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Quantum network optimization
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In many candidate designs of solid-state quantum computers, interactions between qubits are limited to a
small number of neighboring qubits. Taking into account this limitation we describe how quantum algorithms
can be executed efficiently on these designs. We illustrate our results with the quantum Fourier transform for
which linear depth networks are obtained. The concepts presented in this work can be applied to all quantum
algorithms to reduce considerably the coherence time needed for their execution.
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Since the presentation by Shor@1# of an efficient quantum
algorithm for factorization there has been much interes
the development of quantum-information theory. In partic
lar, a lot of attention has been focused on developing o
efficient quantum algorithms@2–4# and quantum error cor
rection codes@5–7#.

In parallel, great effort is now invested in the design
physical implementations meeting the very stringent requ
ments needed for the coherent manipulation of quantum
formation@8#. The high level of expertise available in solid
state based technologies establishes this approach
leading candidate for the realization of a useful~several
thousand qubits! quantum computer. Several designs ha
already been proposed: Josephson junctions@9–12#, quantum
dots@13#, and spin-resonance transistors@14#. Recent experi-
mental successes@15,16# give good confidence that a pract
cal quantum computer resting on those approaches wil
built.

However, due to their large number of degrees of fr
dom, solid-state designs suffer from short coherence tim
In order to take full advantage of their computational pow
it will be important to optimize the algorithms~computation
and error correction! for the specific quantum hardware
use.

Moreover, in most solid-state designs, it will be expe
mentally simpler to build arrays of qubits with qubit-qub
interactions limited to a small number of neighboring qub
In this paper, we address the question of optimization
quantum algorithms for the most limiting but also expe
mentally more realistic case of qubits coupling: an unidim
sional array of qubits with nearest-neighbor interactions.
will take advantage of the possibility of performing oper
tions on different qubits simultaneously that is common
many designs. To illustrate our point, we present results
the important case of the quantum Fourier transform (QF
for which, even under the strong constraint of only neare
neighbor interactions, we obtain depthO(n) networks.

Optimization of quantum networks by parallelization h
already been investigated in references@17# and @18# but
without taking into account the limited extent of qubit-qub
interactions. A study of the ‘‘actual computational time cos
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of the quantum Fourier transform including such a limitati
has been presented in Ref.@19#, but many possible improve
ments, including parallelism, were omitted.

We begin by first reviewing the quantum Fourier tran
form. This transformation acts as follows on an-qubit regis-
ter indexedun21,n22, . . .,1,0&

Fn :ux&°
1

2n/2 (
y50

2n21

e2p ixy/2n
uy&. ~1!

This evolution relies on two logical gates: a one-qubit g
Aj acting on qubitj

Aj5
1

A2
S 1 1

1 21D , ~2!

and a two-qubit gateBjk acting on qubitsj andk

Bjk5S 1

1

1

eiu jk

D ~3!

with u jk5p/2k2 j . To perform the Fourier transform of
five-qubit registerF5 the following sequence ofAj andBjk
gates is applied

A4B34B24B14B04A3B23B13B03A2B12B02A1B01A0 . ~4!

The corresponding network is shown in Fig. 1.F5 is thus
realized by 15 logical gates. More generally,n one-qubit and
n(n21)/2 two-qubit operations are necessary to implem
Fn .

To proceed with optimization of this algorithm, an explic
prescription for the implementation ofA andB in terms of a
universal set of elementary gates is needed. Of course
restricts the optimization to implementations having this p
ticular set of elementary gates in their repertory, but appli
tion to other implementations is straightforward. Here w
will use the universal set

Xj~u!5e2 isx
j u/2, Zj~f!5e2 isz

j f/2, ~5!
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FIG. 1. Network realizing the quantum Fou
rier algorithm on a five-qubit register. The outpu
is the bit reversal of the Fourier transform E
~1!.
to
ig
ti

e

im

to
na
il
i

tu

to
r

a

tary

tly.
be-

b-
el-

p-
to

ing
iffer-

r of
ig.

-

is
ns.
ther
one
l

ced

ps,
bits

t to
e-
fic

ting
lds
le

n

Pjk~z!5exp~2 isz
j
^ sz

kz/2!. ~6!

acting on qubitsj andk. This set is useful as it corresponds
the elementary set of gates of many solid-state des
@10,11,14# ~and can be implemented by nuclear magne
resonance@20,21#!.

These elementary operations can be used to implem
the logical gatesAj andBjk ~on two adjacent qubits! in the
following fashion

Aj5 iZ j~p/2!Xj~p/2!Zj~p/2!, ~7!

Bjk5eiu jk12Zj~u jk11!Zk~u jk11!Pjk~u jk11!. ~8!

The phaseeiu jk12 depends on the qubits on whichBjk is
applied but is independent of their state. It is thus an un
portant global phase factor and can be ignored.

To realize the network of Fig. 1 it will be necessary
apply Bjk gates on nonadjacent qubits. In a unidimensio
array of qubits limited to nearest-neighbor couplings this w
entail swapping recursively the state of adjacent qubits
order to juxtapose the state of qubits to couple. For quan
bits initially at locationsj and k in a quantum register,u j
2ku21 swap operations are required to bring the qubits
gether and anotheru j 2ku21 to bring them back to thei
original locations, Fig. 2~a!.

A swap between the state of qubits at positionsr and s,
respectively, can be implemented by a sequence
controlled-NOT ~C! gates

Srs5CrsCsrCrs . ~9!

Using Eqs.~5! and~6!, theC gate is itself implemented by
sequence of seven elementary gates

Crs5e2 i3p/4Xs~3p/2!Prs~2p/2!Zs~p/2!Xs~p/2!Zs~p/2!

3Zr~p/2!Prs~2p/2!. ~10!

FIG. 2. ~a! Repetitive use of swap operations to perform a co
trolled interaction between initially nonadjacent qubits.~b! Equiva-
lent network using simultaneous operations. Strategy~a! was used
in Ref. @19# to estimate the time cost ofFn .
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As a result, a single swap operation requires 21 elemen
operations~time steps! and 423(u j 2ku21) elementary op-
erations are required to realize the network of Fig. 2~a!.

It is however possible to reduce this number significan
First, by taking advantage of the commutation relations
tween the elementary gates~5! and~6! and the symmetry of
the controlled-NOT ~10! it is possible to ‘‘compile’’ the se-
quence~9! by removing redundant gates. Doing so, we o
tain the following swap sequence implemented by 15
ementary operations

Srs5e2 ip/4Xs~p/2!Prs~2p/2!Zs~p/2!Xs~p/2!

3@Zs~p/2!Xr~p/2!#Prs~2p/2!Zr~p/2!

3@Xr~p/2!Xs~p/2!#Prs~2p/2!Zs~p/2!Xs~p/2!

3@Zs~p/2!Zr~p/2!#. ~11!

Moreover, taking advantage of the ability to perform o
erations on different qubits simultaneously, it is possible
further reduce the number of time steps used for mov
states through the register. Indeed, since operations on d
ent qubits commute, the gates in square brackets in Eq.~11!
can be performed simultaneously, reducing the numbe
time steps to 12. In addition, the simultaneous swaps in F
2~b! requires only 2du j 2ku/2e time steps, wheredxe is the
smallest integer larger thanx, and is thus much more effi
cient than the straightforward implementation of Fig. 2~a!. A
final simplification is possible when we notice that there
no need to move the qubits back to their original locatio
Once the states of a pair of qubits have been brought toge
and have interacted, the next reorganization should be d
in a way optimizing the realization of the following logica
operations.

With these results, the number of time steps is redu
from 42(u j 2ku21) to 12du j 2ku/2e for a single swap se-
quence. In the case of networks involving multiple swa
further improvements are possible by reorganizing the qu
properly during computation.

While the above optimization for swap gates is relevan
the implementation of all quantum algorithms in on
dimensional~1D! arrays of qubits, a key observation speci
to the quantum Fourier transform is

@Al ,Bjk#50 if lÞ j ,k,

@Bjk ,Brs#50 ; j ,k,r ,s. ~12!

The first of these relations express the fact that gates ac
on distinct qubits commute while the second relation ho
becauseBjk is diagonal in the computational basis. Whi

-
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QUANTUM NETWORK OPTIMIZATION PHYSICAL REVIEW A 64 022312
respecting these commutation relations, it is now possibl
permute logical operations and apply them when it is m
convenient.

Let us now apply these concepts. For this purpose,
developed an algorithm adding swaps, as suggested in
2~b!, to the original QFT sequence. To minimize the leng
of the networks, the algorithm then maximizes parallelism
grouping operations that commute while not acting on
same qubits. The result, for five qubits, is given by the n
work of Fig. 3. We compute the depth of our networks
terms of the elementary gates implementing each log
gates. Recognizing that operationsBjk are realized in two
time steps@all elementary gates realizing this operation, E
~8!, commute and it is possible to apply the first two sim
taneously# while Aj in 3 we obtain that the network of Fig. 3
is implemented in 95 time steps@23#. Without optimization,
F5 would necessitate 20 swaps for a total of 275 time ste

Figure 4 compares, on a logarithmic scale, the time c
of the improved networks obtained numerically~black
circles! with nonimproved networks~open squares! @24# for
up to 300 qubits. The time cost of the later networks is ea
determined to be 10n211n214n3'O(n3).

To go beyond numerical constructions, a useful obser
tion is that the dark gray region at the rightmost end of F
3 is an optimized quantum Fourier transform on three qub
Moreover, adding to this transformation the four logic
gates

FIG. 3. Network realizing the quantum Fourier algorithm on
five-qubit register using simultaneous operations and efficient
of the swap operations. The numbers at both end of the circuit
used to keep track of the position of the logical states. The op
tions in the dark gray area implementF3.

FIG. 4. Number of time steps for QFT networks as a function
the number of qubits on a logarithmic scale. Black circles are
the improved networks obtained numerically while open squa
correspond to nonimproved networks.
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and three swaps which are in the light shaded area of
same figure, we now obtain an optimized QFT on four q
bits. These extra gates add 29 time steps toF3 @25#. The
same observation also holds in going fromF4 to F5 by add-
ing the five logical operations and four swaps that are on
left of the light shaded area, adding again 29 time steps.
using this construction recursively, we can now obtain
optimized network forFn once the network forFn21 is
given. As seen from the above constructions, this is ea
done by addingn logical operations andn21 swaps toFn21
~for n.2). TheseO(n) extra gates add 29 time steps
Fn21 and the number of time steps required to performFn in
this fashion can then be evaluated to be 8129(n22) for n
.2. Hence, we have obtained linear depth networks forFn .

Thus, while taking into account the limited range of no
local interactions between qubits we have obtained
speedup quadratic inn over nonoptimized networks. Effi
cient use of swaps and massive~classical! parallelism are
responsible for this speedup. Indeed, speedup by a facto
O(n) can be seen to come from the fact thatO(n3) swaps
are necessary in nonoptimized circuits while onlyO(n2) are
requested in the optimized case. The other factor ofO(n)
comes from the fact that up ton simultaneous operations ca
be realized onn qubits. As in the case of classical parall
computers, this provides a speedup of orderO(n).

Interestingly, linear depth networks were also obtained
Ref. @17# in the simpler case where no limitations in th
range of coupling between qubits was considered@26#. In
fact, depthO(n) networks is the best one can achieve for t
exactFn network given by sequence~4! sincen operations
have to be applied on thenth @top most in Fig.~1!# qubit and
no operations acting on similar qubits can be parallelized.
a result, the limitations of a linear design restricted
nearest-neighbor interactions, at least for the exact Fou
transform, does not seem to be an important one as lon
parallelism is possible. A circuit similar to Fig. 3 was pu
lished in a different context in@22#.

It is possible to shorten further, by a constant factor,
length of QFT networks by starting the optimization proc
dure with a permutation@respecting relations~12!# of the
original sequence~4!. We then seek the permutation min
mizing the depth. This is a constrained optimization probl
and has many similarities with the problem of placeme
occurring in very large scale integrated circuit related te
nologies for which heuristics, like simulated annealing
tabu search, are known to give good results. In placem
one seeks to arrange the components of a~classical! circuit
such as to minimize the length of interconnecting wires a
the circuit area@27#.

The problem at hand is very similar but with the add
tional complication that reordering two logical operations
a given location in a circuit will change the sequence a
possibly the number of swaps needed at all further point
this circuit. Based on this analogy, we developed a simula
annealing~SA! algorithm@28# to obtain improved networks
As SA is a heuristic algorithm, it will not necessarily provid
optimal solutions, but solutions that are close to the optim
ones. This is not a problem here as we will be satisfied w
any improvements over straightforward networks.
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ALEXANDRE BLAIS PHYSICAL REVIEW A 64 022312
Networks obtained with this approach are only a few p
cent shorter than the best networks~black dots! of Fig. 4.
Moreover, SA is computationally demanding and becom
impractical for a few tens of qubits. This further speedup w
nevertheless be welcomed for prototypical quantum com
ers. The network of Fig. 5 was obtained by improving up
the circuit of Fig. 3 in this way. It requires only six swap
and 83 time steps.

Finally, we note that for very large networks, it is expe
mentally challenging to implement the operationsBjk for
largeu j 2ku as this corresponds to very small phases and
require the application of elementary gates for short peri
of times. It is however possible to omit theBjk such that
p/2k2 j,p/2m for a chosenm and obtain a result that differ
only by a multiplicative factorei«, with u«u<2pn/2m, from
the result of the originalFn network@29#. Combined with the
optimization procedure presented here, this will yield n
works that are still more efficient, but at the expense of l
ing some accuracy. This was explored recently by Cleve
Watrous@18# in the case of arbitrarily long qubit-qubit inter
actions for which they obtained depthO(log2 n) networks.
We note that for the unidimentional architecture studied
this paper, the limitation of nearest-neighbor coupling wo
not allow for the implementation of the approximate QFT
logarithmic depths.

In summary, we considered several improvements
should be applied in the implementation of quantum al
rithms. To illustrate our point, we presented results for
important case of the quantum Fourier transform. These

FIG. 5. Improved quantum Fourier network on five qubits.
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provements were obtained by first expressing the neces
gates in terms of an elementary set of gates. Knowing
number of time steps required to realize each member of
set, we then minimized the length of quantum Fourier n
works by taking advantage of~classical! parallelism and of
the commutation relations between logical operations. Wh
limiting the spatial extent of coupling between qubits, w
obtained circuits that can be implemented inO(n) time steps
corresponding to a quadratic speedup for time resources

Two main conclusions can be drawn from this work:~i!
Quantum algorithms can be optimized by prior classi
computation to yield networks necessitating much sma
coherence times.~ii ! As long as they allow for simultaneou
operations of distinct qubits, solid state quantum compu
can be designed with very simple qubit-qubit interacti
schemes without degrading their performance, at least
some computational tasks. From the results obtained in
work, parallelism seems like a very desirable feature for c
didate quantum computer implementations. These con
sions are significant for the design and use of prototyp
solid-state quantum computers.

We stress that the concepts presented here are applic
to all quantum algorithms and can be generalized to ot
quantum computer architectures and geometries~2D arrays
of qubits, quasi-1D arrays, etc.! and to the case where inte
actions are not restricted to neighboring qubits but never
less have limited spacial extents@9,13#. Moreover, the results
obtained here can be improved by working directly with t
elementary gates implementing the logical operations ra
than with the logical operations themselves. As seen fr
Eqs. ~9! and ~11!, this certainly can yield further improve
ments.
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