ¼
�
CΣ þ Cg −Cg

−Cg Cþ Cg

	
: ðA8Þ

Defining the vector of conjugate momenta Q ¼ ðQA;QCÞT ,
the Hamiltonian is then (Goldstein, Poole, and Safko, 2001)

(a) (b)

FIG. 34. (a) Voltage-biased transmon qubit with the three
relevant flux branches. (b) Replacement of the classical voltage
source with an LC oscillator. The dashed arrows indicate the sign
convention.
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H ¼ 1
2
QTC−1Qþ V

¼ Cþ Cg

2C̄2
Q2

A þ Cg

C̄2
QAQC − EJ cosφA

þ CΣ þ Cg

2C̄2
Q2

C þΦC

2L
; ðA9Þ

where we define C̄2 ¼ CgCΣ þ CgCþ CΣC. The limit Cg ≪
CΣ; C results in the simplified expression

H ≃
½QA þ ðCg=CÞQC�2

2CΣ
− EJ cosφA þHLC; ðA10Þ

with HLC ¼ Q2
C=2CþΦC=2L the Hamiltonian of the LC

circuit. By promoting the flux and charge variables to
operators and defining n̂ ¼ Q̂A=2e, n̂r ¼ ðCg=CÞQ̂C=2e
and diagonalizing ĤLC as in Sec. II.A, we arrive at
Eq. (31) for a single mode m ¼ r.
Equation (A10) can easily be generalized to capacitive

coupling between other types of circuits, such as resonator-
resonator, transmon-transmon, and transmon-transmission
line coupling, by simply replacing the potential energy terms
−EJ cosφA and Φ2

C=2L to describe the type of circuits in
question. This leads to Eq. (135) for two capacitively
coupled transmons after introducing ladder operators as in
Eqs. (25) and (26).

APPENDIX B: UNITARY TRANSFORMATIONS

We introduce a number of unitary transformations often
employed in the field of circuit QED. The starting point is the
usual transformation

ĤU ¼ Û†Ĥ Û−iℏÛ† _̂U ðB1Þ

of a Hamiltonian under a time-dependent unitary Û with the
corresponding transformation for the states jψUi ¼ Û†jψi.
Since the unitary can be written as Û ¼ expð−ŜÞ, with Ŝ an
anti-Hermitian operator, a useful result in this context is the
Baker-Campbell-Hausdorff formula, which holds for any two
operators Ŝ and Ĥ:

eŜĤe−Ŝ ¼ Ĥ þ ½Ŝ; H� þ 1

2!
½Ŝ; ½Ŝ; Ĥ�� þ � � �

¼
X∞
n¼0

1

n!
Cn
Ŝ
½Ĥ�; ðB2Þ

where on the last line we introduce the shorthand notation

Cn
Ŝ
½Ĥ� ¼ ½Ŝ; ½Ŝ; ½Ŝ

n times

;…; Ĥ��� ðB3Þ

and C0
Ŝ
½Ĥ� ¼ Ĥ (Boissonneault, Gambetta, and Blais, 2009).

1. Schrieffer-Wolff perturbation theory

We often seek unitary transformations that diagonalize the
Hamiltonian of an interacting system. Exact diagonalization,

however, can be impractical, and we must resort to finding an
effective Hamiltonian that describes the physics at low
energies using perturbation theory. A general approach to
perturbation theory that we follow here is known as a
Schrieffer-Wolff transformation (Schrieffer and Wolff,
1966; Bravyi, DiVincenzo, and Loss, 2011). The starting
point is a generic Hamiltonian of the form

Ĥ ¼ Ĥ0 þ V̂; ðB4Þ

with Ĥ0 typically a free Hamiltonian and V̂ a perturbation. We
divide the total Hilbert space of our system into different
subspaces such that Ĥ0 does not couple states in different
subspaces while V̂ does. The goal of the Schrieffer-Wolff
transformation is to arrive at an effective Hamiltonian for
which the different subspaces are completely decoupled.
The different subspaces, which we label with a subscript μ,

can conveniently be defined by a set of projection operators
(Cohen-Tannoudji, Dupont-Roc, and Grynberg, 1998; Zhu
et al., 2013)

P̂μ ¼
X
n

jμ; nihμ; nj; ðB5Þ

where jμ; ni; n ¼ 0; 1;…, is an orthonormal basis for the
subspace labeled μ. For the Schrieffer-Wolff transformation to
be valid, we must assume that V̂ is a small perturbation.
Formally, the operator norm kV̂k ¼ maxjψikÔjψik should be
smaller than half the energy gap between the subspaces we
intend to decouple; see Bravyi, DiVincenzo, and Loss (2011),
Eq. (3.1). While V̂ is often formally unbounded in circuit QED
applications, the operator is always bounded when restricting
the problem to physically relevant states.
The Schrieffer-Wolff transformation is based on finding a

unitary transformation Û ¼ e−Ŝ that approximately decouples
the different subspaces μ by truncating the Baker-Campbell-
Hausdorff formula (B2) at a desired order. We first expand
both Ĥ and Ŝ in formal power series

Ĥ ¼ Ĥð0Þ þ εĤð1Þ þ ε2Ĥð2Þ þ � � � ; ðB6aÞ

Ŝ ¼ εŜð1Þ þ ε2Ŝð2Þ þ � � � ; ðB6bÞ

where ε is a fiducial parameter introduced to simplify order
counting that we can ultimately set to ε → 1. The Schrieffer-
Wolff transformation is found by inserting Eq. (B5) back into
Eq. (B2) and collecting terms at each order εk. We can then
iteratively solve for SðkÞ and ĤðkÞ by requiring that the
resulting Hamiltonian ĤU is block diagonal (i.e., it does
not couple different subspaces μ) at each order, and the
additional requirement that Ŝ is itself block off diagonal
(Bravyi, DiVincenzo, and Loss, 2011).
For the generator, the explicit results up to k ¼ 2 are (with

ε ¼ 1)

hμ; njŜð1Þjν; li ¼ hμ; njV̂jν; li
Eμ;n − Eν;l

; ðB7aÞ
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hμ; njŜð2Þjν; li ¼
X
k

�hμ; njV̂jν; ki
Eμ;n − Eν;l

hν; kjV̂jν; li
Eμ;n − Eν;k

−
hμ; njV̂jμ; ki
Eμ;n − Eν;l

hμ; kjV̂jν; li
Eμ;k − Eν;l

	
ðB7bÞ

for ν ≠ μ, while the block-diagonal matrix element vanish for
μ ¼ ν and

Ĥð0Þ ¼ Ĥ0; ðB8aÞ

Ĥð1Þ ¼
X
μ

P̂μV̂P̂μ; ðB8bÞ

hμ; njĤð2Þjμ; mi ¼
X
ν≠μ;l

hμ; njV̂jν; lihν; ljV̂jμ; mi

×
1

2

�
1

Eμ;n − Eν;l
þ 1

Eμ;m − Eν;l

	
ðB8cÞ

for the transformed Hamiltonian (block-off-diagonal matrix
elements vanish, i.e., hμ; njĤð2Þjν; mi ¼ 0 for μ ≠ ν). In these
expressions, Eμ;n refers to the bare energy of jμ; ni under the
unperturbed Hamiltonian Ĥ0. An explicit formula for ĤðkÞ up
to k ¼ 4 was given by Winkler (2003).

2. Schrieffer-Wolff transformation for a multilevel system
coupled to an oscillator in the dispersive regime

As an application of the general result of Eq. (B6) here we
consider a situation that is commonly encountered in circuit
QED: an arbitrary artificial atom coupled to a single-mode
oscillator in the dispersive regime. Both the transmon artificial
atom and the two-level system discussed in Sec. III.C are
special cases of this more general example. The artificial atom,
taken here to be a generic multilevel system, is described in its
eigenbasis with the Hamiltonian Ĥatom ¼ P

j ℏωjjjihjj. The
full Hamiltonian is therefore given by

Ĥ ¼ ℏωrâ†âþ
X
j

ℏωjjjihjj þ ðB̂â† þ B̂†âÞ; ðB9Þ

where B̂ is an arbitrary operator of the artificial atom that
couples to the oscillator. For example, in the case of capacitive
coupling, it is proportional to the charge operator with B̂ ∼ in̂;
see Eq. (31).
By inserting resolutions of the identity Î ¼ P

j jjihjj, the
interaction term can be reexpressed in the atomic eigenbasis as
(Koch et al., 2007)

Ĥ ¼ ℏωrâ†âþ
X
j

ℏωjjjihjj

þ
X
ij

ℏðgijjiihjjâ† þ g�ijjjihijâÞ; ðB10Þ

where ℏgij ¼ hijB̂jji, with gij ¼ gji if B̂ ¼ B̂†.
To use Eq. (B6), we identify the first line of Eq. (B10) as Ĥ0

and the second line as the perturbation V̂. The subspaces

labeled by μ are in this situation one dimensional
(P̂μ ¼ jμihμj), with jμi ¼ jn; ji ¼ jni ⊗ jji; jni an oscillator
number state and jji an artificial atom eigenstate. A straight-
forward calculation yields the second-order result (Zhu et al.,
2013)

Ĥdisp ¼ eŜĤe−Ŝ ≃ ℏωrâ†âþ
X
j

ℏðωj þ ΛjÞjjihjj

þ
X
j

ℏχjâ†âjjihjj; ðB11Þ

where

Λj ¼
X
i

χij; χj ¼
X
i

ðχij − χjiÞ; ðB12Þ

with

χij ¼
jgjij2

ωj − ωi − ωr
: ðB13Þ

Note that we are following here the convention given by Koch
et al. (2007) rather than that given by Zhu et al. (2013) for the
definition of χij.
Projecting Eq. (B11) onto the first two-atomic levels j ¼

0; 1 with the convention σ̂z ¼ j1ih1j − j0ih0j, we obtain

Ĥdisp ≃ ℏω0
râ†âþ ℏω0

q

2
σ̂z þ ℏχâ†âσ̂z; ðB14Þ

where we have dropped a constant term and define ω0
r¼

ωrþðχ0þχ1Þ=2, ω0
q¼ω1−ω0þΛ1−Λ0, and χ¼ðχ1−χ0Þ=2.

a. The transmon

The transmon capacitively coupled to an oscillator is one
example of the previous result. From Eq. (34), we identify the
free Hamiltonian as

Ĥ0 ¼ ℏωrâ†âþ ℏωqb̂
†b̂ −

EC

2
b̂†b̂†b̂ b̂ ðB15Þ

and the perturbation as

V̂ ¼ ℏgðb̂†âþ b̂â†Þ: ðB16Þ

In this nonlinear oscillator approximation for the transmon,
the transmon eigenstates are number states b̂†b̂jji ¼ jjji, with
j ¼ 0; 1;…;∞. Moreover, the coupling operator is B̂ ¼ ℏgb̂,
and thus

gj;jþ1 ¼ ghjjb̂jjþ 1i ¼ g
ffiffiffiffiffiffiffiffiffiffiffi
jþ 1

p
¼ g�j;jþ1; ðB17Þ

while all other matrix elements gij are 0. We consequently
find

Λj ¼ χj−1;j ¼
jg2

ωq − EC=ℏðj − 1Þ − ωr
; ðB18aÞ
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χj ¼ χj−1;j − χj;jþ1

¼ g2
�

j
ωj − ωj−1 − ωr

−
jþ 1

ωjþ1 − ωj − ωr

	
ðB18bÞ

for j > 0, while for j ¼ 0 we have Λ0 ¼ 0 and
χ0 ¼ −χ01 ¼ −g2=Δ, where Δ≡ ωq − ωr. In the two-level
approximation of Eq. (B14), this becomes (Koch et al., 2007)

ω0
r ¼ ωr −

χ12
2

¼ ωr −
g2

Δ − EC=ℏ
; ðB19aÞ

ω0
q ¼ ω1 − ω0 þ χ01 ¼ ωq þ

g2

Δ
; ðB19bÞ

χ ¼ χ01 −
χ12
2

¼ −
g2EC=ℏ

ΔðΔ − EC=ℏÞ
; ðB19cÞ

which are the results quoted in Eq. (45).
Recall that this Schrieffer-Wolff perturbation theory is valid

only if the perturbation V̂ is sufficiently small. Following
Bravyi, DiVincenzo, and Loss (2011), a more precise state-
ment is that we require 2kV̂k < Δmin, where Δmin is the
smallest energy gap between any of the bare energy eigen-
states jni ⊗ jji, where jni is a number state for the oscillator.
Here V̂ ¼ gðb̂†âþ b̂â†Þ is formally unbounded but physical
states have finite excitation numbers. Therefore, replacing the
operator norm with hn; jjV̂†V̂jn; ji1=2 and using Δmin ¼ jΔ −
jEC=ℏj corresponding to the minimum energy gap between
neighboring states jn; ji and jn� 1; j ∓ 1i, we find that a
more precise criterion for the validity of the previously
mentioned perturbative results is

n ≪ ncrit ≡ 1

2jþ 1

�jΔ − jEC=ℏj2
4g2

− j

	
: ðB20Þ

Setting j ¼ 0 gives the familiar expression ncrit ¼ ðΔ=2gÞ2,
while setting j ¼ 1 gives a more conservative estimate. As
quoted in the main text, the appropriate small parameter is
therefore n̄=ncrit, with n̄ the average oscillator photon number.
For the second-order effective Hamiltonian Ĥdisp to be an
accurate description of the system requires n̄=ncrit to be
significantly smaller than unity (it is difficult to make a
precise statement, but the criterion n̄=ncrit ≲ 0.1 is often used).

b. The Jaynes-Cummings model

We now contrast the previous result in which the transmon
is treated as a multilevel system with the result obtained if the
artificial atom is truncated to a two-level system before
performing the Schrieffer-Wolff transformation. That is, we
start with the Jaynes-Cummings Hamiltonian

ĤJC ¼ ℏωrâ†âþ ℏωq

2
σ̂z þ ℏgðâ†σ̂− þ âσ̂þÞ: ðB21Þ

Identifying the first two terms as the unperturbed Hamiltonian
Ĥ0 and the last term as the interaction V̂, we can again apply
Eq. (7). Alternatively, the result can be found more directly

from Eq. (B14) by taking g01 ¼ g�01 ¼ g and all other gij ¼ 0.
The result is

ω0
r ¼ ωr; ω0

q ¼ ωq þ
g2

Δ
; χ ¼ g2

Δ
; ðB22Þ

withΔ ¼ ωq − ωr as before. We see that the results agree with
Eq. (B17) only in the limit EC=ℏ ≫ Δ; g. Since EC is
relatively small compared to the detuning Δ in most transmon
experiments, the value for χ predicted from the Jaynes-
Cummings model is far from the multilevel case.
Moreover, following the same argument as before, we find
that the Schrieffer-Wolff transformation is valid for photon
numbers n̄ < ncrit, with ncrit ¼ ðΔ=2gÞ2 − j, where j ¼ 0; 1
for the ground and excited qubit states, respectively.
Note that the transformation used here to approximately

diagonalize the Jaynes-CummingsHamiltonian canbe obtained
by Taylor expanding the generator ΛðN̂TÞ of the unitary
transformation (37), which exactly diagonalizes ĤJC. This
exercise also leads to the conclusion that n̄=ncrit, with ncrit ¼
ðΔ=2gÞ2, is the appropriate small parameter.Alternatively, Ĥdisp

can also be obtained simply by Taylor expanding the diagonal
form equation (39) of ĤJC (Boissonneault, Gambetta, and
Blais, 2010).

3. Bogoliubov approach to the dispersive regime

We derive the results presented in Sec. III.C.2. Our starting
point is thus the transmon-resonator Hamiltonian (34), and our
final result is the dispersive Hamiltonian in Eq. (52).
It is first useful to express Eq. (34) as a sum of a linear and a

nonlinear part Ĥ ¼ Ĥlin þ Ĥnl, where

Ĥlin ¼ ℏωrâ†âþ ℏωqb̂
†b̂þ ℏgðb̂†âþ b̂â†Þ; ðB23Þ

Ĥnl ¼ −
EC

2
b̂†b̂†b̂ b̂ : ðB24Þ

The linear Hamiltonian Ĥlin can be diagonalized exactly with
the Bogoliubov transformation

Û ¼ exp ½Λðâ†b̂ − âb̂†Þ�: ðB25Þ

Under this unitary transformation, the annihilation operators
transform as Û†âÛ¼cosðΛÞâþsinðΛÞb̂, Û†b̂ Û ¼ cosðΛÞb̂−
sinðΛÞâ, leading to

Ĥ0
lin ¼ Û†ĤlinÛ ¼ ω̃râ†âþ ω̃qb̂

†b̂

þ
�
g cosð2ΛÞ − Δ

2
sinð2ΛÞ

�
ðâ†b̂þ âb̂†Þ; ðB26Þ

where

ω̃r ¼ cos2ðΛÞωr þ sin2ðΛÞωq − g sinð2ΛÞ; ðB27Þ

ω̃q ¼ cos2ðΛÞωq þ sin2ðΛÞωr þ g sinð2ΛÞ: ðB28Þ
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To cancel the last term of Ĥ0
lin, we take Λ ¼ ð1=2Þ arctanð2λÞ,

with λ ¼ g=Δ and Δ ¼ ωq − ωr, to obtain the diagonal form

Ĥ0
lin ¼ ℏω̃râ†âþ ℏω̃qb̂

†b̂; ðB29Þ

with the mode frequencies

ω̃r ¼ 1
2



ωr þ ωq −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4g2

q �
; ðB30Þ

ω̃q ¼ 1
2



ωr þ ωq þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 4g2

q �
: ðB31Þ

The same transformation on Ĥnl gives

Ĥ0
nl ¼ Û†ĤnlÛ

¼ −
EC

2
cos4ðΛÞðb̂†Þ2b̂2 − EC

2
sin4ðΛÞðâ†Þ2â2

− 2ECcos2ðΛÞsin2ðΛÞâ†âb̂†b̂
þ ECcos3ðΛÞ sinðΛÞðb̂†b̂â†bþ H:c:Þ
þ EC cosðΛÞsin3ðΛÞðâ†â â b̂† þ H:c:Þ

−
EC

2
cosðΛÞ2 sinðΛÞ2½ðâ†Þ2b̂2 þ H:c:�: ðB32Þ

Note that at this stage the transformation is exact. In the
dispersive regime, we expand the mode frequencies and Ĥ0

nl in
powers of λ. For the nonlinear part of the Hamiltonian, this
yields

Ĥ0
nl ¼ −

EC

2
ðb̂†Þ2b̂2 − λ4

EC

2
ðâ†Þ2â2

− 2λ2ECâ†âb̂
†b̂

þ λECðb̂†b̂â†b̂þ H:c:Þ
þ λ3ECðâ†â â b̂† þ H:c:Þ

− λ2
EC

2
½ðâ†Þ2b̂2 þ H:c:� þOðλ5Þ: ðB33Þ

Themagnitude λ2EC of the cross-Kerr term â†âb̂†b̂ in Eq. (B33)
does not coincidewithEq. (3.12) given byKoch et al. (2007). To
correct this situation, we apply an additional transformation to
eliminate the third line of Eq. (B33). This term is important
because it approximately corresponds to an exchange inter-
action â†b̂þ b̂†â with an additional number operator b̂†b̂ that
distinguishes the different transmon levels. To eliminate this
term, we apply a Schrieffer-Wolff transformation to second
order with the generator S ¼ λ0ðb̂†b̂â†b̂ − H:c:Þ, where
λ0 ¼ λEC=½Δþ ECð1 − 2λ2Þ�. Neglecting the last two lines
of Eq. (B33) and omitting a correction of order λ2, we arrive
at Eq. (52), which agrees with Koch et al. (2007).

4. Off-resonantly driven transmon

We derive Eq. (134), which describes the ac-Stark shift
resulting from an off-resonant drive on a transmon qubit. Our
starting point is Eq. (131), which takes the form

ĤðtÞ ¼ ℏωqb̂
†b̂ −

EC

2
ðb̂†Þ2b̂2 þ ℏϵðtÞb̂† þ ℏϵ�ðtÞb̂; ðB34Þ

where we define ϵðtÞ ¼ εðtÞe−iωdt−iϕd . To account for a
possible time dependence of the drive envelope εðtÞ,
it is useful to apply the time-dependent displacement
transformation

ÛðtÞ ¼ eα
�ðtÞb̂−αðtÞb̂† : ðB35Þ

Under ÛðtÞ, b̂ transforms to Û†b̂ Û ¼ b̂ − αðtÞ, while

Û† _̂U ¼ _α�b̂ − _αb̂† þ 1
2
ð _αα� − _α�αÞ: ðB36Þ

Using these expressions, the transformed Hamiltonian
becomes

Ĥ0 ¼ Û†HÛ − iÛ† _̂U

≃ ℏωqðb̂†b̂ − α�b̂ − αb̂†Þ

−
EC

2
½ðb̂†Þ2b̂2 þ 4jαj2b̂†b̂Þ�

þ ℏϵb̂† þ ℏϵ�b̂ − iℏð _α�b̂ − _αb̂†Þ; ðB37Þ

where we have dropped fast-rotating terms and a scalar. The
choice

_αðtÞ ¼ −iωqαðtÞ þ iϵðtÞ ðB38Þ

cancels the linear drive term leaving

Ĥ0ðtÞ ≃ ½ℏωq − 2ECjαðtÞj2�b̂†b̂ −
EC

2
ðb̂†Þ2b̂2: ðB39Þ

Taking a constant envelope εðtÞ ¼ ε for simplicity such that
jαðtÞj2 ¼ ðε=δqÞ2, Eq. (B39) takes the compact form

Ĥ00ðtÞ ≃ 1

2

�
ℏωq − EC

Ω2
R

2δ2q

	
σ̂z ðB40Þ

in the two-level approximation, which is Eq. (134) of the
main text.
It is instructive to obtain the same result now using the

Schrieffer-Wolff approach. Assuming a constant envelope
εðtÞ ¼ ε and with ϕd ¼ 0 for simplicity, our starting point is

Ĥ ¼ ℏδqb̂
†b̂ −

EC

2
ðb̂†Þ2b̂2 þ ℏεðb̂† þ b̂Þ ðB41Þ

in a frame rotating at ωd and where δq ¼ ωq − ωd. We treat
the drive as a perturbation and apply the second-order
formula (B6) to obtain
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ĤU ≃ ℏδqb̂
†b̂ −

EC

2
ðb̂†Þ2b̂2

þ jεj2
X
j

�
j

δq − ½ECðj − 1Þ=ℏ� −
jþ 1

δq − ðECj=ℏÞ
	
jjihjj

≃ ℏδqb̂
†b̂ −

EC

2
ðb̂†Þ2b̂2 − 2EC

jεj2
δ2q

b̂†b̂ −
jεj2
δq

; ðB42Þ

where jji is used to label transmon states as before. In the last
approximation we kept only terms to OðjEC=δqÞ. This agrees
with Eq. (B39) for jαj2 ¼ jε=δqj2. More accurate expressions
can be obtained by going to higher order in perturbation
theory (Schneider et al., 2018).

APPENDIX C: INPUT-OUTPUT THEORY

Closely following Yurke and Denker (1984) and Yurke
(2004), we derive the input-output equations of Sec. IV.B. As
illustrated in Fig. 11, we consider an LC oscillator located at
x ¼ 0 that is capacitively coupled to a semi-infinite trans-
mission line extending from x ¼ 0 to ∞. In analogy with
Eq. (7), the Hamiltonian for the transmission line is

Ĥtml ¼
Z

∞

−∞
dxθðxÞ

�
Q̂tmlðxÞ2

2c
þ ½∂xΦ̂tmlðxÞ�2

2l

�
; ðC1Þ

where c and l are, respectively, the capacitance and inductance
per unit length, and θðxÞ is the Heaviside step function. The
flux and charge operators satisfy the canonical commutation
relation ½Φ̂tmlðxÞ; Q̂tmlðx0Þ� ¼ iℏδðx − x0Þ.
On the other hand, the Hamiltonian of the LC oscillator of

frequency ωr ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
LrCr

p
is Ĥs ¼ Q̂2

r=ð2CrÞ þ Φ̂2
r=ð2LrÞ

and the interaction Hamiltonian takes the form

Ĥint ¼
Z

∞

−∞
dxδðxÞ Cκ

cCr
Q̂rQ̂tmlðxÞ; ðC2Þ

where Cκ is the coupling capacitance between the oscillator
and the line. In deriving Eq. (C2), we neglect renormalizations
of c and Cr due to Cκ; cf. Appendix A. The total Hamiltonian
is thus Ĥ ¼ Ĥs þ Ĥtml þ Ĥint ¼

R∞
−∞ dxH, where we intro-

duce the Hamiltonian density H in the obvious way.
Using these results, Hamilton’s equations for the field in the

transmission line take the form

_̂ΦtmlðxÞ ¼ θðxÞ Q̂tmlðxÞ
c

þ δðxÞ Cκ

Crc
Q̂r; ðC3Þ

_̂QtmlðxÞ ¼ ∂x

�
θðxÞ ∂xΦ̂tmlðxÞ

l

�
: ðC4Þ

Equations (C3) and (C4) can be combined into a wave
equation for Φ̂tml, which for x > 0 reads

̈Φ̂tmlðxÞ ¼ v2∂2
xΦ̂tmlðxÞ ðC5Þ

and where v ¼ 1=
ffiffiffiffi
lc

p
is the speed of light in the line. At the

location x ¼ 0 of the oscillator, we instead find

̈Φ̂tmlðxÞ ¼ θðxÞv2½δðxÞ∂xΦ̂tmlðxÞ þ ∂2
xΦ̂tmlðxÞ�

þ δðxÞ Cκ

Crc
_̂Qr; ðC6Þ

where we use ∂xθðxÞ ¼ δðxÞ. We integrate the last equation
over −ε < x < ε and subsequently take ε → 0 to find the
boundary condition

v2∂xΦ̂tmlðx ¼ 0Þ ¼ −
Cκ

Crc
_̂Qr: ðC7Þ

From Eq. (C5), we find that the general solution for the flux
and charge fields, defined as Q̂tmlðx; tÞ ¼ c∂tΦ̂tmlðx; tÞ, can be
written for x > 0 as Φ̂tmlðx; tÞ ¼ Φ̂Lðx; tÞ þ Φ̂Rðx; tÞ and
Q̂tmlðx; tÞ ¼ Q̂Lðx; tÞ þ Q̂Rðx; tÞ, with the subscripts L and
R denoting left- and right-moving fields

Φ̂L=Rðx; tÞ ¼
Z

∞

0

dω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

4πωcv

r
e�iωx=vþiωtb̂†L=Rω þ H:c:;

ðC8aÞ

Q̂L=Rðx; tÞ ¼ i
Z

∞

0

dω

ffiffiffiffiffiffiffiffiffi
ℏωc
4πv

r
e�iωx=vþiωtb̂†L=Rω − H:c:

ðC8bÞ

In Eq. (C8), we introduce the operators b̂νω satisfying
½b̂νω; b̂μω0 � ¼ δνμδðω − ω0Þ for ν ¼ L; R.
Because of the boundary condition at x ¼ 0, the left- and

right-moving fields are not independent. To see this, we first
note that, following from the form of Φ̂tmlðx; tÞ,

Ztml
∂xΦ̂tmlðx; tÞ

l
¼ _̂ΦLðx; tÞ − _̂ΦRðx; tÞ; ðC9Þ

with Ztml ¼
ffiffiffiffiffiffiffi
l=c

p
the characteristic impedance of the trans-

mission line. Noting that ÎðxÞ ¼ ∂xΦ̂tmlðxÞ is the current and
defining voltages V̂L=RðxÞ ¼ _̂ΦL=RðxÞ, we can recognize
Eq. (C9) as Ohm’s law. Using Eq. (C7), we finally arrive
at the boundary condition of Eq. (73) at x ¼ 0:

V̂outðtÞ − V̂ inðtÞ ¼ Ztml
Cκ

Cr

_̂Qr; ðC10Þ

where we introduce the standard notation V̂ in=outðtÞ ¼
V̂L=Rðx ¼ 0; tÞ.
Using the mode expansion of the fields in Eq. (C8) together

with Eq. (4) for the LC oscillator charge operator in terms of
the ladder operator â, Eq. (C10) can be expressed as

− i
Z

∞

0

dω

ffiffiffiffiffiffiffiffiffiffi
ω

4πcv

r
e−iðω−ωrÞtðb̂Rω − b̂LωÞ

¼ −ωrZtml
Cκ

Cr

ffiffiffiffiffiffiffiffiffiffi
ωrCr

2

r
â; ðC11Þ

where we neglect terms rotating at ωþ ωr. After some
rearrangement, this can be written in the form of the standard
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input-output boundary condition (Collett and Gardiner, 1984;
Gardiner and Collett, 1985)

b̂outðtÞ − b̂inðtÞ ¼
ffiffiffi
κ

p
âðtÞ; ðC12Þ

with input and output fields defined as

b̂inðtÞ ¼
iffiffiffiffiffi
2π

p
Z

∞

−∞
dωb̂Lωe−iðω−ωrÞt; ðC13aÞ

b̂outðtÞ ¼
iffiffiffiffiffi
2π

p
Z

∞

−∞
dωb̂Rωe−iðω−ωrÞt: ðC13bÞ

The photon-loss rate κ is given by

κ ¼ ZtmlC2
κω

2
r

Cr
: ðC14Þ

There are two further approximations that are made when we
go from Eq. (C11) to Eq. (C12): We extend the range of
integration over frequency from ½0;∞Þ to ð−∞;∞Þ and
replace the factor

ffiffiffiffi
ω

p
with

ffiffiffiffiffi
ωr

p
inside the integrand. Both

approximations are made based on the assumptions that only
terms with ω ≃ ωr contribute significantly to the integral
in Eq. (C11).
Moreover, we rewrite Eq. (C9) as

∂xΦ̂tmlðx; tÞ ¼ Ztml½Q̂Lðx; tÞ − Q̂Rðx; tÞ�
¼ Ztml½2Q̂Lðx; tÞ − Q̂tmlðx; tÞ�; ðC15Þ

where in the last equality we use Q̂tmlðx; tÞ ¼ Q̂Lðx; tÞþ
Q̂Rðx; tÞ. At x ¼ 0, this gives

Q̂tmlðx ¼ 0; tÞ ¼ 2Q̂Lðx ¼ 0; tÞ þ 1

v
Cκ

Cr
Q̂rðtÞ: ðC16Þ

Using this result in the Heisenberg representation equations of
motion for the LC oscillator

_̂Φr ¼
i
ℏ
½Ĥ; Φ̂r� ¼

Q̂r

Cr
þ Cκ

Crc
Q̂tmlðx ¼ 0Þ; ðC17Þ

_̂Qr ¼
i
ℏ
½Ĥ; Q̂r� ¼ −

Φ̂r

Lr
; ðC18Þ

we arrive at a single equation of motion for the oscillator
charge

̈Q̂r ¼ −ω2
r

�
Q̂r þ

Cκ

c

�
1

v
Cκ

Cr
Q̂r þ 2Q̂in

	�
: ðC19Þ

Again writing Q̂r in terms of bosonic creation and annihilation
operators, it is possible to express Eq. (C19) in the form of the
familiar Langevin equation (77) for the mode operator âðtÞ.
This standard expression is obtained after neglecting fast-
rotating terms and making the following “slowly varying
envelope” approximations (Yurke, 2004)

d2

dt2
âe−iωrt ≃ −ω2

r âe−iωrt − 2iωr
_̂ae−iωrt; ðC20aÞ

d
dt

âe−iωrt ≃ −iωrâe−iωrt; ðC20bÞ

d
dt

b̂−ωe−iωt ≃ −iωrb̂−ωe−iωt: ðC20cÞ

Equation (77) can be viewed as a Heisenberg picture analog to
the Markovian master equation (70).

REFERENCES

Abdo, B., A. Kamal, and M. Devoret, 2013, Phys. Rev. B 87,
014508.

Abdo, B., et al., 2019, Nat. Commun. 10, 3154.
Abdumalikov, A. A., O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y.
Nakamura, and J. S. Tsai, 2010, Phys. Rev. Lett. 104, 193601.

Abragam, A., 1961, Principles of Nuclear Magnetism (Oxford
University Press, New York).

Al-Saidi, W. A., and D. Stroud, 2001, Phys. Rev. B 65, 014512.
Andersen, C. K., and A. Blais, 2017, New J. Phys. 19, 023022.
Andersen, C. K., A. Remm, S. Lazar, S. Krinner, J. Heinsoo, J.-C.
Besse, M. Gabureac, A. Wallraff, and C. Eichler, 2019, npj
Quantum Inf. 5, 69.

Arrangoiz-Arriola, P., E. A. Wollack, Z. Wang, M. Pechal, W. Jiang,
T. P. McKenna, J. D. Witmer, R. Van Laer, and A. H. Safavi-Naeini,
2019, Nature (London) 5717766, 537.

Arute, F., et al., 2019, Nature (London) 5747779, 505.
Arute, F., et al., 2020a, arXiv:2010.07965.
Arute, F., et al., 2020b, Science 3696507, 1084.
Aspelmeyer, M., T. J. Kippenberg, and F. Marquardt, 2014, Rev.
Mod. Phys. 86, 1391.

Astafiev, O., A. M. Zagoskin, A. A. Abdumalikov Jr., Y. A. Pashkin,
T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, 2010,
Science 327, 840.

Axline, C. J., et al., 2018, Nat. Phys. 14, 705.
Backes, K. M., et al., 2021, Nature (London) 590, 238.
Bardeen, J., 1962, Phys. Rev. Lett. 9, 147.
Barends, R., et al., 2011, Appl. Phys. Lett. 99, 113507.
Barends, R., et al., 2014, Nature (London) 508, 500.
Barends, R., et al., 2015, Nat. Commun. 6, 7654.
Barnett, S., and P. Radmore, 2002, Methods in Theoretical Quantum
Optics, 2nd ed. (Oxford University Press, New York).

Barzanjeh, S., D. P. DiVincenzo, and B. M. Terhal, 2014, Phys. Rev.
B 90, 134515.

Barzanjeh, S., S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S.
Pirandola, 2015, Phys. Rev. Lett. 114, 080503.

Barzanjeh, S., S. Pirandola, D. Vitali, and J. M. Fink, 2020, Sci. Adv.
6, eabb0451.

Beaudoin, F., M. P. da Silva, Z. Dutton, and A. Blais, 2012, Phys.
Rev. A 86, 022305.

Beaudoin, F., J. M. Gambetta, and A. Blais, 2011, Phys. Rev. A 84,
043832.

Beaudoin, F., D. Lachance-Quirion, W. A. Coish, and M. Pioro-
Ladrière, 2016, Nanotechnology 27, 464003.

Bennett, C. H., D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters,
1996, Phys. Rev. A 54, 3824.

Bergeal, N., F. Schackert, L. Frunzio, and M. H. Devoret, 2012, Phys.
Rev. Lett. 108, 123902.

Blais, Grimsmo, Girvin, and Wallraff: Circuit quantum electrodynamics

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025005-64

https://doi.org/10.1103/PhysRevB.87.014508
https://doi.org/10.1103/PhysRevB.87.014508
https://doi.org/10.1038/s41467-019-11101-3
https://doi.org/10.1103/PhysRevLett.104.193601
https://doi.org/10.1103/PhysRevB.65.014512
https://doi.org/10.1088/1367-2630/aa5941
https://doi.org/10.1038/s41534-019-0185-4
https://doi.org/10.1038/s41534-019-0185-4
https://doi.org/10.1038/s41586-019-1386-x
https://doi.org/10.1038/s41586-019-1666-5
https://arXiv.org/abs/2010.07965
https://doi.org/10.1126/science.abb9811
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1126/science.1181918
https://doi.org/10.1038/s41567-018-0115-y
https://doi.org/10.1038/s41586-021-03226-7
https://doi.org/10.1103/PhysRevLett.9.147
https://doi.org/10.1063/1.3638063
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1103/PhysRevB.90.134515
https://doi.org/10.1103/PhysRevB.90.134515
https://doi.org/10.1103/PhysRevLett.114.080503
https://doi.org/10.1126/sciadv.abb0451
https://doi.org/10.1126/sciadv.abb0451
https://doi.org/10.1103/PhysRevA.86.022305
https://doi.org/10.1103/PhysRevA.86.022305
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1088/0957-4484/27/46/464003
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevLett.108.123902
https://doi.org/10.1103/PhysRevLett.108.123902


Bertet, P., I. Chiorescu, G. Burkard, K. Semba, C. J. P. M. Harmans,
D. P. DiVincenzo, and J. E. Mooij, 2005, Phys. Rev. Lett. 95,
257002.

Bertet, P., C. Harmans, and J. Mooij, 2006, Phys. Rev. B 73, 064512.
Besse, J.-C., S. Gasparinetti, M. C. Collodo, T. Walter, P. Kurpiers,
M. Pechal, C. Eichler, and A. Wallraff, 2018, Phys. Rev. X 8,
021003.

Bethe, H. A., 1947, Phys. Rev. 72, 339.
Bhat, N. A. R., and J. E. Sipe, 2006, Phys. Rev. A 73, 063808.
Bialczak, R. C., et al., 2010, Nat. Phys. 6, 409.
Bienfait, A., et al., 2016, Nature (London) 5317592, 74.
Billangeon, P.-M., J. S. Tsai, and Y. Nakamura, 2015a, Phys. Rev. B
91, 094517.

Billangeon, P.-M., J. S. Tsai, and Y. Nakamura, 2015b, Phys. Rev. B
92, 020509.

Bishop, L. S., J. M. Chow, J. Koch, A. A. Houck, M. H. Devoret, E.
Thuneberg, S. M. Girvin, and R. J. Schoelkopf, 2009, Nat. Phys. 5,
105.

Bishop, L. S., E. Ginossar, and S. M. Girvin, 2010, Phys. Rev. Lett.
105, 100505.

Blais, A., J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H.
Devoret, and R. J. Schoelkopf, 2007, Phys. Rev. A 75, 032329.

Blais, A., S. M. Girvin, and W. D. Oliver, 2020, Nat. Phys. 16, 247.
Blais, A., R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.
Schoelkopf, 2004, Phys. Rev. A 69, 062320.

Blais, A., A. M. van den Brink, and A. M. Zagoskin, 2003, Phys.
Rev. Lett. 90, 127901.

Bloch, F., and A. Siegert, 1940, Phys. Rev. 57, 522.
Boaknin, E., V. E. Manucharyan, S. Fissette, M. Metcalfe, L.
Frunzio, R. Vijay, I. Siddiqi, A. Wallraff, R. J. Schoelkopf, and
M. Devoret, 2007, arXiv:cond-mat/0702445.

Bocko, M., A. Herr, and M. Feldman, 1997, IEEE Trans. Appl.
Supercond. 7, 3638.

Boissonneault, M., J. M. Gambetta, and A. Blais, 2008, Phys. Rev. A
77, 060305.

Boissonneault, M., J. M. Gambetta, and A. Blais, 2009, Phys. Rev. A
79, 013819.

Boissonneault, M., J. M. Gambetta, and A. Blais, 2010, Phys. Rev.
Lett. 105, 100504.

Bouchiat, V., D. Vion, P. Joyez, D. Esteve, and M. H. Devoret, 1998,
Phys. Scr. T76, 165.

Bourassa, J., 2012, Ph.D. thesis (Université de Sherbrooke).
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Cross, A.W., and J. M. Gambetta, 2015, Phys. Rev. A 91, 032325.
da Silva, M. P., D. Bozyigit, A. Wallraff, and A. Blais, 2010, Phys.
Rev. A 82, 043804.

Dassonneville, R., et al., 2020, Phys. Rev. X 10, 011045.
Day, P. K., H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J.
Zmuidzinas, 2003, Nature (London) 4256960, 817.

Delbecq, M. R., V. Schmitt, F. D. Parmentier, N. Roch, J. J. Viennot,
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