
ne hundred years after its discovery,
superconductivity keeps surprising the physics
community. One of these surprises came five
years after the seminal BCS paper. Then, a

22 year-old PhD student, Brian Josephson, made the bold
prediction that a dissipation-less current, a supercurrent,
would flow through two superconductors separated by a
thin insulating barrier [1]. This prediction was met with
great skepticism by John Bardeen, who believed that
electrons across the insulating barriers would not be
correlated, thereby preventing any significant supercurrent
flow [2]. Josephson received the Nobel prize in 1973, ten
years after the experimental confirmation of what is now
known as the Josehpson effect [3] and only one year after
Bardeen, Cooper, and Schrieffer's Nobel prize.

Over the years, the Josephson effect has developed as a
versatile tool for fundamental science and has found many
applications. For example, Josephson junctions can be
used to redefine the volt standard, and can be incorporated
in superconducting quantum interference devices
(SQUIDs) to make sensitive magnetometers [4]. In the
mid-eighties, it also became clear that electrical circuits
based on Josephson junctions could behave as artificial
atoms under well controlled experimental conditions [5].
By this, it is meant that the circuit is well described by
quantized energy levels whose separation is larger than
thermal energy kBT. The system must also be sufficiently
decoupled from uncontrolled degrees of freedom (the
environment) for its lifetime T1 to be large.

Before considering the quantum mechanics of Josephson
junctions, it is instructive to review a well known case, the
LC oscillator illustrated in Fig. 1a). It is characterized by
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Electrical circuits based on Josephson
junctions, the only known nonlinear and
nondissipative circuit element, can behave
as artificial atoms with well defined energy
levels whose separation exceeds thermal
energy. These man-made atoms are now
being used in several labs worldwide to
realize simple quantum processors and
attain new regimes of quantum optics.

O
BY ALEXANDRE BLAIS

SUPERCONDUCTIVITY-BASED ARTIFICIAL ATOMS FOR
QUANTUM INFORMATION

A. Blais
<a.blais@usherbrooke.
ca>, Département de
Physique, Université
de Sherbrooke,
Sherbrooke, QC,
J1K 2R1

et membre des
programmes Matériaux
quantiques,
Information quantique
et Nanoélectronique,
Institut canadien de
recherches avancées,
Toronto, ON, M5G 1Z8

the angular frequency and the character-
istic  impedance . Rint represents internal
losses, while the combination Cext and Rext is a minimal
model representing outside circuitry used to interact with
the LC. In a quantum description and excluding
dissipation for the moment, the conjugate variables Q (the
charge on the capacitor) and Φ (the flux threading the
inductor) entering the classical energy of the circuit

(1)

are promoted to non-commuting operators: Q 6 Q̂ = 
(âH - â ), Φ 6Φ̂ = (âH + â ).  We have

introduced the standard creation (aH) and annihilation (â)
operators of the harmonic oscillator, which of course lead
to HLC = hω0âHâ. Here, âH creates quantized excitations of
the electromagnetic field in the oscillator, or more simply
said photons at frequency ω0.

In this context, the conditions of well defined energy
levels mentioned above translate to hω0 o kBT, while for
the lifetime the standard result T1 = RC is obtained, where
R = 1/Re[Y(ω)] with Y(ω) the admittance of the
electromagnetic environment of the LC composed of Rint,
Rext and Cext

[6]. With standard microfabrication
techniques, values of L ~ 0.1 nH and C ~ 1 pF can be
obtained, leading to frequencies in the microwave regime
ω0/2π ~ 16 GHz. Given that 1 GHz H h/kB ~ 50 mK, the
condition hω0 o kBT can easily be satisfied in a dilution
refrigerator operating at 20 mK. On the other hand, the
condition of minimal losses can be satisfied by working
with superconducting materials (typically Al or Nb) and
reducing the coupling to the external world.
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Fig. 1 a) Harmonic oscillator with internal and external
losses. b) Circuit representation of a Josephson
junction and its equivalent circuit: the parallel
combination of a nonlinear inductor LJ and a
capacitor CJ.
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While a superconducting LC circuit can be described
accurately as an artificial atom with discrete energy levels,
showing bona fide quantum behavior is challenging. Indeed,
the harmonic oscillator is always in the correspondence limit
and some amount of nonlinearity is required to break away
from this. This is where Josephson junctions enter. These
junctions are the only known nonlinear and nondissipative
circuit elements. They have vanishing internal losses because a
supercurrent, not a normal current, flows through the junction.
Moreover, the nonlinearity can be understood from Josephson's
relations which we now discuss.

In his seminal paper, Josephson obtained two main relations
governing the dynamics of Josephson junctions [1]. First, he
showed that the current I flowing through a junction is related
to the difference of phase φ between the two superconductors
forming the junction: I = Ic sin φ. In this expression, Ic is the
maximum current that can be pushed though the junction
before breaking Cooper pairs. The second Josephson relation
relates φ to the voltage across the junction: Aφ = 2eV/h. These
two relations can be combined to obtain I = Icsin(2πΦ/Φ0),
where Φ = IdtV(t) is a flux and Φ0 = h/2e the flux quantum.
This relation relates current to flux, just as the constitutive
relation of an inductor does. It is then useful to define the
Josephson inductance LJ = (MI/MΦ)-1 = Φ0/(2πIccos(2πΦ/Φ0)),
a nonlinear function of Φ. As illustrated in Fig. 1b), a
Josephson junction can thus be modeled by the parallel
combination of a capacitor CJ (the two superconducting
electrodes separated by an oxide barrier) and a nonlinear
inductor LJ, forming a nonharmonic oscillator whose energy
levels will not only be discrete but nonlinearily spread.
Experimental confirmation of these predictions have been
obtained in the mid-eighties in groundbreaking work from
J. Clarke's group at Berkeley [5].

To better understand how a Josephson junction acts as a
nonlinear oscillator, it is instructive to consider the energy
related to pair tunneling. This is obtained simply by noting
that the energy stored in the junction is E = IdtV(t)I(t) =
-EJ cos(2πΦ/Φ0) where we have again used the two Josephson
relations and have introduced EJ = Φ0Ic/2π, the Josephson
energy. Similarly to the simple LC oscillator, the junction
Hamiltonian then reads

(2)

Quantizing the macroscopic variables Q and Φ, and again
doing the replacement in terms of â(H) yields, after expanding
the cosine to fourth order (a good approximation for large EJ)
and neglecting fast oscillating terms,

HJ . hωJ âHâ + hχ(âHâ)2, (3)

where and χ = -EC /2, with EC = e2/2CJ the
energy cost to adding a charge on the junction capacitance, also
called charging energy. In quantum optics, this Hamiltonian is
well known to describe nonlinear Kerr media [7]. Because the
spectrum of ĤJ is nonlinear, it is possible to use the first two

levels {*0,,*1,} as logical states of a qubit, or in an alternative
but equivalent picture, as the first two levels of an artificial
atom [8].

But what are the advantages of these artificial atoms with
respect to genuine ones? For one, atoms have much longer
lifetimes than their artificial counterparts. For example,
hyperfine states of 9Be+ used for ion trap quantum computing
have for all practical purposes infinite relaxation time T1 and
coherence time T2, representing the time over which phase
information in a superposition of basis states {*0,,*1,} is
preserved, exceeding 10 seconds [9]. With the typical time to
control the quantum states of these ions of the order of a few
microseconds, there is ample time for realizing high-fidelity
quantum gates. As a result, the error per gate can be quite low,
of the order of 0.48 % [10]. On the other hand, T1 for
superconducting qubits  is typically a few microseconds and
T2 ~ 2T1 or shorter [11]. While this could appear disastrous, it is
outweighed by the fast operation time in the solid-state. Indeed
artificial atoms have low T1 because they are big (literally)
resulting in a large dipole moment and thus strong coupling to
electric field. While uncontrolled coupling leads to relaxation,
this also allows for fast operations. Using optimal control
techniques [12], it is indeed possible to realize single-qubit gates
with precisely controlled bursts of voltage in as little as
4 ns [13]. The resulting error per gate of 0.7 % is approaching
trapped ions results [10].

In addition to having a large dipole moment, superconducting
electrical circuits can also show large quantum fluctuations of
the voltage. Consider for example the superconducting qubit
capacitively coupled to a LC oscillator illustrated in Fig. 2a).
In its ground state (easily reached at dilution fridge
temperatures), the average voltage +V̂ , = +Q̂/C, across the LC
is zero. Zero-point fluctuations are however quite large,
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Fig. 2 a) LC circuit capacitively coupled to a superconducting
qubit formed by a junction and additional parallel shunt
capacitances. The higher total capacitance lowers the
charging energy which in turns helps in reducing the
influence of decoherence-inducing charge noise [11].
b) Multiple qubits capacitively coupled to a transmission
line resonator.
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V̂ for the parameters given above.
This leads to strong electric-dipole coupling between the
(artificial) atom and the microwave photons that are the
excitations of the LC [14]. This situation is more typically
realized in cavity quantum electrodynamics, where Rydberg
atoms are sent one by one through a pair of mirrors forming a
cavity [15]. In circuits however, because of the unique
combination of large dipole moment and large zero-point
voltage, the light-matter interaction can be orders of magnitude
stronger [16], leading to a host of novel effects [17,18]. This solid-
state realization of cavity QED is known as circuit QED. 

Circuit QED can also be used for quantum information
processing. Indeed, in practice and as illustrated in Fig. 2b), the
LC can be realized by a ~ 1 cm long high-Q transmission line
resonator [16,19]. Since it is possible to couple several qubits to
a single resonator, it can serve as a quantum bus mediating

interactions between remote qubits. With the high-fidelity
quantum gates mentioned above, circuit QED has been used to
implement simple two-qubit quantum algorithms [20] and to
entangle three qubits [21,22]. Beyond quantum information
processing, circuit QED and artificial atoms also open new
possibilities for quantum optics and this is only now starting to
be explored in the laboratory. Notable realizations are on-
demand single microwave photon sources [23] and the
subsequent demonstration of microwave photon anti-bunching,
a clear signature of the quantum nature of these microwave
excitations [24]. Given the pace at which this field is moving,
the future prospects of Josephson junction based artificial
atoms look rather good.
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