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Quantum computers, which harness the superposition and entangle-
ment of physical states, could outperform their classical counter-
parts in solving problems with technological impact—such as
factoring large numbers and searching databases1,2. A quantum pro-
cessor executes algorithms by applying a programmable sequence of
gates to an initialized register of qubits, which coherently evolves
into a final state containing the result of the computation. Building a
quantum processor is challenging because of the need to meet simul-
taneously requirements that are in conflict: state preparation, long
coherence times, universal gate operations and qubit readout.
Processors based on a few qubits have been demonstrated using
nuclear magnetic resonance3–5, cold ion trap6,7 and optical8 systems,
but a solid-state realization has remained an outstanding challenge.
Here we demonstrate a two-qubit superconducting processor and
the implementation of the Grover search and Deutsch–Jozsa
quantum algorithms1,2. We use a two-qubit interaction, tunable in
strength by two orders of magnitude on nanosecond timescales,
which is mediated by a cavity bus in a circuit quantum electrody-
namics architecture9,10. This interaction allows the generation of
highly entangled states with concurrence up to 94 per cent.
Although this processor constitutes an important step in quantum
computing with integrated circuits, continuing efforts to increase
qubit coherence times, gate performance and register size will be
required to fulfil the promise of a scalable technology.

Over the past decade, superconducting circuits11 have made con-
siderable progress in all the requirements necessary for an electrically
controlled, solid-state quantum computer. Coherence times11,12 have
risen by three orders of magnitude to ,1 ms, single-qubit gates13,14

have reached error rates of 1%, engineered interactions15–17 have
produced two-qubit entanglement at a level of 60% concurrence18,
and qubit readout18–20 has attained measurement fidelities of ,90%.
However, combining these achievements in a single device remains
challenging. One approach to integration is the quantum bus archi-
tecture9,21,22, which uses a transmission line cavity to couple, control
and measure qubits. We augment the architecture described in ref. 22
with flux-bias lines that tune individual qubit frequencies, permitting
single-qubit phase gates. By pulsing the qubit frequencies to an
avoided crossing where a sz6sz interaction turns on (sz is the
Pauli z-operator), we are able to realize a two-qubit conditional phase
(C-Phase) gate. Operation in the strong-dispersive regime23 of circuit
quantum electrodynamics (cQED) allows joint readout24 that effi-
ciently detects two-qubit correlations. Combined with single-qubit
rotations, this enables tomography of the two-qubit state. Through
improved understanding of spontaneous emission25 and careful
microwave engineering, we now attain state-of-the-art ,1 ms coher-
ence times in a two-qubit device. This allows sufficient time to

concatenate ,10 gates, realizing simple algorithms with fidelity
greater than 80%.

Our processor, shown in Fig. 1a, is a four-port superconducting
device comprising two transmon qubits12,26 (QL and QR) inside a
microwave cavity bus, and flux-bias lines proximal to each qubit.
The cavity, normally off-resonance with the qubit transition frequen-
cies fL and fR, couples the qubits by virtual photon exchange and
shields them from the electromagnetic continuum. As previously
demonstrated22, microwave pulses resonant with fL or fR applied to
the cavity input port provide frequency-multiplexed single-qubit
x- and y-rotations with high fidelity14 and selectivity. Pulsed mea-
surement of the homodyne voltage VH on the cavity output port
provides qubit readout. The remaining two ports create local mag-
netic fields that tune the qubit transition frequencies. Each qubit has a
split Josephson junction, so its frequency f depends on the flux W

through the loop according to ,

where EC is the charging energy, Emax
J is the maximum Josephson

energy, h is Planck’s constant, and W0 is the flux quantum. By using
short-circuited transmission lines with a bandwidth from d.c. to
2 GHz, we can tune fL and fR by many GHz using room temperature
voltages VL and VR. Static tuning of qubit transitions using the flux-
bias lines is demonstrated in Fig. 1b.

The spectrum of single excitations (Fig. 1b) shows the essential
features of the cavity-coupled two-qubit Hamiltonian and allows deter-
mination of the relevant system parameters (see Methods). When the
qubits are tuned to their maximum frequencies, point I, they are far
detuned from the cavity and from each other, so that interactions are
small. This point is therefore used for state preparation, single-qubit
rotations and measurement, in the computational basis j0, 0æ, j0, 1æ,
j1, 0æ and j1, 1æ, where jl, ræ denotes excitation level l (r) for QL (QR).
Operation at this point is also desirable because it is a flux ‘sweet spot’12

for both qubits, providing long coherence, with relaxation and dephas-
ing times T1,L(R) 5 1.3(0.8)ms and T �2,L Rð Þ~1:8 1:2ð Þms, respectively.
Tuning QR into resonance with the cavity, point IV in Fig. 1b, reveals
a vacuum Rabi splitting10 from which the qubit–cavity interaction
strength is extracted. Tuning QR into resonance with QL, point III,
shows an avoided crossing resulting from a cavity-mediated, qubit–
qubit transverse interaction9,27 investigated previously22. In this work,
we perform two-qubit gates at point II, where no interactions are
immediately apparent on examining the one-excitation manifold.

However, a useful two-qubit interaction is revealed in the two-
excitation spectrum, Fig. 2a. As VR is swept away from point I, the
non-computational higher-level transmon excitation j0, 2æ decreases
more rapidly than the computational state j1, 1æ, and these states
would become degenerate at point II. But as shown in Fig. 2b, there
is a large (160 MHz) cavity-mediated interaction between these

1Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06511, USA. 2Department of Physics and Astronomy and Institute for Quantum Computing,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada. 3Atominstitut der Österreichischen Universitäten, TU-Wien, A-1020 Vienna, Austria. 4Département de Physique,
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levels, producing a frequency shift f/2p of the lower branch with
respect to the sum fL 1 fR, in good agreement with a numerical dia-
gonalization of the generalized Tavis–Cummings Hamiltonian28 (see
Methods).

This shift is the mechanism of our conditional phase gate. Flux
pulses, adiabatic with respect to the j1, 1æ « j0, 2æ avoided crossing,
produce phase gates

U~

1 0 0 0

0 eiw01 0 0

0 0 eiw10 0

0 0 0 eiw11

0
BBB@

1
CCCA

in the computational Hilbert space. Here, wlr 5 2p#dflr(t)dt is the
dynamical phase acquired by jl, ræ, and dflr is the deviation of flr from
its value at point I. A VR pulse into point II such that
#f(t)dt 5 (2n 1 1)p with integer n implements a C-Phase gate,
because w11 5 w01 1 w10 2 #f(t)dt. This method of realizing a
C-Phase gate by adiabatically using the avoided crossing between
computational and non-computational states is generally applicable
to qubit implementations with finite anharmonicity, such as trans-
mons12 or phase qubits13. A similar approach involving higher excita-
tion levels but with non-adiabatic pulses was previously proposed29.
The negative anharmonicity permits the phase gate at point II to
occur before the onset of transverse coupling at point III.

Control of f by two orders of magnitude provides an excellent on-
off ratio for the C-Phase gate. Measurements of f obtained from
spectroscopy and from time-domain experiments show very good
agreement (Fig. 2c). The time-domain method measures the differ-
ence in the precession frequency of QL in two Ramsey-style experi-
ments, where a VR-pulse of varying duration (0–100 ns) is inserted
between p/2 rotations of QL, with QR either in the ground state j0æ or
excited into state j1æ. Using the time-domain approach, we measure a
residual f/2p< 1.2 MHz at point I (star in Fig. 2c). The theoretical f
obtained by numerical diagonalization shows reasonable agreement
with the data, except for a scale factor that is probably due to higher
modes of the cavity25, not included in the calculation.

The controlled phase interaction allows universal two-qubit gates.
As an example, we produce entangled states on demand (Fig. 3). The
pulse sequence in Fig. 3a generates any of the four Bell states,

Y+
�� �

~ 1ffiffi
2
p 0, 0j i+ 1, 1j ið Þ W+

�� �
~ 1ffiffi

2
p 0, 1j i+ 1, 0j ið Þ

depending on the choice of C-Phase gate cUij applied

(cUij l, rj i~ {1ð Þdil djr l, rj i, where d is Kronecker’s delta). We achieve

#f(t)dt 5p by tuning the amplitude of a 30 ns VR-pulse close to point
II and back. During the pulse, QR acquires a large dynamical phase
w01 < 260p. The four cUij gates differ by whether w01 and w10 are
even or odd multiples of p. We tune w01 over a 2p range by adjusting
the rising and falling edges of the pulse, and w10 by varying the
amplitude of a simultaneous weak VL-pulse (Supplementary Fig. 3).
The conditional phase #f(t)dt is largely independent of these two
adjustments.

To detect the entanglement, we reconstruct the two-qubit density
matrix r by quantum state tomography using joint dispersive read-
out9,22,24. A pulsed measurement of the homodyne voltage VH mea-
sures the operator:

M~b1sL
z zb2sR

z zb12sL
z6sR

z

Operation in the strong-dispersive regime23,24 makes the three con-
stant coefficients have approximately the same magnitude,
jb12j< jb1j, jb2j, enhancing sensitivity to two-qubit correlations. A
complete set of 15 linearly independent operators is built using sin-
gle-qubit rotations before measuring M. An ensemble average of each
operator is obtained by executing the sequence in Fig. 3a 450,000
times. The 15 average values are then input to a maximum-likelihood
estimator of r (Supplementary Information).

The inferred density matrices rml reveal in all four cases (Fig. 3b–e)
a high degree of two-qubit entanglement, which we quantify using
concurrence30, C. Values are listed in Fig. 3 legend, along with the
metrics of purity P(r) 5 Tr(r2) and fidelity to the target state jyæ,
F(r, y) 5 Æyjrjyæ. Note that there are several common definitions of
fidelity in the literature, and our definition is the square of the fidelity
used in refs 18 and 24. The quoted values significantly extend the state
of the art for solid-state entanglement18, and provide evidence that we
have a high-fidelity universal set of two-qubit gates.

One- and two-qubit gates can be concatenated to realize simple
algorithms, such as Grover’s quantum search1,2 shown in Fig. 4.
Given a function f(x) on the two-bit set x[ 00, 01, 10, 11f g such that
f(x) 5 0 except at some x0, where f(x0) 5 1, this well-known algo-
rithm can determine x0 with a single call of an oracle O that encodes

Figure 1 | Two-qubit cQED device, and cavity/qubit characterization.
a, Optical micrograph of four-port device with a coplanar waveguide cavity
bus coupling transmon qubits QL and QR (coloured red and blue in insets),
and local flux-bias lines providing fast qubit tuning. Microwave pulses at the
qubit transition frequencies fL and fR drive single-qubit rotations, and a
pulsed measurement of the cavity homodyne voltage VH (at frequency fC)
provides two-qubit readout. The flux-bias lines (bottom-left and top-right
ports) are coplanar waveguides with short-circuit termination next to their
target qubit. The termination geometry allows currents (IL and IR) on the
lines to couple flux through the split junctions (b, inset). b, Grey-scale

images of cavity transmission and of qubit spectroscopy as a function of VR,
showing local tuning of QR across the avoided crossing with QL (point III)
and across the vacuum Rabi splitting with the cavity (point IV). Semi-
transparent lines are theoretical best fits obtained from numerical
diagonalization of a generalized Tavis–Cummings Hamiltonian28. Points I
and II are the operating points of the processor. Preparation, single-qubit
operations and measurements are performed at point I, and a C-Phase gate is
achieved by pulsing into point II. Numerals indicate excitation level of QL

(red) and QR (blue) in the spectroscopy at point I.
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f(x) in a quantum phase, O jxæ 5 (–1)f(x)jxæ. The oracle for x0 5 ij is
the C-Phase gate cUij.

We can examine the functioning of the algorithm by interrupting it
after each step and performing state tomography. Figure 4b–g shows
all the features of a quantum processor, namely the use of maximally
superposed states to exploit quantum parallelism (Fig. 4c), the encod-
ing of information in the entanglement between qubits (Fig. 4d, e),
and the interference producing an answer represented in a final

computational basis state. The fidelity of the final state (Fig. 4g) to
the expected output (j1, 0æ for the case O 5 cU10 shown) is 85%.
Similar performance is obtained for the other three oracles (Table 1).

We have also implemented the Deutsch–Jozsa algorithm1,2. The
two-qubit version of this algorithm determines whether an unknown
function fi(x), mapping a one-bit input to a one-bit output, is con-
stant (f0(x) 5 0 or f1(x) 5 1) or balanced (f2(x) 5 x or f3(x) 5 1 – x)
with a single call of the function. The algorithm applies the function
once to a superposition of the two possible inputs and uses quantum
phase kick-back2 to encode the result in the final state of one qubit
(QL) while leaving the other untouched (QR). The gate sequence
realizing the algorithm and the output tomographs for the four cases
are shown in Supplementary Fig. 1.

The performance of both algorithms is summarized in Table 1.
Although there are undoubtedly significant systematic errors
remaining, the overall fidelity is similar to that expected from the
ratio (,100 ns/1 ms) of the total duration of gate sequences to the
qubit coherence times. The detailed error budget will be addressed in
future work using quantum process tomography.
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Figure 2 | Origin and characterization of the controlled-phase gate. a, Flux
dependence of transition frequencies from the ground state | 0, 0æ to the two-
excitation manifold. Red (blue) numerals indicate the excitation level of the
left (right) transmon for each transition. Two-tone spectroscopy
measurements12 (points) show an avoided crossing between the
computational state | 1, 1æ and the non-computational state | 0, 2æ at point II,
in good agreement with numerical diagonalization of the Hamiltonian
(dashed curves). b, This avoided crossing causes the transition frequency to
| 1, 1æ to deviate from the sum of the transition frequencies to | 0, 1æ and | 1, 0æ.
c, The coupling strength f/2p5 f01 1 f10 – f11 of the effective sL

z6sR
z

interaction, obtained both from spectroscopy (solid curve) and from time-
domain experiments (points; see text for details). Numerical diagonalization
and perturbation theory (Supplementary Information) for three-level
transmons agree reasonably with data. The perturbation calculation
diverges at the avoided crossing. Perturbation theory for two-level qubits
gives the wrong magnitude and sign for f, and demonstrates that the higher
transmon excitations are necessary for the interaction. Time-domain
measurement and theory both give f/2p< 1.2 MHz at point I. The tunability
of f over two orders of magnitude provides an excellent on-off ratio for the
two-qubit C-Phase gate.

Figure 3 | Entanglement on demand. a, Gate sequence generating two-qubit
entanglement and detection via quantum state tomography. Starting from
| 0, 0æ, simultaneous p/2 rotations on both qubits create an equal
superposition of the four computational states. A C-Phase cUij then phase
shifts | i, jæ in the superposition and produces entanglement. A final p/2
rotation on QL evolves the entangled state into one of the four Bell states
depending on the cUij applied. b–e, Real part of maximum-likelihood
density matrix rml of the entangler output for cU10, cU00, cU11 and cU01,
respectively (imaginary elements of rml are less than 0.03, 0.02, 0.07, 0.08).
Extracted metrics for the four entangler outputs include concurrence
C 5 0.88 6 0.02, 0.94 6 0.01, 0.86 6 0.02, 0.81 6 0.04, purity
P 5 0.87 6 0.02, 0.92 6 0.02, 0.88 6 0.02, 0.79 6 0.03, and fidelity to the
ideal Bell state F 5 0.91 6 0.01, 0.94 6 0.01, 0.90 6 0.01, 0.87 6 0.02. The
uncertainties correspond to the standard deviation in 16 repetitions of
generation-tomography for each entangler.
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In summary, we have demonstrated two-qubit quantum algo-
rithms using a superconducting circuit. The incorporation of local
flux control and joint-dispersive readout into cQED, together with a
tenfold increase in qubit coherence over previous two-qubit devices,
has enabled on-demand generation and detection of entanglement
and the implementation of the Grover and Deutsch–Jozsa algorithms.
The present architecture can be immediately expanded to several
qubits with controllable sz6sz interactions between nearest-
frequency neighbours, placing within reach the generation of

Greenberger–Horne–Zeilinger states and the exploration of basic
concepts of quantum error correction1,2.

METHODS SUMMARY
Device fabrication. A 180 nm Nb film was d.c.-magnetron sputtered on the epi-

polished surface of an R-plane corundum (a-Al2O3) wafer (2 inches diameter,

430mm thickness). Coplanar waveguide structures (cavity and flux-bias lines)

were patterned by optical lithography and fluorine-based reactive ion etching of

Nb. Transmon features (interdigitated capacitors and split junctions) were

patterned on 2 mm 3 7 mm chips using electron-beam lithography, double-
angle evaporation of Al (20/90 nm) with intermediate oxidation (15% O2 in

Ar at 15 torr for 12 min), and lift-off.

A completed device was cooled to 13 mK in a 3He-4He dilution refrigerator.

The refrigerator wiring is shown in Supplementary Fig. 2. Careful microwave

engineering of the sample holder and on-chip wirebonding across ground planes

were required to suppress spurious resonance modes on- and off-chip.

Simulations using Sonnet software assisted this iterative process. The sample

was enclosed in two layers of Cryoperm magnetic shielding, allowing high-fidelity

operation of the processor during unattended overnight runs.

cQED theory. The Tavis–Cummings28 Hamiltonian generalized to multi-level

transmon qubits26 is:

H~vCa{az
X

q[ L, Rf g

XN

j~0

v
q
0j jj iq jh jqz aza{� � XN

j,k~0

g
q
jk jj iq kh jq

 !
ð1Þ

Here, vC is the bare cavity frequency, v
q
0j~v0j ECq, EJq

� �
is the transition fre-

quency for qubit q from ground to excited state j, and g
q
jk~gqnjk ECq, EJq

� �
, with gq

a bare qubit–cavity coupling and njk a level-dependent coupling matrix element.

The dependence of these parameters on qubit charging energy ECq and Josephson

energy EJq is indicated. The flux control enters through EJq~Emax
Jq cos pWq

�
W0

� ��� ��,
with Wq the flux through the qubit loop, and a linear flux–voltage relation

Wq~aqLVLzaqRVRzWq,0, accounting for crosstalk and offsets. (Crosstalk,

,30%, probably results from spatial distribution of flux-bias return currents on

the ground plane.) The above parameters are tightly constrained by the spectro-

scopy and transmission data shown (Figs 1b, 2a and b) and transmission data (not

shown) for the QL-cavity vacuum Rabi splitting. Simultaneously fitting the spectra

given by numerical diagonalization of the Hamiltonian (truncated to N 5 5 qubit

levels and 5 cavity photons) to these data gives Emax
JL Rð Þ=h~28:48 42:34ð ÞGHz,

ECL(R)/h 5 317(297) MHz, gL(R)/2p5 199(183) MHz. Cavity parameters are

vC/2p5 6.902 GHz and linewidth k/2p5 1 MHz.
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