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Systems in the dispersive regime of cavity quantum electrodynamics �QED� are approaching the limits of
validity of the dispersive approximation. We present a model which takes into account nonlinear corrections to
the dressing of the atom by the field. We find that in the presence of pure dephasing, photons populating the
cavity act as a heat bath on the atom, inducing incoherent relaxation and excitation. These effects are shown to
reduce the achievable signal-to-noise ratio in cavity QED realizations where the atom is measured indirectly
through cavity transmission and in particular in circuit QED.
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Cavity quantum electrodynamics �QED� studies the cou-
pling of a two-level system �TLS� to one mode of a quan-
tized light field. This is traditionally realized in systems
where the TLSs are Rydberg �1–3� or alkali �4–6� atoms and
the light field enclosed in a high-finesse cavity. Recently, this
active field of research has attracted even more attention due
to the realization of cavity QED in solid-state systems. Ex-
amples are semiconducting �7,8� and superconducting sys-
tems �9–12� where the strong coupling regime was achieved.
Mechanical oscillators could also be used to reach this re-
gime �13,14�.

In this Rapid Communication, we study the dispersive
regime of cavity QED, where the TLS-cavity detuning is
larger than the coupling strength. With the recent realization
of the novel strong dispersive limit in atomic �2,3�, super-
conducting �15�, and micromechanical �16� systems, this re-
gime offers new possibilities to study light-matter interaction
at its most fundamental level. We study the dispersive limit
by going beyond the usual linear approximation �1,17� and
take into account important nonlinear contributions. We ob-
tain a reduced master equation �ME� and quantum trajectory
equation describing the TLS. We show that, due to dressing
of the TLS by the field, pure TLS dephasing causes photons
in the cavity to act as a heat bath on the TLS. Using these
results, we obtain an expression for the signal-to-noise ratio
�SNR� in a homodyne measurement of the TLS state. Con-
trary to initial expectations �17,18�, this SNR saturates with
increased measurement power. This result is consistent with
experimental results obtained in a cavity QED realization
based on superconducting circuits �circuit QED� �19�. Based
on this observation, we suggest a path to optimize the SNR
of dispersive measurements. Our work can be applied to all
cavity QED realizations reaching the strong coupling regime
and will help in increasing the measurement fidelity �20� of
any TLS dispersively coupled to a harmonic oscillator. These
results could, for example, be applied to superconducting
qubit architectures which are dispersively measured �21,22�.

Cavity QED is described by the Jaynes-Cummings
Hamiltonian �1�

Hs = ��ra
†a + ��a

�z

2
+ �g�a†�− + a�+� , �1�

where a�†� and �� are ladder operators for the photon field
and the TLS respectively, �r the cavity frequency, �a the
TLS transition frequency, and g their coupling strength. We
are interested in the dynamics of the TLS in the presence of
photon population of the resonator. For this purpose, a co-
herent drive on the cavity is modeled by the Hamiltonian
Hd=��m�t��a†e−i�mt+aei�mt�, where �m�t� and �m denote
measurement amplitude and frequency.

Energy relaxation results from the coupling of the cavity
and TLS to independent baths of harmonic oscillators �23�,

Hj = i��
0

�

�gj����bj
†��� − bj�����cj

† + cj�d� , �2�

where j=� or � represent either the cavity or the TLS bath
with c�=a and c�=�−. Here, gj��� is the coupling strength to
the bath mode of frequency �. In the Born-Markov approxi-
mation, integrating out the baths leads to a TLS-cavity ME
of Lindblad form with cavity decay rate �=2	 �g���r��2 and
TLS relaxation rate �1=T1

−1=2	 �g���a��2. TLS dephasing
can be modeled by coupling to a longitudinal classical fluc-
tuating parameter f�t� using the Hamiltonian H
=��f�t��z,
where � characterizes the coupling strength of the TLS to the
fluctuations. This leads to pure dephasing of the TLS at a rate
�
=2�2Sf��→0�,with Sf��� the noise spectrum of f�t�.

The dispersive regime of cavity QED is realized
when �� � ���a−�r � g. In this situation, it is useful to
move to the dispersive basis by using a unitary transforma-
tion to diagonalize Eq. �1�. This is done using D
=exp���Nq��a†�−−a�+��, where ��Nq�=arctan�2��Nq� /
2�Nq and Nq�a†a+ �e	
e� is an operator representing the to-
tal number of excitations. While this can be done exactly,
here we only present the result to third order in the small
parameter �=g /�,

PHYSICAL REVIEW A 77, 060305�R� �2008�

RAPID COMMUNICATIONS

1050-2947/2008/77�6�/060305�4� ©2008 The American Physical Society060305-1

http://dx.doi.org/10.1103/PhysRevA.77.060305


Hs
D = D†HsD � ���r + � + �� + �a†a��z�a†a + ���a + ��

�z

2
,

�3�

where 2�=2g2�1−�2� /� is the Stark shift per photon. This
Hamiltonian is similar to the usual dispersive Hamiltonian
�1,17�, but the third-order expansion leads to corrections to
�, �r, and also yields a squeezing term �a†a�2 of amplitude
�=−g4 /�3.

The transformation D to the dispersive basis can be inter-
preted as a rotation in the TLS-cavity space. To understand
how this transformation will affect dissipation, it is useful to
consider En= ��n ,g	 , �n−1,e	, the n-excitation subspace. In
En, Hs takes the form Hn=���̄z /2+�g�n�̄x, where �̄x,z act
as Pauli operators on En. As illustrated in Fig. 1, this Hamil-
tonian is diagonalized by a rotation about the Y axis of angle
�n=arctan�2��n�. The first order dispersive approximation
simply corresponds to taking �n�2��n, while the exact
transformation D corresponds to performing the above rota-
tion in all subspaces En�0. After this transformation, the new
eigenstates are entangled superpositions of TLS and cavity
states. Hence, in the dispersive basis, the TLS is dressed by
the field and acquires a photon part.

As illustrated in Fig. 1, it is also important to rotate the
system-bath Hamiltonians. We represent the TLS relaxation
rate �1 by an arrow pointing along the original axis ZD. After
rotation, it acquires a component along the X axis, corre-
sponding to dephasing, and the magnitude of its Z compo-
nent is reduced. In the same way, we can represent dephasing
as an arrow pointing along XD. After rotation, it acquires a
component along the Z axis, corresponding to upward and
downward transitions of the TLS, and the magnitude of its X
component is reduced. Since the rotation angle �n varies with
n, from this simple picture we expect the effective TLS de-
cay and dressed dephasing rates to depend on the subspace
En and thus on the number of photons in the cavity.

To obtain an effective ME for the TLS in the third-order
dispersive approximation, we apply the transformation D to
Hs, H�, H�, H
, and Hd. We then integrate out the baths to

obtain Lindblad form dissipators for the TLS and cavity op-
erators �23�. Starting from this transformed ME, our goal is
to obtain an effective ME for the TLS only. To arrive at this
result, we follow Ref. �18� in tracing out the cavity degrees
of freedom by first applying a polaron-type transformation to
the TLS-cavity ME. While in the linear dispersive approxi-
mation this results in an exact TLS ME �18�, in the nonlinear
case we approximate the photon number operator a†a by
linearizing quantum fluctuations around the classical value.
In this way, we obtain the following ME for the TLS density
matrix �D in the dispersive basis

�̇D = − i
�̃a

D

2
��z,�

D� +
�
eff

2
D��z��D + �↓D��−��D

+ �↑D��+��D � LD�D. �4�

In this expression, �̃a
D is the Lamb and Stark shifted TLS

transition frequency, including contributions both linear �18�
and quadratic in photon number �i.e., leading to squeezing�.
The effective dephasing rate �
eff takes into account
measurement-induced dephasing �24�, with corrections due
to the nonlinear terms. Finally, the effective decay and exci-
tation rates are given by

�↓ = �1�1 −
2n̄ + 1

4ncrit
� + �� + ��n̄, �↑ = �−�n̄ , �5�

where ��=2	 �g���a��2 /4ncrit is the Purcell decay rate and
���=�2Sf���� /ncrit are measurement and dephasing-
induced excitation and relaxation rates. In these expressions,
ncrit=�2 /4g2 is the critical photon number �17� and n̄
= Pgng+ Pene the average number of photons in the cavity,
with Pg,e the ground and excited state population and ng,e
= ��g,e�2 the photon population corresponding to the classical
fields �g,e associated to the TLS ground and excited states.
These satisfy

�̇g,e = − i��rm� � �g,e��g,e − i�m�1 �
1

8ncrit
�

−
�

2
�1 �

1

4ncrit
��g,e, �6�

where �rm� =�r−�m+� is the rotating-frame cavity frequency
and �g,e=�+2�ng,e the cavity pull.

As discussed in relation to the geometrical picture of Fig.
1, in the dispersive picture, the TLS relaxation rate can be
reduced by photon population �negative sign on the left-hand
side �LHS� of Eq. �5��. Dressing of the TLS with increasing
n̄ renders it less sensitive to noise at �a. However, the relax-
ation rate is now enhanced by noise at the frequency �. In
the same way, the TLS acquires a finite excitation rate �↑.
Dressing of dephasing thus leads to the measurement photon
acting as a heat bath for the TLS. We have carried out ex-
tensive numerical calculations which have shown this effec-
tive ME to accurately capture the dynamics of the TLS up to
a photon population of the order of ncrit for the parameters
used in Fig. 2.

The variation of these modified rates with photon popula-
tion can easily be probed in cavity QED implementations in
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FIG. 1. �Color online� Geometrical representation of Hs in the
subspace En= ��n ,g	 , �n−1,e	 with decay and dephasing rates for
�a� the bare and �b� dispersive basis. The axes XD and ZD are the
original axes which are rotated by an angle �n=arctan�2��n�
around the Y axis such that Hn

D is along the Z direction.
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which the TLS is measured directly �2,3,9�. In many realiza-
tions of cavity QED however, measurement of the TLS is
realized indirectly by probing the signal transmitted through
the cavity in a homodyne measurement �4,6,10�. Since the
ME description does not take into account the result of the
observation, we use quantum trajectory theory �23,25� to in-
clude this information and derive the evolution equation for
the conditional state. This was done in Ref. �18� for the lin-
ear dispersive model and is extended here to incorporate the
nonlinear effects. For phase measurement �i.e., homodyne
detection of the � quadrature �25��, we find that the state of

the TLS conditioned on the record J̄�t� obeys the stochastic
master equation �SME�

�̇J
D = LD�J

D + ��ci�t�M��z��J
D�t��J�t� − ��ci�t�
�z	t�

− i
��ba�t�

2
��z,�J

D�t���J�t� − ��ci�t�
�z	t� , �7�

where LD is given by Eq. �4� and M�c��
= �c− 
c	t�� /2+��c− 
c	t� /2 is the measurement superopera-

tor with 
c	t=Tr�c�J
D�t��. The measurement result J̄�t� is

J�t�=��ci
�z	t+��t�, where ��t� is Gaussian white noise sat-
isfying E���t��=0 and E���t���t���=��t− t��.

The SME �7� is of Itô form and represents a gradual pro-
jective measurement of �z. The rate at which information
about the state of the TLS comes out of the cavity is given by
�ci�t�=��m cos2��m�, where

�m = ����2�1 +
���cos��� − ���

4���ncrit
+

���2

64���2ncrit
2 � , �8a�

�m = � − �� + Im�ln�1 +
���ei���−���

8���ncrit
�� , �8b�

with �=�e−�g, �=�e+�g, the angles ��=arg���, ��

=arg���, and where �−��� �0,	 /2�. Furthermore, � is a
detection efficiency parameter. Choosing the reference phase
� �the phase of the local oscillator� such that �m=0, the rate
of information gain about the TLS state is ��m. To first order
in �, this can simply be understood by noting that �� is the
rate at which photons leak out of the cavity and are detected,
while ���2 is the amount of information about the TLS state
encoded in the photons. The second order term in �m is a
correction arising from the dressing of the TLS by the pho-
tons. Finally, the rate �ba�t�=��m sin2��m� in the SME is
extra non-Heisenberg backaction due to the measurement.
This rate is zero when �m=0 and is maximum when measur-
ing in the opposite quadrature.

Using the quantum trajectory equation, the TLS state lo-
calizes on one of the basis states as the measurement ampli-
tude is increased �18�. If this localization is faster than the
relaxation time �1

−1, then the measurement result is a faithful
representation of the initial TLS state. If the TLS has local-
ized in its excited state we do not expect a single jump to the
ground state with mean jump time 1 /�1. This is in contrast to
the predictions from the linear dispersive model �17,18�. In-
stead, telegraph noise due to the measurement-induced exci-
tation rate �↑ is expected. These predictions can be experi-
mentally tested by measuring the waiting time between
jumps and comparing to �↑ and �↓.

As is clear from the above results, increasing the measure-
ment amplitude opens an excitation channel �↑ which leads
to a loss of the quantum nondemolition �QND� character of
the dispersive measurement. This in turn will affect the ex-
pected SNR of a homodyne measurement of the field. In-
deed, instead of scaling with power �17,18�, we expect the
SNR to saturate with increasing measurement power. To
demonstrate this in the situation where bifurcation is not im-
portant, we define the SNR as R= �Re+Rg� /2, with Re�g�
=�ci / ��↑e�g�+�↓e�g�� for the TLS initially in the excited
�ground� state. The rates �↑e�g� and �↓e�g� depend on the TLS
state through the photon population which is evaluated from
the steady-state value of Eq. �6�.

Figure 2�a� shows a plot of the SNR �solid blue line� as a
function of measurement power, �m

2 , and scaled to nlinear /ncrit
where nlinear=�m

2 / ��2 /4+�2� is the average photon number
predicted by the linear model. For concreteness, the param-
eters chosen are taken from circuit QED �26�, but these re-
sults apply to all cavity QED realizations reaching the strong
coupling regime. Contrary to the result obtained in the linear
model �dotted red line�, the SNR saturates with increasing
power. For � /�1 small, transients can further reduce the
SNR. This reduction is small for the chosen parameters
�dashed-dotted black line�. The value at saturation is within a
factor of 2 or 3 larger than observed experimentally �19� for
a transmon qubit �27�. However, at fixed g, the ac-Stark shift
per photon 2� for the transmon is reduced substantially by
the presence of extra levels resulting in a lower SNR. Con-
sidering the fact that � is highly dependent on parameters
that are difficult to extract experimentally �e.g., number of
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FIG. 2. �Color online� �a� SNR vs nlinear /ncrit for �rm� =0 in the
linear �dashed red line� and second order �full blue line� models.
Dotted green line is Eq. �9�. Dashed-dotted black line includes tran-
sients. �b� Cavity pull � vs nlinear /ncrit in the linear model �dashed
red line�, second order approximation �full blue line�, and exact
�dotted purple line�. �c� SNR vs measurement detuning �rm� at fixed
photon population �dashed-dotted orange line n=10, full blue line
n=1�. The parameters are �� ,g ,� ,�1 ,�
� /2	
= �1700,170,34,0.1,0.1� MHz, ���=2�2�
, and �=1 /80 consis-
tent with experimental observations �19�. These parameters corre-
spond to ncrit=25.
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thermal photons produced by the leading amplifier�, the
agreement with theory is excellent.

The saturation of the SNR is due to the increase in �↑
+�↓ and to a reduction of the cavity pull with photon num-
ber. Numerical simulations have shown the reduced disper-
sive ME, Eq. �4�, to be very accurate up to about ncrit�25
photons. However, as shown in Fig. 2�b�, cavity pull in the
nonlinear model �full blue line� starts to deviate significantly
from the exact result obtained from diagonalization of the
Jaynes-Cummings Hamiltonian �dashed purple line� at about
ncrit /2�13. Our predictions for the SNR therefore underes-
timate slightly the exact result in the range shown in Fig.
2�a�.

As shown in Fig. 2�c�, the SNR is maximized by choosing
a measurement frequency such that �rm� =0. This value was
used in Fig. 2�a�. For this optimal detuning and assuming
that O�ncrit

−1 � terms can be neglected in Eqs. �6� and �8�, we
find

R �
4�n��� + 2�n�2

��2/4 + �� + 2�n�2���↑ + �↓�
, �9�

where we have taken �=��. This is shown as the green
dotted line in Fig. 2�a� where it is seen to be a very good
approximation at low power.

Using these results, it is possible to find parameters that
maximize the SNR. For example, for a given value of n /ncrit
one can find an optimal value of �. If �↑+�↓ was indepen-
dent of n, we find from Eq. �9� that the optimal value would
be �opt /2= ��+2�n�, which depends on power. In general, it

will also depend on the relaxation �1 and dephasing �
 rates.
In the case where �
��1, the optimal � is approximately
�opt, as �↑+�↓ is only weakly dependent on n. By contrast,
when dephasing dominates over relaxation the optimal � in-
creases with power. This is to avoid unwanted TLS mixing
by limiting the photon population. Clearly, dephasing plays
an important role in the reduction of the SNR and is there-
fore a crucial parameter to suppress. For superconducting
qubit realizations, efforts in this direction �27� have already
paid off �26�, something which is promising in light of the
current results.

In summary, we introduced the dressed dephasing model
of dispersive cavity QED. We obtained a reduced master
equation and a quantum trajectory equation which incorpo-
rate non-linear corrections. Dressing by the field leads to
mixing rates for the TLS that are proportional to photon
number and pure TLS dephasing. This dressing of dephasing
reduces the QND character of dispersive measurements and
leads to saturation of the SNR with measurement power. This
is in contrast to earlier studies and is consistent with experi-
mental observations. These results apply to all physical real-
izations of cavity QED reaching the strong coupling regime
and offer an approach to optimize the SNR �or measurement
fidelity� in the ubiquitous TLS-harmonic oscillator system.
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