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Schemes for the observation of photon correlation functions in circuit QED with linear detectors
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Correlations are important tools in the characterization of quantum fields, as they can be used to describe
statistical properties of the fields, such as bunching and antibunching, as well as to perform field state tomography.
Here we analyze experiments by Bozyigit et al. [Nat. Phys. (to appear), e-print arXiv:1002.3738] where correlation
functions can be observed using the measurement records of linear detectors (i.e., quadrature measurements),
instead of relying on intensity or number detectors. We also describe how large amplitude noise introduced by these
detectors can be quantified and subtracted from the data. This enables, in particular, the observation of first- and
second-order coherence functions of microwave photon fields generated using circuit quantum electrodynamics
and propagating in superconducting transmission lines under the condition that noise is sufficiently low.
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I. INTRODUCTION

Field correlations are widely used in the characterization
of classical and quantum fields [1,2]. A particular set of
correlations used for such purposes are the coherence functions
of a field, as described by Glauber [3–5]. These functions can
be used to quantify the ability of a field to interfere with
itself, as well as to demonstrate features of quantum fields
which cannot be reproduced in a classical system. One of
the most famous of these quantum phenomena is known as
antibunching [6,7], and it is frequently used to characterize
single-photon sources in the optical regime [8–12]. Over
the recent years Josephson-junction-based superconducting
circuits, resonators, and transmission lines have emerged as
a platform for performing quantum optics experiments in the
microwave regime [13–23]. While in the optical regime coher-
ence functions are usually measured using an interferometer
where photon number detectors are used, in the microwave
regime, linear detectors (i.e., field quadrature measurements)
are ubiquitous due to the difficulty of building reliable photon
number detectors. This raises the question of how to measure
field correlations using linear detectors. This paper answers
this question by generalizing the approach of Grosse et al.
[24], and describing the theory behind the recent experiments
performed by Bozyigit et al. [25], where correlations of a
propagating microwave field are measured using only linear
detectors instead of intensity detectors. While the discussion
here focuses on the measurement of first- and second-order
coherence functions of microwave fields, the analysis can
be applied to any correlation of field operators. We note
that the measurement of correlation functions of propagating
microwave fields using nonlinear (i.e., square-law) detectors
was theoretically studied in Ref. [26], under the assumption
of negligible correlation in the noise added by the detection
chain. In practice, these correlations turn out to be important
and are discussed here. Recent work by Menzel et al. [27]
and Mariantoni et al. [28] is in a similar direction to the work
presented here.

The paper is organized as follows. Section II gives a brief
review of coherence functions and how they are measured
with nonlinear detectors. Section III describes how field
correlations and, in particular, coherence functions can be

measured using linear detectors. Section IV describes the
effects of noise in the experiments, and finally Sec. V describes
how the experimental setup can be simplified in circuit
quantum-electrodynamics (QED) experiments.

II. COHERENCE FUNCTIONS

The meaning of coherence of a field in a single frequency
mode, with corresponding annihilation operator â, can be
understood by considering interference experiments which use
the field leaking out of this mode. Using a double slit, the field
can be made to travel two pathways of different lengths which
terminate at a single pointlike photon detector, as depicted in
Fig. 1(a). The combined field that impinges on the detector
is made up of fields originally emitted at times t and t + τ

(which depend on the lengths of the paths), so that the observed
field intensity at the detector is the sum of the intensities of
the two fields plus an interference term which depends on
〈â†(t)â(t + τ )〉 [1]. Interference effects can only be observed
if this correlation is nonzero. It is therefore natural to define

G(1)(t,t + τ ) = 〈â†(t)â(t + τ )〉, (1)

which is called the first-order coherence function [3], as
a measure of the emitted field’s potential to interfere with
itself—in other words, a measure of the coherence of the field.
One may also consider

G(1)(τ ) =
∫
I
dtG(1)(t,t + τ ), (2)

for some time interval I in order to obtain an expression that
depends only on the time difference between the two paths. If
G(1)(τ ) = 0, no interference effects can be observed for a path
difference of cτ , where c is the speed of light.

The measure of coherence that is most often used to
distinguish classical fields from quantum fields is the second-
order coherence function given by

G(2)(t,t + τ ) = 〈â†(t)â†(t + τ )â(t + τ )â(t)〉, (3)

or by the integrated version,

G(2)(τ ) =
∫
I
dtG(2)(t,t + τ ). (4)
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FIG. 1. (Color online) Experimental setups illustrating different
degrees of optical coherence with intensity detectors. The red lines
represent quantum fields, and the black lines represent measurement
records.

The canonical experiment which gives the physical inter-
pretation of G(2) is one with a single light source and two
pointlike detectors, such that the field takes a time t and t + τ ,
respectively, to reach each detector, as depicted in Fig. 1(b).
In that case the correlation between the detected intensities is
given by G(2)(t,t + τ ).

For classical fields, where the field operator in the ex-
pressions above are replaced by c numbers, one finds that
|G(2)(0)| � |G(2)(τ )|, while there are quantum states of the
field that yield |G(2)(0)| < |G(2)(τ )| for τ �= 0, a phenomenon
known as antibunching [6,7]. The canonical examples of
antibunched field states are single-photon states and squeezed
states. In the case of pulsed experiments—where the light
field state is prepared with a repetition period of tp—one writes
instead that classical fields obey |G(2)(0)| � |G(2)(ktp)|, and
that some quantum states of the field yield |G(2)(0)| <

|G(2)(ktp)| for k �= 0. Only pulsed experiments will be con-
sidered in the remainder of this paper, the generalization to
continuous experiments being straightforward.

A. Standard experimental setups

As illustrated in Fig. 2, we consider experiments where the
source is a single mode of a cavity coupled to a transmission
line via a leaky mirror, a situation typical of cavity QED
[29–31]. In circuit QED, for example, arbitrary superpositions
of a single photon and vacuum can be prepared in the dispersive
regime via Purcell decay [16] or by strong coupling to a qubit
brought into resonance with the cavity [25], although details
of the state preparation are not important for the remainder of
the discussion. The harmonic field in the cavity is associated
with an annihilation operators â with the usual same-time
commutation relation [â,â†] = 1. Using input-output theory
[2,32–34], one can show that â is related to the modes of the
transmission line via

b̂out(t) = √
κbâ(t) − b̂in(t), (5)

where κb is the rate at which photons leak out of â, and the
input and output fields are given by

b̂in(t) = 1√
2π

∫ +∞

−∞
dω e−iω(t−t0)b(t0,ω), (6)

b̂out(t) = 1√
2π

∫ +∞

−∞
dω e−iω(t−t1)b(t1,ω). (7)

FIG. 2. (Color online) Standard experiments for the observation
of G(1) and G(2) using intensity detectors: (a) a Mach-Zender
interferometer with a variable delay τ and a variable phase shift
ϕ, and (b) a Hanbury Brown and Twiss (HBT) interferometer with
a variable delay τ . The light-blue components are balanced beam
splitters. The cavity is taken to be one-sided, with one mirror being
perfectly reflective.

for transmission line modes b(t,ω) at times t0 < t < t1, and
correspond to fields propagating toward or away from the
cavity. The commutation relations of the input and output fields
are given by

[b̂in(t),b̂†in(t + τ )] = [b̂out(t),b̂
†
out(t + τ )] = δ(τ ). (8)

These definitions lead to an equation of motion for â in the
interaction frame to be given, for a one-sided cavity, by

˙̂a(t) = −κb

2
â(t) + √

κbb̂in(t). (9)

From Eq. (5) it is clear that the correlations of b̂out are
proportional to the correlations of â when b̂in is prepared in
the vacuum state. The remainder of the discussion will focus
on the observation of the coherence functions of the output
field b̂out only, as they can be taken to be equivalent to the
correlation functions of â. The “out” subscript will also be
dropped when it is clear from the context.

The state of the cavity field is taken to be prepared at times
t = ktp for integer k and repetition period tp, and allowed to
decay via the leaky mirror as described above. The repetition
period is chosen to obey tp � 2π/κb so that the cavity can be
taken to be in equilibrium at the time of the next preparation
of the cavity field.

When working with photons in the optical frequencies, G(1)

is usually observed using a Mach-Zender interferometer with
a variable delay of τ in one of the branches [35], as depicted
in Fig. 2(a). The difference between the intensities in the
photocurrent detectors can yield the real or the imaginary part
of G(1), depending on the phase shift ϕ in the lower branch.
The standard approach to the observation of G(2) is to use a
Hanbury Brown and Twiss (HBT) interferometer [35], which
is illustrated in Fig. 2(b). In order to observe G(2), one simply
measures the correlations between the photocurrents of the two
detectors.

Both these setups rely on field intensity detectors, which
give information about the number of photons, and thus can
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be modeled by nonlinear quantum optical interactions.1 Low-
noise intensity detectors for optical fields are common, and
although nonlinear detectors have been demonstrated in the
microwave regime [16,36] (albeit with higher noise levels than
in optics), the main motivation for this paper is to illustrate how
the coherence functions of microwave fields in circuit QED
may be measured through the use of linear detectors only.

III. LINEAR DETECTORS

Field quadrature measurements of microwave signals is
a standard technique [37] which has been applied very
successfully to quantum electrical circuits in recent years to
demonstrate, for example, new regimes of cavity QED [13],
high-contrast detection of qubit states [38], photon states
[14], and nanomechanical oscillator states [39]. Since field
quadrature operators are fundamentally different from number
operators, different experimental setups are required in order
to measure the coherence functions G(1) and G(2). Grosse
et al. [24] have demonstrated how HBT interferometers can
be modified to measure G(2) using field quadratures instead of
intensity measurements. Here we analyze similar experiments
[25], and consider generalizations and simplifications which
exploit features of circuit QED, while at the same time
considering the large added noise due to the high-electron-
mobility transistor (HEMT) amplifiers currently required for
measurement in this system.

The details of the implementation of quadrature operator
measurements in the microwave regime are different from
the standard optical implementation. In particular, homodyne
detection in the microwave regime is performed via mixing
instead of beam splitting [37]. For simplicity we will, however,
consider the optical analogs of the devices we discuss.
Common nonidealities in the microwave regime, such as
weak thermal states instead of vacuum inputs, can be treated
straightforwardly by considering different input states, and
thus do not change the analysis significantly.

The measurement of both quadratures of a propagating
field, realized in optics through eight-port homodyne [40] or
heterodyne detection, is performed by an in-phase–quadrature
(IQ) mixer in the microwave regime [37]. The symbol for
the IQ mixer, and its description in terms of its optical
analog are depicted in Fig. 3. The input is any propagating
quantum field with annihilation operator r̂ , which may stand
for any propagating field considered in this paper. The outputs
are quadrature measurements of the superpositions of the r̂

field with a mode v̂r in the vacuum state, where [r̂ ,v̂†
r ] = 0.

These outputs are labeled X1 and P2 to emphasize that the
measurements are made on different commuting modes, and
correspond to the in-phase component and the quadrature
component of the measurement, respectively.

Finally, it is important to note that, for most circuit QED
experiments, only averages of these quadratures over many
realizations of the experiment are measured. Here, however,
we are interested in experiments where the full time records

1Linearity in this sense refers to the representability of the
Heisenberg picture evolution by a linear transformation of creation
and annihilation operators for all times.

FIG. 3. (Color online) Optical analog of an IQ mixer as an eight-
port homodyne detector. The field r̂ is fed into a balanced beam splitter
along with vacuum v̂r . The X̂ quadrature of one of the beam-splitter
outputs is measured while the P̂ quadrature of the other output is
measured. The classical outcomes are the real and imaginary parts of
the complex envelope Sr (t).

of these quadratures are recorded, for each realization of the
experiments [25]. Based on these full records, any averages or
correlation functions can be reconstructed, as is discussed in
the next sections.

A. Complex envelope

Given the two classical outputs X1(t) and P2(t), it is useful
to define the complex envelope Sr (t) of r̂ as

Sr (t) = X1(t) + iP2(t), (10)

which is a random c number due to the dependence on the
measurement records of the quadratures. Noting that

〈X1(t)〉 =
〈
r̂1 + r̂

†
1√

2

〉
= 〈X̂r (t)〉 + 〈X̂v(t)〉, (11)

〈P2(t)〉 = −i

〈
r̂2 − r̂

†
2√

2

〉
= 〈P̂r (t)〉 − 〈P̂v(t)〉, (12)

one may write that 〈Sr (t)〉 = 〈Ŝr (t)〉, where the complex
envelope operator Ŝr is defined by

Ŝr (t) ≡ r̂(t) + v̂†
r (t) = X̂1(t) + iP̂2(t). (13)

In order to simplify the remainder of the calculations, it is
convenient to define Ŝr in this manner instead of using the
quadrature operators explicitly.

Given that the mode v̂r is in the vacuum state, the expression
for the expectation values takes simple forms. The presence
of the vacuum mode v̂r is indeed important as it leads to the
commutation relation,

[Ŝr (t),Ŝ†
r (t ′)] = 0, (14)

implying that Ŝr is normal and therefore diagonalizable. Since
Ŝr is described by the sum of the commuting operators X̂1 and
P̂2, its eigenvalues are given by the sum of the eigenvalues of
these operators for any fixed eigenvector. This corresponds to
the measurement record Sr of Ŝr being simply the sum of the
measurement records X1 and P2, as claimed earlier. Note that
this does not imply that both quadratures of r̂ can be measured
simultaneously without back-action.

Since Ŝr and Ŝ
†
r commute at all times, arbitrary correlations

of these operators, like the correlations of their measurement
records, do not depend on operator ordering. Therefore,〈

(S∗
r )mSn

r

〉 = 〈
(Ŝ†

r )mŜn
r

〉 = 〈(r̂† + v̂r )m(r̂ + v̂†
r )n〉, (15)
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independently of the ordering of the terms. However, in order
to reduce these expressions to a correlation function of r̂

alone, one must rewrite the expression such that the v̂r modes
are in normal ordering in order to immediately evaluate the
expectation values, leading to

〈
(S∗

r )mSn
r

〉 = 〈
(Ŝ†

r )mŜn
r

〉 = 〈r̂n(r̂†)m〉, (16)

or in other words, correlations of the complex envelope of
a field correspond to antinormally ordered correlations of
the field operator, under the assumption that the v̂r mode is
prepared in the vacuum. In this case, the measurement of Ŝr

is described by the Husimi-Kano Q function which is known
to give access to antinormally ordered same-time correlations
[40–42]. Similar results hold for multitime correlations.

If instead of having the v̂r mode in the vacuum state one
has a thermal state, Eq. (16) is modified by the addition of
min(m,n) terms since 〈(v̂†

r )mv̂n
r 〉 ∝ δmn for a thermal state.

This simply leads to additional noise correlation terms in the
discussion that follows, which can be taken care of with minor
modifications. The effect of thermal excitations on the input
state can also be handled straightforwardly, as discussed in
Appendix A.

It is important to note that, while arbitrary correlations
can be evaluated with this approach, the number of statistical
samples needed to obtain a desired precision in the estimate
grows as the noise power raised to the desired correlation
order (see Appendix B for details). In practice, this limits the
order of the correlations measured with current amplifier noise
levels due to the large number of repetitions of the experiment
needed to obtain reasonable error bars. Use of quantum limited
amplifiers would greatly improve the situation [20,21,43].

B. G(1) observation

As depicted in Fig. 4, with IQ mixers, the first-order
correlation function G(1) can be measured from the outputs
of an HBT interferometer. Because of the unitarity of the
beam splitter and the presence of a vacuum port, the complex
envelope operators of the outputs labeled ĉ and d̂ commute.

The autocorrelation of one of the complex envelopes, say
Sc(t), is given by

�(1)
α (t,t + τ ) = 〈Ŝ†

c (t)Ŝc(t + τ )〉 = δ(τ ) + 1
2 〈b̂†(t)b̂(t + τ )〉,

(17)

FIG. 4. (Color online) Hanbury Brown and Twiss interferometer
with complex envelope measurement used to measure the first-order
coherence function G(1). The output of the cavity field is separated by
an on-chip beam splitter and the resulting fields measured by an IQ
mixer.

while the cross-correlation between the complex envelopes is

�
(1)
β (t,t + τ ) = 〈Ŝ†

c (t)Ŝd (t + τ )〉 = 1
2 〈b̂†(t)b̂(t + τ )〉, (18)

where we have used the fact that the expectation values of all
the vacuum modes are zero. Thus, the first-order coherence
function G(1) of the b̂ field is immediately accessible from
cross-correlations of the complex envelopes in a modified HBT
interferometer via

G(1)(t,t + τ ) = 2�(1)
α (t,t + τ ) − 2δ(τ ),

= 2�
(1)
β (t,t + τ ), (19)

up to nonidealities, such as amplifier noise, which will be
treated later. The exact expressions for G(1) of the states
prepared in Ref. [25] are given in Appendix C.

Although the divergence of the δ functions may appear
problematic, in reality, due to the finite bandwidth of the
experiments, these δ functions are replaced by smooth bounded
functions, while the coherence functions are distorted by a
convolution kernel which preserves the relative heights of the
peaks in the experiment. This results in the filtered correlation
functions,

�
(1)
α,fil(τ ) = 1

2G
(1)
fil (τ ) + feff(τ ),

(20)
�

(1)
β,fil(τ ) = 1

2G
(1)
fil (τ ),

where G
(1)
fil (τ ) = G(1)(τ ) +× feff(τ ) and feff is a function de-

scribing the effective action of the filter (see Appendix D for
details).

C. G(2) observation

The expressions needed to measure the second-order coher-
ence function from the complex envelopes can be constructed
by inspection of Eq. (13). Depending on which factors are
taken to be complex conjugates or to be displaced in time by
τ , different correlations can be used to extract information
about G(2). One such choice is

�(2)
α (t,t + τ ) = 〈Ŝ†

c (t)Ŝ†
d (t + τ )Ŝd (t + τ )Ŝc(t)〉

= δ2(0) + 1
2 〈b̂†(t)b̂(t)〉δ(0)

+ 1
2 〈b̂†(t + τ )b̂(t + τ )〉δ(0)

+ 1
4 〈b̂†(t)b̂†(t + τ )b̂(t + τ )b̂(t)〉, (21)

so that G(2) can be obtained immediately via

G(2)(t,t + τ ) = 4�(2)
α (t,t + τ ) − 2G(1)(t,t)δ(0)

− 2G(1)(t + τ,t + τ )δ(0) − 4δ2(0). (22)

Another choice that leads more directly to G(2) is

�
(2)
β (t,t + τ ) = 〈Ŝ†

c (t)Ŝ†
c (t + τ )Ŝd (t + τ )Ŝd (t)〉,

= 1
4 〈b̂†(t)b̂†(t + τ )b̂(t + τ )b̂(t)〉, (23)

so that

G(2)(t,t + τ ) = 4�
(2)
β (t,t + τ ). (24)

As described earlier, the divergence of the δ functions is
taken care of by filtering in a realistic experiment. The main
distinction between these two approaches of measuring the
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second-order coherence functions is how they are affected by
noise in the experiment, as is discussed in the next section.

IV. REJECTION AND SUBTRACTION OF NOISE

The amplitude of microwave signals in a superconducting
quantum circuit is small enough that amplifiers are essential
for their observation, and so in a realistic experiment, the field
is amplified before mixing. Using the Haus-Caves description
of a quantum amplifier [34,43,44], an input operator ĉ and an
output operator ĉamp for a phase-preserving amplifier with gain
gc are related by

ĉamp = √
gcĉ +

√
gc − 1ĥ†

c, (25)

where ĥc is an added noise mode.
It is clear that if gc > 1 there will be added noise due to

amplification, even at zero temperature. However, for thermal
white Gaussian noise, one finds that all odd order moments
vanish. As a result, the first moments of quadrature fields
are not affected by this amplifier noise, just as they are
not affected by vacuum noise. The contributions from other
moments may be nonzero, however, and must be accounted
for. For simplicity, we only consider the case of Gaussian
white noise here, but similar results follow straightforwardly
for general noise as long as the noise is independent of
the inputs. Since the noise moments can be extracted from
experimental data, the assumption of Gaussian noise is not
essential.

The noise modes from different amplifiers are taken to
commute, but in general they may be correlated. While
the noise is normally taken to come from the amplification
[34,43,44], formally one may also take ĥc to include thermal
noise from other sources, such as the vacuum ports of the IQ
mixer and of the beam splitter, with only minor modifications.
Here ĥc is taken to have a commutator [ĥc(t),ĥ†

c(t + τ )] = δ(τ )
in order to preserve the bosonic commutation relations of the
amplified signals ĉamp, and autocorrelation 〈ĥ†

c(t)ĥc(t + τ )〉 =
N̄cδ(τ ). The noise sources are assumed to be independent of
the inputs, so that [ĉ,ĥc] = [ĉ,ĥ†

c] = 0, and 〈ĉĥc〉 = 〈ĉĥ†
c〉 = 0.

The correlations between ĥc and the noise mode ĥd from the
other amplifier in the experiments described here is taken to
be 〈ĥc(t)ĥ†

d (t + τ )〉 = N̄cdδ(τ ) while 〈ĥc(t)ĥd (t + τ )〉 = 0.
Using this noise model, one can calculate the different

correlations �
(1)
α,β using the amplified modes, resulting in

�(1)
α,amp(t,t + τ ) = gc

2
G(1)(t,t + τ ) + (N̄c + gc)δ(τ ),

(26)

�
(1)
β,amp(t,t + τ ) =

√
gcgd

2
G(1)(t,t + τ ) + N̄cdδ(τ ),

in the unfiltered case.
Since the thermal noise in the amplifiers is independent of

the inputs, a steady-state experiment with the input mode b̂ in
the vacuum state can be used to estimate the noise strengths
and subtract the corresponding terms from �(1)

α,β,amp to obtain
an estimate of G(1). When the noise cross-correlation N̄cd is
expected to be zero or negligible compared to the noise auto-
correlations N̄c and N̄d , the approach to the estimation of G(1)

based on �(1)
β,amp provides noise rejection without additional

postprocessing.

The second-order coherence function for the amplified
fields has similar properties. One finds

�(2)
α,amp(t,t + τ )

= gcgd

4
G(2)(t,t + τ ) + gc

2
δ(0)[gd + N̄d ]G(1)(t,t)

+ gd

2
δ(0)[gc + N̄c]G(1)(t + τ,t + τ )

+
√

gcgd

2
N̄cdδ(τ )[G(1)(t + τ,t) + G(1)(t,t + τ )]

+ [gcN̄d + gcgd + gdN̄c]δ2(0)

+〈ĥ†
d (t + τ )ĥ†

c(t)ĥc(t)ĥd (t + τ )〉, (27)

while

�
(2)
β,amp(t,t + τ )

= gcgd

4
G(2)(t,t + τ ) + 〈ĥ†

d (t + τ )ĥ†
d (t)ĥc(t)ĥc(t + τ )〉

+
√

gcgd

2
N̄cd [δ(τ )G(1)(t + τ,t) + δ(0)G(1)(t + τ,t + τ )

+ δ(0)G(1)(t,t) + δ(τ )G(1)(t,t + τ )], (28)

where all odd moments of the noise modes were taken to
be zero (if such an assumption cannot be made, similar
expressions involving the odd moments are easily derived but
are omitted here for brevity). The recovery of the second-order
coherence function from noisy signals is clearly more involved,
but requires only the estimation of first-order coherence
functions, as well as two- and four-point noise correlations
in an experiment where the input mode b̂ is prepared in
the vacuum. Since the filters are taken to be linear and
time invariant, G(2)

fil is a scaled and distorted version of
G(2), preserving the relative heights of the peaks, so that the
nonclassical properties of the field can still be verified. Once
again we see that �

(2)
β,amp provides a more direct estimation of

G(2) by rejecting contributions from uncorrelated noise up to
four-point noise correlations.

V. TWO-SIDED CAVITIES

Strictly speaking, the beam splitter is not necessary for
the observation of the coherence functions described above.
If one considers a two-sided cavity, illustrated in Fig. 5, the
correlations between the cavity outputs behave in a manner
similar to the outputs of the beam splitter in the HBT

FIG. 5. (Color online) The setup for the observation of coherence
functions using a two-sided cavity.

043804-5



DA SILVA, BOZYIGIT, WALLRAFF, AND BLAIS PHYSICAL REVIEW A 82, 043804 (2010)

interferometers. In particular, using causality as well as the
boundary conditions of the input and output fields of the
two-sided cavity, Appendix E shows that

[b̂out(t),ĉ
†
out(t

′)] = 0, (29)

where ĉout is defined in a manner analogous to b̂out, with
a mirror leakage rate κc, and an amplifier with gain gc

being applied before mixing and measurement. It is thus
possible to measure the complex envelopes of the two
cavity outputs and calculate the correlations in the same

manner as in the modified HBT setup without the need
for an additional beam splitter. This can lead to simpler
and smaller experimental setups, as beam splitters in the
microwave regime can occupy a significant area in coplanar
devices.

Calculating the correlations using the two cavity outputs
b̂out and ĉout one finds

�(1)
α,amp(t,t + τ ) = κcgcG

(1)(t,t + τ ) + (N̄c + gc)δ(τ ), (30)

�
(1)
β,amp(t,t + τ ) = √

κbκc

√
gcgdG

(1)(t,t + τ ) + N̄bcδ(τ ), (31)

�(2)
α,amp(t,t + τ ) = gbgcκbκcG

(2)(t,t + τ ) + [N̄b + gb]δ(0)gcκcG
(1)(t,t) + [gc + N̄c]δ(0)gbκbG

(1)(t + τ,t + τ )

+√
gbgc

√
κbκcN̄bcδ(τ )[G(1)(t + τ,t) + G(1)(t,t + τ )]

+ [gbN̄c + gbgc + gcN̄b]δ2(0) + 〈ĥ†
c(t + τ )ĥ†

c(t)ĥb(t)ĥc(t + τ )〉, (32)

�
(2)
β,amp(t,t + τ ) = gbgcκbκcG

(2)(t,t + τ ) + 〈ĥ†
b(t + τ )ĥ†

b(t)ĥc(t)ĥc(t + τ )〉
+√

gbgc

√
κbκcN̄bc{δ(τ )[G(1)(t + τ,t) + G(1)(t,t + τ )] + δ(0)[G(1)(t + τ,t + τ ) + G(1)(t,t)]}, (33)

where G(1) and G(2) are now the coherence functions of the
cavity field â instead of the cavity output fields, leading to the
introduction of additional factors which depend on the cavity
leakage rates κb,c. These expressions are directly analogous to
Eqs. (26)–(28).

VI. SUMMARY

We have analyzed experiments for the measurement of field
correlations using only field quadrature detectors and in the
situation where the full record of many repetitions of the
experiment is available. The combination of the quadrature
measurements into complex envelopes gives direct access
to antinormally ordered field correlations. While reordering
of the operators in the correlations and the use of phase-
preserving amplifiers introduces additional noise into these
measurements, we demonstrated that the noise can be ac-
counted for and subtracted in order to reveal only the field
correlations of interest. Although there are indications that
the number of statistical samples scales exponentially with
the order of the correlation function, the measurement of
low-order correlations is possible for current amplifier noise
levels.
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APPENDIX A: INPUT STATE PREPARATION
AND THERMAL EFFECTS

In order to demonstrate antibunching, it suffices to prepare
cavity states of the form |ψ〉 = α|0〉 + β|1〉. This can be
achieved in circuit QED by following a two-step procedure.
First, the qubit is prepared in a superposition α|g〉 + β|e〉 using
a Rabi pulse. Second, the qubit state is mapped into the cavity
state by bringing the qubit in resonance with the cavity. If the
interaction time is half of a vacuum Rabi oscillation period,
one obtains the mapping [45],

|g0〉 → |g0〉, (A1)

|e0〉 → i|g1〉, (A2)

|g1〉 → i|e0〉, (A3)

|e1〉 → cos
√

2π |e1〉 + i sin
√

2π |g2〉. (A4)

This illustrates that the half-vacuum-period Rabi pulse only
swaps the state between the qubit and the cavity only if there
is a single excitation in the system. For states with more
excitations, the vacuum Rabi frequency increases as

√
n, and

a half-vacuum-period pulse leaves the system in an entangled
state. As a result, assuming that the cavity starts out in the
ground state, and that our system is described by

|ψ0〉 = |g〉 ⊗ |0〉, (A5)

after the first Rabi pulse one obtains

|ψ1〉 = (α|g〉 + β|e〉) ⊗ |0〉, (A6)

α = cos(θr/2), (A7)

β = sin(θr/2), (A8)

where θr is the Rabi angle, which is determined by the length
of the Rabi pulse. Under the vacuum state assumption, the
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FIG. 6. (Color online) Distortion of the e−κτ pulses in G(1)(τ ) due
to Gaussian filters of different bandwidths. The solid blue line is the
unfiltered function, and the others are filtered bandwidth decreasing
progressively: 31/tp for the dashed purple line, 14/tp for the dot-
dashed yellow line, and 10/tp for the dotted green line.

vacuum Rabi pulse swaps the qubit state and the cavity state,
resulting in

|ψ1〉 = |g〉 ⊗ (α|0〉 + iβ|1〉). (A9)

Tracing out the qubit, the final cavity state is

|ψf 0〉 = α|0〉 + iβ|1〉, (A10)

ρf 0 = |ψf 0〉〈ψf 0|. (A11)

The coherence functions for various values of α and β are
plotted in Figs. 6–8.

In the experiment [25] the assumption that the cavity is
initially in the ground state is only approximately correct.
Due to coupling to the input lines and the environment
temperature, the cavity is always found in a thermal state
with a small thermal photon number population. While this
thermal field distribution has an observable influence in the
measurement results, we disregard initial thermal excitations
of the qubit because the effective temperature of the qubit
is significantly lower than the effective temperature of the
cavity.

To first order in the population of thermally excited photons,
we take the equilibrium state of the cavity to be

p0|0〉〈0| + p1|1〉〈1|, (A12)

where p0,1 follow a truncated thermal distribution. Thus, it is
necessary to consider the evolution of the system under the
assumption that the cavity initially contains a single photon.
In that case, one finds that the joint state of the qubit and cavity
conditioned on the initial presence of a photon in the cavity to
be

|ψ̃〉 = iα|e0〉 + β�c|e1〉 + β�s |g2〉, (A13)

where

�s = i sin
√

2π, (A14)

�c = cos
√

2π. (A15)

2 1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

2 1 0 1 2
0.0

0.5

1.0

1.5

2.0

FIG. 7. (Color online) The pulse train for unfiltered G(1)(τ ) (top)
and G

(1)
fil (τ ) after Gaussian filtering (bottom) under the periodic

preparation of |1〉 (solid line), 1√
2
(|0〉 + |1〉) (dashed line), and |0〉

(dotted line). Each plot is offset for clarity, with the true value for
the baseline being 0 in all cases. The Gaussian filter used here has a
bandwidth of 31/tp .

Tracing out the qubit, the conditional cavity state is

ρ̃f = |α|2(1 − |�c|2)|0〉〈0| + |�c|2ρf 0 + |β�s |2|2〉〈2|. (A16)

Combining this conditional state with the state conditioned
on the cavity being in the vacuum states, and following the
truncated thermal distribution, leads to the final cavity state,

ρf = (p0 + |�c|2p1)ρf 0 + p1(1 − |�c|2)[|α|2|0〉〈0|
+ (1 − |α|2)|2〉〈2|], (A17)

and so it is clear that the correlation functions will be a
statistical mixture of the correlation functions of the desired
superposition α|0〉 + iβ|1〉, the vacuum state, and the two-
photon state |2〉〈2|. As long as p1 is sufficiently small, it
is still possible to observe g(2)(0) < g(2)(ktp) despite thermal
excitations in the initial cavity state.

Moreover, note that in the case where |α|2 ≈ 1, the final
state of the cavity will have an enhanced vacuum component,
no single-photon component, and a highly suppressed two-
photon component, indicating that the cavity has been cooled
by the half-vacuum-period Rabi pulse, as is observed in the
experiment [25].

043804-7



DA SILVA, BOZYIGIT, WALLRAFF, AND BLAIS PHYSICAL REVIEW A 82, 043804 (2010)

APPENDIX B: STATISTICAL ERROR ON CORRELATION
FUNCTION ESTIMATES

In order to estimate the minimal number of repetitions of
the experiment which must be performed to extract a given
correlation function, consider the product of uncorrelated
Gaussian random variables with zero mean and identical
variances σ 2. These random variables correspond to the
measurements of different outputs at steady state after the
cavity state has decayed, and the variances are given by
the noise power of the measurement record (including vacuum
noise). In order to illustrate the argument, we consider real
valued random variables Vi first, and generalize to complex
valued random variables Ci . Since these random variables
are uncorrelated, it follows that 〈V1V2 · · · Vm〉 = 0. However,
given a finite number of statistical samples, the sample
average V1V2 · · · Vm will deviate from zero due to statistical
fluctuations. Signal features which are comparable with the
typical size of these fluctuations cannot be reliably observed.
As the typical size of these fluctuations decreases with the
increasing number of repetitions, this is in principle not a
fundamental problem.

In order to estimate the number of samples needed for
the reliable estimation of two-point correlations, consider the
product of two Gaussian random variables. The characteristic
function of this product is given by

φ(U ) =
∫
R3

dv1 dv2 dup1(v1)p2(v2)δ(v1v2 − u)e−iUu (B1)

= 1√
1 + U 2σ 4

. (B2)

The characteristic function of the average of R samples is
given by

φR(U ) =
[
φ

(
U

n

)]R

. (B3)

Given some error ε > 0 and a number of repetitions R, the
probability that the sample average V1V2 obeys − ε

2 < V1V2 <
ε
2 is given by the integral of the inverse Fourier transform of
φR(U ) over this range and simplifies to

Pr
(
|V1V2| <

ε

2

)
= 1

2π

∫ +∞

−∞
dU φR(U )

sin εU
2

U
2

, (B4)

which can be evaluated numerically. Thus, it is straightforward
to calculate the number of repetitions R required to observe a
feature larger than ε with confidence Pr(|V1V2| < ε

2 ).
Another approach that provides a looser bound, but is more

readily generalized to higher-order correlations, is based on
Chebyshev’s inequality [46]. The variance of the product of
independent random variables with zero mean is the product
of the variances of each of the random variables. In the case of
R samples of the product of m independent random variables
Vi one finds that

Pr

(
|V1V2 · · · Vm| <

ε

2

)
> 1 − 4

σ 2m

Rε2
. (B5)

Note that in order to obtain this bound no assumption was
made about the form of distribution of the random variables,

other than the fact that the random variables are independent.
Solving for R one obtains the worst-case upper bound,

R <
4σ 2m

ε2
[
1 − Pr

(|V1V2 · · ·Vm| < ε
2

)] , (B6)

which makes clear the exponential relationship between the
order of the correlation and the number of samples needed
to have a statistical error of less than ε

2 with some fixed
probability.

In order to generalize this to complex-valued random
variables Ci—where the real and imaginary parts of Ci

are independent with variance σ , and the Ci are mutually
independent—simply consider the real and imaginary parts
of the correlations separately. In that case, because a larger
number of terms contribute to the real and imaginary parts of
the correlation, the variance has a larger bound, and one finds

R <
8mσ 2m

ε2 Pr (error)
, (B7)

where Pr(error) is the probability that the absolute value of the
real or imaginary parts of C1C2 · · · Cm are greater than ε

2 .
There is no indication that taking into account the Gaussian

statistics of the random variables leads to better scalings.
Thus the ratio of the number of statistical samples needed
to estimate G(2) versus G(1) for some fixed noise variance
and desired accuracy is at worse proportional to the noise
power in the experiments. As a result, the noise added by
the amplifier can be the crucial element in determining the
feasibility of a correlation function experiment. It becomes
even more important for higher-order correlations, where the
number of samples depends on the noise power raised to some
larger exponent.

APPENDIX C: COHERENCE FUNCTIONS FOR STATES
WITH AT MOST ONE PHOTON

In the experiments described here [25], the cavity is
periodically prepared in the state α|0〉 + β|1〉, with a period
tp such that κtp � 1. This ensures that, to a very good
approximation, the cavity returns to the vacuum state before
the superposition is prepared again.

The coherence functions can be calculated straightfor-
wardly via their definitions in terms of the field correlations,
while the correlations can be calculated by solving the
Heisenberg equations of motion for the cavity field, and using
the quantum regression theorem [34,47,48]. This procedure
can be greatly simplified by noting that, if t and t + τ are in
different preparation periods, then

〈â†(t)â(t + τ )〉 = 〈â†(t)〉〈â(t + τ )〉, (C1)

and

〈â†(t)â†(t + τ )â(t + τ )â(t)〉 = 〈â†(t)â(t)〉〈â†(t + τ )â(t + τ )〉,
(C2)

due to the assumption κtp � 1.
In the case where t and t + τ are between ktp and (k + 1)tp

for some integer k, one finds that

〈â†(t)â(t + τ )〉 = 〈n̂(0)〉e−κ(t−ktp−τ/2), (C3)
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〈â†(t)â†(t + τ )â(t + τ )â(t)〉 = 〈â†â†ââ〉e−κ(2t−2ktp+τ ), (C4)

while if t and t + τ are in different preparation periods starting
at ktp and (k + l)tp, one finds that

〈â†(t)â(t + τ )〉 = |〈â(0)〉|2e−κ[t−ktp−(τ−ltp)/2], (C5)

〈â†(t)â†(t + τ )â(t + τ )â(t)〉= 〈n̂(0)〉2e−κ(2t−2ktp+τ−ltp). (C6)

After integration over t , the first-order coherence function can
be shown to be well approximated by

G(1)(τ ) = 1

κ
〈n̂(0)〉e−κ|τ |/2 + 1

κ
|〈â(0)〉|2

∑
l �=0

e−κ|τ−ltp |/2.

(C7)

This can be interpreted as a series of time-shifted copies of
e−κ|τ |/2, where the peak centered at τ = 0 has a height equal
to 〈n(0)〉, while the peaks centered at nonzero multiples of tp
have a height equal to |〈a(0)〉|2.

Under similar assumptions, the second-order correlation
function can be shown to be well approximated by

G(2)(τ ) = 1

κ
〈â†(0)â†(0)â(0)â(0)〉e−κ|τ |

+ 1

κ
〈n̂(0)〉2

∑
l �=0

e−κ|τ−ltp |, (C8)

such that the center peak has a height proportional to
〈â†(0)â†(0)â(0)â(0)〉 while the other peaks have heights
proportional to 〈n̂(0)〉2.

For the superpositions of vacuum and a single photon
considered in [25], we find that

〈n̂(0)〉 = |β|2, (C9)

|〈â(0)〉|2 = |α|2|β|2, (C10)

〈â†(0)â†(0)â(0)â(0)〉 = 0, (C11)

〈n̂(0)〉2 = |β|4, (C12)

indicating that the center peak of G(2) is absent, while the other
peaks are nonzero, which is a signature of the purely quantum
effect known as antibunching [6,7].

APPENDIX D: FILTERING

The finite bandwidth of the detection chain can be modeled
by considering the insertion of a bandpass filter in an ideal
(infinite bandwidth) detection chain. In order to calculate the
effect of filtering on correlation functions one can consider
a general framework which describes what happens to multi-
time, multichannel correlations when measurement signals are
filtered. Assume a system with n channels where each channel
is filtered individually. One can write the filtered outcome of
each channel Sfil,i in terms of the input signal Si and the filter
function fi by using the relations for linear time-invariant
systems [49],

Sfil,i(ti) = fi(ti) +× Si(ti)
∫ +∞

−∞
fi(τi)Si(ti − τi)dτi . (D1)

Each channel has a separate time variable ti to capture the
case of multitime correlations. This also clarifies with respect

to which variable the convolution is done. The goal is now to
express the filtered coherence function,

Gfil(t1, . . . ,tn) = 〈Sfil,1(t1) Sfil,2(t2) · · · Sfil,n(tn)〉, (D2)

in terms of the unfiltered coherence function,

G(t1, . . . ,tn) = 〈S1(t1) S2(t2) · · · Sn(tn)〉. (D3)

This can be done straightforwardly by substituting Eq. (D1)
into Eq. (D2),

Gfil(t1, . . . ,tn) =
〈

n∏
i=1

fi(ti) +× Si(ti)

〉
. (D4)

Realizing that all convolutions are related to different time
variables one can rearrange this expression as

Gfil(t1, . . . ,tn) = f1(t1) +× f2(t2) +× · · · fn(tn) +×G(t1, . . . ,tn).

(D5)

The integral form clarifies this expression,

Gfil(t1, . . . ,tn) =
∫ +∞

−∞
dτ1 · · ·

∫ +∞

−∞
dτn f1(t1 − τ1) · · ·

× fn(tn − τn)G(τ1, . . . ,τn). (D6)

This expression can be seen as a generalized convolution with
respect to more than one time variable. Introducing the global
filter function,

F (t1, . . . ,tn) = f1(t1) f2(t2) · · · fn(tn), (D7)

one can write

Gfil(t1, . . . ,tn) = F (t1, . . . ,tn) +×G(t1, . . . ,tn). (D8)

In the frequency domain, the same fact can be expressed by
using the multidimensional Fourier transform instead, so that
one may simply write

Gfil(ω1, . . . ,ωn) = G(ω1, . . . ,ωn)F (ω1, . . . ,ωn). (D9)

1. Two-point correlation functions

Using the spectral representation of some first-order coher-
ence function G(t1,t2) and the global filter function F (t1,t2),
one can write Gfil(τ ) as

Gfil(τ ) =
∫
R3

dt dω1 dω2 ei(ω1+ω2)t+iω2τF (ω1,ω2)G(ω1,ω2),

(D10)

= 1

2π

∫ +∞

−∞
dω eiωτF (−ω,ω)G(−ω,ω). (D11)

Considering the time representation of this expression, it
is clear that the correlation function will be distorted by a
convolution with the effective two-point correlation function
feff(τ ) = F{F (−ω,ω)/2π}. Due to the linearity of the filters,
one finds that Dirac δ functions in the noise correlations are
replaced by feff , so that, for example,∫

I
dt 〈ĥ†

c(t)ĥc(t + τ )〉fil = N̄cfeff(τ ), (D12)

where h
(†)
c (t) have been introduced in Eq. (25) and 〈·〉fil

indicates that the average is taken over filtered outputs.
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FIG. 8. (Color online) The heights of the center peak (solid line)
and the side peaks (dashed line) of G(1)(τ ) as a function of the Rabi
angle of the prepared state.

This illustrates why the values for the different second-
order coherence functions remain finite. Moreover, the other
time-integrated two-point correlations are replaced by the
convolution of the two-point correlation function with the feff .

Note that since a linear time-independent filter is used, the
relative heights of the peaks remain unchanged—only their
shape gets distorted and scaled. This is illustrated in Figs. 6
and 7. The heights of the peaks for all superpositions of vacuum
and a single photon are illustrated in Fig. 8.

2. Four-point correlation functions

We have seen previously that, in the absence of filters, G(2)

takes the form of a train of pulses, as is illustrated in Fig. 9.
For superpositions of vacuum and a single photon, the center
peak is always absent, and the side peaks depend on the square
of the mean photon number, as illustrated in Fig. 10.

Considering the second-order coherence function with
filtered signals, one obtains

G
(2)
fil (τ ) =

∫
R5

dt dω1 · · · dω4e
i(ω1+ω2+ω3+ω4)t ei(ω2+ω4)τ

×F (ω1,ω2,ω3,ω4)G(2)(ω1,ω2,ω3,ω4). (D13)
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FIG. 9. (Color online) The pulse train for unfiltered G(2)(τ ) (top)
under the periodic preparation of |1〉 (solid line), 1√

2
(|0〉 + |1〉)

(dashed line), and |0〉 (dotted line). Each plot is offset for clarity,
with the true value for the baseline being 0 in all cases.
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FIG. 10. (Color online) The heights of the side peaks (solid line)
of G(2)(τ ) as a function of the Rabi angle of the prepared state. For
the states considered here, the center peak is always zero.

The different types of correlations discussed simply determine
the labeling of the variables. Applying a change of variables
and integrating over time, one obtains

G
(2)
fil (τ ) = 1

8π

∫ +∞

−∞
d�2 d�3 d�4 e−i�2τ

× F

(−�2 +�4

2
,
�2 + �3

2
,
�2 − �3

2
,
−�2 − �4

2

)

× G(2)

(−�2 +�4

2
,
�2 +�3

2
,
�2 −�3

2
,
−�2 −�4

2

)
.

(D14)

Note that this leads to different behavior, in the sense that the
correlation function is not simply convolved with an effective
impulse response.

APPENDIX E: COMMUTATION RELATIONS OF
TWO-SIDED CAVITY OUTPUTS

Taking both cavity mirrors to be leaky, one finds an
additional boundary condition in the input-output description
of the cavity [2,32–34],

ĉout = √
κcâ − ĉin, (E1)

where the ĉin,out modes are now the modes coupling to the
second leaky mirror. The equation of motion [Eq. (9)] for â in
the rotating frame then becomes

˙̂a = −κb + κc

2
â + √

κbb̂in + √
κcĉin. (E2)

From Eqs. (5) and (E1), one finds

[b̂out(t),ĉ
†
out(t

′)] = √
κbκc[â(t),â†(t ′)] − √

κb[â(t),ĉ†in(t ′)]

−√
κc[b̂in(t),â†(t ′)], (E3)

where the input field operators were taken to commute.
Integrating the solution for the equations of motion of the
modes b̂(ω,t) of the left transmission line and the modes ĉ(ω,t)
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of the right transmission line, and using the definition of the
input fields, one obtains

b̂in(t) = −
√

κb

2
â(t) + 1√

2π

∫ +∞

−∞
dωb̂(ω,t),

(E4)

ĉin(t) = −
√

κc

2
â(t) + 1√

2π

∫ +∞

−∞
dωĉ(ω,t).

From causality and the boundary conditions above, one
finds [34]

[â(t),b̂in(t ′)] = 0, [â(t),ĉin(t ′)] = 0 for t ′ > t, (E5)

[â(t),b̂out(t
′)] = 0, [â(t),ĉout(t

′)] = 0 for t ′ < t. (E6)

Combining these commutation relations with the input field
definitions, one finally finds

[â(t),ĉ†in(t ′)] = √
κcu(t − t ′)[â(t),â†(t ′)],

(E7)
[b̂in(t),â†(t ′)] = √

κbu(t ′ − t)[â(t),â†(t ′)],

where

u(t) =
⎧⎨
⎩

1, t > 0
1
2 , t = 0
0, t < 0

(E8)

and therefore

[b̂out(t),ĉ
†
out(t

′)] = 0, (E9)

as claimed.
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P. Roche, and D. C. Glattli, Phys. Rev. Lett. 93, 056801 (2004).

[37] D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley,
New York, 2004).
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