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We present a theoretical study of a superconducting charge qubit dispersively coupled to a transmission line
resonator. Starting from a master equation description of this coupled system and using a polaron transforma-
tion, we obtain an exact effective master equation for the qubit. We then use quantum trajectory theory to
investigate the measurement of the qubit by continuous homodyne measurement of the resonator out field.
Using the same polaron transformation, a stochastic master equation for the conditional state of the qubit is
obtained. From this result, various definitions of the measurement time are studied. Furthermore, we find that
in the limit of strong homodyne measurement, typical quantum trajectories for the qubit exhibit a crossover
from diffusive to jumplike behavior. Finally, in the presence of Rabi drive on the qubit, the qubit dynamics is
shown to exhibit quantum Zeno behavior.
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I. INTRODUCTION

Continuous-in-time measurement theory �1,2�, or quan-
tum trajectory theory, describes how an observer’s state of
knowledge of a quantum system �known as the conditional
state� evolves given a measurement record. Even in the ab-
sence of classical noise, such a trajectory follows a stochastic
path in time, with the randomness being due to quantum
uncertainty. These stochastic trajectories are either diffusive
or jumplike in nature. Diffusive trajectories usually arise
when the observable being measured is only weakly coupled
to the detector �3�, whereas jumplike behavior occurs when
there is a large sudden change in the observers knowledge of
the system state, a typical example of the latter being detec-
tion of a photon with a photomultiplier �1,4�. The evolution
equation for this trajectory is called a stochastic master equa-
tion �SME� �1,2�.

In this paper, we consider measurement in circuit quan-
tum electrodynamics �QED� �5–9�. This system consists of a
Cooper pair box, playing the role of an artificial atom, dis-
persively coupled to a one-dimensional �1D� transmission
line resonator and is the circuit equivalent of cavity QED. It
has the advantage that the qubit can be fixed at an antinode
of the resonator which, due to its 1D configuration, has a
very large vacuum electric field. This leads to very strong
Jaynes-Cummings type coupling between the qubit and the
resonator. This allows one to probe a regime of parameter
space, where the resonator and qubit are strongly coupled via
a dispersive interaction and no energy is exchanged between
them. In this regime, the qubit causes a large state-dependent
shift of the resonator frequency and thus by monitoring the
signal transmitted through the resonator we can infer the qu-
bit’s state. An important feature of the quasi-one-dimensional
circuit resonator is that it permits dispersive couplings �106

times larger than for ordinary three-dimensional cavities.
Coupling of superconducting charge qubits to 3D microwave
cavities has also been investigated theoretically �10�.

To go beyond previous theoretical works on this system,
we employ quantum trajectory theory �1–4,39� and a polaron
transformation �11� to derive an effective SME for the qubit.
It is well know in quantum optics that if the voltage of a
cavity is weakly monitored, then the evolution of the condi-
tional state of the cavity is given by the homodyne SME
�1,12�. Using this SME as a starting point, we show that if
the rate at which information is coming out of the resonator
is much larger then the rate at which information is being
lost into unmonitored baths, then we can use a polaron trans-
formation to eliminate the resonator and obtain a SME for
the qubit only.

The effective SME which is derived corresponds to a
weak dispersive measurement of the qubit observable �z.
This is akin to SMEs derived in Refs. �13–20� for a quantum
dot monitored by a quantum point contact. In Refs.
�13–15,18�, the SMEs are referred to as the quantum Baye-
sian equations. They can be seen as the Stratonovich version
of the Itô SMEs presented here and in Refs. �17,20�. We note
that one can derive a similar equation by adiabatically elimi-
nating the resonator from the qubit-resonator master equation
using a similar technique as presented in �21�. However, by
using the present method, we are able to derive corrections to
the various system rates. These rates are shown to agree very
well with the solution of the total resonator-qubit conditional
state found by numerically solving the homodyne SME.

The paper is organized as follows. The next section con-
tains a brief discussion of the circuit QED Hamiltonian and
of the dispersive approximation. In Sec. III, we use a polaron
transformation to eliminate the resonator from the resonator-
qubit master equation and in this way obtain an exact master
equation for the qubit only. This exact effective master equa-
tion shows how the resonator induces an additional dephas-
ing channel on the qubit, whose strength depends on the
amplitude of input drives on the resonator. This dephasing
rate corresponds to measurement-induced dephasing found
in Ref. �9�. It contains the number splitting predicted in Ref.
�9,22� and experimentally reported in Ref. �23�. In Sec. IV
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we apply the same polaron transformation to derive an effec-
tive SME for the qubit. This equation corresponds to a weak
measurement of the qubit �z operator with rate �ci and extra
non-Heisenberg backaction which causes random rotations
of the qubit around the �z with rate �ba. Using these results,
in Sec. V we investigate the situation where the measurement
is quantum limited and how a measurement time can be de-
fined. In Sec. VI, we describe the emergence of quantum
jumps in the conditional state as the measurement strength is
increased. In particular, we investigate how the spontaneous
relaxation into the qubit bath reveals itself as a jump when
the measurement is strong, rather than a diffusive decay
when the measurement is weak. Finally, in Sec. VII, we in-
clude a qubit control drive in our description of the system
and investigate how the Zeno effect �24–27� can be observed
in this system. We summarize our conclusions in Sec. VIII.

II. CAVITY QED WITH SUPERCONDUCTING
CIRCUITS

We consider a Cooper pair box capacitively coupled to a
transmission line resonator acting as a simple harmonic os-
cillator. This system, illustrated schematically in Fig. 1, was
first introduced in Ref. �5� and experimentally studied in
Refs. �6–8,23,28,29�. Measurement-induced dephasing was
theoretically studied in detail in Ref. �9� and the applications
to quantum information processing investigated in Ref. �30�.

As described in the above references, the system’s Hamil-
tonian in the presence of a microwave drive of amplitude
�d�t� and frequency �d can be written as �5�

H =
��a

2
�z + ��ra

†a + �g�a†�− + a�+�

+ ���d�t�a†e−i�dt + �d
*�t�aei�dt� . �2.1�

In this expression, �r is the resonator frequency, �a the qubit
transition frequency, and g the resonator-qubit coupling
strength. Depending on its frequency, the drive can corre-
spond either to measurement of the qubit or can be used to

coherently control its state. In the dispersive regime, when
�� � = ��a−�r � � �g�, the effective Hamiltonian, Eq. �2.1�, can
be approximated by �5�

Heff =
��̃a

2
�z + ��ra

†a + ��a†a�z + ���d�t�a† + �d
*�t�a� ,

�2.2�

where �r=�r−�d and we have assumed that the drive is far
off resonance from the qubit transition frequency and moved
the resonator to a frame rotating at frequency �d. In this
expression, we have defined �=g2 /� as the dispersive cou-
pling strength between the resonator photon number and the
qubit. Moreover, we have taken �̃a=�a+� as the Lamb
shifted qubit transition frequency and defined �r=�r−�d.

It is important to note that the dispersive approximation
breaks down as the number of photons in the resonator ap-
proaches the critical photon number ncrit=�

2 /4g2 �5�. In the
present paper, we will work at moderately low photon num-
ber and assume the dispersive approximation to hold. That is,
we will assume that Eq. �2.2� is a valid description of the
system. The results obtained will therefore also apply to the
circuit QED implementation that uses the so-called transmon
qubit �31�. A future publication will explore the break down
of the dispersive approximation �32� at small detuning and
large photon number.

III. MASTER EQUATION

A. Master equation for the combined system

In the Born-Markov approximation, the master equation
describing circuit QED takes the usual Lindblad form �1,33�

�̇�t� = −
i

�
�Heff,��t�� + 	D�a���t� + 
1D�����t�

+ 
�D��z���t�/2 = Ltot��t� , �3.1�

where ��t� is the state matrix for both the qubit and the
resonator and D�A� is the damping superoperator defined by
the mapping

D�A�� = A�A† − A†A�/2 − �A†A/2. �3.2�

The three damping channels are photon loss through the
resonator �	�, qubit decay �
1�, and dephasing of the qubit
�
�� �34�.

There are two distinct contributions to the resonator
damping: loss of photon from the input port described by the
rate 	in and loss of photons at the output port 	out. The sum
of these two rates 	=	in+	out is what appears in Eq. �3.1�.
The advantage of distinguishing these two contributions is
that, in current experiments, only the photons leaking out of
the output port are monitored. Hence, as we will see later,
	out is related to the rate at which we acquire information
about the qubit state.

B. Master equation for the qubit

In Ref. �9� the solution of the above master equation,
neglecting energy loss due to 
1 �but keeping its effect on
dephasing�, was found to be

FIG. 1. �Color online� Schematic layout and lumped element
version of the circuit QED implementation. A superconducting
charge qubit �green� is fabricated inside a superconducting 1D
transmission line resonator �blue�. Here, we have taken the input
�left-hand side �LHS�� and output �right-hand side �RHS�� capaci-
tance of the resonator to be unequal. With the output capacitance
much larger than the input one, a larger fraction of the photons in
the resonator will escape on the output side. In this way, the signal
to be measured is enhanced.
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��t� = �
i,j=e,g

ci,j�t��i�	j� � ��i�t��	� j�t�� , �3.3�

where the indices g and e label the qubit ground and excited
states, respectively. In this expression, the coefficients ci,j�t�
are given by

ce,e�t� = ce,e�0� , cg,g�t� = cg,g�0� ,

ce,g�t� =
ce,g�0�e−i��̃a−i
2�te−i2�
0

t �e�s��g
*�s�ds

	�g�t���e�t��
,

cg,e�t� = ce,g
* �t� , �3.4�

and ��e�g��t�� are coherent states of the resonator with ampli-
tudes determined by

�̇e�t� = − i�d�t� − i��r + ���e�t� − 	�e�t�/2,

�̇g�t� = − i�d�t� − i��r − ���g�t� − 	�g�t�/2. �3.5�

In the expression for ce,g�t�, we see that in addition to decay
due to dephasing 
2=
1 /2+
�, the off-diagonal element of
the qubit density matrix decays at a rate that depends on the
field amplitudes �g and �e. Since the coherent states with
these amplitudes act as pointer states in the measurement of
the qubit, this decay can be interpreted as measurement-
induced dephasing and will depend on how distinguishable
the states ��e�t�� and ��g�t�� are �9�. Following Ref. �9�, the
effect of qubit relaxation in this model has been described by
Bonzom et al. �35�.

How these coherent states act as pointer states for the
qubit is illustrated in Fig. 2, where a phase-space represen-
tation of the resonator state Trqubit���t�� is plotted for various
qubit-field interaction times. In these plots, the initial state is
taken to be the vacuum for the resonator and the symmetric
superposition ��e�+ �g�� /�2 for the qubit. A continuous coher-
ent drive is turned on at time t=50 ns to build up photon
population of the resonator. The three panels of Fig. 2 illus-
trate how the two coherent states ��e�t�� and ��g�t�� eventu-
ally become separated in phase space. Homodyne detection
of the resonator field, with the proper choice of local oscil-
lator phase �, can then be used to distinguish between these
two coherent states and thus readout the state of the qubit. In
the last panel of Fig. 2 we have introduced the distance be-
tween the states ��e�t�� and ��g�t��,

�t� = �e�t� − �g�t� . �3.6�

Another useful quantity is the angle

� = arg�� . �3.7�

For example, for the case of Fig. 2�c�, this angle is �=�,
which corresponds to the quadrature containing the most in-
formation about the state of the qubit. Indeed, for this par-
ticular case, all of the information is in the in-phase compo-
nent I, with no information stored in the quadrature Q
component.

Our goal in the remainder of this section is to obtain an
effective master equation for the qubit by eliminating the

resonator degree of freedom from the full master equation,
Eq. �3.1�. To achieve this, we first go to a frame defined by
the transformation

P�t� =�eD��e�t�� +�gD��g�t�� �3.8�

with D��� the displacement operator of the resonator,

D��� = exp��a† − �*a� , �3.9�

and � j = �j�	j� projectors on the ground and excited states of
the qubit. This is similar to the polaron transformation which
has been used extensively in various systems �11,36�. For
example, this was used in Ref. �37� to study a charge qubit
coupled to a mechanical oscillator beyond the rotating wave
approximation. However, here we use the transformation,
Eq. �3.8�, on the dispersive Hamiltonian, not on the full
Jaynes-Cummings Hamiltonian.

As is shown in Appendix A, applying this transformation
on the master, Eq. �3.1�, and tracing over the resonator state
yields the laboratory frame reduced qubit master equation
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FIG. 2. �Color online� In-phase I=Re�	a��= 	a+a†� /2 and
quadrature Q=Im�	a��= 	ia†− ia� /2 component of the Q-function
solution for the resonator state Trqubit��s�. Here the parameters are
	 /2�=10 MHz, � /2�=5 MHz, � /2�=20 MHz, and �r=0. The
measurement drive is turned on at t=50 ns and the initial state is
�0� � ��e�+ �g�� /�2. For illustration purposes, 
1 was taken to be
zero. �a� t=0, �b� t=75 ns, �c� Steady-state solution.
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�̇�t� = − i
�ac�t�

2
��z,��t�� + 
1D��−���t�

+ �
� + �d�t��D��z���t�/2 = L��t� , �3.10�

where ��t�=Trres���t��. This expression is the main result of
this section. It is important to note that, within the dispersive
approximation, this result is exact.

In this reduced description, we see that the effect of cou-
pling to the resonator translates into an additional dephasing
rate �d�t� given by

�d�t� = 2� Im��g�t��e
*�t�� . �3.11�

In addition to dephasing, the qubit transition frequency is
also modified by the photon population of the resonator. The
shifted qubit frequency is given by

�ac�t� = �̃a + B�t� �3.12�

with

B�t� = 2� Re��g�t��e
*�t�� . �3.13�

This last term gives rise to the ac-stark shift experimentally
measured in Ref. �8�. In the situation where ��	, the above
leads to the number splitting predicted in Ref. �9,22� and
experimentally observed in Ref. �23�.

Although the above results are analytically exact, we have
compared the numerical solution of the qubit’s dynamics ob-
tained from the full master equation, Eq. �3.1�, to that ob-
tained from the reduced model equation, Eq. �3.10�. This is
shown in Fig. 3 where the elements of the Bloch vector are
plotted as a function of time. It is useful to note that, in terms
of the Bloch vector,

��t� =
1

2
�1 + x�t��x + y�t��y + z�t��z� , �3.14�

where x�t�=Tr��x��t��, y�t�=Tr��y��t��, and z�t�
=Tr��z��t��, the effective master equation, Eq. �3.10�, re-
duces to the simple Bloch equations

ẋ�t� = − �ac�t�y�t� − �
2 + �d�t��x�t� ,

ẏ�t� = �ac�t�x�t� − �
2 + �d�t��y�t� ,

ż�t� = − 
1�z�t� + 1� . �3.15�

Not surprisingly, as seen from Fig. 3, the agreement between
numerical integration of these Bloch equations and full nu-
merical integration of the full master equation is excellent.
The agreement between these two results can be quantified
by calculating the trace distance dTr�t� between the full and
the effective model. The trace distance in this case is defined
as �38�

dTr�t� =
1

2
Tr����t� − Trres���t��� , �3.16�

and is found to be zero at all integration times, up to numeri-
cal round off �truncation� errors. This was checked for a wide
range of measurement amplitudes �d and the trace distance
was also found to be zero for all verified amplitudes. Also in

this figure is shown the purity �full blue line�

p�t� = Tr���t�2� =
1

2
�1 + x�t�2 + y�t�2 + z�t�2� . �3.17�

In this master equation description, the purity tends to 1/2,
corresponding to a completely mixed state, due to dephasing.
On top of this dynamics, relaxation is taking the purity to 1
�a pure state� at a rate 
1. For the parameters chosen in Fig.
3 relaxation is much weaker than �measurement-induced�
dephasing, such that only the effect of the latter is seen.

To summarize this section, we have obtained an exact
master equation description of the qubit dynamics that only
involves classical solution of the resonator field. In addition
to giving direct insights in the qubits dynamics �e.g.,
measurement-induced dephasing and ac-Stark shift� this also
provides a tool to significantly reduce the complexity of nu-
merical calculations. Indeed, only a two-dimensional Hilbert
space is now required. We note that this effective model was
used to analyze and reproduce, with exceptional agreement,
the experimental results reported in Ref. �28�.

IV. STOCHASTIC MASTER EQUATION

A. Stochastic master equation for the combined system

In this section, we review homodyne measurement of the
field emitted from the resonator. Using these results, we will
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FIG. 3. �Color online� �a� Numerical solution of the three com-
ponents of the Bloch vector as obtained from the full master equa-
tion: x �red dashed line�, y �green dashed-dotted line�, and z �solid
blue line�. For this simulation, a measurement drive tuned at the
resonator frequency ��r=0� and with envelope �d�t�=A tanh��t
− ton� /�� is turned on at ton=20 ns �green dashed-dotted line in
panel �b��. The turn-on time is indicated with the vertical dashed
line. �b� Purity p �solid blue line� and the trace distance dTr �red
dashed line� with respect to the effective model derived here. The
latter shows the excellent agreement between the model and full
numerical results. For these results, we have taken A /2�=5 MHz,
�=5 ns, T1=7 �s, and T2=500 ns. The other parameters are the
same as in Fig. 2.
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in Sec. IV B use the transformation of Eq. �3.8� to obtain an
effective SME for the qubit only.

In a given quantum system, if all the decoherence and
decay channels can be monitored continuously, it is possible
to describe the system conditioned on the results of this
monitoring result J�t� by a pure state ��J� rather than by the
average state �. This pure states is called a conditional state
and can be viewed as our state of knowledge of the system.
However, in systems where information about only some of
the decay channels can be obtained, there is missing infor-
mation, and it is no longer possible to have a pure state
description. In this case, we can assign a conditional state
matrix, �J, to represent the state of the system under continu-
ous observation of the particular decay channels. The evolu-
tion equation of this conditional state is referred to as a sto-
chastic master equation �SME� �1–4,12,14,18,39�. It has the
property that its average state ��t�,

��t� = E��J�t�� , �4.1�

is the solution to the master equation. Here E denotes an
ensemble average over measurement records J�t�.

In circuit QED, there are four decay channels described
by the rates 	in, 	out, 
1, and 
�. Only information coming
out of the 	out channel, that is photons transmitted through
the resonator, are monitored. As a result, we must restrict our
description to a conditional density matrix. As will be dis-
cussed in the next section, in the effective model for the
qubit only, this will correspond to monitoring the decay
channel corresponding to the rate �d�t� and not monitoring
the 
1 and 
� channels.

Although direct detection of the transmitted microwave
photons is possible �28�, here we will consider homodyne
processing. That is, we will assume that the signal coming
from the output port of the resonator is mixed with a strong
local oscillator of phase � tuned to the signal frequency.
Given the homodyne measurement result J�t�, we can assign
to the qubit-resonator system the conditional state �J�t�
whose evolution is governed by the SME �40�

�̇J�t� = Ltot�J�t� + i�	��Q�,�J��J�t� − �	�	2I��t�

+ �	�M�2I���J�t��J�t� − �	�	2I��t� �4.2�

with Ltot given by Eq. �3.1�, � is the measurement efficiency
which we define below, M�c� is the measurement superop-
erator defined as

M�c�� = �c − 	c�t��/2 + ��c − 	c�t�/2, �4.3�

where 	c�t=Tr�c�J�t�� and the �-dependent field components
are 2I�=ae−i�+a†ei� and 2Q�=−iae−i�+ ia†ei�. The effi-
ciency is �=	out�det /	 with 	out the rate at which photons
come out of the output port of the resonator and �det is the
efficiency at which these photons are detected. For the cur-
rent circuit QED experiments �6–8,23,28,29�, this can be
written as �det=1 / �N+1� with N the number of noise pho-
tons added by the amplifier stage.

For homodyne detection, the measurement record ob-
served in an experiment can be expressed as

J�t� = �	�	2I��t + ��t� , �4.4�

where ��t� is Gaussian white noise and represents the photon
shot noise. It is formally defined as �41�

E���t�� = 0, �4.5�

E���t���t��� = ��t − t�� , �4.6�

with E denoting an ensemble average over realizations of the
noise ��t�.

The measurement term in Eq. �4.2�, the one including the
superoperator M�2I��, comprises two parts. We will refer to
the first one as the homodyne gain and the second as the
innovation. The homodyne gain is �	�M�2I���J�t� and col-
lapses the state towards a I� state �eigenstate of I��. The
innovation is J−�	�	2I��t, it pushes the conditional state to
a higher or lower I� state depending on whether the current
result J�t� is greater or smaller then the average �	�	2I��t.
The last term in Eq. �4.2�, the noisy Hamiltonian term is
extra non-Heisenberg backaction �it does not come with any
information gain� caused by the measurement. It is this term
that stops the conditional state from being driven to a I� state
as it supplies random Q� kicks to the conditional state caus-
ing delocalization in I�.

For heterodyne measurement �where the local oscillator
�LO� is detuned from the signal frequency�, both component
I� and Q� can be measured simultaneously. In this case, the
SME, Eq. �4.2�, has extra gain and innovation terms corre-
sponding to this additional component. Heterodyne measure-
ment also lowers the measurement efficiency �det by a factor
of 1 /2. Detection of this second component does not change
the physics in an essential way, and we will focus on the
simpler case of homodyne detection in the remainder of this
paper.

Finally, we note that the SME, Eq. �4.2�, is known to lead
to a diffusivelike evolution for the system �3,12,42�. We will
however see in Sec. VI how there can be a crossover from
diffusive to jumplike evolution as the measurement strength
is increased.

B. Stochastic master equation for the qubit

In this section, we use the transformation Eq. �3.8� to
obtain an effective SME for the qubit only. As described in
Appendix B, this can be done in the limit where

� =
2
1

	
� 1. �4.7�

We note that this limit does not imply that the information
gain about the state of the qubit is small. For the system to be
in this limit, we simply require that the photons come out of
the resonator faster than the qubit decay rate. Otherwise, the
full SME of Eq. �4.2� must be used. However, as will be seen
from numerical investigations, the validity of the model can
extend well beyond this limit in practice.

As described in Appendix B, in the limit where Eq. �4.7�
is valid, the effective SME for the qubit obtained using the
transformation of Eq. �3.8� and tracing over the resonator
states is
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�̇J̄�t� = L�J̄�t� + ��ci�t�M��z�	�z��J̄�t��J̄�t� − ��ci�t�	�z�t�

− i
��ba�t�

2
��z,�J̄�t���J̄�t� − ��ci�t�	�z�t� . �4.8�

In this expression, �ci�t� is the rate at which coherent infor-
mation comes out the resonator and �ba�t� represents extra
non-Heisenberg backaction from the measurement. These
rates are given by

�ci�t� = �	��t��2 cos2�� − �� , �4.9�

�ba�t� = �	��t��2 sin2�� − �� , �4.10�

with the angle � being defined in Eq. �3.7�.
In Eq. �4.8�, J̄�t� is the processed record coming from the

resonator and is given by

J̄�t� = ��ci	�z�t + ��t� , �4.11�

which can be related to the homodyne current by

J�t� = J̄�t� + �	����t��cos��� − �� �4.12�

with ��t�=�e�t�+�g�t� and ��=arg���.
From the above expressions, by doing homodyne mea-

surement on the field leaving the resonator we are in fact
doing a weak diffusive measurement of the qubit operator �z
with measurement strength �ci�t�, as well as causing extra
unitary backaction on the qubit �by the term proportional to
�ba�t��. This is clearly seen by rewriting Eq. �4.8� in terms of
the Bloch vectors

ẋJ�t� = − ��ac�t� + ��ba�t��J̄�t� − ��ci�t�zJ�t��yJ�t�

− �
2 + �d�t� + ��ci�t�zJ�t��J̄ − ��ci�t�zJ�xJ�t� ,

ẏJ�t� = ��ac�t� + ��ba�t��J̄�t� − ��ci�t�zJ�t��xJ�t�

− �
2 + �d�t� + ��ci�t�zJ�t��J̄ − ��ci�t�zJ�yJ�t� ,

żJ�t� = ��ci�t��1 − zJ�t�2��J̄�t� − ��ci�t�zJ�t�� − 
1�zJ�t� + 1� .

�4.13�

From these expression, we see that the effect of the measure-
ment consists of two parts. First, a nonlinear update to the
state which results in pushing the system towards either z
=�1 depending on the observed record �the terms propor-
tional to �ci�t��, and second, an extra stochastic component
that causes rotations around the �z axis �the �ba�t� terms�. We
find that the sum of these rates is ��m�t� where

�m�t� = 	��t��2 �4.14�

is the maximum measurement rate. This rate can be simply
understood by noting that 	 is the rate at which photons leak
out the resonator and ��t��2 is the amount of information
about the qubit state encoded by these photons. That is, this
is the maximum amount of information that can be gained
from this system via homodyne monitoring. Looking at Eq.
�4.9� this is achieved by setting the homodyne phase to �

and physically corresponds to detecting the quadrature which
has the greatest separation of the pointer states �see Fig.
2�c��. If we set � to be �+� /2, then �ba�t�=��m�t�, which
results in the measurement revealing no information about
the qubit state and only causing dephasing by qubit fre-
quency change via photon shot noise.

When the resonator dynamics have reached steady state, it
can be shown that

�d�t → � � = �m�t → � �/2. �4.15�

This is illustrated in Fig. 4 where both �d�t� �solid blue line�
and �m�t� /2 �dashed red line� are presented for the situation
where a measurement drive tuned to the bare resonator fre-
quency is turned on at t=50 ns. From this figure, we see that
after the resonator transients decay away, the dephasing rate
�d is twice the maximum measurement rate �m. Also shown
in the figure �see inset� is the ratio between the total dephas-
ing of the system, which we define as 
0

t�d�s�ds, and
the total measurement-induced dephasing, defined as

0

t�m�s�ds /2. As it should �when 	���, the former exceeds,
or is at least equal to, the latter. This is simply a statement
that there is additional information about the qubit available
in the initial transients of the resonator which is not being
used when simply monitoring the homodyne signal.

A typical trajectory for the conditional state is shown in
Fig. 5�a� �red dashed line is the x component, green dashed-
dotted line is the y component, and the solid blue line is the
z component� for the case of a measurement drive turned on
at ton=20 ns and of maximal amplitude �d

max /2�=5 MHz.
The envelope of the drive, shown as the green dashed-dotted
line in Fig. 5�b�, is the same shape as the one used in Fig. 3.

Unlike the average evolution, as we monitor the system
we become more certain of its quantum state. This is repre-
sented in Fig. 5�a� by the z component being stochastically
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FIG. 4. �Color online� �d�t� �solid blue line� and �m�t� /2
�dashed red line� for a measurement drive turned on at the time t
=50 ns. The drive frequency is tuned to the bare resonator fre-
quency ��r=0� and the amplitude is �m /2�=�5. The rest of the
parameters are the same as in Fig. 2. The inset shows the ratio
between the total dephasing and the total measurement-induced
dephasing. The vertical black dashed line is the turn on time for the
measurement drive. The horizontal dashed line is the steady-state
dephasing rate.
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pushed towards z=−1. Note that we are showing but one
possible trajectory, other realizations will tend to localize the
z component to +1. The fact that our state of knowledge
about the quantum state is increased by monitoring is also
made apparent by the purity which reaches unity �full blue
line in Fig. 5�b��. Under the average evolution, see Fig. 3�b�,
we end up with a completely mixed state. This is simply due
to the fact that the average description does not take into
account the information gain due to the measurement.

Also shown in Fig. 5�b� is the trace distance between the
conditional state found using the homodyne SME, Eq. �4.2�
and the effective SME, Eq. �4.8�, in both cases using the
same parameters as in Fig. 5�a�. The agreement between the
two results is excellent, which shows that when the limit, Eq.
�4.7�, is valid, the effective model derived here is indeed a
good description. To see the breakdown of the validity of the

model, we plot in Fig. 5�c� one minus the trace distance
minimized over the simulation time, 300 ns, as a function of
measurement amplitude and for two values of T1. This is
calculated and averaged over 70 trajectories. For T1=7 �s
�full red circles�, the agreement is very good at all simulated
amplitudes. However, for T1=100 ns �empty blue squares�,
the condition, Eq. �4.7�, is much less valid. As the measure-
ment amplitude is increased, the approximation that we can
neglect elements of Eqs. �B10� and �B11� in Eq. �B9� breaks
down and the discrepancy between the effective and full
models is apparent. In any cases, it is clear that the effective
model is a very good approximation for long T1 and can give
a relatively accurate description of the system even at low
T1, provided that the measurement amplitude is not too large.
We note that a T1 of 7 �s was reported in Ref. �7�. The
model obtained here is therefore useful in realistic experi-
mental settings.

Moreover, we find that for the small T1 of 100 ns, while
the discrepancy reported in Fig. 5�c� for an average over
many trajectories can be large, when inspecting single trajec-
tories we find no notable new features as the measurement
amplitude is increased. The only change can be attributed to
renormalization of the various systems parameters under the
measurement. This suggests that the effective model pre-
sented here may extend well beyond the limit �4.7�, with the
only change being that the measurement rate must be ob-
tained numerically �or experimentally measured�.

C. Signal-to-noise ratio

Using the above results, we can define the signal-to-noise
ratio �SNR� as

SNR =
�ci


1
=
��m cos2�� − ��


1
. �4.16�

As expected, the SNR is maximized by setting the phase �
of the local oscillator to the quadrature containing the most
information: �=� �see Fig. 2�. Since �m scales with the
measurement amplitude, and thus with the number of pho-
tons populating the resonator, this expression indicates that
arbitrarily large SNRs can be reached in principle by simply
increasing this amplitude. However, as was also pointed out
in Ref. �5�, at large photon numbers the dispersive Hamil-
tonian, Eq. �2.2�, breaks down and the results obtained here
are simply no longer valid.

As a result, we must maximize the SNR at a fixed number
of photons which is assumed to be small enough for the
dispersive approximation to be valid. The number of photons
inside the resonator depends on the drive amplitude �d, on
resonator damping 	, resonator-drive detuning �r, and on the
dispersive qubit-resonator coupling �. Because of the latter,
the actual number of photons can depend on the state of the
qubit. We thus define ng and ne the number of photons given
that the qubit is in the ground or excited state �9�. When
optimizing, we therefore work at a fixed n=max�ne ,ng�,
which is assumed to be well below the dispersive break-
down. Under this constraint, and assuming that the resonator
has reached steady state, we find that the optimal SNR, for
arbitrary � and 	, occurs at �r=0 and is given by
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FIG. 5. �Color online� �a� Numerical solution of the three com-
ponents of the Block vector as obtained from the full homodyne
SME: x, red dashed line; y, green dashed-dotted line; z, solid blue
line. The measurement frequency and envelope is the same as in
Fig. 3. We have assumed perfect efficiency �=1 and taken the LO
phase to be �=�=�, corresponding to maximal information gain
at �r=0. �b� Conditional purity pJ �full blue line� and measurement
pulse amplitude �dotted-dashed green line�. Also shown is one mi-
nus the trace distance �dashed red line�, as calculated from the full
homodyne SME and the effective SME. �c� One minus the trace
distance minimized over the simulation time, 300 ns, for a range of
measurement amplitude and two values of T1: 7 �s �full red dots�,
100 ns �empty blue squares�. Here, the trace distance is averaged
over 70 trajectories.
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SNR =
4n�	�2


1�	2/4 + �2�
. �4.17�

A plot of this is shown in Fig. 6. From this plot, it is clear
that the optimal value occurs at 	=2� and is given by
SNRmax=4n�� /
1.

Thus, to extract the most information about the state of
the qubit, we need to tune the measurement drive to bare
resonator frequency �r and choose the system parameters
such that �=	 /2. Note that 	 is chosen at fabrication time
�and could be tuned in situ by a change of resonator design�
and that �=g2 / ��a−�r� can be tuned in situ by tuning �a. At
a drive strength such that n̄=ncrit �5�, the maximum SNR is
�� /
1, which for current experiments is approximately 50–
100. Using the results of Ref. �43�, this implies that a mea-
surement fidelity of at least 95% could be achievable in prac-
tice. To further increase this value, improvements have to be
made to T1, to minimize the amplifier noise and/or tune the
system to be still further in the dispersive regime.

V. MEASUREMENT TIME

In this section, we use the effective SME for the qubit to
obtain an estimate for the measurement time. That is, an
estimate for how long it takes us to be confident about the
state of the qubit. To do so, we will take the simplifying
assumption that the resonator transient can be ignored �that
is, �d=�m /2�. In this situation, the simplest definition for a
measurement time is to assume it is the inverse of the infor-
mation gain rate,

tm = 1/�ci. �5.1�

Using this definition, we can write

tm�d� 1/2. �5.2�

This is the information-gain–dephasing “uncertainty rela-
tion” already discussed by several authors �44–47�. The

equality is saturated for �=1 and �=� and corresponds to
the quantum limit discussed in Ref. �46�.

In the next sections, we define the measurement time with
respect to three different measures. As we will see however,
there is no unique definition of the measurement time.

A. Integrated signal

For simplicity, let us first discuss the situation where 
1
=0 and with the qubit initially in either z=�1. In this situ-
ation, the measurement time is very well defined as the qubit
state simply remains in its initial state and the task is to
estimate that state in the shortest possible time.

We define the measurement signal for an integration time
t as

s�t� = ��ci�
0

t

J̄�t��dt�. �5.3�

This signal has mean and standard deviation

s̄�t� = � t�ci, �5.4�

��s�t�� = �	�s�t� − s̄�t��2� = �t�ci. �5.5�

As a result, if we were to measure the system for a time t
and repeat this measurement several times, we would be con-
fident that, to one standard deviation, the value of s is
�t�ci��t�ci. As a result, to be able to distinguish between
z=�1 a reasonable requirement is

��s�t��� t�ci. �5.6�

The equality defines the measurement time to be tm=1 /�ci.
In this case, we recover the simple assumption discussed
above.

A problem with this approach is that the condition which
defines distinguishability, and thus the measurement time, is
somewhat arbitrary. Indeed, separation by one standard de-
viation is not the only possible choice for distinguishability.
Lastly, the above discussion only answers the question of
how much time it takes to distinguish between two predeter-
mine initial states of the qubit �under a measurement with
Gaussian noise�. A more natural question is how long it takes
the conditional state to collapse to either z=�1. This can be
characterized by the conditional variance.

B. Conditional variance

How fast the ensemble of possible trajectories converge to
one of the possible values z=�1 is characterized by the
conditional variance �48�. This measure is defined as

VJ�t� = 	�z
2�t − 	�z�t

2 = 1 − zJ�t�2. �5.7�

It ranges from 0 to 1, with VJ=0 meaning that we are certain
that the current value of zJ�t� is either �1 and VJ=1 corre-
sponding to complete uncertainty.

For 
1=0, Eq. �4.13� can be solved analytically using Itô
calculus. Doing this yields the solution

zJ�t� = tanh�s�t� + tanh−1�z�0�� , �5.8�

where the signal s�t� is defined in Eq. �5.3�. For example, in
the situation where z�0�=0 and arbitrary x�0� and y�0� �for
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FIG. 6. �Color online� The signal-to-noise ratio �SNR� at �r
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efficiency was taken to be ideal �=1 and the relation rate 
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example, a completely mixed state or an x eigenstate� the
conditional variance becomes

VJ�t� = 1 − tanh2�s�t�� . �5.9�

The conditional variance for a typical trajectory is shown
in Fig. 7�a� �blue solid line�. Here, we have taken �d /2�
=5 MHz and the qubit to be initially completely mixed
�x�0�=y�0�=z�0�=0�. We see that for this typical trajectory,
at about 10 ns the measurement is completed and the state of
the qubit is almost pure. However, this is only one typical
trajectory and to obtain a quantitative idea of the measure-
ment time we must consider the ensemble average of the
conditional variance. This is the red dashed line in Fig. 7�a�.

Taking the ensemble average of Eq. �5.9� gives

V�t� =
1

2�2��3/2�
−�

� x sinh�2x�exp�− x2/2��
cosh�2�� + cosh�2x�

dx ,

�5.10�

where �=�cit. Using this, the measurement time tm can be
defined by requiring that the average conditional variance

falls below 1 /2. Numerically, this is found to occur when
�=0.851. Thus, using the conditional variance as the mea-
sure, the measurement time is found to be tm=0.851 /�ci.

However, when 
1 is nonzero, the conditional variance
always eventually goes to zero which signifies that we are
eventually certain that the system is in its ground state. This
is of course not a useful way to define the measurement time.
To take into account relaxation, in Ref. �43� we studied this
question by considering an effective classical model for a
dispersive quantum nondemolition measurement which turns
out to be equivalent to the model presented here when the
initial state of the qubit is either z�0�=�1 or a mixture of
both �i.e., x�0�=y�0�=0�. That is, Eq. �4.13� is the same as
the Kushner-Stratonovich equation that describes a measure-
ment of a two state system with Gaussian noise. For com-
pleteness and since this is a good approach in the situation
where relaxation is nonzero, we will therefore briefly review
the relevant results of Ref. �43�.

C. Initial state fidelity

In Ref. �43�, to quantify how good a measurement is at
revealing the initial state of the qubit, we imagine preparing
the qubit in either the z�0�=�1 state and then generate fic-

titious records J̄�t� from that input. Given these fictitious
measurement records, but now assuming ignorance of the
initial state, we then ask what was the initial state of the
qubit. To quantify the efficiency of the measurement at re-
vealing the correct input state, we use the following fidelity
measure F: the number of correct assignments minus the
number of incorrect assignments of the initial state, normal-
ized by the total number of assignments. This measure will
range from 1, indicating that the correct initial state was
correctly found for each record, to −1, indicating that a
wrong assigned was realized for each record. A fidelity of 0
implies that the assignments are completely random.

The criteria used to make these assignments is the optimal
assignment criteria found in Ref. �43�. This is based on an
estimate z̃�t� for the initial state. If this estimate is above 0,
we assign the initial state as excited and if it is below 0 we
assign it as ground �for z̃=0, we randomly chose between
excited or ground�. This estimate z̃�t� is defined as

z̃�t� = P�z0 = + 1�J̄,t� − P�z0 = − 1�J̄,t� , �5.11�

where P�z0=�1 � J̄ , t� is the probability at time t that the

initial state was �1 given the record J̄�t�. This conditional
probability is given by Bayes theorem

P�z0�J̄,t� =
P�J̄�z0,t�P�z0�

�
i=−1,1

P�J̄�z0 = i,t�P�z0 = i�
, �5.12�

where P�z0� is the initial state probability which we take to
be 1/2 for both i=−1 and 1. By introducing a fictitious un-
ravelling of 
1 �see Refs. �39,43��, the estimate can be re-
written as
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FIG. 7. �Color online� �a� Typical trajectories for the conditional
variance �blue solid line� with �d /2�=5 MHz and �=1. Average
conditional variance �red dashed line� found using Eq. �5.10� for the
same parameters. Note that the calculated ensemble average over
1000 typical trajectories falls directly over the average conditional
variance, and is therefore not explicitly shown. The vertical dash
line shows the time at which the conditional variance crosses 1 /2,
tm=13.5 ns. The green dashed-dotted line is the ensemble average
conditional variance for T1=159 ns �
1 /2�=1 MHz� and the rest
of the parameters identical as above. For this value of 
1, the SNR
is 10. �b� Average fidelity of the measurement at estimating an
unknown but pure initial state for �d /2�=5 MHz, �=1, and

1 /2�=0 �red dashed line� or 
1 /2�=1 MHz �blue dots�. The
green solid line is a fit using Eq. �5.18� with fit parameters Afit

=0.846 �horizontal dashed line� and �fit /2�=14.6 MHz. The two
vertical lines correspond to the times where the fidelity crosses
erf�1 /�2�. For 
1 /2�=0 this yields tm=15.9 ns, while for 
1 /2�
=1 we find tm=18.5 ns.
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z̃�t� =
1 − e−2s�t��1 − a�t��
1 + e−2s�t��1 + a�t��

, �5.13�

where

a�t� = 
1�
0

t

dtje
−
1�tj−t�+2s�tj� �5.14�

and s�t� is the integrated signal defined in Eq. �5.3�.
The above integral cannot be solved in general for a typi-

cal record s�t�, but it can be easily determined numerically.
Here, however, to develop a physical understanding of this
result, we will consider the 
1=0 limit first. Doing this, we
can rewrite z̃�t� as

z̃�t� =
1 − e−2s�t�

1 + e−2s�t� , �5.15�

and using the above definition of the fidelity

F�t� = lim
M→�

1

2M � �
z̃+1�0

− �
z̃+1�0

+ �
z̃−1�0

− �
z̃−1�0

�1,

�5.16�

we obtain the following compact expression:

F�t� =
1

�2�t
��

−t��ci

�

e−x2/2tdx − �
−�

−t��ci

e−x2/2tdx�
= erf�� t�ci

2
� . �5.17�

This result is shown in Fig. 7�b�, for �d /2�=5 MHz, as the
red dashed line. As can be seen from this figure, arbitrarily
large fidelities can be achieved by monitoring longer.

We now use this result to define a measurement time. A
reasonable criterion is to ask for the fidelity to be at least
erf�1 /�2�=0.68 �corresponding to the probability of a
Gaussian random variable being within one standard devia-
tion of the mean�. The measurement time is then defined as
the time when the fidelity reaches this value. Using the above
results, we find that the measurement time is tm=1 /�ci. For

1=0, we thus again recover the result, Eq. �5.1�, of the
simple model.

The effect of relaxation on the fidelity is investigated nu-
merically. For example, the blue dots in Fig. 7�b� show the
fidelity obtained numerically for 
1 /2�=1 MHz. With all
values of �d tried numerically, we have found excellent
agreement of the fidelity, including dissipation, to the follow-
ing form:

F�t� = Afit erf�� t�fit

2
� , �5.18�

where �fit and Afit are fit parameters. For example, the green
solid line in Fig. 7�b� is for �d /2�=5 MHz. To show how
the fidelity F�t� depends on the SNR �which in the limit that
the resonator transient can be ignored is 2�d /
1�, numerical
simulations and the above described fitting procedure were
performed for values of �d /2� ranging from 1 to 50 MHz.
The results of these simulations are shown in Fig. 8. In par-

ticular, the inset of this figure shows the long time fidelity,
Afit. From this result, we see that the fidelity is below
erf�1 /�2� until a SNR of 3.16 is reached �this corresponds to
the vertical dashed line�. Below this value, using the above
measurement time criteria, we must conclude that the mea-
surement cannot be completed. However, for all SNR above
3.16 it is possible to find a time where the fidelity crosses
erf�1 /�2�. This time is shown in Fig. 8 as the blue solid line.
We see that this time is always longer than the ideal limit
�red dashed line�. However, as the SNR increases, the mea-
surement time approaches the result obtained in the 
1=0
case �1 /�ci�.

VI. EMERGENCE OF QUANTUM JUMPS

By increasing the SNR �e.g., increasing the measurement
drive amplitude�, the conditional state will tend to be local-
ized to either the excited or ground state. This is due to the
term ��ci�1−zJ

2� in Eq. �4.13�. However, in the presence of
relaxation 
1�0, on average the conditional state must be
localized on the ground state in the long time limit. As a
result, when initializing the system in the excited state, there
are two competing processes. One is trying to lower the con-
ditional state to z=−1 �
1� and the second is trying to hold it
in at z= +1 ��ci�. The net result is that as the measurement
strength becomes stronger, the SME will transform from a
diffusive stochastic process which stochastically lowers itself
to the ground state to one which jumps at a well-defined
time. That is, as the measurement becomes stronger, quan-
tum jumps due to the decay channel 
1 will be revealed in
the signal J�t�.

The crossover of the conditional state from a diffusive to
jumplike SME is numerically shown in Fig. 9 for measure-
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FIG. 8. �Color online� Measurement time �full blue line� as ex-
tracted from the requirement that the fidelity reaches erf�1 /�2� as a
function of the SNR �2�d /
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ment drive strengths �d /2�= �0,0.2,0.9,20 MHz, respec-
tively. From this figure, we see that when �d /2�=0 �dashed
red line in Fig. 9�a��, as expected, the state simply decays to
the ground state at a rate 
1 as this is equivalent to gaining
no information about the qubit state. For �d /2�=0.2 MHz
�full blue line in Fig. 9�a�� it stochastically follows this decay
curve. However, at �d /2�=0.9 MHz �full blue line in Fig.
9�b��, there appears a sharp transition from the excited state
to the ground state. As the measurement amplitude is further
increased ��d /2�=20 MHz, red dashed line in Fig. 9�b��,
this transition becomes sharper and happens at a well-defined
time.

Experimentally, one does not have direct access to zJ�t�
but reconstructs this quantity from the measured current J�t�.
As a result, a more striking demonstration of quantum jumps
would be to see these jumps directly in J�t�. However, due to
white noise fluctuations ��t�, without first averaging the sig-
nal over some finite integration time the jumps are not vis-
ible in most trajectories. As a result, we consider the quantity

S�t� =
1

�t
�

t

t+�t J�s�
�	�

ds , �6.1�

where �t is an adjustable integration parameter. At large �t,
the fluctuations are well suppressed by the averaging, but at
the expense of smoothing out the jump. For example, Fig. 10
shows the integrated current corresponding to the two mea-
surement amplitudes used in Fig. 9�b�. Figure 10�a� corre-
sponds to �d /2�=0.9 MHz and �t=48 ns, while Fig. 10�b�
corresponds to �d /2�=20 MHz and �t=32 ns. From this fig-
ure, we see that for �d /2�=0.9 MHz one cannot resolve the

jump from the integrated signal. However, by increasing the
drive to �d /2�=20 MHz the jump becomes clearly visible.

Thus we see that if we wish to see the jump in the inte-
grated signal we need a much higher signal to noise ratio.
This is because by definition the conditional state is the best
way we can process the record. We note that it should be
possible to optimize the processing of the current to distin-
guish the jump at lower SNR by using a more complicated
filter then time averaging. For example, one could easy en-
visage that there exists an optimal integration time �t= topt,
or kernel k�t�, such that the integrated signal, S�t�
=
−�

� k�t ,s�J�s�dt, would do almost as well as the conditional
state �see Ref. �43� where a similar question was investi-
gated�.

Finally, an interesting situation occurs if the 
1 channel
can be directed �corresponding to fluorescence of the
“atom”�. When we register that the qubit has jumped, we
know that the energy has been dissipated into the 
1 channel.
If this fluorescence is directed to an additional low-Q reso-
nator, this can be used as a single microwave photon source
with a well-defined emission time. Inversely, if the qubit is
prepared in the ground state this second resonator can be
used as a single photon dector. When a jumped of the qubit is
registered, we know that photon was present in the second
cavity. The efficiency of this detector will be limited by the
Zeno effect �49�.

VII. WEAK DRIVING OF THE QUBIT—ZENO EFFECT

In the previous sections, we considered the dynamics of
the qubit under measurement. In this section, we will include
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FIG. 9. �Color online� Time evolution of the z component of the
conditional state for a qubit initially in the excited state and � /2�
=5 MHz, 	 /2�=10 MHz, �r=0, �=1, and T1=7 �s. �a� Measure-
ment drive strength of �d /2�=0 MHz �red dashed line� and
0.2 MHz �solid blue line�. �b� �d /2�=0.9 MHz �solid blue line�
and 20 MHz �dashed red line�.
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FIG. 10. �Color online� Integrated signal S�t� as a function of
time. �a� Measurement drive strength �d /2�=0.9 MHz and integra-
tion steps �t=48 ns. �b� �d /2�=20 MHz and �t=32 ns. The verti-
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crosses 0 in Fig. 9. The two horizontal dashed lines are the expected
results corresponding to z=�1 constant.

QUANTUM TRAJECTORY APPROACH TO CIRCUIT QED:… PHYSICAL REVIEW A 77, 012112 �2008�

012112-11



the possibility of having a control drive. As explained in Sec.
II, this is done in practice by adding a drive on the input port
of the resonator at the qubit transition frequency. Our goal is
to use the transformation, Eq. �3.8�, to again obtain an effec-
tive SME for the qubit only. However, as shown in Appendix
C, in the transformed frame, the drive on the qubit induces
transitions between the different �transformed� states of the
resonator. As a result, it is not possible to integrate out ex-
actly the resonator from the effective description of the qubit.

However, in the small  limit, we find that qubit evolution
is well described by the SME,

�̇J̄�t� = − i
�R

2
��x,�J̄�t�� + �
� + �d�t��D��z��J̄�t�/2

− i
��ba

2
��z,�J̄�t���J̄�t� − ��ci	�z�t� + ��ciM��z��J̄�t�

��J̄�t� − ��ci	�z�t� + 
1D��−��J̄�t� , �7.1�

where �R is the Rabi frequency of the control drive tuned to
the qubit frequency, �ac. The competition between Rabi flop-
ping induced by the control drive and the extra dephasing
due to the measurement drive should enable us to observe
the Zeno effect in this system. Indeed, as the measurement
rate �ci is increased, the qubit dynamics will switch from
Rabi oscillations to jumplike behavior. In the limit of very
large measurement rates, all dynamics will disappear and the
qubit will remain fixed in the zJ=�1 state �if 
1 is zero�.

To see this more clearly, the above SME can be written in
terms of the components of the Bloch vectors as

ẋJ�t� = − �
2 + �d�t� + ��cizJ�t��J̄�t� − ��cizJ�t��xJ�t� ,

ẏJ�t� = −�RzJ�t� − �
2 + �d�t� + ��cizJ�t�

��J̄�t� − ��cizJ�t��yJ�t� ,

żJ�t� =�RyJ�t� − 
1�zJ�t� + 1� + ��ci�1 − zJ�t�2�

��J̄�t� − ��cizJ�t�� . �7.2�

Here we have assumed that �=� such that �ba=0. In the
limit that the measurement-induced dephasing rate �d is
much larger than all other rates, we can set ẋJ�t�= ẏJ�t�=0 to
arrive at

żJ�t� = − 2
jumpzJ�t� − 
1�zJ�t� + 1�

+ ��ci�1 − zJ�t�2��J̄�t� − ��cizJ�t�� . �7.3�

As expected, in this expression, the jump rate is given by

jump=�R

2 /2�
2+�d�. From this expression, we can indeed
expect Zeno-type dynamics for the qubit. Note that the sto-

chastic term ��cizJ�t��J̄�t�−��cizJ�t�� has been ignored in the
denominator of the jump rate.

As discussed in Sec. VI, as the measurement becomes
stronger �i.e., �ci increases� the conditional state will lock
itself into either the excited or ground state �z=�1�. Be-
cause of the control drive, whose amplitude enters in the
jump rate 
jump, random fluctuations will result in the system

jumping between these two localized states. However, unlike
the situation presented in the previous section, the rate of
these jumps also depends on the measurement strength
through �ci. As a result, in the limit that the measurement
SNR is large, the jumps will disappear and the qubit will
remain fixed in either z=�1. This is the Zeno effect
�24–27�.

To illustrate this, we have numerically integrated the full
homodyne SME �4.2�, with the addition of a qubit drive, for
two different measurement drives �d /2�=0.9 MHz and
20 MHz, and a Rabi frequency of �R /2�=2.5 MHz. The
results are shown in Fig. 11. From this figure, we see that for
the low measurement amplitude �Fig. 11�a��, measurement
only causes small amplitude noise on the Rabi oscillations.
However, for the larger amplitude �Fig. 11�b�� the condi-
tional dynamics is jumplike. We note that the rate of the
jumps between the ground and excited state is, as expected
from the above discussion, slower then the rate �R at which
the Rabi drive would coherently drive the system. Note that
the x-axis scale is not the same in Fig. 11�a� and Fig. 11�b�
�Fig. 11�c��.
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FIG. 11. �Color online� Time evolution of the conditional state
for the full homodyne SME for a qubit initially in the ground state:
x, red dashed line; y, green dashed-dotted line; z, solid blue line.
The system parameters are � /2�=5 MHz, 	 /2�=10 MHz, �r=0,
�=1, 
1=
�=0, and �R /2�=2.5 MHz. �a� Measurement drive
amplitude of �d /2�=0.9 MHz. �b� �d /2�=20 MHz. �c� Integrated
signal with �t=32 ns and for a measurement amplitude of �d /2�
=20 MHz.
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These jumps can be observed directly in the signal J�t�.
This is illustrated in Fig. 11�c� for the case of the larger
measurement amplitude. As in the previous section, we are
showing here the integrated signal, defined in Eq. �6.1�, and
with a integration time �t=32 ns. The integrated signal
clearly reveals the jumps.

We note that the numerical results presented here were
obtained using the full homodyne SME, and not the simpli-
fied SME �7.1�. This is because while this simplified equa-
tion contains the essential features, it is not strictly valid in
the limit of large mean photon number. However, by inspect-
ing individual trajectories, we find that trajectories obtained
from the full model display the same qualitative behavior as
those obtained from the effective model. The difference be-
tween the two types of trajectories appear to be only small
changes in renormalized system parameters.

To explore the difference between these two models in
more detail, we simulated both models as a function of the
measurement drive strength �d. The average jump time ex-
tracted for both cases is shown in Fig. 12. The simple model
�green filled diamonds� agrees with the predicted jump time
1 /
jump for large �d �blue solid line�. In the low measurement
drive limit, it agrees with the time set by the Rabi drive �red
dashed line�. However, the full homodyne SME calculations
�red open diamonds� do not agree with this expectation in the
large drive case. Although the mean jump time does increase
with the measurement drive as expected by the Zeno effect,
its effect is not as large as that predicted by the simple
model.

VIII. CONCLUSION

We have investigated the measurement of a superconduct-
ing qubit using a dispersively coupled resonator. From the

fully quantum mechanical model for the resonator and qubit
dispersive interaction, we have found an effective master
equation for the qubit �only� under the presence of a mea-
surement drive on the resonator. This was done by moving to
a frame which takes into account the entanglement between
the resonator and the qubit. With respect to the bare qubit-
resonator master equation, the effective qubit master equa-
tion contains an additional, time-dependent decay channel
which has the form of a dephasing process and which de-
pends on the number of photons populating the resonator.
This is referred to as measurement-induced dephasing
�9,44–47�. In addition to the extra dephasing channel, the
photon population of the resonator is also responsible for an
ac-Stark shift of the qubit transition frequency. As was
shown in Refs. �9,22�, and later reported experimentally in
Ref. �23�, these effects lead to number splitting of the qubit
spectrum in the limit where ��	. We thus have obtained a
very simple to solve �two-dimensional Hilbert space� effec-
tive model for the qubit dynamics that contains the essential
physics. We believe that this is an interesting analytical, and
numerical, tool to further explore the dispersive regime.

We then focused on the situation where one is continu-
ously monitoring the voltage at the output port of the reso-
nator. In that situation, the conditional state of the combined
system evolves according to the homodyne SME �12�. Again
moving to a frame that takes into account the qubit-resonator
entanglement, we then obtained an effective SME for the
qubit that is valid in the limit 
1�	. The SME corresponds
to a weak measurement of the qubit operator �z. As a result,
the measurement stochastically projects the conditional state
into eigenstates of �z. This is similar to the result that was
obtained in Refs. �13–20� for a double quantum dot qubit
monitored continuously by a quantum point contact �al-
though the results are presented in very different forms in all
of these references�.

From these results, we then showed how, in the limit that
the measurement becomes strong, there is a crossover in the
qualitative behavior of the trajectories from diffusive to jum-
plike. This process relies on the T1 decay channel for the
qubit to jump from the excited to the ground state. As a
result, we expect to see quantum jumps, with Poisson statis-
tics, in the measured homodyne current.

Moreover, in presence of a Rabi drive on the qubit, we
again saw that the trajectories evolve from diffusive to jump-
like. In this situation and when the measurement drive is not
too strong, the jump rate is given �R

2 /2�
2+�d�. This is due
to a competition between the measurement drive that tends to
lock the conditional state on one of the eigenstates of �z and
the Rabi drive that tends to flip the qubit. This is nothing but
the Zeno effect. However, as the measurement becomes
stronger, the simple dispersive Hamiltonian approximation
breaks down and the effective model fails to predict the cor-
rect mean jump time for the qubit. We found that the form of
the trajectories are still consistant with the model, only the
parameters appear to be renormalized by the stronger mea-
surement drive. An interpretation of this discrepancy is that
the resonator response is not instantaneous. When the qubit
jumps, the resonator state will lag behind and as a result the
effective separation in phase space between the two coherent
states of the resonator corresponding to the two qubit states
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FIG. 12. �Color online� Average jump time as a function of the
measurement drive strength �d. The jump time is defined as the time
for the system state to go from z=�0.95 to z= 0.95. The red
dashed line corresponds to the Rabi period � /�R of 200 ns for a
Rabi drive of �R /2�=2.5 MHz. The blue solid line corresponds to
the expected mean jump time expected from the Zeno effect,

jump=�R

2 /2�
2+�d�. This agrees very well with the numerically
simulations of Eq. �7.1� �green filled diamonds� where the mean
jump time was extracted from a total simulation time of 16 ms. The
red open diamonds are the mean jump time as extracted from the
full numerical homodyne SME for a total simulation time of about
15 ms.
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will be reduced. In turn, this can lead to a reduction of the
measurement-induced dephasing.

Overall, the model obtained here can be used to obtain
qualitative information about the qubit dynamics in the pres-
ence of dissipation, measurement, and control. We also gave
a numerical prescription to go beyond this simple model.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
QUBIT MASTER EQUATION

In this appendix we show how to obtain the effective
qubit master equation, Eq. �3.10�, from the full dispersive
qubit-resonator master equation, Eq. �3.1�. For this purpose,
we introduce the the transformation

P =�eD��e� +�gD��g� , �A1�

where �e,g are the projectors on the qubit excited and ground
state and D��� is the field displacement operator �50�.

In this frame, the state of the combined qubit-resonator
system �P=P†�P can be written in the energy basis as

�P = �
n,m=0

�

�
i,j=e,g

�n,m,i,j
P �n,i�	m, j� . �A2�

Using this expression for the system’s density matrix in the
transformed frame, it is simple to express the qubit’s reduced
density matrix in laboratory frame as

� = Trres�P�PP†� = �
n

��n,n,e,e
P �e�	e� + �n,n,g,g

P �g�	g��

+ �
n,m

�!n,m,m,n�e�	g� + !
m,n,n,m
* �g�	e��

�A3�

with

!n,m,p,q = �n,m,e,g
P dp,q exp�− i Im��g�e

*�� �A4�

and dp,q is the matrix element of the displacement operator in
the photon number basis

dp,q = 	p�D���q� . �A5�

In the remainder of this appendix, we show how by using
the transformed master equation for �P it is possible to ob-
tain the coefficients entering in Eq. �A3� for �.

1. The displaced frame

In the displaced frame, the state matrix �P obeys the mas-
ter equation

�̇P = −
i

�
�Heff

P ,�P� + 	D�aP��P + 
1D��−
P��P

+ 
�D��z
P��P/2 − P†Ṗ�P − �PṖ†P , �A6�

with OP=P†OP the transformed operators and where the ef-
fective Hamiltonian Heff is given by Eq. �2.2�. Using the
standard results

D†���aD��� = a + � , D†���a†D��� = a† + �*, �A7�

we obtain

aP = a +��,

�a†a�P = a†a + a†�� + a��
* + ��g�2�g + ��e�2�e, �A8�

where we have defined

�� = �g�g + �e�e. �A9�

For the qubit operators, we obtain

�z
P = �z, �−

P = �−D†��g�D��e� . �A10�

Using these results, we then have for the transformed Hamil-
tonian

Heff
P =

��̃a

2
�z + ���d�a† +��

*� + H.c.�

+ ���r + ��z��a†a + a†�� + a��
* + ����2� .

�A11�

We now turn to the damping superoperators. For the field
damping, we find

D�aP��P = D�a��P −
1

2
�a†�� − a��

*,�P� +
*

2
a��P,�z�

+


2
��z,�

P�a† +
�m�t�

4	
D��z��P

− i
Im��g�e

*�
2

��z,�
P� , �A12�

where

�m = 	��2 �A13�

and

 = �e − �g. �A14�

In this frame, damping of the field induces extra dephasing
of the qubit at a rate �m. Note this is not the measurement-
induced dephasing rate given in Ref. �9�, as the present ex-
pressions are in the transformed frame, not the laboratory
frame. Transforming the qubit dissipation superoperators, we
obtain

D��z
P��P = D��z��P, �A15�
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D��−
P��P = D��−D†��g�D��e���P. �A16�

The last terms to take into account are those in the last
line of Eq. �A6�. For these terms, we use the fact that

Ḋ��� = ���̇a† − �̇*a� + ��̇*� − �̇�*�/2�D��� �A17�

to obtain

− P†Ṗ�P − �PṖ†P = − ��̇�a† − �̇
�
*a,�P� − i†Im��̇e�e

*��e

+ Im��̇g�g
*��g,�P

‡ . �A18�

Choosing �̇e and �̇g in the above expression as in Eq.
�3.5�, we finally obtain the transformed master equation

�̇P = − i
�̃a + B̃

2
��z,�

P� − i���r + ��z�a†a,�P�

+ 
1D��−D†��g�D��e���P + �
� + �m/2�D��z��P/2

+ 	D�a��P +
	

2
��z,�

P�a† +
	*

2
a��P,�z� , �A19�

where we have defined the time-dependent shifted qubit tran-
sition frequency as

B̃ = ��d
* + *�d�/2 + 	 Im��g�e

*� . �A20�

In this transformed frame, the last two terms of Eq. �A19�
appear because the resonator acts as a non-Markovian bath
for the qubit �51,52�. Moreover, we note that the term pro-
portional to 
1 in Eq. �A19� can be expressed as

D��−D†��g�D��e���P

= �−D���P�+D†�� − �+�−�
P/2 − �P�+�−/2.

�A21�

Upon taking the trace over the resonator space, this expres-
sion will simply take the form of regular Markovian 
1
damping on the qubit. This is one of the features of the
transformed master equation that will allow us, below, to
obtain a simple effective master equation for the qubit only.

2. Moving back to the laboratory frame

Using Eqs. �A2� and �A19�, we obtain the following set of
coupled differential equations for the coefficients of the labo-
ratory frame reduced qubit density matrix, Eq. �A3�:

�̇n,m,e,e
P = �− i�r�n − m� − i��n − m� − 
1 − 	�n + m�/2��n,m,e,e

P

+ 	�n+1,m+1,e,e
P ��n + 1��m + 1� , �A22�

�̇n,m,g,g
P = �− i�r�n − m� + i��n − m� − 	�n + m�/2��n,m,g,g

P

+ 
1�
p,q

�p,q,e,e
P dn,pdm,q

*

+ 	�n+1,m+1,g,g
P ��n + 1��m + 1� , �A23�

!̇n,m,p,q = �̇n,m,e,g
P dp,qe−i Im��g�e

*� − i�t�Im��g�e
*��!n,m,p,q

+ ̇�p!n,m,p−1,q − ̇*�q!n,m,p,q−1 −
1

2
�t�*�!n,m,p,q

�A24�

=�− i��̃a + B� − i�r�n − m� − i��n + m�

− 
1/2 − 
� − �d − 	�n + m�/2�!n,m,p,q

+ 	!n+1,m+1,p,q
��n + 1��m + 1� + 	�m + 1!n,m+1,p,q

− 	*�n + 1!n+1,m,p,q + ̇�p!n,m,p−1,q

− ̇*�q!n,m,p,q−1, �A25�

where Eq. �A24� was obtained by differentiating Eq. �A4�,
with respect to time and

�d = 2� Im��g�e
*� �A26�

and

B = 2� Re��g�e
*� . �A27�

To reconstruct the effective master equation from these
amplitudes, we note that the time derivative of the �e�	e�
component of Eq. �A3� can be written as

�̇e,e = �
n

�̇n,n,e,e
P = − 
1�

n

�n,n,e,e
P = − 
1�e,e. �A28�

For the ground state component we have

�̇g,g = �
n

�̇n,n,g,g
P = 
1 �

n,p,q
�p,q,e,e

P dn,pdn,q
* = 
1�e,e,

�A29�

where in the last equality we have used the identity

�
n=0

�

dn,pdn,q
* = �pq. �A30�

The off-diagonal terms are the hardest to deal with, but be-
cause in the transformed frame, the photon population is ini-
tially zero and there is no mechanism to populate !n,m,p,q
terms with �n ,m , p ,q�0 we have

�̇e,g = !̇0,0,0,0 = �− i��̃a + B� − 
1/2 − 
� − �d��e,g.

�A31�

The above expressions correspond to the following effec-
tive master equation for the qubit:

�̇ = − i
�ac

2
��z,�� + 
1D��−�� + �
� + �d�D��z��/2 � L� ,

�A32�

where �ac= �̃a+B.

QUANTUM TRAJECTORY APPROACH TO CIRCUIT QED:… PHYSICAL REVIEW A 77, 012112 �2008�

012112-15



APPENDIX B: DERIVATION OF THE EFFECTIVE
QUBIT STOCHASTIC MASTER EQUATION

To derive the effective qubit stochastic master equation
we start by using the linear form �39,53,54� of the full SME,
Eq. �4.2�. This is,

�̇̄J = Ltot�̄J + �	�M̄�2I���̄JJ + i�	��Q�,�̄J�J , �B1�

where the bar here is used to signify that the state is not
normalized and the linear measurement superoperator is

M̄�c�� = c�/2 + �c/2. �B2�

Moving to the frame defined by Eq. �3.8� gives

�̇̄J
P = Ltot�̄J

P + �	����cos�� − ��M̄��z��̄J
P

+ ���cos��� − ���̄J
P + ae−i��̄J

P + �̄J
Pa†ei��J

�i
�	���sin�� − ��

2
��z,�̄

P�J . �B3�

In the same way as Eqs. �A22�–�A25� were obtained, we can
write equations of motion for the coefficients �̄n,m,e,e

P ,

�̄n,m,g,g
P , and !̄n,m,p,q of the decomposition of the conditional

density matrix �̄J
P in the energy basis. The first term of Eq.

�B3� yields the same terms as in Eqs. �A22�–�A25�. As a
result, we obtain

�̇̄n,m,e,e
P = �A22� + �	���n + 1e−i��̄n+1,m,e,e

P

+ �m + 1ei��̄n,m+1,e,e
P + ���cos��� − ���̄n,m,e,e

P

+ ��cos�� − ���̄n,m,e,e
P �J , �B4�

�̇̄n,m,g,g
P = �A23� + �	���n + 1e−i��̄n+1,m,g,g

P

+ �m + 1ei��̄n,m+1,g,g
P + ���cos��� − ���̄n,m,g,g

P

− ��cos�� − ���̄n,m,g,g
P �J , �B5�

!̄
˙

n,m,p,q = �A25� + �	���n + 1e−i��̄n+1,m,e,g
P dp,qe−i Im��g�e

*�

+ �m + 1ei��̄n,m+1,e,g
P dp,qe−i Im��g�e

*�

+ ���cos��� − ��!̄n,m,p,q + i��sin�� − ��!̄n,m,p,q�J .

�B6�

In the above expressions, the equation numbers refer to the
RHS of the corresponding expressions. They are the contri-
bution of the Lindblad term Ltot�̄J

P.
By noting that these matrix elements are not coupled in

the qubit basis, we can use the same arguments that were
used to obtain Eq. �A31�. Doing this, we find for the stochas-
tic parts

�̇̄e,e = �̇̄0,0,e,e
P = �	�����cos��� − �� + ��cos�� − ����̄e,eJ ,

�B7�

�̇̄e,g = !̄
˙

0,0,0,0 = �	�����cos��� − �� + i��sin�� − ����̄e,gJ .

�B8�

For the ground state amplitude we have

�̇̄g,g = �
n

�̇̄n,n,g,g
P = �	�����cos��� − �� − ��cos�� − ���

� �̄g,gJ + �	���e−i��̄1,l
P + ei��̄1,r

P ��J , �B9�

where we have defined

�̄1,l
P = �

n

�n + 1�̄n+1,n,g,g
P , �B10�

�̄1,r
P = �

n

�n + 1�̄n,n+1,g,g
P . �B11�

The amplitude �̄1,l
P obeys the equations of motion

�̇̄1,l
P = − i��r − ���̄1,l

P − 	�̄1,l
P /2 + 
1�̄e,e

P

+ �	�����cos��� − �� − ��cos�� − ����̄1,l
P J

+ �	���
n

��n + 2��n + 1��̄n+2,n,g,g
P e−i�

+ �
n

n�̄n,n,g,g
P ei��J �B12�

and we find a similar equation for dt�̄1,r
P . From this result, we

find that provided that

��
2
1

	
� 1, �B13�

the effect of �̄1,l
P and �̄1,r

P on �̄g,g
P will be very small. In this

situation, it is possible to construct a laboratory frame linear
SME for the qubit only,

�̇̄J = L�̄J + �	���cos�� − ��M̄��z��̄JJ

+ i
�	���sin�� − ��

2
��z, �̄J�J + �	����cos��� − ���̄JJ .

�B14�

Using Eq. �4.12� and normalizing the above SME gives Eq.
�4.8� with measurement record statistics given by Eq. �4.11�.

APPENDIX C: INCLUDING COHERENT
CONTROL OF THE QUBIT

A drive on the input port of the resonator at a frequency
�c close to the qubit transition frequency can be used to
coherently control the state of the qubit. As shown in Refs.
�5,30�, this can be represented by the term

�R

2
��−e+i�ct + �+e−i�ct� , �C1�

in the qubit-resonator Hamiltonian, Eq. �2.2�. In this expres-
sion, �R is the Rabi amplitude which depends on the drive
amplitude and its detuning to the resonator frequency.
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To see how this changes the effective qubit master equa-
tions obtained in the previous appendixes, we apply the
transformation of Eq. �3.8�. In a frame rotating at the fre-
quency �c, we find

�R

2
�e−i Im��g�e

*�−D�� + H.c.� . �C2�

In this transformed frame, it is apparent that when the qubit
flips, it must “drag” the photon field populating the resonator.
In this situation, the equation of motion for the coefficients
of Eq. �A3� are modified in the following way:

�̇n,m,e,e
P = �A22� + i

�R

2 �
p

�!n,p,p,m − !m,p,p,n
* � , �C3�

�̇n,m,g,g
P = �A23� − i

�R

2 �
p

�!p,n,m,p − !p,n,m,p
* � , �C4�

!̇n,m,p,q = �A25� − i
�R

2 �
l

��l,m,g,g
P dl,n

* − �n,l,e,e
P dm,l

* �dp,q,

�C5�

where the equation numbers refer to the RHS of the corre-
sponding expressions. These additional terms mix the vari-
ous coefficients of the decomposition of � and obtaining an
effective master equation for the qubit only is no longer pos-
sible exactly. This can nevertheless be done in the small
measurement amplitude limit.

The case where a control and a measurement drive are
acting on the system simultaneously is most interesting in the
case where the measurement drive is of small amplitude. For
example, in Ref. �7�, a weak continuous measurement drive

corresponding to about one photon was used to monitor Rabi
oscillations. When the measurement drive amplitude is in-
creased, the qubit is dephased faster and coherent control is
realized with less fidelity.

In the weak measurement limit →0, the matrix element
of the displacement operator dn,m in the photon number basis
can be approximated to

dp,q = e−��2/2�min�p,q�!
max�p,q�!

� Lmin�p,q�
abs�p−q����2��p−q, p� q ,

�− *�q−p, q� p

� e−��2/2�min�p,q�!
max�p,q�!

�1 − „max�p,q� + 1/2…��2�

� �p−q, p� q ,

�− *�q−p, q� p ,
�C6�

where Ln
m�x� is an associated Laguerre polynomial. To lowest

order in , this reduces dp,q��p,q. Making this replacement
in the above expressions for the amplitudes, we find in this
limit the following effective qubit master equation:

�̇ = − i
�̃a + B

2
��z,�� − i

�R

2
��x,�� + 
1D��−��

+ �
� + �d�D��z��/2. �C7�

Unsurprisingly, in the small  limit, the only effect of a
control drive is to flip the qubit at the Rabi frequency �R. If
we were to include the next order in dp,q we would not be
able to obtain an equation for just the qubit, effects such as
sidebands would be observed.
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