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In quantum information science, the phase of a wave function plays an important role in encoding
information. Although most experiments in this field rely on dynamic effects to manipulate this
information, an alternative approach is to use geometric phase, which has been argued to have
potential fault tolerance. We demonstrated the controlled accumulation of a geometric phase,
Berry’s phase, in a superconducting qubit; we manipulated the qubit geometrically by means
of microwave radiation and observed the accumulated phase in an interference experiment.
We found excellent agreement with Berry’s predictions and also observed a geometry-dependent
contribution to dephasing.

When a quantum mechanical system
evolves cyclically in time such that it
returns to its initial physical state, its

wave function can acquire a geometric phase
factor in addition to the familiar dynamic phase
(1, 2). If the cyclic change of the system is
adiabatic, this additional factor is known as
Berry’s phase (3), which, in contrast to the dy-
namic phase, is independent of energy and time.

In quantum information science (4), a prime
goal is to use coherent control of quantum sys-
tems to process information, accessing a regime
of computation unavailable in classical systems.
Quantum logic gates based on geometric phases
have been demonstrated in both nuclear magnetic
resonance (5) and ion trap–based quantum
information architectures (6). Superconducting
circuits (7, 8) are a promising solid-state platform
for quantum information processing (9–14), in
particular because of their potential scalability.
Proposals for the observation of geometric phase
in superconducting circuits (15–19) have existed
since shortly after the first coherent quantum ef-
fects were demonstrated in these systems (20).

Geometric phases are closely linked to the
classical concept of parallel transport of a vector on
a curved surface. Consider, for example, a tangent
vector v on the surface of a sphere being trans-
ported from the sphere’s north pole around the
path P shown in Fig. 1A, with v pointing south at
all times. The final state of the vector vf is rotated
with respect to its initial state vi by an angle f
equal to the solid angle subtended by the path P at
the origin. Thus, this angle is dependent on the

geometry of the path P and is independent of the
rate at which it is traversed. As a result, departures
from the original path that leave the solid angle
unchanged will not modify f. This robustness has
been interpreted as a potential fault tolerancewhen
applied to quantum information processing (5).

The analogy of the quantum geometric phase
with the above classical picture is particularly clear
in the case of a two-level system (a qubit) in the
presence of a bias field that changes in time. A
familiar example is a spin-½ particle in a changing
magnetic field. The general Hamiltonian for such
a system isH = ℏR ⋅ s/2, where s = (sx, sy, sz)

are the Pauli operators, ℏ is Planck’s constant
divided by 2p, and R is the bias field vector,
expressed in units of angular frequency. The
qubit dynamics is best visualized in the Bloch
sphere picture, in which the qubit state s
continually precesses about the vector R, acquir-
ing dynamic phase d(t) at a rate R = |R| (Fig. 1B).
When the direction of R is now changed
adiabatically in time (i.e., at a rate slower than
R), the qubit additionally acquires Berry’s phase
while remaining in the same superposition of
eigenstates with respect to the quantization axis
R. The path followed by R in the three-
dimensional parameter space of the Hamiltonian
(Fig. 1C) is the analog of a path in real space in
the classical case. When R completes the closed
circular path C, the geometric phase acquired by
an eigenstate is ±QC/2 (3), where QC is the solid
angle of the cone subtended by C at the origin.
The ± sign refers to the opposite phases
acquired by the ground or excited state of the
qubit, respectively. For the circular path shown
in Fig. 1C, the solid angle is given by QC = 2p
(1 – cos q), depending only on the cone angle q.

We describe an experiment carried out on an
individual two-level system realized in a super-
conducting electronic circuit. The qubit is aCooper-
pair box (21, 22) with an energy level separation
of ℏwa ≈ h × 3.7 GHz when biased at charge
degeneracy, where it is optimally protected from
charge noise (23). The qubit is embedded in a
one-dimensional microwave transmission line res-
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Fig. 1. (A) Parallel transport of the vector vi on a spherical surface around the closed path P results in it
rotating by a geometric angle f to vf when it returns to its initial position. (B) Dynamics of the Bloch vector
s of a qubit in the presence of a bias field R tilted by an angle q from the z axis. The vector s precesses
about R at the Larmor rate wL = |R|. (C) Parameter space of the Hamiltonian for the same case.
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onator with resonance frequency wr/2p ≈ 5.4 GHz
(Fig. 2A). In this architecture, known as circuit
quantum electrodynamics (QED) (24, 25), the
qubit is isolated effectively from its electromag-
netic environment, leading to a long energy relax-
ation time of T1 ≈ 10 ms and a spin-echo phase
coherence time of T echo

2 ≈ 2 ms. In addition, the
architecture allows for a high-visibility dispersive
readout of the qubit state (26).

Fast and accurate control of the bias field R
for this superconducting qubit is achieved through
phase and amplitude modulation of microwave
radiation coupled to the qubit through the input
port of the resonator (Fig. 2A). The qubit Ham-
iltonian in the presence of such radiation is

H ¼ ℏ
2
wasz þ ℏWR cosðwbt þϕRÞsx ð1Þ

where ℏWR is the dipole interaction strength
between the qubit and a microwave field of fre-
quency wb and phase ϕR, and t is time. Thus,
WR/2p is the Rabi frequency that results from
resonant driving. The above Hamiltonian may
be transformed to a frame rotating at the frequency
wb by means of the unitary transformation

H ′ ¼ UHU −1 − iℏUU̇
−1

ð2Þ

where U = exp(iwbtsz/2), and U̇ denotes its time
derivative. Ignoring terms oscillating at 2wb (the
rotating wave approximation), the transformed
Hamiltonian takes the form

H ′ ≈ ℏ
2
ðDsz þ Wxsx þ WysyÞ ð3Þ

whereWx =WR cosϕR andWy =WR sinϕR. This
is equivalent to the generic situation depicted in

Fig. 2. (A) Simplified circuit diagram of the experimental
setup. In the center at 20 mK is the resonator-qubit system,
with the resonator represented by a parallel inductance and
capacitance, and the qubit, a split Cooper-pair box,
capacitively coupled to the resonator through Cg. The
resonator is coupled to input and output transmission lines
via the capacitors Cin and Cout. Three different pulse-
modulated microwave frequency signals are applied to the
resonator input. The two signals required for qubit
manipulation, one at the qubit transition frequency wa/2p
and a detuned signalwb/2p, are modulated using mixers to
the pattern shown in (B). The signal at the resonator
frequency wr/2p, used to measure the qubit state, is turned
on after the pulse sequence is applied. (B) Schematic pulse
sequence for the case n = 0.5. Resonant pulses, shown as
shaded rectangles, are 12 ns in length. The two quadrature
bias microwave fields (x, red; y, blue) are represented as
sinusoids with modulation amplitude shown by solid lines.
The linear ramps at the start and end of these sections
correspond to moving adiabatically from WR = 0 to the
circle of constant WR depicted in Fig. 1C.
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Fig. 3. (A) Measured phase f
versus solid angle Q of a single
conical path (lower axis). The
applied microwave field amplitude
is indicated on the upper axis (in
units of the induced Rabi frequen-
cy WR for resonant driving). Solid
circles correspond to experiments
in which n = 1 circular paths are
traversed during each half of the
spin-echo sequence, and open
circles to the case n = 1.5. Sub-
scripts ± of labels C±± correspond
to the path direction before and
after the spin-echo p pulse. Red
solid lines are of slope n = ±1, ±1.5.
The C++ experiment was carried out
with n = 1.5. (B) State tomography
data for the C–+ experiment with
n = 1. Plotted is the qubit excited-
state population after tomography
pulses to extract 〈sx〉 [blue, pe =
(〈sx〉 + 1)/2] and 〈sy〉 [red, pe =
(〈sy〉 + 1)/2]. Lines are fits to Berry’s
phase, with a geometric dephasing
envelope function (dashed lines,
described in the text and Fig. 4). In
all cases, the total pulse sequence
time is T = 500 ns and the detun-
ing is D/2p ≈ 50 MHz. Sequences
are repeated 2 × 105 times to ac-
cumulate measurement statistics.
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Fig. 1, B and C, where R = (Wx, Wy, D) and D =
wa – wb is the detuning between the qubit tran-
sition frequency and the applied microwave fre-
quency. In our experiment, we keep D fixed and
control the bias field to trace circular paths of
different radii WR.

Wemeasure Berry’s phase in a Ramsey fringe
interference experiment by initially preparing an
equal superposition of the qubit ground and ex-
cited states, which acquires a relative geometric
phase gC = 2p(1 – cos q), equal to the total solid
angle enclosed by the cone depicted in Fig. 1C,
with cos q = D=ðW2

R þ D2Þ1=2. As the bias field
adiabatically follows the closed path C±, the
qubit state acquires both a dynamic phase d(t)
and a geometric phase gC, corresponding to a total
accumulated phase f = d(t) ± gC (the ± sign
denoting path direction), which we extract by
performing full quantum-state tomography (4). To
directly observe only the geometric contribution,
we use a spin-echo (27) pulse sequence that can-
cels the dynamic phase, as explained below.

The complete sequence (Fig. 2B) starts by
preparing the initial sz superposition state with a
resonant p/2 pulse. Then the path C– is traversed,
causing the qubit to acquire a phase f– = d(t) – gC.
Applying a resonant spin-echo p pulse to the
qubit about an orthogonal axis now inverts the
qubit state, effectively inverting the phase f– ;
traversing the control field path again, but in the
opposite direction C+, adds an additional phase
f+ = d(t) + gC. This results in total in a purely
geometric phase f = f+ – f– = 2gC being acquired
during the complete sequence, which we denote
as C–+. Note that unlike the geometric phase, the
dynamic phase is insensitive to the path direction
and hence is completely canceled.

At the end of the sequence, we extract the
phase of the qubit state by means of quantum-
state tomography. In our measurement technique
(26), the z component of the qubit Bloch vector
〈sz〉 is determined by measuring the excited-state
population pe = (〈sz〉 + 1)/2. To extract the x and y
components, we apply a resonant p/2 pulse ro-
tating the qubit about either the x or y axis and
then perform the measurement, revealing 〈sy〉
and 〈sx〉, respectively. The phase of the quantum
state after application of the control sequence is
then extracted as f = tan–1(〈sy〉/〈sx〉).

In Fig. 3Awe show the measured phase f and
its dependence on the solid angle of the path for a
number of different experiments, all carried out
at D/2p ≈ 50 MHz, and total pulse sequence time
T = 500 ns. Three parameters are varied: the path
radiusWR (upper x axis), the number n of circular
loops traversed in each half of the spin-echo se-
quence, and the direction of traversal of the paths
(C–+ and C+–). The measured phase is in all cases
seen to be linear in solid angle as WR is swept,
with a root-mean-square deviation across all data
sets of 0.14 rad from the expected lines of slope
2n. Thus, all results are in close agreement with
the predicted Berry’s phase, and it is clear that we
are able to accurately control the amount of phase
accumulated geometrically. Note also that the dy-
namic phase is indeed effectively eliminated by
the spin echo. Reversing the overall direction of
the paths is observed to invert the sign of the
phase (Fig. 3A). Traversing the circular paths on
either side of the spin-echo pulse in the same
direction (C++) as a control experiment results in
zero measured phase (Fig. 3A).

Observation of a pure Berry’s phase requires
adiabatic qubit dynamics, which in turn requires

the rate of rotation of the bias field direction to be
much less than the Larmor rate R of the qubit in
the rotating frame. For the case of constant cone
angle q, this translates to the requirement that the
adiabaticity parameter A = ϕ̇Rsin q/2R << 1. If
the Hamiltonian is changed nonadiabatically, the
qubit state can no longer exactly follow the
effective field R, and the geometric phase
acquired deviates from Berry’s phase (28). For
the experiments here, A ≤ 0.04, and deviation of
the measured phase from Berry’s phase is not
discernible. We have also verified experimental-
ly that in this adiabatic limit, the observed phase
is independent of the total sequence time T.

Figure 3B shows a measurement of the x and
y components of the qubit state from which the
Berry’s phase is extracted. Interestingly, the visi-
bility of the observed interference pattern is seen
to have a dependence on WR. Because the data
were taken at a fixed total sequence time, this is
not due to conventional T2 dephasing, which is
also independently observable as a function of
time, but can be explained as due to geometric
dephasing, an effect dependent on the geometry
of the path (29).

In our experiment, dephasing is dominated by
low-frequency fluctuations in the qubit transition
frequency wa (and thus D) induced by charge
noise coupling to the qubit (30). The spin-echo
pulse sequence effectively cancels the dynamic
dephasing due to the low-frequency noise. How-
ever, the geometric phase is sensitive to slow
fluctuations, which cause the solid angle sub-
tended by the path at the origin to change from
one measurement to the next (Fig. 4A). The
effect on the geometric phase of such fluctuations
in the classical control parameters of the system
has been studied theoretically (29). In the limit of
the fluctuations being slower than the time scale
of the spin-echo sequence, the variance of the
geometric phase s2g has itself a purely geometric
dependence,s2

g ¼ s2
w(2np sin

2 q/R)2, wheres2
w is

the variance of the fluctuations in wa (29). In
Fig. 4B, we show the observed dependence of
the coherence on geometry explicitly by plotting
(〈sx〉2 + 〈sy〉2)1/2 versusWR, which fits well to the
expected dependence exp(–s2

g /2). This is also in
agreement with the raw data in Fig. 3B.

We have observed an important geometric
contribution to dephasing that occurs when geo-
metric operations are carried out in the presence
of low-frequency fluctuations. In contrast, higher-
frequency noise in wa is expected to have little
influence on Berry’s phase (provided adiabaticity
is maintained), because its effect on the solid an-
gle is averaged out (Fig. 4C). This characteristic
robustness of geometric phases to high-frequency
noise may be exploitable in the realization of
logic gates for quantum computation, although
the effect of geometric dephasing due to low-
frequency noise must be taken into account.
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High-Performance Carbon
Nanotube Fiber
Krzysztof Koziol,1 Juan Vilatela,1 Anna Moisala,1 Marcelo Motta,1 Philip Cunniff,2
Michael Sennett,2 Alan Windle1*

With their impressive individual properties, carbon nanotubes should form high-performance fibers.
We explored the roles of nanotube length and structure, fiber density, and nanotube orientation in
achieving optimum mechanical properties. We found that carbon nanotube fiber, spun directly and
continuously from gas phase as an aerogel, combines high strength and high stiffness (axial elastic
modulus), with an energy to breakage (toughness) considerably greater than that of any commercial
high-strength fiber. Different levels of carbon nanotube orientation, fiber density, and mechanical
properties can be achieved by drawing the aerogel at various winding rates. The mechanical data
obtained demonstrate the considerable potential of carbon nanotube assemblies in the quest for
maximal mechanical performance. The statistical aspects of the mechanical data reveal the deleterious
effect of defects and indicate strategies for future work.

High-performance synthetic fibers, based
on polymermolecules or graphene sheets,
have been under development for the

past half century, motivated by the high strength
and stiffness of the covalent carbon-carbon
bond and by the ability to achieve alignment
of these bonds with the fiber axis. The key to
producing such fibers is to maximize the num-
ber of covalently bonded carbon atoms per unit
volume or mass, and thus to reduce the pro-
portion of other types of atoms or groups at-
tached to polymer chains. The advantage of
pure carbon fibers is that the mechanical prop-
erties are derived from the in-plane stiffness and
strength of graphene sheets, without the adul-
terating effect of additional atoms to satisfy
available carbon bonds. However, the route to
carbon fibers involves the alignment of pre-

cursor structures, which are then covalently
bonded to each other to create the final struc-
ture. This second phase of chemistry not only
complicates the processing operation, but also
creates a structure in which the basic mecha-
nism that generates toughness in linear poly-
mer systems (i.e., chain pullout) is not available.
Carbon fibers are thus comparatively brittle,
especially when they are heat-treated to maxi-
mize stiffness.

The very high axial strength and stiffness of
individual carbon nanotubes, demonstrated both
by experiment (1–3) and modeling (4–6), opens
up the possibility of processing them directly into
fibers without the need for a subsequent cross-
linking step. Thus, the benefits of high-performance
polymeric fibers––especially directness of pro-
cessing and fiber toughness (measured as energy
absorbed up to fracture)––can be combined with
the advantages of a fiber consisting only of
carbon atoms. If one views carbon nanotubes as
extremely strong and stiff polymer molecules, it
is not surprising that the processing routes
developed so far borrow concepts from polymer

fiber–processing technologies. The leading ap-
proaches for production of nanotube fibers are (i)
spinning from a lyotropic liquid crystalline sus-
pension of nanotubes, in a process similar to that
used for polymeric fibers such as aramids (7); (ii)
spinning from multiwall nanotubes previously
grown on a substrate as semi-aligned carpets
(8, 9); and (iii) spinning directly from an aerogel
of single- and double-walled carbon nanotubes as
they are formed in a chemical vapor deposition
reactor (10). This last process is the one we used
(11). In terms of mechanical properties, the var-
ious techniques have met with different degrees
of success. Fibers produced by the liquid crys-
talline route (7) showed an encouraging stiffness
of 120 GPa but only modest strengths on the
order of 0.1 GPa. Fibers spun from carbon nano-
tube carpets and subsequently twisted (9) have
now beenmade (12) with strengths up to 1.9 GPa
and stiffnesses up to 330 GPa. An individual
strength value of 3.3 GPa was also mentioned (13).
Until now, the highest strength reported for direct-
spun carbon nanotube fiber was 2.2 GPa, and the
highest stiffness reported was 160 GPa (14).

The mechanical properties of a material are
limited by defects within an otherwise perfect
structure. In the case of high-performance poly-
mer fibers, these defects consist of chain ends and
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Fig. 1. Specific stress-strain curves for an as-
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These curves are as-recorded, and the gauge
length in each case was 20 mm.
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