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First-order sidebands in circuit QED using qubit frequency modulation
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Sideband transitions have been shown to generate controllable interaction between superconducting qubits
and microwave resonators. Up to now, these transitions have been implemented with voltage drives on the qubit
or the resonator, with the significant disadvantage that such implementations only lead to second-order sideband
transitions. Here we propose an approach to achieve first-order sideband transitions by relying on controlled
oscillations of the qubit frequency using a flux-bias line. Not only can first-order transitions be significantly
faster, but the same technique can be employed to implement other tunable qubit-resonator and qubit-qubit
interactions. We discuss in detail how such first-order sideband transitions can be used to implement a high
fidelity controlled-NOT operation between two transmons coupled to the same resonator.
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I. INTRODUCTION

In circuit QED, superconducting qubits are coupled to a
common mode of a transmission line resonator [1,2] or three-
dimensional (3D) cavity [3]. The shared mode can be used
to mediate interaction between the otherwise noninteracting
qubits. Several mechanisms to realize two-qubit gates in this
system have been proposed [4–7] and implemented [8–12].
One approach relies on sideband transitions [4] where, for
example, the qubit state can be swapped with the resonator
state. By combining sideband transitions involving two qubits,
an entangling two-qubit gate can be implemented [13,14].

In practice, sideband transitions are realized by voltage-
driving the resonator [4,15] or the qubit [14,16]. Because
this type of drive can only cause transitions between states
of different parity, and since the two states involved in any
sideband transition have the same parity, voltage driving can
only be used in a second-order process [4]. In other words, in
circuit QED, all sideband transitions studied so far have relied
on two-photon processes, leading to low transition rates and
consequently slow two-qubit gates.

In this paper, we propose to speed up gates based on
sideband transitions by relying on a different kind of drive.
Indeed, in many current experiments [8,17–19], the qubit
transition frequency can be adjusted by several hundreds of
MHz in a few nanoseconds. This is made possible by a fast-flux
line fabricated in close proximity to the qubit’s loop and is
described by the Hamiltonian

HFC = f (t)

2
σz. (1)

Here, f (t) represents the qubit frequency change and is
a function of the externally applied flux. By modulating
the function f (t) ∝ cos(ωFCt), and choosing the modulation
frequency ωFC appropriately, we show that sideband transitions
can be generated. Since this frequency control (FC) signal is
proportional to σz (and not σx as is the case for the more typical
voltage driving), sidebands can be generated in a first-order
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process and consequently result in faster two-qubit gates.
Moreover, in the presence of two qubits coupled to the same
mode of a resonator, this frequency modulation can result in a
second-order flip-flop interaction between the qubits in a way
similar to the FLICFORQ [20] and the cross resonance [21]
gates.

This paper is divided as follows. In Sec. II, we give the
Hamiltonian for two qubits coupled to the same mode of a
resonator, including an FC drive on both qubits. By moving
to the frame that diagonalizes the Hamiltonian, we find that
the FC drive generates multiple effective qubit-resonator and
qubit-qubit interactions. These interactions can be essentially
turned on and off by choosing the appropriate modulation
frequency ωFC. Here, we focus on sideband transitions which
are shown to be of first order in the modulation amplitude.
In Sec. III, we calculate the dynamics associated with the
red sideband process between a qubit and the resonator, and
consider the error coming from the interaction with a spectator
qubit. These ideas are then extended in Sec. IV to the more
realistic case of many-level systems (MLSs) in a resonator.
We also show that the presence of a second excited state can
be exploited in a pulse sequence containing red sidebands
to generate a two-qubit gate which is locally equivalent to a
controlled-NOT (C-NOT). Finally, in Sec. V, we explain how
our proposal can be implemented with transmon qubits. We
first consider the case of a single red sideband and show how
possible caveats can be avoided. At last, we present simulation
results that predict that FC modulations can be used to generate
high-fidelity maximally entangling gates with two transmons.

II. EFFECTIVE TUNABLE INTERACTIONS

In this section, we first present the laboratory frame
Hamiltonian for two qubits coupled to a single mode of a
resonator. Assuming the qubits to be well detuned from the
resonator and ignoring the presence of any driving terms for the
moment, we eliminate the resonant qubit-resonator interaction
using a dispersive transformation. This results in, in particular,
a residual qubit-qubit virtual interaction which we diagonalize.
Reintroducing the FC drive Hamiltonians in that diagonal
frame, we obtain the expressions for the tunable interactions,

022305-11050-2947/2012/86(2)/022305(14) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.86.022305


BEAUDOIN, DA SILVA, DUTTON, AND BLAIS PHYSICAL REVIEW A 86, 022305 (2012)

among which the red and blue sideband transitions are present.
To simplify the discussion, we ignore here the presence of
higher excited states of the qubits. These levels are important,
for example, in the transmon qubit and their effect is discussed
in Sec. IV.

A. Lab frame Hamiltonian and generalized
dispersive Hamiltonian

The electric-dipole coupling of two qubits to a single mode
of a resonator is described by the Rabi Hamiltonian, with
h̄ = 1 [1],

H = ωra
†a +

∑
k=1,2

[
ω(k)

a

2
σ k

z + g(k)Xσk
x

]
. (2)

Here, ωr is the resonator frequency, ω(k)
a the transition

frequency of qubit k, g(k) the qubit-resonator coupling strength
for qubit k, and X = a† + a. The free qubit eigenstates will be
labeled {|g〉, |e〉}.

To approximately diagonalize H we use the generalized
dispersive transformation based on the unitary [22,23,37]

UD = exp

[∑
k=1,2

λ(k)a†σ k
− + �(k)aσ k

− + ξ (k)σ k
z a2 − H.c.

]
,

(3)

where λ(k) = g(k)/�(k), �(k) = g(k)/�(k), with �(k) = ω(k)
a −

ωr and �(k) = ω(k)
a + ωr . The squeezinglike terms are propor-

tional to ξ (k) = (χ (k) + μ(k))/4ωr , where χ (k) = g(k)λ(k) and
μ(k) = g(k)�(k) are, respectively, the dispersive and Bloch-
Siegert shifts. Using the Campbell-Baker-Hausdorff relation

e−XHeX = H + [H,X] + 1

2!
[[H,X]X] + · · · , (4)

we obtain, to second order in the couplings g(k),

HD = U
†
DHUD

� ωra
†a +

∑
k=1,2

ω̃(k)
a

2
σ k

z + S(k)σ k
z a†a + Jσ 1

x σ 2
x , (5)

where ω̃(k)
a = ω(k)

a + χ (k) + μ(k) are the Lamb-shifted qubit
frequencies and S(k) = χ (k) + μ(k) is the ac-Stark shift per
photon. The last term of HD, proportional to

J = g(1)g(2)

2

∑
k=1,2

(
1

�(k)
− 1

�(k)

)
, (6)

is a qubit-qubit interaction mediated by the exchange of virtual
photons.

B. Diagonal Hamiltonian

Because of this last term, HD is not diagonal. It, however,
has a simple structure which we now exploit. Indeed, since
HD is diagonal with respect to the cavity degree of freedom, it
is useful to focus on subspaces labeled by the fixed photon
number n. In these subspaces, the Hamiltonian effectively

reduces to a 4 × 4 matrix

Hn
D =

⎛
⎜⎜⎜⎝

�̃n
Q/2 0 0 J

0 �̃n
Q/2 J 0

0 J −�̃n
Q/2 0

J 0 0 −�̃n
Q/2

⎞
⎟⎟⎟⎠ , (7)

with

�̃n
Q = �Q + 2n�S, (8)

�̃n
Q = �Q + 2n�S, (9)

and where we have defined �Q = ω̃(1)
a − ω̃(2)

a , �S = S(1) −
S(2), �Q = ω̃(1)

a + ω̃(2)
a , and �S = S(1) + S(2). Because of its

block structure, this Hamiltonian can easily be diagonalized.
As in the cross-resonance gate [6,21], we define two effective
(or logical) qubits out of the eigenstates of this 4D block, the
dependence on n simply leading to ac-Stark shifts of these
effective qubits. As discussed in detail in Appendix A, if
the two qubits are far-detuned from each other, the resulting
diagonal Hamiltonian is, to second order in J/�Q and J/�Q,
given by

Hdiag = ωra
†a + (

ω̃(1)
a + 2a†aS(1) + S+

J

) τ 1
z

2

+ (
ω̃(2)

a + 2a†aS(2) + S−
J

) τ 2
z

2
, (10)

where

S±
J = J 2

(
1

�Q
± 1

�Q

)
. (11)

Here, we have also defined the Pauli operators τ k
z acting on

the effective qubits. In this diagonal frame, the interacting
physical qubits are replaced by two logical noninteracting (and
nonlocal) qubits, whose eigenstates are denoted {|0〉,|1〉}. The
effect of the resonator-mediated J interaction between the
physical qubits is to shift the logical qubits by a quantity S±

J

which is assumed here to be small (see Appendix A for the
general result). Since it is of fourth order in g(k), this shift can
be neglected, as is done in the rest of the paper.

C. FC drive in the diagonal frame

We now introduce an FC drive on each qubit. In the
laboratory frame, this takes the form

HFC(t) = f (1)(t)

2
σ 1

z + f (2)(t)

2
σ 2

z . (12)

Later on, we take

f (k)(t) = ε(k)(t) cos
[
ω

(k)
FCt
]
, (13)

where ε(k)(t) is an envelope that varies slowly compared to the
modulation frequency ω

(k)
FC. Going to the dispersive frame and

then to the diagonal frame as above, this Hamiltonian becomes

H
diag
FC (t) = H 1

z (t) + H 2
z (t) + H 1

SB(t) + H 2
SB(t)

+HPO(t) + HQQ(t). (14)
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The first two terms represent modulation in the effective qubit
splittings,

H 1
z (t) � [(

1 − λ̂2
J

)
ŝ(1)
n f (1)(t) + λ̂2

J ŝ
(2)
n f (2)(t)

] τ 1
z

2
, (15)

H 2
z (t) � [

λ̂2
J ŝ

(1)
n f (1)(t) + (

1 − λ̂2
J

)
ŝ(2)
n f (2)(t)

] τ 2
z

2
, (16)

where we have defined

ŝ(k)
n = 1 − [

(λ(k))2 + (�(k))2](a†a + 1/2), (17)

λ̂J = J

�Q + 2a†a�S
. (18)

As is seen in Sec. V B, these terms can lead to local phase
gates on the logical qubits. Just like in the single-qubit case
[23], in addition to these frequency modulations, we also
get sideband transitions and parametric oscillations. However,
these processes are modified by the qubit-qubit interactions.
First, we find

H 1
SB(t) � −f (1)(t)

[
λ(1)a†τ 1

− + �(1)a†τ 1
+

+ λ̂Jτ
1
z (λ(1)a†τ 2

− − �(1)a†τ 2
+) + H.c.

]
, (19)

H 2
SB(t) � −f (2)(t)

[
λ(2)a†τ 2

− + �(2)a†τ 2
+

− λ̂J(λ
(2)a†τ 1

− + �(2)a†τ 1
+)τ 2

z + H.c.
]
, (20)

corresponding to red and blue sidebands. In practice, these
terms will average out unless the modulation frequency ωFC

is chosen appropriately. For example, taking ω
(k)
FC � �(k)

or ω
(k)
FC � �(k), respectively, leads to red or blue sideband

transitions between the resonator and qubit k. These tran-
sitions respectively correspond to |1; n〉 ↔ |0; n + 1〉 and
|1; n + 1〉 ↔ |0; n〉, with the first number labeling the state
of qubit k and the second being a Fock state of the resonator.
Additionally, because of the qubit-qubit interaction J , we also
get leakagelike terms which are proportional to λ̂J: Driving
qubit k at the frequency corresponding to a sideband for qubit
k′ will drive the sideband in qubit k′. In this process, qubit
k will pick up a phase. While these terms could be useful
for logical gates, they are in practice very small because of
the λ̂J factor which is of second order in g(k). Furthermore,
the assumption of a large qubit-qubit detuning makes these
leakage terms far off-resonant with the other sideband terms,
making these spurious transitions negligible in practice. We
also point out that in most cases, λ(k) � �(k), implying that
the red sidebands rate is much larger than for the blue
sideband.

As in the single-qubit case, we also unsurprisingly find a
term which corresponds to parametric amplification [23]

HPO(t) � −
∑
k=1,2

λ(k)�(k)f (k)(t) τ k
z (a2 + a†2). (21)

This term is only relevant for ωFC � 2ωr . However, in typical
situations, it is not large enough to be useful as a practical
source of squeezed microwave light.1

Finally, the virtual qubit-qubit interaction is responsible for
the appearance of a new term in the FC Hamiltonian in the
diagonal frame,

HQQ(t) �
{

− f (1)(t) + f (2)(t)

2
(λ(1)λ(2) − �(1)�(2))

− λ̂J[f
(1)(t) − f (2)(t)]

}
(τ 1

−τ 2
+ + τ 1

+τ 2
−)

− f (1)(t) + f (2)(t)

2
(λ(1)�(2) − �(1)λ(2))

× (τ 1
−τ 2

− + τ 1
+τ 2

+). (22)

Because of this term, when ωFC � �Q, a flip-flop interaction
between the two logical qubits is turned on (first two lines of
HQQ). This can be used to generate

√
SWAP gates to entangle

the qubits. Special care must, however, be taken when it
comes to the relative phase between the modulation functions.
Indeed, taking f (1)(t) and f (2)(t) in phase results in a
cancellation of the term proportional to f (1)(t) − f (2)(t),
while taking them to be out of phase cancels the term
in f (1)(t) + f (2)(t). Therefore, depending on the qubit and
resonator frequencies, one should choose the phase that makes
it possible to select the fastest population transfer. We also
point out that if ω(1)

a < ωr < ω(2)
a , the signs of λ(1)λ(2) and

�(1)�(2) are opposite, allowing a larger Rabi frequency if
�(k)’s are comparable to λ(k)’s. We can also drive a transition
between |00〉 and |11〉 when ωFC � �Q (last term line of HQQ).
Because of its g4 dependence, the effect of HQQ is small for the
parameters chosen in this paper and is ignored in the following.

III. SIDEBAND CONTROL WITH FC DRIVES

Since they are the terms of largest amplitudes in H
diag
FC

that can lead to two-qubit gates, we focus here on the red
sideband terms present in the first lines of H 1

SB and H 2
SB. As

already pointed out, with respect to previous proposals [4]
and realizations [14,16] in circuit QED, we emphasize that the
sideband rate under an FC drive is of first order in g, rather
than of second order. In this section, we calculate the evolution
of the state of a target qubit k and of the resonator under a red
sideband transition generated by an FC drive on k, the other
qubit k′ merely acting as a spectator. However, because of the
qubit-induced frequency pull of the resonator, the resonance
frequency for a sideband on the target qubit k depends (weakly)
on the state of the spectator qubit k′. This leads to a small error
that increases with λ(k′), which is evaluated below. Finally,
because our goal is to see how good a qubit-qubit entangling
gate based on the red sideband could be, in principle, we ignore

1The standard deviation in the X quadrature of a degenerate
parametric oscillator when ωFC � 2ωr is �X = 1

4 e−2r , where r =
1
2 arctanh(4ε(k)λ(k)�(k)/ωr ) [24]. For the generalized dispersive trans-
form to be valid, we require λ(k),�(k) 	 1. Therefore, r � 1 implies
ε(k) � ωr , which is impossible if ωa ∼ ωr as is usually the case in
circuit QED.
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here the effect of damping and dephasing. These will simply
lower the fidelities in a straightforward manner.

As discussed in Sec. II, at the appropriate FC fre-
quency, red sideband transitions occur between eigenstates
in the diagonal dispersive frame. These eigenstates can be
written in the basis {|τ1 τ2; n〉}, where τk ∈ {0,1} denotes
the eigenstates of logical qubit k and n represents Fock
states of the dispersively shifted resonator. Focusing on
red sideband transitions, which preserve the total number
of quanta, the Hilbert space can be restricted to the sub-
space {|00; n + 1〉,|10; n〉,|01; n + 1〉,|11; n〉}. To simplify the
discussion, we keep only the relevant terms in the total
transformed Hamiltonian in the presence of an FC drive at
the red sideband frequency. This leads to

Hred(t) = ωra
†a +

∑
k

ω̃(k)
a + 2a†aS(k)

2
τ (k)
z

− λ(1)f (1)(t)(a†τ (1)
− + aτ

(1)
+ ). (23)

This is a good approximation when λ(1)ε(1) 	 |ω̃(1)
a −

ωr |, |ω̃(2)
a − ωr |, and |ω̃(1)

a − ω̃(2)
a |, that is, the transitions

that can be stimulated by the FC drive are well separated.
Furthermore, we have neglected H 1

z (t) and H 2
z (t), which

correspond to oscillations in the qubit frequencies on a time
scale that is much smaller than the sideband transitions. These
terms can be safely dropped if the average of f (1)(t) during
a whole period is zero, which is the case here with a drive
described by Eq. (13).

It is useful to move to the interaction picture with respect to

Urot(t) = exp

[
−i

(
ωra

†a +
∑

k

ω̃(k)
a + 2a†aS(k)

2
τ (k)
z

)
t

]
.

(24)

The resulting Hamiltonian is

H ′
red(t) = −λ(1)f (1)(t)

[
aτ

(1)
+ exp

(
i�̂(1)

n t
)+ H.c.

]
, (25)

where �̂
(1)
n± = ω̃(1)

a − ωr + 2S(1)a†a − S(2)τ (2)
z . Working in the

restricted Hilbert space and ignoring dissipation,
Schrödinger’s equation for the above Hamiltonian and
with the drive defined by Eq. (13) leads to two uncoupled sets
of differential equations for the probability amplitudes c±

0/1(t)
and corresponding to the second qubit being excited (+) or
not (−),

ċ±
0 (t) = ic±

1 (t)εn[ei(ωFC−�±
n )t + e−i(ωFC+�±

n )t ], (26)

ċ±
1 (t) = ic±

0 (t)εn[e−i(ωFC−�±
n )t + ei(ωFC+�±

n )t ], (27)

where ωFC ≡ ω
(1)
FC and

�±
n = [

ω̃(1)
a + 2(n + 1)S(1)]− (ωr ± S(2)), (28)

εn = 1

2
λ(1)ε(1)

√
n + 1. (29)

For εn 	 ω + �±
n , the fast oscillating terms can be neglected

and an analytic solution can be found. The evolution operator
corresponding to this solution is, for each subspace ±,

V ±(t) =
(

e−iδ±t/2
[

cos rt
2 − i

δ±
r

sin rt
2

] −2i εn

r
e−iδ±t/2 sin rt

2

− 2i εn

r
eiδ±t/2 sin rt

2 eiδ±t/2
[

cos rt
2 + i

δ±
r

sin rt
2

]
,

)
(30)

where r =
√
δ2
± + 4ε2

n and δ± = ωFC − �±
n is the detuning

between the FC drive and the Stark-shifted resonance
frequency of the red sideband. We already notice that without
coupling between the second qubit and the resonator, we
eliminate the Stark shift and thus can have δ+ = δ− = 0. This
leads to full population inversion between |0; n + 1〉 and |1; n〉
at the Rabi frequency 2εn, which is of first order in g(k)/�(k).

Given the evolution operator V ±(t), we now calculate the
average fidelity to a red sideband π pulse on the first qubit,
irrespective of the state of the second qubit. The ideal process
is described by

U = −i (|0; n + 1〉〈1; n| + |1; n〉〈0; n + 1|) ⊗ IQ2. (31)

To compute the average fidelity, it is useful to define the Choi
matrices corresponding respectively to the ideal CU and the
actual CV(t) processes [25,26],

CU = 1

2

∑
i,j∈{a,b}

|i〉〈j |c ⊗ U |i〉〈j |U †, (32)

CV(t) = 1

2

∑
i,j∈{a,b}

|i〉〈j |c ⊗ V (t)|i〉〈j |V †(t). (33)

The sums above are evaluated over states |a〉 = |0; 1〉 and |b〉 =
|1; 0〉 that are involved in the red sideband quantum process.
The subsystem labeled c in the above equations represents a
copy of the relevant Hilbert space {|0; 1〉,|1; 0〉} and is required
in the definition of the Choi matrix. The gate fidelity FUV(t) =
tr [CUCV(t)] of that process is thus

FUV(t) = 1
4 |tr[U †V (t)]|2. (34)

Using Eqs. (32) and (33), we obtain

FUV(t) = 2
ε2
n

r2
sin2 rt

2
(1 + cos δ±t) , (35)

from which we obtain the average fidelity [27],

F UV = 2FUV + 1

3
. (36)

As expected, the fidelity is unity with εnt = π/2 and if the
Stark shift S(2) due to the second qubit vanishes. In practice,
S(2) reduces the average fidelity.

As an example, we now assume the modulation frequency
to be at the red sideband transition frequency, given that the
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second qubit is in its ground state. In other words, we have

δ± =
{

0 if the second qubit is in state |0〉,
2S(2) if the second qubit is in state |1〉. (37)

In this situation and for a given temporal shape of the FC
modulation, the condition for population inversion becomes
εnt = π/2, with

εn = 1

tp

∫ tp

0
εn(t)dt. (38)

Taking εntp = π/2 and replacing εn → εn in Eq. (35) yields
a simple expression for the gate fidelity in the limit δ+ 	 εn

FUV � 2ε2
n

δ2+ + 4ε2
n

(1 + cos δ+tp). (39)

In words, the infidelity 1 − FUV is minimized when the Rabi
frequency that corresponds to the FC drive is large compared
to the Stark shift associated with the spectator qubit. The
average fidelity corresponding to the gate fidelity Eq. (39)
is illustrated in Fig. 1 as as a function of S(2) (red line)
assuming the second qubit to be in its excited state. We
also represent as black dots a numerical estimate of the error
coming from the spectator qubit’s Stark shift. The latter is
calculated with Eqs. (34) and (36). Numerically solving the
system’s Schrödinger equation allows us to extract the unitary
evolution operator that corresponds to the applied gate. Taking
U to be that evolution operator for the spectator qubit in state
|0〉 and V the operator in state |1〉, we obtain the error caused
by the Stark shift shown in Fig. 1. The numerical results

10 −5

10−4

10 −3

10 −2

10−1

10 0

0     1      2     3     4      5     6     7     8      9
10−5

10−4

10−3

10−2

10−1

100

1
−

F
U

V

1
−

P
t

S (2) (MHz)

Eq. (39)

Numerical

Eq. (41)

FIG. 1. (Color online) Average error with respect to the perfect
red sideband process |1; 0〉 ↔ |0; 1〉. A Gaussian FC pulse is sent on
the first qubit at the red sideband frequency assuming the second qubit
is in its ground state. Solid red line, average error of the red sideband
as given by Eq. (39) when the second qubit is excited; blue dashed
line, population transfer error 1 − Pt , with Pt given by Eq. (41); black
dots, numerical results for the average error. We find the evolution
operator after time tp for each eigenstate of the second qubit. The
fidelity is extracted by injecting these unitaries in Eq. (34). The qubits
are taken to be transmons, which are modeled as four-level Duffing
oscillators (see Sec. V A) with E

(1)
J = 25 GHz, E(2)

J = 35 GHz, E(1)
C =

250 MHz, E
(2)
C = 300 MHz, yielding ω

(1)
01 = 5.670 GHz and ω

(2)
01 =

7.379 GHz, and g
(1)
01 = 100 MHz. The resonator is modeled as a five-

level truncated harmonic oscillator with frequency ωr = 7.8 GHz.
As explained in Sec. V, the splitting between the first two levels of a
transmon is modulated using a time-varying external flux φ. Here, we
use Gaussian pulses in that flux, as described by Eq. (71) with τ = 2σ ,
σ = 6.6873 ns, and flux drive amplitude �φ = 0.075 φ0. The length
of the pulse is chosen to maximize the population transfer.

closely follow the analytical predictions, even for relatively
large dispersive shifts S(2).

Reducing the dispersive shift of the spectator qubit S(2)

rapidly increases the average fidelity. There are several ways
to do this. The straightforward solution is to bring it to a
very large detuning with the resonator, thus reducing the Stark
shift. One could also use a tunable coupling [28,29]. Finally,
if neither of these options is convenient, this kind of issue can
typically be addressed by pulse shaping techniques [30].

It should also be noted that if one is interested only in
population transfers and not in phase information, the above
analysis exaggerates the error because it cares about phase.
In this context, a more appropriate figure of merit is the
population of the target state,

Pt = |〈1; n|V (t)|0; n + 1〉|2 = 4ε2
n

r2
sin2

(
rt

2

)
. (40)

Taking, as in the previous case, t = tp = π/2εn and expanding
to second order in δ+/εn, this reduces to

Pt � 4ε2
n

δ2+ + 4ε2
n

. (41)

This expression is the blue dashed line in Fig. 1. Clearly, not
taking phases into account yields a much smaller error rate.
As is discussed in Sec. V C, this feature can remarkably help
the implementation of two-qubit gates. Indeed, in the case
presented in that Section, the specific phase of each sideband
gate is irrelevant, provided that it is well-controlled and stable
over many repetitions of the experiment.

IV. MANY-LEVEL SYSTEMS AND LOGICAL GATES
BASED ON SIDEBAND CONTROL

While the two-level model presented in the previous sec-
tions is useful because of its simplicity, it is not an appropriate
description of most superconducting qubits, such as the
transmon [31] or the capacitively shunted flux qubit (CSFQ)
[32]. Indeed, these devices are best described as MLSs. In this
section, we generalize the previous results to that more realistic
situation and discuss how these additional levels can by ex-
ploited to our advantage. As above, we start by obtaining an ef-
fective Hamiltonian using a dispersive transformation and then
diagonalize the remaining qubit-qubit interaction. We only
outline the main steps of this calculation, the details of which
can be found in Appendix A, before presenting a sequence
of pulses corresponding to a qubit-qubit entangling gate that
takes advantage of the many-level structure of the qubits.

A. FC drive Hamiltonian for many-level systems

The Hamiltonian of two MLSs coupled to the same
harmonic mode takes the form [31]

H = ωra
†a +

∑
k=1,2

∑
i∈HM

ω
(k)
i �

(k)
i,i

+
∑
k=1,2

∑
i∈HM−1

g
(k)
i

(
�

(k)
i,i+1a

† + �
(k)
i,i+1a

)+ H.c., (42)

with �
(k)
i,j = |i〉〈j |(k) acting on the kth MLS, ω(k)

i the bare MLS

frequencies, g
(k)
i the coupling rate between states i and i + 1
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of the kth MLS and the resonator, and M the number of levels
in each MLS. HM = {|g〉,|e〉,|f 〉,|h〉, . . . } is the Hilbert space
of a bare M-level system. For simplicity, we have assumed that
only nearest-neighbor states are coupled by the electric-dipole
interaction. As is discussed further below, this approximation
is well satisfied for transmons [31].

As shown in Appendix B, the dispersive transformation
described by Eq. (3) can be generalized to the multilevel
case. This transformation UMLS

D , given by Eq. (B1), is used
to approximately diagonalize the above Hamiltonian, leading
to Stark shifts. As in the simple case, this also leads to
a qubit-qubit coupling term of amplitude J . An additional
transformation UMLS

J is introduced to diagonalize this effective
coupling. Successively applying UMLS

D and UMLS
J , we find to

second order in g
(k)
i

H
diag
D = ωra

†a +
∑
k=1,2

M−1∑
i=0

[
ω̃

(k)
i �

(k)
i,i + S

(k)
i �

(k)
i,i a

†a
]
,

(43)

where

ω̃
(k)
i = ω

(k)
i + L

(k)
i , (44)

L
(k)
i = χ

(k)
i−1 − μ

(k)
i , (45)

S
(k)
i = χ

(k)
i−1 + μ

(k)
i−1 − χ

(k)
i − μ

(k)
i . (46)

Here, we have defined χ
(k)
i = g

(k)∗
i λ

(k)
i and μ

(k)
i = g

(k)∗
i �

(k)
i ,

respectively, as the dispersive and Bloch-Siegert shifts with
λ

(k)
i = g

(k)
i /�

(k)
i , �

(k)
i = g

(k)
i /�

(k)
i , �

(k)
i = ω

(k)
i+1 − ω

(k)
i − ωr ,

and �
(k)
i = ω

(k)
i+1 − ω

(k)
i + ωr . The eigenstates of the above

Hamiltonian are, in each photon subspace, logical (dressed)
transmon states |π1π2; n〉, where πk ∈ {0,1,2, . . . }.

We now introduce the FC drive on each MLS. The most
general Hamiltonian that describes this in the bare frame is

HFC =
∑
k=1,2

∑
i∈HM

f
(k)
i (t)�(k)

i,i , (47)

where f
(k)
i (t) are real functions of time. Successively applying

UMLS
D and UMLS

J on that Hamiltonian, we obtain an expression
for HFC in the frame that diagonalizes Eq. (42). To simplify
the discussion, we drop here terms that are of second order in
g

(k)
i because they lead to tractable but unsightly expressions. In

this way, we find that the first-order corrections are sideband
terms,

H
diag
FC � HFC −

∑
k=1,2

M−2∑
i=0

H
(k)
SB,i, (48)

where

H
(k)
SB,i = δf

(k)
i (t)

[
λ

(k)
i �

(k)
i,i+1a

† + �
(k)
i �

(k)
i,i+1a + H.c.

]
, (49)

and δf
(k)
i (t) = f

(k)
i+1(t) − f

(k)
i (t).

Thus, instead of having only one red and one blue sideband
transitions for each photon number as in the two-level case,
here M − 1 red and blue sidebands are possible for each n.
These are illustrated in Fig. 2. For large enough anharmonicity
of the MLSs, these sidebands are at distinct frequencies. As

0

|

|

1

|1

|

|

|
| | |

2

π=0

Δ 01

π =1

Σ 01
Δ 12

Σ 12

0

2

π =2

FIG. 2. (Color online) Sideband transitions for a three-level
system coupled to a resonator. Applying an FC drive at frequency
�i,i+1 generates a red sideband transitions between states |i + 1; n〉
and |i; n + 1〉, where the numbers represent, respectively, the logical
MLS and resonator states. Similarly, driving at frequency �i,i+1

leads to a blue sideband transition, that is, |i; n〉 ↔ |i + 1; n + 1〉.
Transitions between states higher in the Fock space are not shown
for reasons of readability. This picture is easily generalized to an
arbitrary number of levels.

is discussed in the next section, this selectivity is a useful
resource to design quantum logical gates.

B. Pulse sequence generating a maximally entangling gate

As already mentioned, sideband transitions can be used to
generate entanglement between two qubits coupled to the same
resonator. Here, we show how the second excited dressed level
of a MLS, labeled |2〉, can be exploited to design a maximally
entangling gate.

Let us define σ
(k)
x,i,j = �

(k)
i,j + �

(k)
j,i , corresponding to a π

pulse between the levels i and j of the kth logical MLS,
and R

(k)
i,i+1 = �

(k)
i,i+1a

† + �
(k)
i+1,ia, corresponding to a full red

sideband transition between the kth MLS and the resonator.
Using these definitions, we introduce the pulse sequence

Uent = R
(1)
01 R

(2)
12 σ

(2)
x,12R

(2)
12 R

(1)
01 . (50)

Up to phases, this is equivalent to the C-NOT. Indeed, looking
at the effects of this sequence on each state of the two-
qubit computational basis {|00〉,|10〉,|01〉,|11〉} given that the
resonator is initially in its ground state and ignoring phases for
the moment, we have

|00; 0〉 → |00; 0〉 → |00; 0〉 → |00; 0〉 → |00; 0〉 → |00; 0〉,
|10; 0〉 → |00; 1〉 → |00; 1〉 → |00; 1〉 → |00; 1〉 → |10; 0〉,
|01; 0〉 → |01; 0〉 → |01; 0〉 → |02; 0〉 → |01; 1〉 → |11; 0〉,
|11; 0〉 → |01; 1〉 → |02; 0〉 → |01; 0〉 → |01; 0〉 → |01; 0〉.
Therefore, the first qubit is flipped if the second one is in state
|1〉. This is represented more generally in matrix form by

Uent =

⎛
⎜⎜⎜⎝

1 0 0 0

0 eiφ1 0 0

0 0 0 eiφ2

0 0 eiφ3 0

⎞
⎟⎟⎟⎠ , (51)

where φ1, φ2, and φ3 are phases that depend on the shape
of the FC pulses. Indeed, as is seen in Sec. V B, in realistic
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situations, the FC drive is not strictly a cosine drive on all the
qubit transitions frequencies, but also has a component that can
be interpreted as a constant shift on these frequencies, leading
to additional phase accumulations.

The above unitary is equivalent, up to one-qubit gates, to
the C-NOT. Indeed, we can write

C-NOT = U
(1)
θ1

UentU
(2)
θ2

U
(1)
θ3

, (52)

where U
(k)
θ is a rotation of qubit k along the z axis by an angle

θ and

θ1 = (φ2 − φ1 − φ3)/2, (53)

θ2 = (φ1 − φ2 − φ3)/2, (54)

θ3 = (φ3 − φ1 − φ2)/2. (55)

It should be noted that the above sequence should be faster
than the one presented in Ref. [4], since it contains four
sideband pulses instead of five. Together with the fact that
sidebands generated with FC drives have a first-order nature,
this allows much faster results than expected in the initial
proposal.

V. PHYSICAL IMPLEMENTATION WITH TRANSMONS

In the previous sections, we first introduced FC drives on
two-level systems, and then of generic MLSs. Here, we focus
on a specific kind of MLS: the transmon qubit [31,33]. Using
a simple model, we predict that the red sideband transition can
be generated with a very high Rabi frequency using an FC
drive on that qubit. We also show simulation results for the
pulse sequence presented in Sec. IV B.

A. The transmon as a Duffing oscillator

A simple Hamiltonian for the transmon qubit can be derived
from the Cooper-pair box Hamiltonian by expanding it to
fourth order in EC/EJ . In the limit where EC/EJ 	 1, the
system is well approximated by a Duffing oscillator [31],

Htrans �
√

8ECEJ b†b − EC

12
(b + b†)4, (56)

where EJ and EC are, respectively, the Josephson and
capacitive energy of the transmon, while b and b† are the ladder
operators of this weakly anharmonic oscillator. The associated
eigenfrequencies are then

ωj �
(

ωp − EC

2

)
j − EC

2
j 2, (57)

with ωp = √
8ECEJ the plasma frequency which depends on

EJ . Additionally, the transmon-resonator coupling rates are,
again in the regime of large EJ /EC ratios, given by

gj,j+1 � gge

√
j + 1, (58)

gj,k � 0 ∀ k �= j ± 1, (59)

where

gge = −2iβeV 0
rms

1√
2

(
EJ

8EC

)1/4

. (60)

In addition, gi+1,i = g∗
i,i+1. The transmon-resonator couplings

also depend weakly on EJ .

B. FC drives on the transmon-resonator system

If the transmon’s Josephson junction is replaced by a
superconducting quantum interference device (SQUID), EJ

can be tuned with an external flux. Assuming the flux
modulation to have the form of a cosine wave, we have

EJ (t) = EJ� cos [φi + �φ cos(ωFCt)] , (61)

where φi and �φ are the mean value and amplitude of the
external flux drive. All the fluxes are expressed in units
of �0/π , where �0 is the flux quantum. This results in
modulations of the plasma frequency and thus in the transmon
energies, something which can be used for FC driving.
Additionally, this also leads to modulation of the transmon-
resonator couplings. These modulations qualitatively have the
same effect as the transmon frequency modulation, leading
to red and blue sidebands. However, because of the weak
dependence of the coupling on EJ , this is a small effect which
can safely be dropped.

Having dropped the modulations of the coupling, we now
focus on better understanding the frequency modulations.
Expanding Eq. (61) around φi to fourth order in �φ and for φi

such that tan φi � 1, that is, φi � π/4, we obtain the following
formula for the transmon transition frequencies:

ω′
j,j+1(t) � ωj,j+1 + G −

4∑
m=1

εmω cos mωFCt, (62)

where ωj,j+1 = ωj+1 − ωj is the transition frequency without
the external modulation

ωj,j+1 = ω′
p − EC(j + 1). (63)

We have also defined ω′
p = √

8ECEJ� cos φi , the plasma
frequency associated to the operating point φi . This frequency
is illustrated by the black dots for two operating points on
Fig. 3(a). In addition, there is a frequency shift G, standing for
geometric, that depends on the shape of the transmon energy
bands. As is also illustrated in Fig. 3(a), this frequency shift
comes from the fact that the relation between ωj,j+1 and φ is
nonlinear, such that the mean value of the transmon frequency
during flux modulation is not its value for the mean flux φi . To
fourth order in �φ, it is

G � −
(

1 + tan2 φi

2

)
ω′

p

�φ2

8

− (4 + 20 tan2 φi + 15 tan4 φi)ω
′
p

�φ4

1024
. (64)

Finally, we get in Eq. (62) a modulation at each multiple mωFC

of the flux drive frequency. The amplitude of these modulations
diminishes with increasing m as

εω �
[
�φ +

(
1 + 3

2
tan2 φi

)
�φ3

16

]
ω′

p

tan φi

2
, (65)

ε2ω �
(

1 + tan2 φi

2

)
ω′

p

�φ2

8

+ (4 + 20 tan2 φi + 15 tan4 φi)ω
′
p

�φ4

768
, (66)

022305-7



BEAUDOIN, DA SILVA, DUTTON, AND BLAIS PHYSICAL REVIEW A 86, 022305 (2012)

5000

5500

6000

6500

7000

7500

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

ω
g
e
/2

π
(M

H
z)

φ (units of Φ0/π)

(a)

•

•1

2

G

0
10
20
30
40
50
60
70

0
10
20
30
40
50
60
70

Ω
re

d/
2π

(M
H

z) (b)

1

2

0

100

200

300

400

500

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

|G
|/

2π
(M

H
z)

Δφ (units of Φ0/π)

(c)

1
2

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2

Ω
re

d/
2 π

(M
H

z)

gge/2π (GHz)

(d)

0 0.2 0.4 0.6 0.8 1 1.2
2000

2500

3000

3500

ω
F
M

/ 2
π

(M
H

z)

gge/2π (GHz)

g c
ri

t

g c
ri

t

(e)

FIG. 3. (Color online) FC driving of a transmon with an external
flux. The transmon is modeled using the first four levels of the
Hamiltonian given by Eq. (56), using parameters EJ /2π = 25 GHz
and EC/2π = 250 MHz. We also have gge/2π = 100 MHz and
ωr/2π = 7.8 GHz, which translates to �ge/2π � 2.1 GHz. (a)
Frequency of the transition to the first excited state obtained by
numerical diagonalization of Eq. (56). As obtained from Eqs. (65) to
(68), the major component in the spectrum of ωge(t) when shaking
the flux away from the flux sweet spot at frequency ωFC also has
frequency ωFC. However, when shaking around the sweet spot, the
dominant harmonic has frequency 2ωFC. Furthermore, the mean value
of ωge is shifted by G. (b) Rabi frequency of the red sideband
transition |1; 0〉 ↔ |0; 1〉. The system is initially in |1; 0〉 and evolves
under the Hamiltonian given by Eq. (42) and a flux drive described
by Eq. (61). Solid red line, analytical results from Eq. (70) with
m = 1 and φi = 0.25; dotted blue line, m = 2 and φi = 0; black
dots and triangles, exact numerical results. (c) Geometric shift for
φi = 0.25 (solid red line) and 0 (dotted blue line). (d) Increase in
the Rabi frequency for higher coupling strengths with φi = 0.25
and �φ = 0.075. (e) Behavior of the resonance frequency for the
flux drive. As long as the dispersive approximation holds (g �
gcrit/2π = 1061 MHz), it remains well approximated by Eq. (69), as
shown by the solid red line. The same conclusion holds for the Rabi
frequency.

ε3ω �
(

1

3
+ tan2 φi

2

)
ω′

p tan φi

�φ3

32
, (67)

ε4ω � (4 + 20 tan2 φi + 15 tan4 φi)ω
′
p

�φ4

3072
. (68)

As illustrated in Fig. 3(a), in the special case where φi = 0,
that is, around the flux sweet spot, only the even harmonics
2ωd and 4ωd are nonzero. Furthermore, in realistic situations,
�φ 	 0.1, meaning that εmω falls off extremely quickly
with m. This makes it possible to focus only on the first
nonvanishing harmonic coming from the FC drive in the
following discussion.

Let m be that dominant harmonic. Then, shaking the flux
at a frequency such that

mωFC = �̃n
j,j+1 + G, (69)

it is possible to induce red sideband transitions between states
|j + 1; n〉 ↔ |j ; n + 1〉 at the Rabi frequency,

�j,j+1 �
∣∣∣∣∣ gj,j+1

�̃n
j,j+1 + G

∣∣∣∣∣ εmω, (70)

where �̃n
j,j+1 = ω̃j+1 − ω̃j − ωr + n(Sj+1 − Sj ) − Sj is the

Lamb and Stark-shifted detuning between the resonator
frequency and the j th transmon splitting.

In Fig. 3(b), the Rabi frequencies predicted by the above
formula are compared to numerical simulations using the full
Hamiltonian Eq. (42), along with a cosine flux drive. The
geometric shifts described by Eq. (64) are also plotted in
Fig. 3(c), along with numerical results. In both cases, the
scaling with respect to �φ follows very well the numerical
predictions, allowing us to conclude that our simple analytical
model accurately synthesizes the physics occurring in the full
Hamiltonian. It should be noted that, contrary to intuition, the
geometric shift is roughly the same at and away from the sweet
spot. This is simply due to the fact that the band curvature does
not change much between the two operation points. However,
as expected from Eqs. (65) to (68), the Rabi frequencies are
much larger for the same drive amplitude when the transmon
is, on average, away from its flux sweet spot. In that regime,
large Rabi frequencies ∼30–40 MHz can be attained, which
is well above dephasing rates in actual circuit QED systems,
especially in the 3D cavity [3]. However, the available power
that can be sent to the flux line might be limited in the labora-
tory, putting an upper bound on achievable rates. Furthermore,
at those rates, fast rotating terms such as the ones dropped
between Eqs. (29) and (30) start to play a role, adding spurious
oscillations in the Rabi oscillations that reduce the fidelity.
These additional oscillations have been seen to be especially
large for big relevant εmω/�̃n

j,j+1 ratios, that is, when the qubit
spends a significant amount of time close to resonance with
the resonator and the dispersive approximation breaks down.

Moreover, the analytical model developed here relies on
the dispersive approximation, and thus breaks down unless
λ

(k)
j,j+1 is small. This breakdown is illustrated in Figs. 3(d) and

3(e), which respectively illustrate the behavior of the Rabi
frequency and the geometric shift with increasing g(k). The
regime of validity of the dispersive approximation can be
captured semiquantitatively using the critical photon number
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ncrit = �2/4g2 [1]. Inverting that relation, we get a critical
coupling strength gcrit = �/2

√
n. For a red sideband involving

only one excitation, this reduces to gcrit = �/2. The region
for which g > gcrit corresponds to the shaded green areas in
the figure. It correctly corresponds to the point where our
analytical model starts to deviate from the the full numerical
results.

C. C-NOT gate using FC driving on transmons

In this section, we present simulation results for the
pulse sequence described in Eq. (50) using the red sideband
described above for the transmon. The envelope function of
the FC flux modulation is chosen to be a truncated Gaussian

�φ(t) =
{

Ae−(t−μ)2/2σ 2
if μ − τ � t � μ + τ,

0 otherwise.
(71)

In order to reduce leakage to unwanted levels due to the
weak anharmonicity of the transmon, we use first-order DRAG
corrections on R

(2)
12 and σ

(2)
x,12 pulses [34]. More precisely, for

each corrected Gaussian pulse, we add a drive component
that is phase-shifted by π/2 and that is proportional to the
derivative of Eq. (71) for |t − μ| < τ .

In practice, using a device such as a transmon, we do
not only have leakage out of the computational subspace,
but we also have to take into account the geometric shift
described in the preceding section. Indeed, since that shift
depends on the flux drive amplitude, the resonance frequency
of the red sideband process changes during the application of
FC drives with G(�φ(t)). In order to cancel that effect, we
drive the sideband at the resonance frequency for a geometric
shift that corresponds to �φ′, as illustrated on Fig. 4. This
amplitude is chosen such that the pulse area for which the
geometric shift is above G(�φ′) is the same as the pulse area
for which it is below G(�φ′). Using this definition yields
�φ′ = A exp(−a2/2σ 2), where

a =
√

2σ erf−1

[
1

2
erf

(
τ√
2σ

)]
. (72)

This method is first applied to simulate a R
(1)
01 pulse by

evolving the two-transmon–one-resonator system under the
Hamiltonian of Eq. (42), along with the FC drive Hamiltonian

Δ
φ

(t
)

t
μ − τ μ + τμ −a μ + aμ

A +

A−A−

Δ φ

FIG. 4. Amplitude of the Gaussian pulse over time. �φ′ is such
that the areas A+ and 2A− are equal. Then, driving the sideband at
its resonance frequency for the geometric shift that corresponds to
the flux drive amplitude �φ′ allows population inversion.

TABLE I. Pulse sequence used in the simulations of a C-NOT

using transmons. The amplitude of the pulses are in units of
φ0/π for the flux pulses and in MHz for the direct drive on the
second transmon. The total duration of the sequence is 129.92 ns.
Transmon parameters are E

(1)
J /2π = 25 GHz, E

(1)
C /2π = 250 MHz,

φ(1) = 0.25, E
(2)
J /2π = 61 GHz, E

(2)
C /2π = 300 MHz, φ(2) = 0.25,

g(1)
ge /2π = g(2)

ge /2π = 100 MHz. Four levels are considered for each
transmon. The resonator is truncated to five levels and has ωr/2π =
7.8 GHz.

Pulse A (φ0/π,2π × MHz) μ (ns) σ (ns) 2τ (ns)

R
(1)
01 0.073 08 16 7 28

R
(2)
12 0.025 20 46.5 6.25 25

σ
(2)
x,12 51.1412 65.96 1.48 5.92

R
(2)
12 0.025 20 85.42 6.25 25

R
(1)
01 0.073 08 115.92 7 28

for the pulse. The simulation parameters are indicated in
Table I. To generate the sideband pulse R

(1)
01 , the target qubit

splitting is modulated at a frequency that lies exactly between
the red sideband resonance for the spectator qubit in states |0〉
or |1〉, such that the fidelity will be the same for both of these
spectator qubit states. We calculate the population transfer
probability for |1; 0〉 ↔ |0; 1〉 after the pulse and find a success
rate of 99.2% for both initial states |1; 0〉 and |0; 1〉. This is sim-
ilar to the prediction from Eq. (41), which yields 98.7%. The
agreement between the full numerics and the simple analytical
results is remarkable, especially given that with |δ±/εn| =
0.23 the small δ± 	 εn assumption is not satisfied. Thus,
population transfers between the transmon and the resonator
are achievable with a good fidelity even in the presence of Stark
shift errors coming from the spectator qubit (see Sec. III).

The pulse sequence Uent of Eq. (50) is then used to
numerically prepare qubit-qubit entangled states. The pa-
rameters of every pulse entering in Uent are presented in
Table I. Given that as many as four sideband pulses are used,
one might expect the success probability to be rather low.
However, applying that sequence on each of the separable
states (|00〉 ± |01〉)/√2, (|10〉 ± |11〉)/√2, we obtain overlaps
with maximally entangled states of ∼99%, as shown in
Table II. The phases coming from the geometric shifts, which
appear in Eq. (51) describing Uent, are found by choosing the
set {φ1,φ2,φ3} that optimizes the transfer rates.

The average fidelity is found numerically by using as the
initial state the Choi matrix

∑
jk |j 〉〈k|c ⊗ |j 〉〈k|, with j,k ∈

{|00; 0〉,|01; 0〉,|10; 0〉,|11; 0〉}. The evolution is computed

TABLE II. Population transfer success rates from the basis of
product states to the basis of Bell states using the pulse sequence
displayed in Table I. The phases are φ1 = 0.053, φ2 = 2.31, and φ3 =
5.59.

Initial state P (|�+〉) P (|�−〉) P (|�+〉) P (|�−〉)
|φ+〉 2 × 10−4 0.993 2 × 10−5 8 × 10−5

|φ−〉 0.993 8 × 10−5 6 × 10−5 8 × 10−5

|ψ+〉 8 × 10−5 9 × 10−5 7 × 10−5 0.991
|ψ−〉 5 × 10−5 3 × 10−5 0.978 3 × 10−5
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FIG. 5. Average fidelity of the pulse sequence Uent as a function
of cavity damping κ . The simulation includes realistic damping T1 =
2 μs of the transmons and neglects pure dephasing. Purcell decay is
taking into account in the simulation. The other parameters are given
in Table I.

numerically on the first copy under the Hamiltonian of Eq. (42),
along with the drive Hamiltonians for the pulses. In this
way, we find the set of phases {φ1,φ2,φ3} that best fits the
numerically realized gate and find an average fidelity of 99.1%.
It should be noted that the presence of decoherence can only
degrade these fidelities. In order to obtain better fidelities one
would need to use more sophisticated pulse shaping techniques
to compensate for the Stark shift errors.

Finally, we included dissipation in our model using a
Markovian master equation for two MLSs and a resonator.2

Because the resonator is loaded with real (and not only virtual)
photons, we find that the protocol is sensitive to photon loss κ .
Figure 5 shows the average fidelity as a function of the cavity
decay rate. High gate fidelities require low cavity damping.
This is possible using 3D cavities [3] or taking advantage of
the multimode structure of 2D resonators [16]. Note that the
dependence of the fidelity on qubit relaxation and dephasing
is similar.

VI. DISCUSSION

Table III summarizes theoretical predictions and experi-
mental results for recent proposals for two-qubit gates in
circuit QED. These can be divided in two broad classes.
The first includes approaches that rely on anticrossings in the
qubit-resonator or qubit-qubit spectrum. They are typically
very fast, since their rate is equal to the coupling strength
involved in the anticrossing. Couplings can be achieved either

2We use Eq. (2.6) of Ref. [35] with κNL = γφ = 0.

through direct capacitive coupling of the qubits with strength
JC [36], or through the 11-02 anticrossing in the two-transmon
spectrum, which is mediated by the cavity [8,19]. The latter
technique has been successfully used with large coupling rates
J11−02 and Bell-state fidelities of ∼94%. However, since these
gates are activated by tuning the qubits in and out of resonance,
they have a finite on/off ratio determined by the distance
between the relevant spectral lines. Thus, the fact that the gate
is never completely turned off will make it very complicated
to scale up to large numbers of qubits. Furthermore, adding
qubits in the resonator leads to more spectral lines that also
reduce scalability. In that situation, turning the gates on and off
by tuning qubit transition frequencies in and out of resonance
without crossing these additional lines becomes increasingly
difficult as qubits are added in the resonator, an effect known
as spectral crowding.

The second class of gates includes cross-resonance, second-
order sidebands, and our proposal. Since these approaches
rely on external drives, their rate is not strictly set by the
relevant coupling rate between involved states, but also by the
ratio between the drive strength and some detuning, which
in practice is always smaller than 1. This makes these gates
slightly slower than those relying on anticrossings. However,
since these approaches rely on external drives that can be
turned on and off at will, their on/off ratio is, in principle,
infinite. Therefore, even if they take longer times than
anticrossing approaches, they will become more interesting
as T2 gets better. Additionally, since they are operated either
with fixed qubit frequencies or with qubit splittings oscillating
around a central frequency, they should be less subject to
spectral crowding. It should be noted that our proposal is
predicted to be faster than cross resonance, since it scales
with g rather than with J , which is of second order in g.

ACKNOWLEDGMENTS

Special thanks to Thomas A. Ohki, Blake R. Johnson,
Colm A. Ryan, Maxime Boissonneault, Jérôme Bourassa, and
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TABLE III. Schemes for two-qubit operations in circuit QED. ε is the strength of the drive used in the scheme, if any.

Scheme Operation Theoretical rate Crossings On/off ratio

Capacitive coupling [36]
√

iSWAP ∼JC Yes ∼�2
Q/J 2

C

11-02 anticrossing [8,19] CPHASE ∼J11−02 Yes ∼∣∣ω(k)
ef − ω(k′)

ge

∣∣2/J 2
11−02

Cross resonance [21] C-NOT ∼Jε/�Q None ∞
Second-order blue SB [14,16] Bell state generation ∼g3ε2/�4 None ∞
First-order red SB C-NOT ∼gε/� Nonea ∞
aThere are no crossings in that gate provided that the qubits have frequencies separated enough that they do not overlap during FC modulations.
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APPENDIX A: DIAGONALIZATION OF THE
TWO-QUBIT-ONE-RESONATOR SYSTEM IN THE

DISPERSIVE REGIME

As shown in Sec. II A, after the application of the general-
ized dispersive transformation of Eq. (3), the second-order
two-qubit plus one resonator Hamiltonian Eq. (5) is not
completely diagonal. In this appendix, we diagonalize the
remaining nondiagonal term which corresponds to virtual
qubit-qubit interaction.

This is done by first realizing that the Hamiltonian of
Eq. (5) breaks down into 4 × 4 blocks corresponding to a given
Fock state n. One such block is given in Eq. (7) and can be
diagonalized exactly. Doing so, we get four eigenenergies and
four eigenstates per photon subspace. These eigenstates span a
basis labeled {|00; n〉,|01; n〉,|10; n〉,|11; n〉} that defines two
effective uncoupled qubits whose frequencies depend on the
resonator state. Expressed as a function of the eigenstates in
the dispersive basis, these effective qubit states are

|10; n〉 = −sin αn|gen〉 + cos αn|egn〉, (A1a)

|01; n〉 = cos αn|gen〉 + sin αn|egn〉, (A1b)

|00; n〉 = cos βn|ggn〉 + sin βn|een〉, (A1c)

|11; n〉 = −sin βn|ggn〉 + cos βn|een〉, (A1d)

with the mixing angles

αn = arctan

[
�̃n

Q/2 −
√

J 2 + (
�̃n

Q/2
)2

J

]
, (A2a)

βn = arctan

[
�̃n

Q/2 −
√

J 2 + (
�̃n

Q/2
)2

J

]
. (A2b)

The corresponding energies are

E10/01 = ±
√

J 2 + (
�̃n

Q/2
)2

, (A3)

E11/00 = ±
√

J 2 + (
�̃n

Q/2
)2

. (A4)

Defining the Pauli operators τ 1
z = (|1〉〈1| − |0〉〈0|) ⊗ I(2) and

τ 2
z = I(1) ⊗ (|1〉〈1| − |0〉〈0|), we can express the diagonalized

two-qubit plus one-resonator Hamiltonian as

Hdiag = ωra
†a + (√

J 2 + (�Q/2 + a†a�S)2

+
√

J 2 + (�Q/2 + a†a�S)2
)τ 1

z

2
,

+ (√J 2 + (�Q/2 + a†a�S)2

−
√

J 2 + (�Q/2 + a†a�S)2
)τ 2

z

2
. (A5)

In the regime where J 	 �Q + 2n�S,�Q + 2n�S, that is, at
large qubit-qubit detuning and low photon number, we can
expand the square roots to second order in J/(�Q + 2n�S)

and J/(�Q + 2n�S) to obtain the approximate Hamiltonian
of Eq. (10).

Using Eqs. (A1a) to (A1d), it is useful to express the Pauli
matrices in the dispersive frame σ

j
±,z in terms of the effective

qubit Pauli matrices τ
j
±,z,

σ 1
z = cos 2α̂ + cos 2β̂

2
τ 1
z − cos 2α̂ − cos 2β̂

2
τ 2
z

+ 2 sin α̂ cos α̂(τ 1
−τ 2

+ + τ 1
+τ 2

−)

+ 2 sin β̂ cos β̂(τ 1
−τ 2

− + τ 1
+τ 2

+), (A6)

σ 2
z = −cos 2α̂ − cos 2β̂

2
τ 1
z + cos 2α̂ + cos 2β̂

2
τ 2
z

− 2 sin α̂ cos α̂(τ 1
−τ 2

+ + τ 1
+τ 2

−)

+ 2 sin β̂ cos β̂(τ 1
−τ 2

− + τ 1
+τ 2

+), (A7)

σ 1
± = cos α̂ cos β̂ τ 1

± − sin α̂ sin β̂ τ 1
∓

− cos α̂ sin β̂ τ 1
z τ 2

∓ − sin α̂ cos β̂ τ 1
z τ 2

±, (A8)

σ 2
± = cos α̂ cos β̂ τ 2

± + sin α̂ sin β̂ τ 2
∓

− cos α̂ sin β̂ τ 1
∓τ 2

z + sin α̂ cos β̂ τ 1
±τ 2

z , (A9)

where α̂ and β̂ are operators obtained from the mixing angles
αn and βn by replacing n with a†a.

Using these expressions, we can now express any control
drive on the qubits in the diagonal frame. As a first example, it
is useful to consider a direct drive on qubit 1 which is described
in the bare frame by

Hd1 = εd1(t)(σ 1
−eiωd1 + H.c.). (A10)

Ignoring dispersive corrections, in the frame rotating at the
qubit and resonator frequencies and assuming ωd1 = ω(2)

a , we
find an additional term of the form

Hcross = −εd1(t)(cos α̂ sin β̂ + sin α̂ cos β̂)τ 1
z τ 2

x . (A11)

This corresponds to the cross-resonance gate [6,21]. The
present description has the advantage of including the effects
of the resonator state. Indeed, we find that the Rabi frequency
associated with this gate depends on the photon number. For
J 	 �Q and neglecting counter-rotating terms, this rate is
proportional to J/(�Q + 2n�S). Therefore, depending on the
sign of �S with respect to �Q, additional photons act as an
increased or decreased qubit-resonator detuning. If �S and
�Q have the same sign, which happens for ω(1)

a ,ω(2)
a < ωr or

ω(1)
a ,ω(2)

a > ωr , the cross-resonance rate increases when the
cavity is filled with photons. Otherwise, that rate decreases
when photons are added, allowing us to expect a saturation of
the cross-resonance rate as a function of the drive power.

We now express the FC drives in the diagonalized basis.
Expressing the Hamiltonian of Eq. (1) in the diagonal frame
using Eqs. (A6) and (A7), we find

H
diag
FC (t) = H 1

z (t) + H 2
z (t) + H 1

SB(t) + H 2
SB(t)

+HPO(t) + HQQ(t) + H
φ

QQ(t), (A12)
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where the effects of the J coupling are taken into account exactly. In this expression, we have defined

H 1
z (t) = {

ŝ(1)
n f (1)(t)[cos 2α̂ + cos 2β̂] − ŝ(2)

n f (2)(t)[cos 2α̂ − cos 2β̂]
}τ 1

z

4
, (A13)

H 2
z (t) = {−ŝ(1)

n f (1)(t)[cos 2α̂ − cos 2β̂] + ŝ(2)
n f (2)(t)[cos 2α̂ + cos 2β̂]

}τ 2
z

4
, (A14)

H 1
SB(t) = −f (1)(t)

[
(λ(1) cos α̂ cos β̂ − �(1) sin α̂ sin β̂)a†τ 1

− + (�(1) cos α̂ cos β̂ − λ(1) sin α̂ sin β̂)a†τ 1
+

− (λ(1) cos α̂ sin β̂ + �(1) sin α̂ cos β̂)a†τ 1
z τ 2

+ − (λ(1) sin α̂ cos β̂ + �(1) cos α̂ sin β̂)a†τ 1
z τ 2

− + H.c.
]
, (A15)

H 2
SB(t) = −f (2)(t)

[
(λ(2) cos α̂ cos β̂ + �(2) sin α̂ sin β̂)a†τ 2

− + (�(1) cos α̂ cos β̂ + λ(1) sin α̂ sin β̂)a†τ 2
+

+ (�(2) sin α̂ cos β̂ − λ(2) cos α̂ sin β̂)a†τ 1
+τ 2

z + (λ(2) sin α̂ cos β̂ − �(2) cos α̂ sin β̂)a†τ 1
−τ 2

z + H.c.
]
, (A16)

HPO(t) = −(a2 + a†2)

{
[λ(1)�(1)f (1)(t)(cos 2α̂ + cos 2β̂) − λ(2)�(2)f (2)(t)(cos 2α̂ − cos 2β̂)]

τ 1
z

2

+ [−λ(1)�(1)f (1)(t)(cos 2α̂ − cos 2β̂) + λ(2)�(2)f (2)(t)(cos 2α̂ + cos 2β̂)]
τ 2
z

2
+ 2 sin α̂ cos α̂(λ(1)�(1)f (1)(t) − λ(2)�(2)f (2)(t))(τ 1

−τ 2
+ + τ 1

+τ 2
−)

+ 2 sin β̂ cos β̂(λ(1)�(1)f (1)(t) + λ(2)�(2)f (2)(t))(τ 1
−τ 2

− + τ 1
+τ 2

+)

}
, (A17)

HQQ(t) =
[
−f (1)(t) + f (2)(t)

2
x0 cos 2α̂ + (

f (1)(t)ŝ(1)
n − f (2)(t)ŝ(2)

n

)
sin α̂ cos α̂

]
(τ 1

−τ 2
+ + τ 1

+τ 2
−)

+
[
−f (1)(t) + f (2)(t)

2
x1 cos 2β̂ + (

f (1)(t)ŝ(1)
n + f (2)(t)ŝ(2)

n

)
sin β̂ cos β̂

]
(τ 1

−τ 2
− + τ 1

+τ 2
+), (A18)

H
φ

QQ(t) = −(f (1)(t) + f (2)(t))
{
x0 cos α̂ sin α̂

[
(cos2 β̂τ 1

+τ 1
− + sin2 β̂τ 1

−τ 1
+)τ 2

z − τ 1
z (cos2 β̂τ 2

+τ 2
− + sin2 β̂τ 2

−τ 2
+)
]

− x1 cos β̂ sin β̂
[
(sin2 α̂τ 1

+τ 1
− + cos2 α̂τ 1

−τ 1
+)τ 2

z − τ 1
z (cos2 α̂τ 2

+τ 2
− + sin2 α̂τ 2

−τ 2
+)
]}

, (A19)

where x0 = λ(1)λ(2) − �(1)�(2) and x1 = λ(1)�(2) + λ(1)�(2). We notice the presence of an additional term H
φ

QQ(t) with respect
to the result of Eq. (14), which represents oscillating shifts on qubit i conditional on the state of qubit j . However, in the limit
J 	 �Q,�Q, these terms are of fourth order in g(1) and g(2) and are thus negligible.

APPENDIX B: DISPERSIVE THEORY FOR TWO
MANY-LEVEL SYSTEMS COUPLED TO A RESONATOR

BEYOND THE ROTATING-WAVE APPROXIMATION

As explained in Sec. IV A, the two-level dispersive theory
of Sec. II A can be extended to the case of two MLSs coupled
to a resonator. The Hamiltonian of this system, described in
Eq. (42), can be partly diagonalized by the following dispersive
transformation:

UMLS
D

= exp

[ ∑
k=1,2

G
(k)
R + G

(k)
CR + G

(k)
ξr + G

(k)
ξa + G

(k)
R2 + G

(k)
CR2

]
.

(B1)

The first two terms in the exponential are the familiar terms
introduced in Ref. [37], here extended to a MLS,

G
(k)
R =

∑
i∈HM−1

λ
(k)
i �

(k)
i,i+1a

† − (
λ

(k)
i

)∗
�

(k)
i+1,ia, (B2)

G
(k)
CR =

∑
i∈HM−1

�
(k)
i �

(k)
i,i+1a − (

�
(k)
i

)∗
�

(k)
i+1,ia

†, (B3)

with all dispersive parameters defined in Sec. IV A. Including
only these terms would lead to incomplete diagonalization
of the Hamiltonian to second order in the couplings. Indeed,

we would obtain a resonator squeezing term [37] and terms
involving jump operators between second-nearest-neighbor
MLS states [31]. To cancel these terms, we need to add
second-order corrections to the dispersive transform. These
are

G
(k)
ξr =

∑
i∈HM

ξ
(k)
i a2�

(k)
i,i − H.c., (B4)

G
(k)
ξa =

∑
i∈HM−2

(
ξ

′(k)
i a†a + ξ

′′(k)
i

)
�

(k)
i,i+2 − H.c., (B5)

G
(k)
R2 =

∑
i∈HM−2

ζ
(k)
i �

(k)
i,i+2a

†2 − H.c., (B6)

G
(k)
CR2 =

∑
i∈HM−2

ζ
′(k)
i �

(k)
i,i+2a

2 − H.c., (B7)

where we have defined

ξ
(k)
i = χ

(k)
i−1 + μ

(k)
i−1 − χ

(k)
i − μ

(k)
i

4ωr

, (B8)

ξ
′(k)
i = η

(k)
i + η

′(k)
i

2
(
ω

(k)
i − ω

(k)
i+2

) , (B9)

ξ
′′(k)
i = g

(k)
i λ

(k)
i+1 − g

(k)
i+1�

(k)
i

2
(
ω

(k)
i − ω

(k)
i+2

) , (B10)
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ζ (k) = η
(k)
i

2
(
ω

(k)
i+2 − ω

(k)
i − 2ωr

) , (B11)

ζ
′(k)
i = η

′(k)
i

2
(
ω

(k)
i+2 − ω

(k)
i + 2ωr

) , (B12)

and

η
(k)
i = g

(k)
i λ

(k)
i+1 − g

(k)
i+1λ

(k)
i , (B13)

η
′(k)
i = g

(k)
i �

(k)
i+1 − g

(k)
i+1�

(k)
i . (B14)

We note that

η
(k)
i = λ

(k)
i λ

(k)
i+1

[(
ω

(k)
i+1 − ω

(k)
i

)− (
ω

(k)
i+2 − ω

(k)
i+1

)]
, (B15)

and similarly for η′
i . This means that for a MLS that can

be described as a weakly anharmonic resonator, such as
the transmon, terms involving ηi or η′

i are negligible. More
precisely, these terms can be safely neglected when |(ωi+2 −
ωi+1) − (ωi+1 − ωi)| 	 ωr,ωi ∀ i.

Using the Campbell-Baker-Hausdorf formula, we find that,
to second order in the couplings, the generalized dispersive
Hamiltonian is

HD = ωra
†a +

∑
k=1,2

∑
i∈HM

[
ω̃

(k)
i �

(k)
i,i + S

(k)
i �

(k)
i,i a

†a
]

+
∑

i,j∈HM−1

Jij�
(1)
i,i+1�

(2)
j+1,j + J ′

ij�
(1)
i,i+1�

(2)
j,j+1 + H.c.,

(B16)

where

Jij = 1
2g

(1)
i

(
λ

(2)
j − �

(2)
j

)∗ + 1
2g

(2)
i

(
λ

(1)
j − �

(1)
j

)∗
, (B17)

J ′
ij = 1

2g
(1)
i

(
λ

(2)
j − �

(2)
j

)+ 1
2g

(2)
i

(
λ

(1)
j − �

(1)
j

)
. (B18)

This Hamiltonian is not yet diagonal because of the Jij and
J ′

ij terms. To complete the diagonalization, we assume that the
detunings between transitions in the first and the second MLS
are all much larger than Jij and J ′

ij ∀ i,j . Then, we can apply
the unitary transformation

UMLS
J

= exp

⎡
⎣ ∑

i,j∈HM−1

λJ
ij�

(1)
i,i+1�

(2)
j+1,j + �J

ij�
(1)
i,i+1�

(2)
j,j+1 − H.c.

⎤
⎦,

(B19)

where

λJ
ij = Jij

ω̃
(1)
i+1,i − ω̃

(2)
i+1,i

, (B20)

�J
ij = J ′

ij

ω̃
(1)
i+1,i + ω̃

(2)
i+1,i

. (B21)

To second order in the couplings, this transformation sup-
presses the interaction between the two MLSs and brings
Eq. (B16) to its diagonal form, Eq. (43).
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