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Abstract

Mesoscopic multi-terminal Josephson junctions are novel devices that provide weak coupling between several bulk

superconductors through a common normal layer. Because of the nonlocal coupling of the superconducting banks, a

current flow between two of the terminals can induce a phase difference and/or current flow in the other terminals. This

‘‘phase dragging’’ effect is used in designing a new type of superconducting phase qubit, the basic element of a quantum

computer. Time-reversal symmetry breaking can be achieved by inserting a p-phase shifter into the flux loop. Logical

operations are done by applying currents. This removes the necessity for local external magnetic fields to achieve bi-

stability or controllable operations. � 2001 Elsevier Science B.V. All rights reserved.
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Although time-domain coherent oscillations
have been observed in superconducting charge
qubits [1], the short decoherence time su, due to
the fluctuations of the background charges, pre-
vents these qubits from being good candidates for
large-scale quantum computing. Phase qubits, on
the other hand, can couple weakly to the back-
ground charges and therefore potentially have
larger su. To achieve a reasonably long su, it is
necessary to have a ‘‘quiet’’ [2] phase qubit—with
small magnetic coupling to the environment, or
equivalently, small inductance. A usual rf-SQUID

can show bistability only when the inductance L of
the ring exceeds 2pU0=Ic [3], and therefore cannot
be quiet. Here, Ic is the Josephson critical current
of the junction and U0 ¼ h=2e the flux quantum.
To overcome this problem, three Josephson junc-
tions have been included in a superconducting ring
[4]. One of the three Josephson phases is fixed by
the other two and the external flux, which leaves
the SQUID with two degrees of freedom, making
bistability possible even when L ¼ 0.

A four-terminal junction is described by three
phase variables (see below). Connecting two of the
terminals by a superconducting ring will fix one of
the phases to the external flux (neglecting the
inductance of the loop, L). The resulting four-
terminal SQUID [5] will have two degrees of
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freedom and can exhibit bistability at small L.
Bistability of a four-terminal SQUID made from
microbridges has been observed experimentally [6].
As we shall see, with a mesoscopic four-terminal
junction (Fig. 1a) it is possible to have bistability
even at L ¼ 0, due to the phase-dragging effect
[7,8].

A mesoscopic four-terminal junction is shown
in Fig. 1a. The four bulk superconductors are
connected to each other via a two-dimensional
electron gas (2DEG) region. The phase of the
order parameter in the ith terminal is denoted by
/i. When the dimensions of the 2DEG region are
smaller than the superconducting coherence length
in the banks, the total current Ii flowing into the
ith terminal depends on the superconducting
phases /j in all the banks through [7]
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where cij are Josephson coupling constants, 1 /ij �
/i � /j, and D0 is the superconducting gap. We
study the system at temperatures close to T ¼ 0,
where decoherence due to the environment is
minimal. In this limit, the Josephson energy asso-
ciated with the four-terminal junction is given by
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Here, E0 ¼ �hI0=e and I0 ¼ pc12D0=e are the Jo-
sephson energy and critical current for the sub-
junction 1–2 at T ¼ 0, respectively.

A mesoscopic four-terminal SQUID is con-
structed from the four-terminal junction by con-
necting two of the terminals via a superconducting
ring (Fig. 1b, ignore the p-junction for the mo-
ment). We label the terminals in such a way that
subjunction 1–2 forms the bias circuit carrying
current I, and subjunction 3–4 makes the flux loop
with current J and flux U threading the ring. We
introduce new variables by /1;2 ¼ ð�h þ vÞ=2 and
/3;4 ¼ ð�/ � vÞ=2, implicitly setting

P
/i ¼ 0,

which is allowed because the overall phase is ar-

bitrary. The phase differences h and / are between
terminals 1–2 and 3–4, respectively. On the other
hand, v is the overall phase difference between the
ring and the bias circuit. It is also useful to define
the new dimensionless parameters

c ¼ ðc13 þ c23 þ c14 þ c24Þ=c12;
� ¼ ðc13 þ c23 � c14 � c24Þ=c12;
d1 ¼ ðc13 � c23 � c14 þ c24Þ=c12;
d2 ¼ ðc13 � c23 þ c14 � c24Þ=c12;
j ¼ c34=c12:

ð3Þ

In general our system has a 3D phase space
(/; h; v). However, we are interested in the regime
where j 	 c 	 1 and L ! 0, so that the self-gen-
erated flux by the ring be very small (/ cI0L 	
U0). Therefore, / is practically fixed by the exter-
nal field and/or by a p-phase shifter inserted into
the ring (see below), and we can study the system
in the 2D phase space of (h; v).

Applying an external flux Ue ¼ U0=2 to the su-
perconducting ring makes the system bistable (as
in the rf-SQUID or three-junction cases), meaning
that the free energy of the system has two local
minima, corresponding to opposite directions of
current in the ring. Note that the external flux is
not used to manipulate the flux (qubit) state. It
therefore can be fixed to U0=2 for all qubits. This
opens the possibility of replacing the external
fluxes by a p-phase shifter [9] in each qubit’s su-
perconducting ring, as shown in Fig. 1b. The net
effect is the same but this has the advantage that
the p-phase shifter does not bring in extra coupling
to the electromagnetic environment. In the regime
of interest (L ! 0), / ¼ p and the free energy of
the system is given by

U ¼ �Ih þ EJðh; v;/ ¼ pÞ; ð4Þ

where I � I=I0. Contour plots of this free energy
at two different sets of parameters are given in
Figs. 2 and 3a. Tunneling between the potential
wells is enabled by charging effects, with the elec-
trostatic capacitance of the system defining the
effective ‘‘mass’’ in the kinetic energy term (see
e.g., Ref. [10, Section 2.2.2]).

When I ¼ 0, the two minima of U have equal
energy. Contour plots of the free energy of the
system at I ¼ 0 are shown in Fig. 2. As is clear

1 Analytical expressions for cij in the case of a clean

rectangular 2DEG region are given in Ref. [7].
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from the figure, with the parameters chosen, the
minima are located very close to h ¼ 0. In ex-
tended phase space, there are also other minima,
near h ¼ 2pn (n an integer). Those minima are
separated from the ones shown in the figure by
high and wide potential barriers. Therefore, tun-
neling in those directions is negligible. The situa-
tion is different for v. When � ¼ 0, as is the case
for a system with a square 2DEG region and four

equivalent terminals, the minima are equidistant at
v ¼ 0, �p, with equal barriers between them (Fig.
2a). Therefore the tunneling probabilities in the
left and right directions are the same. This is un-
desirable for qubit application because it makes
the system sensitive to random charges in the en-
vironment [11,12]. However, making � 6¼ 0 will
move two of the minima closer together, making
the barrier heights unequal (Fig. 2b). Pairs of

Fig. 1. Mesoscopic (a) four-terminal junction and (b) four-terminal SQUID. The p-junction is included in the ring to attain bistability.

Fig. 2. Contour plot of the free energy at T ¼ 0 and I ¼ 0. Junction with (a) � ¼ 0, (b) � ¼ 0:03. Other parameters are c ¼ 0:1;

d1 ¼ d2 ¼ 0:05.
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minima are then isolated, and one can associate a
given pair of minima with the logical qubit states
fj0i; j1ig. This regime can be achieved easily by
choosing a rectangular 2DEG region instead of a
square one [13].

Applying a nonzero transport current I moves
the minima from being centered around h ¼ 0 to
some h ¼ h0ðIÞ. More importantly, it removes
their degeneracy. Fig. 3a displays the contour plot
for U using the parameters of Fig. 2b, but with
I ¼ 0:05. As a result of the applied current, the
two minima are now clearly unequal.

The energy difference between the two minima
eðIÞ is plotted in Fig. 3b. As is evident from the
figure, this energy bias is linearly dependent on I
for a relatively wide range of the transport current:
�0:3KIK 0:3. We can therefore approximate it
by eðIÞ ¼ e0I, where e0 is given by [13]

e0 ¼
ðcd1 � �d2Þ½c�ðd2

1 þ d2
2Þ þ d1d2ðc2 þ �2Þ�

4ðc2 þ �2Þ : ð5Þ

To study the quantum dynamics of this system, we
need to know the capacitances between the ter-
minals of the four-terminal junction. In general,
there exists a capacitance between any two termi-
nals of the system and one has to find the com-
ponent of the effective mass tensor along the
direction of tunneling in the same way as in Ref.
[11]. However, as is clear from Fig. 2b, the differ-
ence in h (and also /) from one minimum to an-
other is very small compared to that in v. The
tunneling is therefore effectively in the v direction.

Using a simplified 1D model we find the tunnel-
ing matrix element at I ¼ 0 to be D � �hx0 �
expð�ðUb=EcÞ�1=2Þ, where x0 ¼ ½8ðc2 þ �2Þ�1=4 �
ðE0EcÞ1=2 is the plasma frequency at the minima,
Ec ¼ e2=2Ceff is the charging energy, Ceff is the
effective capacitance in the direction of tunneling,
and

Ub ¼
ðc � j�jÞ2E0

2 c þ j�j þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc2 þ �2Þ

p� 	 ð6Þ

is the barrier height between the two nearest
minima [13].

As mentioned above, an I 6¼ 0 lifts the degen-
eracy between the lowest-energy states and there-
fore stops the coherent tunneling. This energy
difference induces a relative phase between the
logical states. Therefore, control over the trans-
port current suffices to manipulate the effective
one-qubit Hamiltonian Heff ¼ DðIÞrx þ E0eðIÞrz.
Entangling operations between two qubits are
possible through voltage-controlled couplings
provided by additional 2DEGs [13]. Combining
the two regimes of zero and nonzero I and using
two-qubit coupling, it is possible to perform any
quantum gate operations [14].

Most of the arguments about decoherence dis-
cussed in Refs. [3,15] carry over to this system.
There are however also two sources of deco-
herence different from those discussed in the
references. The first is decoherence caused by
fluctuations of the transport current I. This can
be reduced by increasing the internal resistance of

Fig. 3. (a) Contour plot of the free energy for the system of Fig. 2b at I ¼ 0:05. (b) Solid line is the energy bias as a function of the

transport current, normalized to the barrier height, for the system of Fig. 2b. Dashed line is the linear approximation.
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the current source and working at low tempera-
tures [3,13]. Moreover, the current carried by
the quasiparticles through the normal region
can also cause decoherence. As shown in Ref.
[16], the quasiparticle (shunt) resistance is Rqp /
T cosh2 ðEA=2kBT Þ, where �EA are the energies of
the Andreev bound states inside the normal re-
gion. To achieve (exponentially) large Rqp and
therefore long su, it is necessary to work at tem-
peratures far below EA. In systems with a large
2DEG region, the energy scale EA is inversely
proportional to the dimensions of the normal re-
gion and can be much smaller than the gap D0

(which determines the energy scale in tunnel
junctions). For short junctions on the other hand
(which is the case here), EA � D0 cosðD/=2Þ and
can be large if the phase difference D/ is not close
to p=2. A phase-dependent conductance in agree-
ment with the above picture has been observed
[17].

In the limit studied in this paper, the time scale
of the dynamics is set by the Josephson and
charging energies, as well as by the coupling co-
efficients (3). For a junction size of 100 nm, we
estimate I0 � 10�7 A [18] and Ceff � 10�13 F.
Taking c ¼ 0:1, d1 ¼ d2 ¼ 0:05 and e ¼ 0:04, we
obtain D � 0:1 GHz while tunneling through the
barrier separating the pairs of minima is 10�3

smaller. The dynamics is thus effectively restricted
to one pair of minima in phase space. Moreover,
from Eq. (5) we obtain E0e0 � 0:01 GHz. Using
the latter result, we estimate that up to 105 oper-
ations can be performed within the decoherence
time due to fluctuations of the transport current
[13].
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