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Back-action of a driven nonlinear resonator on a superconducting qubit
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2School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072, Australia

3School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
4CEA-Saclay, Gif-sur-Yvette, France

5Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
(Received 1 November 2011; published 3 February 2012)

We study the backaction of a driven nonlinear resonator on a multilevel superconducting qubit. Using unitary
transformations on the multilevel Jaynes-Cummings Hamiltonian and quantum optics master equation, we derive
an analytical model that goes beyond linear response theory. Within the limits of validity of the model, we
obtain quantitative agreement with experimental and numerical data, both in the bifurcation and in the parametric
amplification regimes of the nonlinear resonator. We show in particular that the measurement-induced dephasing
rate of the qubit can be rather small at high drive power. This is in contrast to measurement with a linear resonator
where this rate increases with the drive power. Finally, we show that, for typical parameters of circuit quantum
electrodynamics, correctly describing measurement-induced dephasing requires a model going beyond linear
response theory, such as the one presented here.
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I. INTRODUCTION

Two-level systems (TLS) and harmonic oscillators are the
two simplest systems that can be described exactly with
quantum mechanics. Consequently, many physical systems are
described at least approximately by either of these two building
blocks. As an example, in cavity quantum electrodynamics
(CQED) [1], an atom, modeled as a TLS, interacts with a pho-
ton field inside a high-quality optical or microwave resonator,
modeled as a harmonic oscillator. Another example is circuit
quantum electrodynamics (cQED) [2], cavity QED’s little
brother and a promising candidate for the realization of a future
quantum computer [3]. In circuit QED, a superconducting
artificial atom (or qubit) [4] is coupled to a coplanar waveguide
resonator. In the context of quantum information processing,
the resonator both acts as a filter, partly protecting the qubit
from decoherence and relaxation, and as a measurement device
for the qubit state.

However, contrary to cavity QED where the atomic prop-
erties are fixed, the engineered devices studied in circuit
QED can be tuned and are custom built. Therefore, while
devices dating from the early stages of circuit QED [2,5]
were well described by two-level systems coupled to harmonic
oscillators, more recent qubits, such as the transmon [6–8],
the low-impedance flux qubit [9], and the tunable coupling
qubit [10] are better described by multilevel systems (MLS).
This is also the case for the phase qubit [11]. Moreover, while
the standard architecture for qubit readout has long been linear
resonators [2], many recent results [12–16] now use resonators
made nonlinear with embedded Josephson junctions. Not only
do these nonlinear resonators provide a bifurcation amplifier
regime, which considerably improves the readout—a key
requirement for quantum information processing—but they
also exhibit remarkably enriched physics. As examples, they
have been used to parametrically amplify small signals [17,18]
and generate squeezed light [19].

The performance of nonlinear resonators as parametric
amplifiers for small signals [20] as well as their backaction on

a qubit have also been studied theoretically [21,22]. However,
in Refs. [21,22], the qubit was assumed to be a two-level
system, something that is often insufficient to understand
many types of superconducting qubits. Moreover, a linear
response of the output signal to the input (qubit) signal was
assumed. While linear response holds away from the nonlinear
resonator’s critical point, where bifurcation becomes possible,
and away from the switching thresholds in the bifurcation
amplifier regime, we show that it breaks down close to
these points. We show that linear response is unlikely to
be sufficient to describe a qubit readout with a nonlinear
resonator when considering typical cQED parameters. Finally,
the usual dispersive theory with linear resonators assumes
driving of the resonator close to its resonance frequency
for measurement [2,23]. As a result, the theory obtains a
dependence of the ac-Stark shift on the frequency detuning
between the qubit and the resonator, rather than between the
qubit and the measurement drive. This is especially important
when measuring with a nonlinear resonator, since there is
always a significant frequency detuning between the drive and
the resonator in such cases.

In this paper, we derive a reduced qubit model going beyond
these assumptions. We do so using unitary transformations,
especially the dispersive [23,24] and the polaron transfor-
mations [25–27]. We are especially interested in describing
the ac-Stark and Lamb shifts of the qubit as well as its
measurement-induced dephasing [28]. We note that this theory
was developed in parallel to and already tested against the
experimental results of Ref. [16].

In Sec. II, we write the general master equation that is
used to describe the multilevel qubit coupled to the nonlinear
resonator. In Sec. III, we recall the minimal multilevel system
model of linear circuit QED in the dispersive regime. In
Sec. IV, we describe the basic characteristics of nonlinear
resonators and explain why we need to go beyond the
assumptions given in the previous paragraphs. In Sec. V, we
derive a reduced model for the qubit through a series of unitary
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transformations. In Sec. VI, we compare the predictions of the
analytical model to experimental [16] and numerical data and
find quantitative agreement within the limits of the model.
We also explain how the ac-Stark and Lamb shifts as well
as the measurement-induced dephasing are changed by the
nonlinearity of the resonator. We finally test the regime of
validity of the linear response theory and show that it is unlikely
to be sufficient to describe any high-fidelity qubit readout with
a nonlinear resonator.

II. PRESENTATION OF THE SYSTEM

We consider a system made of a multilevel qubit coupled
to a nonlinear resonator. We describe the nonlinear resonator
with the Hamiltonian (h̄ = 1) [20],

Hr = ωra
†a + K

2
a†a†aa + K ′

3
a†3

a3, (2.1)

where a(†) are the annihilation (creation) operators, ωr is the
resonator low-power resonance frequency, and K and K ′
are quadratic and cubic Kerr constants, respectively. Such
a Kerr nonlinear resonator could be an LC-circuit with an
added Josephson junction [12] or a stripline resonator with
one [15] (see Fig. 1) or many [17,29] embedded Josephson
junctions. In all these cases, the Josephson junctions act as
nonlinear dissipationless inductances, rendering the resonator
nonlinear.

We describe the qubit by the generic many-level system
Hamiltonian

Hq =
M−1∑
i=0

ωi�i,i ≡ �ω, (2.2)

where M is the number of qubit levels, ωi is the frequency
of the qubit eigenstate |i〉, �i,j ≡ |i〉 〈j |, and where we have
introduced the short-handed notation

�x ≡
M−1∑
i=0

xi�i,i , (2.3)

which we will use on multiple occasions throughout this paper.
The eigenstates {|i〉} could be for example charges tunneling
on and off a superconducting island such as for a Cooper-pair
box [30], superposition of such charges for a transmon qubit
[6], or current flowing clockwise or counterclockwise in a
superconducting loop for a flux qubit [31].

FIG. 1. (Color online) Representation of one possible imple-
mentation of the system considered in this paper. This represents
a stripline resonator (blue) made nonlinear with an embedded
Josephson junction (dark green), capacitively coupled to a transmon
qubit between the central conductor and the ground planes. The model
described in this paper, however, applies to various other nonlinear
resonators and qubits (see text).

We assume a dipolar coupling between the qubit and the
resonator and describe it by the interaction Hamiltonian

HI =
M−2∑
i=0

gi(a
† + a)(�i,i+1 + �i+1,i), (2.4)

where gi are the coupling constants. The only constraint on
the qubit that we impose for our model is that the selection
rules only allow transitions between the qubit states |i〉 and
|i ± 1〉 through the resonator. This restriction is fulfilled for
good two-level qubits such as the Cooper-pair box [30] and the
phase [32] and flux [31] qubits but is also realized for some
more recent multilevel qubits such as the transmon [6,7,33]
and the low-impedance flux qubit [9].

To understand the experiment of Ref. [16], we also consider
driving of the resonator. We allow for multiple qubit-detuned
drives d ∈ {d1,d2,...,dn} as well as one spectroscopy drive s,
quasiresonant with the qubit frequency, that we model by the
Hamiltonians

Hd =
∑

d

εde
−iωd t a† + ε∗

de
iωd t a, (2.5a)

Hs = εse
−iωs t a† + ε∗

s e
iωs t a, (2.5b)

where and εd,s and ωd,s are the drives’ amplitude and
frequency. By quasiresonant, we mean that ωs is always much
closer to the |0〉 ↔ |1〉 qubit frequency than to any other qubit
transition frequencies. In experiments, these drives take the
form of microwave signals sent to one port of the resonator and
either transmitted to the other port or reflected back depending
on the circuit design. As in the experiment of Ref. [16], we
will later on take the amplitude of the spectroscopy drive εs to
be small such that its contribution to the intraresonator field is
small. The case of high-amplitude spectroscopy will be treated
in a following publication [53].

Finally, to model dissipation, we use the Lindblad-type
master equation

ρ̇ = −i[H,ρ] + κD[a]ρ + κNLD[a2]ρ

+γ

M−2∑
i=0

(
gi

g0

)2

D[�i,i+1]ρ + 2γϕD[�ε]ρ, (2.6)

where

D[A]ρ ≡ 1
2 (2AρA† − A†Aρ − ρA†A), (2.7)

and H = Hr + Hq + HI + Hd + Hs . In this master equation,
κ and κNL are the resonator’s rates of one- and two-photon
loss [20], γ is the qubit |1〉 → |0〉 decay rate, and γϕ is the qubit
pure dephasing rate for the same states. For �ε, we defined
εi ≡ ∂(ωi−ω0)

∂X
× ( ∂(ω1−ω0)

∂X
)−1 as the X dispersion, where X is

some control parameter (could be flux or charge for example),
with ε0 = 0 and ε1 = 1 by definition.

This master equation can be obtained by modeling the
coupling of the qubit and the resonator to baths of harmonic
oscillators and then tracing over the baths [34]. When obtaining
this master equation, we made three assumptions. First,
we assumed that the noise spectra are white around the
relevant frequencies for relaxation (∼GHz) and dephasing
(<1 MHz). For this approximation to hold, the baths must
be white on a frequency range comparable to the resonator
or qubit linewidths. While this approximation should hold for
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relaxation (∼ GHz frequencies) if the resonator and the qubit
have high-quality factors, it may fail for dephasing (< 1 MHz
frequencies) if, for example, the noise has a 1/f spectrum
and hence varies by many orders of magnitude over a single
resonator or qubit linewidth. In this latter case, one needs to be
more careful and take the noise spectrum into account when
deriving the master equation [6,35]. Second, we assumed that
the noise causing qubit relaxation couples to the qubit through
dipolar interaction, yielding the scaling in gi/g0 for the γ

dissipator. Finally, we considered that dephasing is caused by
(white) noise at low frequencies in the control parameter X.

III. LINEAR CIRCUIT QED IN A NUTSHELL

Before going to the nonlinear case, it is useful to review
some aspects of the more standard linear case. In linear circuit
QED, one is interested in the system described in Sec. II, but
with K = K ′ = κNL = 0 and with a qubit that can have two or
more states. Many aspects of this system have been studied
extensively both theoretically and experimentally, ranging
from qubit measurement [2,36] and single- and two-qubit gates
[5,37–41] to dissipation and dephasing [8,23,27,28,42–44]. In
this section, we present the minimal theory of the dispersive
regime, where the couplings gi are much smaller than the
qubit-resonator detunings �i,j ≡ ωij − ωr ≡ ωi − ωj − ωr .
In this regime, there is no direct exchange of energy between
the qubit and the resonator, and most of the physics can
be understood from an approximate diagonalization of the
undriven Hamiltonian Hr + Hq + HI [2]. To second order in
perturbation theory and assuming that the qubit is a TLS, this
diagonalization yields

Hdisp = ω10 + χ

2
σz + ωra

†a + χσza
†a, (3.1)

where the effective qubit frequency is Lamb-shifted by a
quantity χ = g2/�1,0. The last term of this Hamiltonian can
either be seen as a qubit state-dependent pull of the resonator
frequency—which allows for qubit measurement [2]—or as
an ac-Stark shift of the qubit frequency that depends on the
number of photons in the resonator [42].

In addition to the Lamb and ac-Stark shifts of the qubit
frequency, the qubit’s coupling to the driven resonator leads
to additional sources of relaxation and dephasing. Among
these are Purcell relaxation [8], in which the qubit relaxes
through the resonator’s photon loss channel, dressed dephasing
[23,43,44], in which pure dephasing of the dressed qubit-
resonator states leads to effective relaxation and heating of
the qubit, and measurement-induced dephasing [27,28,42],
which is the unavoidable dephasing caused by acquisition of
information about a quantum system. For a linear resonator
and in a dispersive measurement regime, it is shown in
Refs. [27,28] that the measurement-induced dephasing rate
is given by

�ϕm = κD2

2
∝ κ

2
n̄, (3.2)

where D = |α1 − α0| is the distinguishability of two pointer
states of the resonator and n̄ is the average number of photons
inside the resonator. Under resonator driving, the pointer state
αi is the coherent state |αi〉 that represents the resonator’s field

-4

0

-4 0 4

Im
α

Re α

|α 0|α 1
D = |α 1 - α 0 |

FIG. 2. (Color online) Phase space representation of the pointer
states α0 (full blue circle) and α1 (red dashed circle) given by
Eq. (3.3). Parameters are χ/2π = 4MHz, κ/2π = 10 MHz, ωp = ωr ,
and εp/2π = 30 MHz.

if the qubit is in the state |i〉. For a linear resonator and a two-
level system described by the dispersive Hamiltonian Eq. (3.1)
with a single added drive of amplitude εp and frequency ωp,
these coherent states are given by

α1/0 = iεp

−i(ωr − ωp ± χ ) − κ/2
(3.3)

and are represented in phase space on Fig. 2 for a resonant
drive.

The distance D between these pointer states in phase space
depends on the cavity pull χ and, for a dispersive measurement
with a linear resonator, increases with the number of photons
or equivalently with the strength of the measurement drive.
It is further shown in Ref. [27] that, in the linear case,
the measurement-induced dephasing rate reaches the smallest
value permitted by quantum mechanics. In other words, it
saturates the inequality

�ϕm � �meas.

2
, (3.4)

where �meas. is the measurement rate [45], corresponding to
the rate at which information is gained on the system being
measured. One of the questions that we will try to answer in
this paper is whether or not this inequality can be saturated
when using a nonlinear resonator for homodyne dispersive
measurement of the qubit.

IV. FEATURES SPECIFIC TO NONLINEAR CIRCUIT QED

Depending on the amplitude εd and frequency ωd of the
drive, the response of a Kerr nonlinear resonator can be
either mono- or bi-valuated. The stability diagram describing
this behavior can be parametrized by the reduced detuning
frequency � ≡ 2(ωr − ωd )/κ and by the drive amplitude εd .
If the reduced detuning is smaller than—but close to—a
critical value �C = √

3, the nonlinear resonator can be used
as a low-noise parametric amplifier [17]. This has been used
recently to amplify microwave signals at the single photon
level [18]. For �/�C > 1, the stability diagram, illustrated
in Fig. 3(b), shows two bistability thresholds [46]. Below the
first one (dashed green line), a low (L) amplitude response
[see Fig. 3(a)] of the resonator is observed. Above the second
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FIG. 3. (Color online) (a) Amplitude of the resonator internal
field (arbitrary units) in response to a drive of reduced frequency
� = 2(ωr − ωd )/κ (�C = √

3) for increasing drive amplitudes εd .
The horizontal lines indicate regions for which linear response theory
would (full green lines, check marks) and would not (dashed red lines,
X marks) be valid for modeling a qubit-resonator system. (b) Stability
diagram of the resonator (see text for explanations). As discussed in
Sec. VI A, the vertical dashed lines represent the two operating points
studied in this paper.

one (full red line), one rather observes a high (H ) amplitude
response. Between the two thresholds, both L and H are
stable. Because of the coupling to the qubit, this stability
diagram depends on the qubit state. This dependence allows the
nonlinear resonators to be used as a sample-and-hold detector
as has been demonstrated in Refs. [13,15,47].

Before going forward with the theory, we want to highlight
two peculiarities of circuit QED with a nonlinear resonator
that are often overlooked. These two aspects—the detuning of
the readout drive from the resonator frequency and the limits
of the linear response theory—as well as their impact on the
theory are discussed further in the following subsections.

A. Detuned measurement drive

Both in usual low power dispersive measurement of a
TLS [2] and the more recent high power avalanche readout
[48–50], measurement with a linear resonator is done with
a drive at or very close to the resonator frequency ωr .
On the contrary, measurement with a nonlinear resonator is
always done with a drive source significantly detuned from
ωr [13,15,47,51]. As can be seen in Fig. 3, this detuning is
required to bias the system either in the region of highest
parametric gain or in the bistability region.

Because of the Jaynes-Cummings interaction, the drive
on the resonator also acts on the qubit. Since the cavity is
acting as a filter, the effective drive amplitude as seen by the
qubit is expected to scale as 1/(ωr − ωd ). Photons entering
the cavity because of this drive will cause an ac-Stark shift
of the qubit χ〈a†a〉. The shift per photon χ should depend
on the drive frequency. This is, however, not the case for
the usual expressions for a TLS, where χ = χ0 [2], or for
a MLS, where χ = 2χ0 − χ1 [6], with χi ≡ g2

i /�i+1,i =
g2

i /(ωi+1,i − ωr ). Indeed, these expressions scale with the
inverse of the qubit-resonator detuning. One would rather

expect to find χi ≡ g2
i /(ωi+1,i − ωd ) since the drive photons

are at frequency ωd . While a relative change of a few percent
on �1,0 yields the same relative change on χ for a two-level
system, the effect can be twice as big for a MLS because of
the reduced value of χ . To obtain quantitative agreement with
the results of Ref. [16], we obtain below an expression for the
ac-Stark that contains the expected frequencies.

B. Limits to the validity of linear response in circuit QED

As stated before, Kerr oscillators have been used exper-
imentally as parametric amplifiers for small signals. They
have also been extensively studied theoretically. As examples,
Yurke and Buks have studied their performance and calculated
their gain [20], while Laflamme and Clerk have shown that
these amplifiers are not quantum limited in the sense of
Eq. (3.4) for a qubit measurement [22]. Moreover, these last
authors show that the quantum limit can be reached if one
makes use of correlations between the resonator and the system
coupled to it.

These two results were, however, obtained in the limit
of linear response theory. In this limit, one finds the driven
resonator’s stationary state ᾱ without the coupling to the qubit
and then expands the solution, including the qubit around the
stationary solution α ≈ ᾱ + δα. For a qubit measurement, the
signal that is amplified by the resonator takes the form of a
pull ±χ of the resonator frequency, which in turn depends on
the qubit state as expressed in Eq. (3.1). For a linear resonator
in the dispersive regime, the αi’s given by Eq. (3.3) can be
rewritten as

α1/0 = ᾱ

(
1 + ±iχ

−i(ωr − ωp ± χ ) − κ/2

)
,

≈ ᾱ

(
1 + ±iχ

−i(ωr − ωp) − κ/2

)
, (4.1)

where the linear response expressed by the second line holds
if |i(ωr − ωp) + κ/2| � |χ |. Therefore, the validity of linear
response in this linear dispersive case is not affected by the
driving strength but is rather determined by the ratio 2χ/κ

� 1.
This analysis, however, does not hold for a nonlinear

resonator. Indeed, in order for linear response theory to stay
valid with a nonlinear resonator, α must change linearly with
the pulled frequency—or equivalently with the drive-resonator
detuning—over a frequency range 2χ . While for a linear
resonator, it has been shown [28] that the optimal SNR is
obtained for 2χ = κ , the improved measurement efficiency
with a nonlinear resonator allows for smaller cavity pulls.
Taking χ = 0.2κ as a typical value of the cavity pull translates
into a range of �/�C ∼ 0.5 over which the signal must
be linear in frequency for the linear response to stay valid.
This range is illustrated on Fig. 3(a) with the horizontal
lines. The full green lines represent regimes for which linear
response would be a good approximation, while dashed red
lines represent regimes for which the response is not linear
over the appropriate range. We argue that the linear response
approximation will break down as soon as the slope of the
response—and hence the gain of the amplifier—becomes
significant.
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In the following section, we derive a theory that goes further
than linear response theory using the polaron transformation
approach of Ref. [27].

V. REDUCED QUBIT MODEL

In this section, we derive a reduced qubit model that
captures the ac-Stark and Lamb shift of the qubit transition
frequencies as well as measurement-induced dephasing. This
is done by performing unitary transformations on the master
equation, Eq. (2.6). These transformations have two objectives.
First, transforming the system into its eigenbasis in which
the physics is easier to understand. Second, eliminating the
resonator to obtain a master equation for the qubit alone.

In order to reach these objectives, many transformations
have been used in the literature. The dispersive transformation
[24,43] (here generalized for a MLS)

D = exp

[
M−2∑
i=0

λia
†�i,i+1 − λ∗

i a�i+1,i

]
, (5.1)

where λi = gi/(ωi+1,i − ωr ), diagonalizes the Jaynes-
Cummings Hamiltonian and reveals the Lamb and ac-Stark
shifts. This transformation, however, only knows about pho-
tons that are at the resonator frequency ωr and fails to correctly
model the measurement drive-resonator frequency detuning as
discussed in Sec. IV A.

Another useful transformation is the displacement
operator [52],

D(α) = exp[αa† − α∗a], (5.2)

which displaces a coherent state |−α〉 of a resonator to the
ground state |0〉. In operator representation, it corresponds
to the change a → a + α, where α represents the classical
average field and a its quantum fluctuations. Doing this
transformation before the dispersive transformation, as was
done for example in Ref. [38], yields the correct qubit-drive
detuning in the ac-Stark shift. The ac-Stark shift then depends
on the mean field amplitude α and the ac-Stark shift per photon
depends on the drive-qubit frequency. However, doing this
transformation in the context of a nonlinear resonator is akin
to doing a linear response theory. Indeed, it is the same as
assuming that the intraresonator field is |α〉 and then look at
all further perturbation, such as the cavity-pull, with respect
to this mean field value. This will be discussed further in
Sec. VI C.

A third transformation that was used in Ref. [27] to
calculate the measurement-induced dephasing rate, as well as
in Ref. [26] to study a qubit coupled to a mechanical resonator
beyond the rotating wave approximation (RWA), is the polaron
transformation [25] (here generalized for a MLS):

P =
M−1∑
i=0

�i,iD(αi). (5.3)

This corresponds to a displacement transformation that is
conditional on the qubit state. It allows for different cavity
states |αi〉 for each qubit state |i〉, which makes it possible to
go beyond the linear response approximation. It is important
to note that the field amplitudes αi are free parameters in this

transformation. In practice, these amplitudes will be chosen
to cancel specific terms in the transformed Hamiltonian.
Moreover, and as will become clear below, these different
αi’s will be independent solutions of qubit-state-dependent
nonlinear equations and not expansions around a mean solution
ᾱ of a single mean nonlinear equation.

In the following subsections, we perform three transforma-
tions in order to approximately diagonalize the Hamiltonian
and transform the full master equation, Eq. (2.6) to a reduced
qubit master equation containing all the relevant physics
needed to account the low power spectroscopy of a qubit
coupled to a nonlinear resonator driven by an external field.

A. Polaron frame

While the polaron transformation can be performed exactly
on terms that are diagonal in the qubit subspace, applying
it on nondiagonal terms unfortunately yields complicated
expressions. For example, applying it on a qubit ladder
operator σ− yields

P†σ−P = σ−D(α1 − α0)e−iIm[α∗
1α0], (5.4)

which, through the displacement operator D, contains all
powers of a and a†. For this reason, the polaron transformation
was used in Refs. [23,27,43] after doing the dispersive
transformation, which eliminates the off-diagonal qubit op-
erators. In this paper, we instead apply it before the dis-
persive transformation, assume that |α1 − α0| � 1, and take
as a simplification P†σ−P ≈ σ−. The small distinguishability
approximation |α1 − α0| < 1 will be made throughout this
calculation and will limit the range of validity of the theory in
a way which will be discussed later.

The application of the polaron transformation on the master
equation [Eq. (2.6)] is presented in Appendix A. Following
this appendix, we use the notation H ′

i to represent a part of
the Hamiltonian in this first transformed frame that contains i

resonator ladder operators a(†). First, for i = 0 corresponding
to the qubit-only Hamiltonian we find

H ′
0 = �ω +

M−2∑
i=0

gi[�
∗
α�i,i+1 + �i+1,i�α]

+ωr |�α|2 − Im[�α�̇∗
α] + K

2
|�α|4 + K ′

3
|�α|6

+
∑

d

[εde
−iωd t�∗

α + H.c.], (5.5)

where �α is defined according to Eq. (2.3). In this
Hamiltonian, the second term of the first line acts as drives on
the qubit at the frequencies contained in the time dependence
of α. The last two lines will be partly canceled below by the
choice of α given in Eq. (5.19) and we will neglect the small
remaining parts.

We also obtain the qubit-resonator Hamiltonian, limited to
terms with one resonator ladder operator,

H ′
1 = G′a† + G′†a +

M−2∑
i=0

gi(a
† + a)(�i,i+1 + �i+1,i), (5.6)
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where

G′ ≡
(

ωr − i
κ

2

)
�α + (K − iκNL)|�α|2�α

+K ′|�α|4�α +
∑

d

εde
−iωd t − i�̇α. (5.7)

We will see below that the two first terms of H ′
1 can be

canceled by a proper choice of �α . The last term will yield
the Lamb shift of the qubit frequencies once the dispersive
transformation is done.

Finally, we find for the Hamiltonian containing terms with
two resonator ladder operators

H ′
2 = ω′

r (α)a†a + (ϒa†2 + ϒ∗a2), (5.8)

where

ω′
r (α) ≡ ωr + 2K|�α|2 + 3K ′|�α|4, (5.9a)

ϒ ≡
(

K − iκNL

2
+ K ′|�α|2

)
�2

α. (5.9b)

With |�α|2 = ∑M−1
i=0 |αi |2�i,i corresponding to the number

of photons associated to the different qubit states, we see
from the expression for ω′

r (α) that the resonator frequency
is changed by the nonlinearity as expected. Moreover, the last
term of Eq. (5.8) will squeeze the resonator field. This will be
studied elsewhere [53], and, for the scope of this paper, we
will consider squeezing to be negligible.

Having transformed the Hamiltonian, we now apply the
polaron transformation to the dissipative parts of the master
equation, Eq. (2.6). We note that one could alternatively apply
the transformations on the system-bath Hamiltonians before
deriving the master equation. In this way, it would be pos-
sible to relax the white-noise approximation [23], something
we will not focus on here. Applying the transformation, we
arrive at the master equation of the system in the polaron
frame

ρ̇ ′ = −i[H ′
0 + H ′

1 + H ′
2,ρ

′] + κD[a]ρ ′ + κNLD[a2]ρ ′

+ γ

M−2∑
i=0

(
gi

g0

)2

D[�i,i+1]ρ ′ + 2γϕD [�ε] ρ ′

+ κD[�α]ρ ′ + κNLD
[
�2

α

]
ρ ′ + 4κNLD[a�α]ρ ′.

(5.10)

When obtaining the dissipative terms, we have neglected non-
Linbladian terms of the form a[ρ ′,�∗

α] under the assumption
that in the polaron frame, the resonator is in, or close to, its
ground state (see Appendix A and Ref. [27]). In this equation,
the two first lines are the Hamiltonian part as well as the
unchanged parts of the dissipative terms. The last line contains
measurement-induced dephasing through the single-photon
(first term) and two-photon (second term) loss decay channel,
as well as some additional resonator decay (last term).

In this polaron frame, we end up with a resonator whose
frequency is shifted by the nonlinearity and the amplitude
of the classical fields αi . This resonator is driven with an
adjustable strength G, which could be set to zero by a proper
choice of αi . It is important to note that we did not make that
choice yet because, if we did, we would have αi = αj and,
therefore, would lose all dependence of the field amplitudes

αi over the qubit state. The choice of the value of the qubit-
state-dependent fields αi will be made only after moving, in
the next subsection, to what we call the classical dispersive
frame. Finally, in the polaron frame, the qubit is driven off-
resonantly at frequencies ωd and quasiresonantly at frequency
ωs with amplitudes αi,d and αi,s . As we will now show, the
off-resonant drives will yield the correct ac-Stark shifts of the
qubit frequencies.

B. Classical dispersive frame

We now focus on the qubit Hamiltonian Eq. (5.5). Since
�α has a time-dependence involving the drive frequencies, this
Hamiltonian is that of a qubit driven with multiple direct drives.
We have not yet computed the amplitude of the fields yet,
and we will do so now taking α = ∑

i αi = ∑
d,i αi,de

−iωd t +
αi,se

−iωs t . This choice assumes that the multiple drives are
spread out enough in frequency such that one drive does not
contribute significantly to the field oscillating at another drive’s
frequency. We therefore take

H ′
0 ≈ �ω +

M−2∑
i=0

∑
d

giαi,de
−iωd t�i+1,i + H.c.

+
M−2∑
i=0

giαi,se
−iωs t�i+1,i + H.c.. (5.11)

Transitions |i〉 ↔ |i + 1〉 are then driven by an off-resonant
drive with amplitude giαi,d and frequency ωd , as well as by
a quasiresonant drive with amplitude giαi,s and frequency
ωs . Focusing for now on the drives ωd �= ωs , the first line
of this Hamiltonian can be approximately diagonalized with
an analog of the dispersive transformation Eq. (5.1)

DC = exp

[
M−2∑
i=0

ξ ∗
i �i,i+1 − ξi�i+1,i

]
, (5.12)

where ξi is a classical analog of the operator λia
†. Because

of this analogy, we will refer to this as the classical dispersive
transformation. This transformation is performed on the master
equation, Eq. (5.10), in Appendix B, where we take

ξi =
∑

d

ξi,de
−iωd t , (5.13)

with ξi,d = �d
i αi,d .

In the spirit of the dispersive transformation, DC assumes
an off-resonant driving and therefore cannot be applied
to transform the spectroscopy drive s. When doing the
transformation, we drop time-dependent terms involving two
different drive frequencies ωd1 ± ωd2 under the rotating wave
approximation. We also assume that for the purpose of getting
the qubit transition frequencies, αi,d = α0,d . This is the same
as taking |αi − αi+1| to be small. Essentially, we assume that
the difference in the pointer states is not important to describe
the value of the qubit transition frequencies but is important
to describe their widths. In other words, we say that the mean
transition frequency depends on the mean cavity field, which is
approximately α0,d at low spectroscopy power (for the qubit is
mostly in its ground state), while the width of the transition fre-
quencies depend on the deviation of the cavity field from α0,d .
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Performing the above transformation on the qubit Hamil-
tonian H ′

0 to fourth order in perturbation theory together with
the simplifications just outlined, we find

H ′′
0 =

M−1∑
i=0

ω′′
i �i,i +

M−2∑
i=0

giαi,se
−iωs t�i+1,i + H.c., (5.14)

where

ω′′
i = ωi +

∑
d

Sd
i |αd |2 + 1

4

∑
d

Kd
i |αd |4, (5.15)

are the ac-Stark shifted qubit frequencies and

Sd
i ≡ −(

Xd
i − Xd

i−1

)
,

Kd
i ≡ −4Sd

i

(∣∣�d
i

∣∣2 + ∣∣�d
i−1

∣∣2)
− (

3Xd
i+1

∣∣�d
i

∣∣2 − Xd
i

∣∣�d
i+1

∣∣2)
+ (

3Xd
i−2

∣∣�d
i−1

∣∣2 − Xd
i−1

∣∣�d
i−2

∣∣2)
, (5.16)

are the quadratic and quartic ac-Stark shift coefficients with

�d
i ≡ −gi

ωi+1 − ωi − ωd

,

Xd
i ≡ −gi�

d
i = g2

i

ωi+1 − ωi − ωd

. (5.17)

We note that gi = 0 for all i /∈ [0,M − 2] in the initial model
such that terms with a negative index or an index above
M − 2 on the right-hand side of the equations above vanish.
Comparing these expressions with Eqs. 3(a) and 3(b) of
Ref. [49], we highlight a few differences. First, bothSd

i andKd
i

now depend on the drive frequency ωd instead of the resonator
frequency ωr . As explained in Sec. IV A, this follows from
considering that the driving photons can be at a frequency
significantly detuned from ωr . Actually, Eqs. (5.16) and (5.17)
also hold for linear cQED, where the measurement drive is
in practice chosen to be quasiresonant with ωr . Next, the
equation for Sd

i does not involve terms of higher order than
g2. In Ref [49], these higher-order terms came from choosing
a specific order for ladder operators when computing Ki (i.e.,
a†a†aa = a†aa†a + a†a). Here, the field is classical and there
is no such ordering choice to be made. Finally, in Ref. [49], a
second-order coupling caused by two-photon transitions was
diagonalized, yielding fourth-order corrections. This second-
order coupling is, however, only significant in the straddling
regime where the resonator frequency is between two qubit
transition frequencies [6]. Since we are not considering this
regime here, this two-photon transition was neglected.

The next step is to apply the transformation DC on H ′
1 to

find

H ′′
1 ≈

M−2∑
i=0

gi(a
† + a)(�i,i+1 + �i+1,i)

+ (G′′a† + G′′†a) + HSB, (5.18)

where G′′ can be found in Eq. (B7). The Hamiltonian HSB,
whose definition can be found in Eq. (B8), corresponds to
red and blue sideband transitions. This Hamiltonian is the
multilevel equivalent of the one obtained in Eq. (B10) of

Ref. [38] for a two-level system driven by two detuned drives
and experimentally studied in Ref. [54]. The drive strength G′′
can be set to zero with a proper choice of the fields αi , yielding
an undriven resonator in this frame. Assuming that |ωd1 − ωd2 |
is sufficiently large to neglect time-dependent cross terms,
choosing G′′ = 0 implies

0 =
(

ωr − ωd − i
κ

2

)
αi,d + (K − iκNL)|αi |2αi,d

+K ′|αi |4αi,d + εd +
(
Sd

i + 1

3!
Kd

i |αi |2
)

αi,d , (5.19)

for each qubit-detuned drive and

0 =
(

ωr − ωs − i
κ

2

)
αi,s + (K − iκNL)|αi |2αi,s

+K ′|αi |4αi,s + εs, (5.20)

for the spectroscopy drive. In writing these expressions,
we have again assumed that, even though αi �= αj , these
amplitudes are close enough to replace one with the other
in order to uncouple the equations for i �= j .

We stress that because Eq. (5.19) contains the qubit-state-
dependent cavity pull, the solutions αi,d obtained here go
beyond the linear response theory for the response of the field
to a change of the qubit state. As explained briefly in Sec. IV B
and as we will detail further later, a linear response theory
would instead have solutions of the form αi = ᾱ + f (Si),
where ᾱ would be the solution of Eq. (5.19) withSd

i = Kd
i = 0

and f (Si) would be some linear function of the cavity pull.
We note that the equations for two different drives d1 �= d2

are coupled through the total field |αi |. However, in the interest
of reproducing the results of Ref. [16], from this point on we
will consider only a single qubit-detuned drive, which we will
label d = p (the pump drive) in addition to the spectroscopy
drive s. This implies that only the first line of H ′′

1 will remain.
For the purpose of calculating αs , we will also assume that
the spectroscopy amplitude εs is small enough so that |αi,p| �
|αi,s | and that αi,p ∼ αj,p, such that we can replace αi by αi,p ≈
αp in the equation for αi,s . Finally, since in practice K ′ �
K � g, performing the classical dispersive transformation on
H ′

2 would yield corrections smaller than those that we have
kept so far. We therefore neglect those and take H ′′

2 = H ′
2.

Finally, applying the transformation DC on the dissipation
yields the master equation in this doubly transformed frame,

ρ̇ ′′ = −i[H ′′
s ,ρ ′′] + κ ′′D[a]ρ ′′ + 2γϕD [�ε] ρ ′′

+
M−2∑
i=0

γ ′′
↓,iD

[
�i,i+1

]
ρ ′′ +

M−2∑
i=0

γ ′′
↑,iD

[
�i+1,i

]
ρ ′′

+ κD [�α] ρ ′′ + κNLD
[
�2

α

]
ρ ′′

+ γD
[

M−1∑
i=0

giξi − gi−1ξi−1

g0
�i,i

]
ρ ′′, (5.21)

where

κ ′′ = κ + 4κNL|αp|2, (5.22a)

γ ′′
↓,i ≡ γ

(
gi

g0

)2

+ γ ′′
DD,i , (5.22b)
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γ ′′
↑,i ≡ γ ′′

DD,i , (5.22c)

γ ′′
DD,i ≡ [2γϕ|εi+1 − εi |2

+ κ|αi+1,p − αi,p|2]�p

i

2|αi,p|2, (5.22d)

and

H ′′
s = H ′′

0 +
M−2∑
i=0

gi(a
†�i,i+1 + a�i+1,i) + H ′′

2 . (5.23)

These two transformations result in an ac-Stark-shifted
qubit that is driven with a spectroscopy drive of amplitude αs,i

and frequency ωs , coupled with a Jaynes-Cummings coupling
to an undriven resonator whose frequency is shifted by the
nonlinearity. This resonator sees additional relaxation κ ′′ > κ

due to the two-photon-loss relaxation channel. The qubit sees
its intrinsic dephasing at a rate γϕ , as well as relaxation
at rate γ ′′

↓,i and heating at rate γ ′′
↑,i . These relaxation and

heating rates are modified by dressed-dephasing [43] (first term
of γDD,i), but also dressed measurement-induced dephasing
(second term). These rates were obtained assuming white
noise for all the dissipation channels. If the noise is not white,
the rate γDD,i will depend on the noise spectra of the qubit
dephasing and resonator relaxation channels at ±(ωi+1,i − ωd )
[23]. In addition to intrinsic dephasing, the last two lines of
Eq. (5.21) contain three other sources of dephasing. The first
term will yield measurement-induced dephasing [28], while
the second and the third represent, respectively, measurement-
induced dephasing through the resonator two-photon loss
decay channel and through the emission of an excitation by the
qubit in its environment. While not measurable, this excitation
in principle carries information about the qubit state and thus
causes dephasing.

C. Quantum dispersive frame and reduced master equation

The final effect that we would like our model to capture
is the Lamb shift of the qubit frequencies due to vacuum
fluctuations of the resonator. To obtain this shift, we perform
the dispersive transformation D of Eq. (5.1) on the master
equation, Eq. (5.21). Doing this while neglecting the photon
population that is almost zero in the polaron frame [see
discussion below Eq. (5.10)] yields the same master equation,
but with the transformed Hamiltonian H ′′′

s = H ′′′
0 + H ′′′

2 with

H ′′′
0 = �ω′′′ +

M−2∑
i=0

giαi,se
−iωs t�i+1,i + H.c., (5.24a)

H ′′′
2 = [ω′

r (α) + �S(α)]a
†a + ϒa†2 + ϒ∗a2 (5.24b)

and where the relaxation rate

γ ′′′
↓,i = γ ′′

↓,i + λ2
i (α)κ ′′ (5.25)

has an added Purcell relaxation rate. The new Lamb-shifted
frequencies ωi

′′′ are given by

ω′′′
i (α) ≡ ω′′

i (α) + Li(α), (5.26a)

Li(α) ≡ χi−1(α), (5.26b)

Si(α) ≡ −[χi(α) − χi−1(α)], (5.26c)

χi(α) ≡ −giλi(α), (5.26d)

λi(α) ≡ −gi

ω′′
i+1(α) − ω′′

i (α) − ω′
r (α)

. (5.26e)

Since the resonator and qubit frequencies are pulled by
the classical field due, respectively, to the nonlinearity and
the ac-Stark shift, the Lamb shift depends on these pulled
frequencies, and therefore on the amplitude of the cavity field.

Finally, projecting the qubit onto its {|0〉 , |1〉} subspace and
tracing out the resonator degrees of freedom yields a reduced
qubit master equation:

ρ̇q = −i[H,ρq ] + γ ′′′
↓,0D[σ−]ρq + γ ′′′

↑,0D[σ+]ρq

+ γ ′′′
ϕ

2
D[σz]ρq. (5.27)

In this expression, we have defined

H = ω′′′
10

2
σz + g0(α0,se

−iωs tσ− + H.c.), (5.28)

where ω′′′
10 ≡ ω′′′

1 (α) − ω′′′
0 (α), and

γ ′′′
ϕ = γϕ + �ϕm, (5.29)

where

�ϕm ≡ κD2

2
+ κNL|α2

1 − α2
0 |2

2

+
∗∑
d

γ
∣∣2Xd

0 α0,d − Xd
1 α1,d

∣∣2

2g2
0

, (5.30)

and D ≡ |α1 − α0| is the distance between the pointer states.
In the equation for the effective dephasing rate �ϕm, we see
the measurement-induced dephasings due to single-photon
cavity losses (second term), to two-photon cavity losses (third
term), and to the information carried out by the excitation
emitted when the qubit relaxes. While these three channels
leak information about the qubit state, only the single-photon
cavity loss channel is usually monitored. Moreover, since in
practice κ � γX2/g2

0,κNL, only this last channel will convey
any significant amount of information and contribute to qubit
dephasing.

VI. BACKACTION ON THE QUBIT

Following the reduced qubit model derived in Sec. V, here
we revisit the results presented in Sec. III for the dispersive
regime of linear circuit QED. In this section, we compare
the theoretical model to experimental data and numerical
simulations. The parameters used throughout are given in
the caption of Fig. 4. These parameters were adjusted to fit
independent spectroscopic and time-domain measurements of
the device used in Ref. [16]. This device was composed of a
transmon qubit [6] coupled to a coplanar waveguide resonator
made nonlinear by a Josephson junction embedded in its
central conductor.

In Sec. VI A, we first present the experiment already
described in Ref. [16]. We then look more precisely at the
Lamb and ac-Stark shifts of the qubit transition frequency ω1,0

in Sec. VI B and at its linewidth in Sec. VI C.
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FIG. 4. (Color online) Experimental (cf., Ref. [16]) and analytical
qubit excited-state |1〉 population for the two operating points
indicated in the legend of Fig. 3. The qubit is a transmon with bare pa-
rameters (ω1,0,ω2,1,γ,γϕ)/2π = (5720,5421.6,0.22,0.25) MHz. The
resonator’s bare parameters are (ωr,K,K ′,κ,κNL)/2π = (6453.5, −
0.625, − 0.00125,9.6,0) MHz, and the qubit-resonator couplings are
(g0,g1)/2π = (42.4,58.4) MHz. These parameters were chosen to
fit those of Ref. [16]. Couplings to higher transitions as well as
higher transition frequencies can be computed from the transmon
Hamiltonian [6]. The experimental attenuation required to link the
experimental power in dB to the theoretical parameter εp was
calibrated in Ref. [16]. Top: experimental spectroscopy results from
Ref. [16]. Bottom: analytical stationary solution Eq. (6.1). Left
(Right): pump frequency ωp/2π = 6430 (6450) MHz, corresponding
to �/�C = 3.1 (0.7). These points are identified by vertical lines
on Fig. 3. The amplitude εs/2π = 3 MHz was chosen to fit the
experimental power broadening of the qubit lines.

A. Experiment and qubit spectra

In Ref. [16], we presented spectroscopic measurements of
a transmon qubit coupled to a driven nonlinear resonator.
The qubit was probed through the resonator with a drive
of amplitude εs and frequency ωs ∼ ω1,0. Meanwhile, that
resonator was pumped with a drive of amplitude εp and
frequency ωp ∼ ωr . The pump field was applied long before
the qubit probe was turned on, enabling the resonator to
reach its stationary state. Two detunings between the pump
frequency ωp and the resonator frequency ωr were studied in
detail. This was done in order to explore both the parametric
amplification and the bifurcation regimes. Consequently, two
biasing points ωp/2π = (6430,6450) MHz, corresponding to
�/�C = (3.1,0.7), are presented below. Here, we redefined
� with respect to the effective resonator frequency as pulled
by the qubit in the ground state rather than the bare resonator
frequency. These two biasing points are illustrated by the two
vertical lines in the stability diagram of Fig. 3(b). After probing
the qubit, a bifurcation measurement was performed in order
to determine the probability P (|1〉) that the qubit was excited
by the probe drive.

The resulting experimental spectra are presented in the top
panels of Fig. 4 for �/�C = 3.1 (top left) and �/�C = 0.7
(top right) as a function of the pump drive amplitude. The pump
amplitude (horizontal axis) is converted to a logarithmic scale
to match the experimental power in decibels, up to a constant
offset that was calibrated in Ref. [16]. In the bifurcation regime
(top left, �/�C = 3.1), we clearly see the jump in the qubit
frequency associated with the jump from the low-amplitude to
the high-amplitude dynamical states of the resonator. We also
see that the line remains narrow and actually tends to narrow
down at higher powers. In the parametric amplification regime
(top right), we see a more monotonous shift of the qubit line
with the measurement power with an important broadening
around 20 log10(εp/2π ) = 22.

These spectra are then compared to the analytical steady-
state solution of the reduced qubit master equation, Eq. (5.27)
in the bottom panels. The exact analytical solution of this
equation yields1

P (|1〉) = γ ′′′
↑,0

(
γ 2

2 + δ2
) + 2γ2|g0α0,s |2

(γ ′′′
↑,0 + γ ′′′

↓,0)
(
γ 2

2 + δ2
) + 4γ2|g0α0,s |2

, (6.1)

where

γ2 ≡ γ ′′′
ϕ + γ ′′′

↓,0 + γ ′′′
↑,0

2
, (6.2)

and δ ≡ ω′′′
1,0 − ωs .

When comparing the experimental to the analytical spectra,
we notice small deviations between the background level
as well as the amplitude of the spectroscopy lines. Aside
from the limits of our model, three effects can cause these
deviations. First, there is experimental thermal noise—which
should not exceed 50 mK—that is not taken into account in
the theory and may yield a minor thermal qubit excited-state
population. Second, the experimental excited-state population
is extracted from the probability of bifurcation, which can
yield an error of at most 0.05 in the estimated population.
Third, the correspondence between the theoretical amplitude
εs of the spectroscopy drive and the experimental amplitude
could not be calibrated as precisely as the calibration provided
by the ac-Stark shift for the pump drive [16]. Overlooking
these deviations, other experimental features such as the spec-
troscopy lines’ position and width are qualitatively reproduced
by our analytical spectrum. In the following sections, we
quantitatively compare these to our model.

B. Lamb and ac-Stark shifted qubit frequency

The experimental spectra presented in Fig. 4 were fitted
using Lorentzian and the peak positions and widths were
extracted from those fits, yielding the qubit transition fre-
quency and dephasing rate. We also numerically integrated

1We note that for Figs. 4, 5, and 6, we set the dressed-dephasing
rate γ ′′

DD,i = 0 in the analytical model. This is done because we
have derived the reduced model assuming white noise, whereas it is
known that the rates can greatly depend on the noise spectrum [23].
Considering white noise and not assuming γ ′′

DD,i = 0 would result in
a difference of background population at the threshold of bifurcation,
which is not observed experimentally.
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FIG. 5. (Color online) Lamb and ac-Stark shifted qubit frequency
as a function of the drive strength εp for the two operating points
indicated in the legend of Fig. 3 and used in Ref. [16]. Parameters
are the same as those described in the legend of Fig 4. Points
are experimentally (black circles) and numerically (orange squares)
extracted qubit transition frequency ω1,0. Lines are analytically
computed ω′′′

1 − ω′′′
0 with the complete Eq. (5.26a) (full black lines),

when setting Kp

i = 0 (dotted red lines) or when taking ωp = ωr in
Sp

i and Kp

i (dashed green lines).

the multilevel Jaynes-Cummings master equation, Eq. (2.6),
to obtain numerical spectra that were fitted using the same
procedure. The qubit frequency extracted from experimental
(black circles) and numerical (orange squares) spectra is
plotted in Fig. 5 as a function of the pump power for the two
operating points. Numerical simulations and experimental data
almost coincide, suggesting that the initial master equation,
Eq. (2.6), contains all the relevant physics.

We then compare these data points to three versions of the
dispersive approximation. Full black lines correspond to the
complete equation, Eq. (5.26a), dotted red lines correspond
to the second-order approximation for the dispersive shift
(i.e., Kp

i = 0), and dashed green lines correspond to setting
ωp = ωr when calculating Sp

i and Kp

i . Since the parametric
amplification regime (right panel) correspond to a pump drive
very slightly detuned from the resonator frequency, as well as
to a low number of photon (n ∼ 20), all three curves almost
coincide in this regime.

On the other hand, in the bifurcation regime (left panel),
both the pump-resonator detuning and the number of photons
after bifurcation are larger (n ∼ 50), yielding a significant
difference between the three curves above bifurcation. We
see that the assumption ωp = ωr (dashed green lines), which,
as discussed in Sec. IV A, is often made when calculating the
ac-Stark shifts, yields a shift that is too small. This is expected
since assuming ωp = ωr yields a larger qubit-pump detuning,
and correspondingly smaller values of Sp

i and Kp

i . This effect
can also be confirmed at lower power although it is not visible
in these plots. We also see that the second-order approximation
(dotted red lines) yields a dispersive shift that is too large. This
is also expected since the sign of each order in perturbation
theory alternates sign in the dispersive regime and since the
fourth order is contained in the full model.

With this model, the qubit can be used as a tool to
characterize the nonlinear resonator. Indeed, the distance
between the resonator’s low- and high-amplitude states at
the threshold of bifurcation directly depends on the resonator

nonlinearity K and the drive frequency ωp and amplitude εp.
While experimentally ωp is known to a very high precision, the
resonator nonlinearity K can only be estimated to about ±30%
from the design parameters due to its nonlinear dependence
on sample parameters [16]. Moreover, the experimental line
attenuation A between the source and the input of the sample—
which is required to make the correspondance between the
experimental power Pp and the theoretical parameter εp—can
only be estimated up to about 2 dB [16]. Performing a series
of spectroscopic measurements for many pump frequencies
ωp and fitting the extracted qubit frequencies to the model
derived here then makes it possible to extract both K and
A with improved precision. This was done in Ref. [16] and
resulted in an uncertainty of 2.4% for K and 0.2 dB for A; a
tenfold improvement in precision.

C. Qubit linewidth and validity of linear response

We now examine the linewidth of the qubit transition. We
know that, in addition to the intrinsic dephasing rate γ2,int =
γϕ + γ /2, the lines are broadened by measurement-induced
dephasing [28] and by dressed dephasing [43]. In addition,
there is always some power broadening due to the finite
spectroscopy power. Here, we are mostly interested in the
measurement-induced dephasing and how it is modified by the
nonlinear nature of the resonator. The experiments presented
in Ref. [16] and whose results are reproduced here were
therefore carried in a regime where power broadening is small.
Moreover, since there is no dependence of the experimental
background population over the pump power, we assume that
dressed-dephasing is also negligible due to a small amplitude
of dephasing noise at GHz frequencies. The only additional
dephasing source is therefore measurement-induced dephasing
in γ ′′′

ϕ given in Eq. (5.29) and in practice is dominated by the
κ|α1 − α0|2/2 contribution.

We present in Fig. 6 the half-width at half-maximum of the
spectroscopy lines as a function of the pump power for the two
operating points �/�C = 3.1 (a),0.7 (b). Grey circles (orange
squares) are again the widths extracted from experimental
(numerical) data. Full black lines are the analytical widths
γ2/2π given by Eq. (6.2). Dashed green lines are the same
as the full black lines but using linear response theory for the
fields αi,p instead of the solutions of Eq. (5.19). More precisely,
we obtained the dashed green lines taking

αi,p = ᾱ − Sp

i ᾱ(
ωr − ωp − i κ

2

) + 3K|ᾱ|2 , (6.3)

where ᾱ is the solution of Eq. (5.19) with Sp

i = Kp

i = 0.
Finally, we obtained dotted red lines by replacing �ϕm with
the result of Ref. [28] for a linear resonator

�linear
m = κ

2

2
(|α1,p|2 + |α0,p|2)χ2

κ2/4 + χ2 + (ωr − ωp)2
, (6.4)

where χ = Sp

1 − Sp

0 .
The first striking observation is that, contrary to circuit

QED with a linear resonator [42], the linewidth does not
strictly increase with the drive power or equivalently with the
number of photons in the resonator. In fact, in the bifurcation
regime [Fig. 6(a)], the linewidth shows a sharp maximum at
the bifurcation power, whereas in the parametric amplification
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FIG. 6. (Color online) (a) and (b): Qubit line’s half-width at half-
maximum as a function of the drive strength εp for the two operating
points indicated in the legend of Fig. 3 and used in Ref. [16]. Points
are experimentally (gray circles) and numerically (orange squares)
extracted qubit linewidths. Lines are analytical solutions correspond-
ing to γ2, where the fields αi are computed according to the nonlinear
response Eq. (5.19) (full black lines), to linear response Eq. (6.3)
(dashed green lines) and by replacing κ|α1 − α0|2/2 with the linear
resonator result Eq. (6.4) (dotted red lines). (c) and (d): Phase space
representation of the fields α0 (black lines, circles) and α1 (red lines,
squares) as given by the linear (dashed lines, empty symbols) and
nonlinear (full lines, full symbols) response theories. All four symbols
of a given set (1 or 2) correspond to a given pump amplitude εp .

regime, the linewidth shows a smooth maximum at a power
that corresponds to the maximum gain of the amplifier [16].
This is illustrated by the lack of even qualitative agreement
between both experimental and numerical data points and the
result expected for a linear resonator (dotted red line).

Narrowing of the linewidth at high power is predicted both
by the nonlinear (full dark lines) and the linear (dashed green
lines) response theory. However, while both give a qualitative
agreement with experimental and numerical data points, only
the nonlinear response theory gives a quantitative one. In
the bifurcation regime (�/�C = 3.1), the nonlinear response
theory reproduces the experimental behavior with good accu-
racy on the whole range of powers, whereas linear response
predicts bifurcation at too low power and linewidths twice as
large at bifurcation. In the parametric amplification regime
(�/�C = 0.7), only the nonlinear response solution gives
semiquantitative agreement near the maximum linewidth,
while linear response theory predicts a much lower linewidth.
However, even the nonlinear response solution mispredicts
the linewidth when it is above ∼5 MHz. We explain this
by the breakdown of the |α1 − α0| < 1 approximation, which
corresponds to a measurement-induced dephasing rate of about
�ϕm ∼ κ/4π ∼ 5 MHz.

To understand the nonmonotonous behavior of the
linewidth with drive power, we refer to Figs. 6(c) and 6(d),
where we plot the value of the fields α0(1),p as black (red) lines
in the complex plane for the two operating points, for a range
of power εp/2π ∈ [0,150] MHz and for nonlinear (full lines)
and linear (dashed lines) response solutions. We see with these
plots that even though the number of photons increases as the
distance to the origin grows, the distance between the solutions
α1,p and α0,p does not. In fact, the distance D can be as small
at higher power as at low power.

For reference purposes, we also plot two sets of four
points in Figs. 6(c) and 6(d). Each set corresponds to a given
pump amplitude εp, for nonlinear (full symbols) and linear
(empty symbols) theory, and for α0 (black circles) and α1

(red squares). Comparing the points within a given set of four
points, we can see that a larger distance between a circle and
its corresponding square—and hence the larger the gain of the
amplifier—correspond to a larger disagreement between the
linear and nonlinear solutions (distance between a full and a
corresponding empty symbol).

We can compute a range of validity of the linear response
theory by computing the fields αi,p to second order (i.e.,
quadratic response theory). If we define αi,p = ᾱ + α

(1)
i,p +

α
(2)
i,p, where α

(1)
i,p is the second term of equation Eq. (6.3) and

α
(2)
i,p is the next order correction, linear response theory will

be valid if the ratio r = α
(2)
i,p/α

(1)
i,p is small. Since for a qubit

measurement, the signal that is amplified is a frequency shift
S = ±(S1 − S0), we can define a maximal value of S that
allows r to be smaller than a threshold rt in the region of highest
gain. This maximal value Smax, computed using a conservative
value of 10% for the ratio of the quadratic correction over
the linear correction, is plotted in Fig. 7 as a function of the
reduced detuning �/�C . We see that the maximal coupling
for the parameters given in the caption of Fig. 4, typical
for circuit QED, never exceeds about 0.5 MHz. Moreover,
the maximal coupling in fact vanishes when approaching the
critical detuning �C . This maximal coupling is to be compared
with the resonator linewidth κ in order to determine if it is
viable for a qubit measurement. With a realistic criteria of
χ � 0.2 κ to get a good measurement, one therefore needs
either κ/2π ∼ 1 MHz or a smaller nonlinearity K in order for
linear response theory to be valid in this system. The former,
however, implies a longer measurement time, while the latter
implies a smaller gain, both impairing the efficiency of the
measurement. It therefore seems unlikely that linear response
theory will be sufficient to describe any superconducting qubit
readout using a nonlinear resonator until the qubit lifetimes
become long enough for longer measurement time to be viable.

D. Quantum limit to the added noise

Using the results presented in Fig. 6, we can try to
answer the question of whether or not a dispersive homodyne
measurement using a nonlinear resonator can reach the
quantum limit �ϕm = �meas/2, as is the case for a linear
resonator [27]. Indeed, assuming small squeezing, if one were
to make a homodyne measurement using the pump drive, the
measurement rate would be given by �meas = κ|α1 − α0|2 [27].
Since this measurement rate is exactly twice the dominant
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FIG. 7. Maximum dispersive coupling Smax for which the linear
response theory is valid with 10% uncertainty at the region of
maximum gain as a function of the reduced detuning �/�C in the
parametric amplification regime.

part of the measurement-induced dephasing caused by these
same pump photons �ϕm given in Eq. (5.30), we can say that
the quantum limit is reached if the theoretical prediction fits
the experimental linewidth. If the experimental linewidth is
larger than the theoretical prediction, it, however, means that
the limit is missed. Finally, if the experimental linewidth is
smaller than that predicted by the model, it means that one of
the approximation is probably breaking down.

Looking at Fig. 6(b), we reach a different conclusion,
whether we consider linear or nonlinear response. Indeed,
around 20 log10(εp/2π ) ∈ [20,30], the experimental linewidth
is much higher than the prediction from linear response, and
we would therefore conclude that the quantum limit is missed
by the measurement. This is qualitatively the same conclusion
as the one obtained by Laflamme and Clerk [22], also in a
linear response theory. However, we know from Fig. 7, that for
�/�C = 0.7 as in Fig. 6(b), the maximum dispersive coupling
supported by a linear response treatment is Smax/2π ∼ 200
kHz, about four times smaller than the one used here. If we
now compare the nonlinear response model prediction (black
line), we see that it matches the experimental observations on
a much wider range, and we recover the quantum limit in this
range. There is also a regime where the theoretical prediction is
above the experimental observation. This regime corresponds
to a linewidth ∼ κD2/2 � 5 MHz since κ/2π ∼ 10 MHz,
and therefore to D � 1, breaking the small distinguishability
approximation that we have made. Therefore, while our result
shows that the quantum limit can be reached with a nonlinear
resonator, the question remains open in the case of large distin-
guishability or large squeezing where our model breaks down.

VII. CONCLUSION

In summary, we have derived an analytical model to
describe the back-action of a driven nonlinear resonator
on a multilevel qubit. This is done using unitary transfor-
mations, especially polaron [25–27] and dispersive [23,24]
transformations. We obtain a reduced model that contains the
physics of the linear and quadratic ac-Stark shifts as well
as the Lamb shift of the qubit frequencies. The model also
contains dressed-dephasing [23,43,44], Purcell relaxation [8],
and measurement-induced dephasing [27,28,42]. Contrary to
other theoretical models, both qualitative and quantitative

agreements are found for the ac-Stark and Lamb shifted qubit
transition frequencies as well as for the qubit linewidth.

Moreover, the model that we have derived here goes
beyond some assumptions that are frequently made and that
are valid in the case of a driven linear resonator but not
in the nonlinear case. These assumptions are the resonant
driving of the resonator, the linear response of the resonator
field to the qubit signal, and the two-level character of the
qubit. Considering detuned driving of the resonator yields
linear and quadratic ac-Stark shifts that depend on the
qubit-drive frequency detuning rather than the qubit-resonator
frequency detuning and are, therefore, slightly different than
usual dispersive shifts [2]. Going beyond linear response
theory yields measurement-induced dephasing rates that are
qualitatively different from those found with linear response
and that are found to match the experimental and numerical
data in most regimes considered. In particular, we show that
the measurement-induced dephasing rate does not increase
with the measurement power or the number of photons but
rather with the distance between two pointer states α1 and
α0 of the resonator fields. The precise quantitative agreement
between the model and the experiment has also allowed us in
Ref. [16] to characterize the nonlinearity of the resonator and
the attenuation of the transmission line with an accuracy ten
times better than what was otherwise achievable.

We have finally also shown that the results given by linear
response theory are unlikely to apply to any high-fidelity qubit
measurement using a nonlinear resonator. One consequence of
this is to reopen the question of whether or not measurement
with a nonlinear resonator is quantum limited in the amount
of dephasing it causes on a qubit. Indeed, while Laflamme and
Clerk [22] have shown that the quantum limit is missed by
a factor G, the gain of the amplifier, this result was obtained
in a linear response theory and, therefore, is not applicable in
the systems considered here. This question then remains open
and could be answered using a quantum trajectory approach,
as was done before for a linear resonator [27].
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APPENDIX A: POLARON TRANSFORMATION

In this appendix, we give the result of applying the polaron
transformation, Eq. (5.3), on the different parts of the master
equation, Eq. (2.6). The building blocks from which all
operators can be transformed are

a′ = a + �α, (A1a)

�′
i,i+1 = �i,i+1D

†(αi)D(αi+1) ≈ �i,i+1, (A1b)

�′
i,i = �i,i, (A1c)

where we noted the transformed-frame operator O ′ ≡ P†OP.
Using these relations, transforming the Hamiltonian Hr yields
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H ′
r = ωr (a†a + �∗

αa + �αa† + |�α|2) + K

2
[|�α|4 + (2a†|�α|2�α + H.c.) + 4a†a|�α|2 + (a†2

�2
α + H.c.)]

+K ′

3
[|�α|6 + (3a†|�α|4�α + H.c.) + 9a†a|�α|4 + (3a†2|�α|2�2

α + H.c.)], (A2)

where we have dropped terms with more than two resonator
ladder operators. This approximation assumes that |α| � |〈a〉|
in the transformed frame. We will see that with a proper
choice of α, the resonator in the transformed frame is close
to its ground state. Transforming Hq is trivial since it is
diagonal in the qubit subspace and therefore commutes with
the transformation and H ′

q = Hq . Transforming the interaction
Hamiltonian HI yields

H ′
I =

M−2∑
i=0

gi[a
† + a][�i,i+1 + �i+1,i]

+
M−2∑
i=0

gi[�
∗
α�i,i+1 + �i+1,i�α]. (A3)

In obtaining this equation, we assumed that D(αi+1 − αi) ≈ 1
and made a RWA for the second line. Not doing the RWA would
only yield a small Bloch-Siegert shift to the qubit transition
frequencies [55]. However, we choose not to do a RWA on the
first line at this point. This will allow us to get the sidebands
Hamiltonian for a MLS, equivalently to what was done in
Ref. [38] for a TLS. Transforming the drive Hamiltonians Hs

and Hd is also trivial and yields

H ′
d =

∑
d

εde
−iωdt (a† + �∗

α) + H.c., (A4a)

H ′
s = εse

−iωs t (a† + �∗
α) + H.c. (A4b)

Finally, since the transformation P moves the system to a
time-dependent frame, a Hamiltonian,

HP ≡ iṖ†P = (−i�̇αa† + i�̇∗
αa) − Im[�α�̇∗

α], (A5)

must be added to the total Hamiltonian in the transformed
frame.

For the dissipation, we can show that

D[a′]ρ ′ = D[a]ρ ′ − i

[
i

2
�∗

αa + H.c.,ρ ′
]

,

+a[ρ ′,�∗
α] + H.c. (A6)

In this equation, the second term is of Hamiltonian form and
will be added to the Hamiltonian in the transformed frame. It
is worth noting that, if ρ ′ is the ground state of the resonator
in this frame, the last line is equal to zero. For the two-photon
dissipation, we get

D[a′a′]ρ ′ ≈ D
[
�2

α

]
ρ ′ + 4D[a�α]ρ ′

−i

[
i

(
a|�α|2�∗

α + 1

2
�∗

α
2
a2

)
+ H.c.,ρ ′

]
+ (2a�α + a2)

[
ρ ′,�∗2

α

] + H.c., (A7)

where again, the last line is zero if ρ ′ is the ground state of the
system, and the second line is of Hamiltonian form and will be

included in the Hamiltonian in this transformed frame. When
obtaining this result, we assumed again that |α| � |〈a〉| and
neglected any term with more than two ladder operators.

Since the polaron transformation commutes with �ε,
D[�ε] stays the same in the transformed frame. Moreover,
since we assumed that |αi+1 − αi | < 1, we do not transform
the dissipators D[�i,i+1].

APPENDIX B: DISPERSIVE TRANSFORMATIONS

In this appendix, we transform the different parts of
the master equation, Eq. (5.10), according to the classical
dispersive transformation DC given in Eq. (5.12). We note
O ′′ ≡ D†

CO ′DC . To first order in ξ , we get

H ′′
0 ≈ 1

0!
�ω + 1

1!

M−2∑
i=0

ωi+1,i(ξ
∗
i �i,i+1 + ξi�i+1,i)

+ 1

0!

M−2∑
i=0

gi(α
∗
i �i,i+1 + αi�i+1,i) + HDC

, (B1)

where

HDC
≡ iḊCD†

C ≈ 1

1!

M−2∑
i=0

iξ̇ ∗
i �i,i+1 − iξ̇i�i+1,i . (B2)

Assuming the form of Eq. (5.13) for ξi(t), we can compute
ξ̇i(t). Doing this and taking

∗∑
d

[(ωi+1,i − ωd )ξi,d + giαi,d ]e−iωd t = 0, (B3)

or equivalently

ξi,d = −giαi,d

ωi+1,i − ωd

, (B4)

makes the nondiagonal terms in Eq. (B1) vanish. With this
choice, transforming H ′

0 to fourth order in perturbation theory
and assuming large-frequency differences and sums |ωd1 ±
ωd2 | as well as small |αi,d − αi+1,d |, yields the Hamiltonian
H ′′

0 = D†
CH ′

0DC + HDC
given by Eq. (5.14).

In order to transform H ′
1, we need to know how to transform

a diagonal operator,

D†
C�xDC ≈ �x +

M−2∑
i=0

(xi+1 − xi)(ξi�i+1,i + ξ ∗
i �i,i+1),

(B5)

and the off-diagonal operator �− ≡ ∑M−2
i=0 gi�i,i+1,
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D†
C�−DC ≈

M−2∑
i=0

gi�i,i+1 +
∑

d

�Sd �αd
e−iωd t + 1

3!

∑
d

�Kd |�αd
|2�αd

e−iωd t

+ 1

2!

M−2∑
i=0

∑
d1,d2

�
d1
i

[
Sd2

i+1 − Sd2
i

]
[αd1αd2e

−i(ωd1 +ωd2 )t�i+1,i + h.c.]

+ 1

2!

M−2∑
i=0

∑
d1,d2

[
2�

d1
i

( − X
d2
i+1 + X

d2
i − X

d2
i−1

) − gi

(
�

d1
i−1�

d2
i−1 + �

d1
i+1�

d2
i+1

)]
[α∗

d1
αd2e

i(ωd1 −ωd2 )t�i,i+1 + h.c.],

(B6)

where we made the same assumptions as previously and Xd
i , �d

i , Sd
i , and Kd

i are defined by Eqs. (5.16) and (5.17). These two
equations can be combined and used to transform H ′

1, yielding the result of Eq. (5.18) with

G′′ = G′ +
∑

d

(
�Sd + 1

3!
�Kd |�α|2

)
�αd

e−iωd t , (B7)

and

HSB ≈
M−2∑
i=0

∑
d1,d2

{
�

d1
i

[
Sd2

i+1 − Sd2
i

][
αd1αd2e

−i(ωd1 +ωd2 )t�i+1,i + H.c.
]}a†

2!

+
M−2∑
i=0

∑
d1,d2

{[
2�

d1
i

( − X
d2
i+1 + X

d2
i − X

d2
i−1

) − gi

(
�

d1
i−1�

d2
i−1 + �

d1
i+1�

d2
i+1

)][
α∗

d1
αd2e

i(ωd1 −ωd2 )t�i,i+1 + H.c.
]}a†

2!
,

−
M−2∑
i=0

∑
d1,d2

�
d1
i

[
Sd2

i+1 − Sd2
i

][
αd1αd2e

−i(ωd1 +ωd2 )t�i+1,i + α∗
d1

αd2e
i(ωd1 −ωd2 )t�i,i+1

]
a† + H.c. (B8)

In this last Hamiltonian, the choice of the polaron frame Eq. (5.19) has already been made. Finally, transforming dissipators
according to DC yields

2γϕD
[
�ε

ε1

]
ρ ′ → 2γϕD

[
�ε

ε1

]
ρ ′′ + 2γϕ

M−2∑
i=0

∗∑
d

|εi+1 − εi |2
ε2

1

|ξd,i |2(D[�i+1,i]ρ
′′ + D[�i,i+1]ρ ′′) (B9a)

γ

M−2∑
i=0

(
gi

g0

)2

D[�i,i+1]ρ ′ → γ

M−2∑
i=0

(
gi

g0

)2

D[�i,i+1]ρ ′′ + γD
[

M−1∑
i=0

giξi − gi−1ξi−1

g0
�i,i

]
ρ ′′ (B9b)

κD [�α] ρ ′ → κD [�α] ρ ′′ + κ

M−2∑
i=0

∗∑
d

|αi+1 − αi |2|ξd,i |2(D[�i+1,i]ρ
′′ + D[�i,i+1]ρ ′′). (B9c)

These transformed Hamiltonians and dissipators can be combined to obtain the master equation in the polaron and classical
dispersive frame given in Eq. (5.21).
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