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Abstract. Two-photon quantum interference at a beam splitter, commonly
known as Hong–Ou–Mandel interference, is a fundamental demonstration of
the quantum mechanical nature of electromagnetic fields and a key component
of various quantum information processing protocols. The phenomenon was
recently demonstrated with microwave-frequency photons by Lang et al (2013
Nature Phys. 9 345–8). This experiment employed circuit QED systems as
sources of microwave photons, and was based on the measurement of second-
order cross-correlation and auto-correlation functions of the microwave fields
at the outputs of the beam splitter using linear detectors. Here we present the
calculation of these correlation functions for the cases of inputs corresponding
to: (i) trains of pulsed Gaussian or Lorentzian single microwave photons and
(ii) resonant fluorescent microwave fields from continuously driven circuit QED
systems. In both cases, the signature of two-photon quantum interference is
a suppression of the second-order cross-correlation function for small delays.
The experiment described in Lang et al (2013) was performed with trains of
Lorentzian single photons, and very good agreement with experimental data is
obtained. The results are relevant not only to interference experiments using
circuit QED systems, but any such setup with highly controllable sources and
time-resolved detection.
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1. Introduction

Hong–Ou–Mandel interference is a two-photon quantum interference effect whereby two
indistinguishable photons, one in each of the two input ports of a balanced beam splitter, will
always be detected to coalesce at one or the other output port of the beam splitter, but never
with one photon at each output port. This interference effect diminishes as the distinguishability
of the photons is increased. It was first demonstrated in 1987 using photons produced via
parametric down-conversion [2]. The importance of this effect in optical implementations
of quantum information processing schemes was realized later [3]. It is the basis of non-
deterministic gates in linear optical quantum computation [4], it may be used for preparing
maximally entangled Bell states [5], and it may be used to assess the quality of single-photon
sources [6]. This has motivated further experiments, both with single sources [7, 8] and with two
independent sources [9–11] of photons. In addition to these pulsed interference experiments,
two-photon quantum interference using continuously driven sources of resonant fluorescent
light has been demonstrated [12].

However, until the recent experiment of Lang et al [1], a demonstration of the same
effect with microwave-frequency photons had been lacking. This experiment was performed
using superconducting circuit QED systems [13, 14], configured as pulsed sources of single
microwave photons [15–17]. This constitutes a fundamental demonstration of the quantum
mechanical nature of microwave fields. Further, it is a first step in the extension of quantum
information processing protocols designed for optics into the microwave domain, and offers
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the possibility of integration with existing quantum information processing devices based on
superconducting circuits.

Following the original Hong–Ou–Mandel experiment, detailed calculations of the expected
two-photon interference from atomic systems and parametric oscillators were provided [18].
A thorough treatment of time-resolved two-photon interference, accounting for experimental
imperfections, was given by Legero et al [19], motivated by their group’s experiments
using trapped atom sources [8]. The theory of Hong–Ou–Mandel interference has also been
generalized to multiport interference [20], multi-photon input states [6] and spatial multi-
mode input states [21]. The effect may also be analysed using the theory of quantum
measurement [22]. For the case of continuously driven sources, the expected two-photon
interference where the distinguishability is introduced via a polarization degree of freedom has
been determined [12].

For two-photon interference experiments at microwave frequencies there is no efficient
photodetection available at present. Consequently, experiments must be performed using
repeated measurements with linear detectors of long trains of single-photon pulses [16]. Also,
the exquisite level of control of circuit QED sources opens up the possibility of performing
such experiments using continuously driven sources with the distinguishability introduced using
a frequency offset. Such sources, operating in the regime of resonant photon blockade, have
already been demonstrated [23]. Here we present the calculation of the microwave field second-
order auto-correlation and cross-correlation functions at the output of the beam splitter for input
fields composed of trains of Gaussian photons, trains of Lorentzian photons and resonance
fluorescence from detuned, continuously driven sources. These results are relevant not only
to circuit QED systems and microwave fields, but to any interference experiment with highly
controllable sources and time-resolved detection.

The second-order correlation functions at the output of the beam splitter are evaluated, in
terms of correlation functions of input fields, in section 2. These are explicitly evaluated for
both individual and trains of pulsed single-photons (Gaussian and Lorentzian) in section 3. The
calculations proceed in a manner similar to those of Legero et al [19], though we generalize
their calculations in a number of ways. Firstly, we consider Lorentzian (in addition to Gaussian)
single photons. This is because in [1] the temporal properties of the emitted photons are mostly
determined by the decay rate of the circuit QED source, rather than by additional broadening
mechanisms. Secondly, we calculate the correlation functions for a train of single photons,
leading to features in the calculated correlation functions at (and around) integer multiples of
the pulse period. Finally, in order to make comparisons with experimental data, we subject the
calculated correlation functions to filtering. The correlation functions for continuously driven
sources, both without and with polarization degrees of freedom, are evaluated in section 4.

2. Output second-order correlation functions

2.1. Intensity correlation functions

Suppose that the two fields incident on the input ports of the beam splitter are described by
dimensionless, time-dependent quantum fields denoted by â0(t) and b̂0(t). Unitarity of the
(balanced) beam splitter implies that the output fields, â(t) and b̂(t), are then given by the
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Figure 1. Schematic view of Hong–Ou–Mandel interference experiment with
microwave-frequency photons. Two separate circuit QED systems (denoted A
and B) are employed as photon sources. The microwave fields leaking out of
these systems are denoted â0 and b̂0. They interfere at a beam splitter (BS), and
the output modes from the beam splitter are denoted â and b̂. These output fields
are amplified and subjected to (phase-sensitive) heterodyne detection via mixing
with a local oscillator (LO). Figure reproduced from [1].

Heisenberg picture evolution [24]
"

â(t)

b̂(t)

#

= 1p
2

"
1 �1

1 1

#"
â0(t)

b̂0(t)

#

. (1)

These fields are depicted in the Hong–Ou–Mandel interference experiment schematic of
figure 1. Note that, in general, a variable phase may be included in the matrix of equation (1),
though the results described here shall be independent of this phase. We are interested, primarily,
in the statistics of the photons output from the beam splitter. These are described by correlation
functions of the number operators of the output modes, the number operators being denoted by
n̂c(t) ⌘ ĉ†(t)ĉ(t). Then, the quantities we seek are the normally ordered correlation functions
of the output mode number operators:

h: n̂a(t + ⌧ )n̂r(t) :i = hr̂ †(t)â†(t + ⌧ )â(t + ⌧ )r̂(t)i (2)

with r̂ representing either â (for the output intensity auto-correlation function) or b̂ (for
the output intensity cross-correlation function). These correlation functions allow one to
discriminate between quantum and classical fields [24]. Since the intensity of a field is
proportional to the number of photons it contains, henceforth we shall refer to correlation
functions of the form of equation (2) as intensity correlation functions. The term second-order
correlation function shall be reserved here for functions of the difference in detection times (⌧ )
alone, to be introduced below. The correlation functions h: n̂b(t + ⌧ )n̂r(t) :i give the same results
due to the symmetry of equation (1).

Clearly, we can obtain the intensity correlation functions of equation (2) in terms of the
input fields by substituting the expressions in equation (1). The result includes 16 fourth-
order moments of the time-dependent input fields. Now, if it is assumed that the sources
produce separable (i.e. not entangled) fields (clearly a reasonable assumption for independent
sources), the four-term cross-correlation functions of input fields may each be decomposed into
products of two auto-correlation functions of the input fields. Therefore, the output intensity
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auto-correlation and cross-correlation functions are

h: n̂a(t + ⌧ )n̂a(b)(t) :i = 1
4

X

(ĉ,d̂)25(â0,b̂0)

[hĉ†(t)ĉ†(t + ⌧ )ĉ(t + ⌧ )ĉ(t)i + hĉ†(t)ĉ(t)ihd̂†(t + ⌧ )d̂(t + ⌧ )i

±hĉ†(t + ⌧ )ĉ(t)ihd̂†(t)d̂(t + ⌧ )i ± hĉ†(t + ⌧ )ĉ†(t)ihd̂(t + ⌧ )d̂(t)i
+hd̂(t)ihĉ†(t)ĉ†(t + ⌧ )ĉ(t + ⌧ )i + hd̂†(t)ihĉ†(t + ⌧ )ĉ(t + ⌧ )ĉ(t)i
±hd̂(t + ⌧ )ihĉ†(t + ⌧ )ĉ†(t)ĉ(t)i ± hd̂†(t + ⌧ )ihĉ†(t)ĉ(t + ⌧ )ĉ(t)i], (3)

where the + and � signs correspond to the auto-correlation and cross-correlation functions,
respectively. Note that the summation is over the set of permutations of the input mode operators
â0 and b̂0; that is, 5(â0, b̂0) ⌘ {(â0, b̂0), (b̂0, â0)}. The output intensity correlation functions
depend on the input intensity correlation functions (first term in equation (3)), the products of the
intensities of the two inputs (second term), the products of the first-order correlation functions
of the two inputs (third term) and on a number of phase-dependent correlation functions of the
inputs (terms four to eight).

2.2. Phase-dependent moments

For the purpose of demonstrating Hong–Ou–Mandel interference, the contributions of the fourth
through to the eighth terms to the intensity correlation functions of equation (3) are neither
necessary nor desirable. We will consider their contribution using the example of the fourth
term, though the same arguments may be applied to the fifth through to the eighth terms.

Suppose that the fields corresponding to the input modes, ĉ and d̂ in equation (3), can be
written as slowly varying fields modulating oscillations at carrier frequencies centred on !0

and with a difference 1, and with some relative phase offset ✓ : ĉ(t) ⌘ c̄(t)e+i(!0+1/2)t+i✓ and
d̂(t) ⌘ d̄(t)e+i(!0�1/2)t . Accordingly, we can rewrite the fourth term in equation (3) as

hĉ†(t + ⌧ )ĉ†(t)ihd̂(t + ⌧ )d̂(t)i = hc̄†(t + ⌧ )c̄†(t)ihd̄(t + ⌧ )d̄(t)ie�i1(2t+⌧ )e�2i✓ . (4)

There are a number of situations under which the contributions from such terms are negligible.
If the inputs are single-photon pulses then the phase-dependent second moments in equation (3)
will always evaluate to zero. For example, see equation (13), we can write

h1|ĉ†(t + ⌧ )ĉ†(t)|1i = ⇣ ⇤(t + ⌧ )⇣ ⇤(t)h1|ĉ†2
0 |1i = 0. (5)

Even if the inputs are not single photons, the contribution of these terms may still be made to
vanish by uniformly varying the relative phase ✓ of the two input fields over repeated runs of
the experiment, and then averaging over these repeated runs. That is, for example,

f (t, t + ⌧ )e�2i✓ = f (t, t + ⌧ )

MX

j=1

e�2i✓ j = 0, (6)

where ✓ j = 2⇡ j/M with M being the number of measurements averaged over. Therefore, in
all cases of interest to us, the phase-dependent moments will vanish and the expression in
equation (3) reduces to

h: n̂a(t + ⌧ )n̂a(b)(t) :i = 1
4

X

(ĉ,d̂)25(â0,b̂0)

[hĉ†(t)ĉ†(t + ⌧ )ĉ(t + ⌧ )ĉ(t)i

+hĉ†(t)ĉ(t)ihd̂†(t + ⌧ )d̂(t + ⌧ )i ± hĉ†(t + ⌧ )ĉ(t)ihd̂†(t)d̂(t + ⌧ )i]. (7)
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Here the bar over the correlation function indicates that it is to be evaluated over many runs
of the experiment. Henceforth, this shall be assumed for the correlation functions quoted and
we drop this notation. The output intensity correlation functions are completely determined
by the input intensity correlation functions and products of the input first-order correlation
functions. For the output intensity cross-correlation function, the two-photon interference is
seen in the cancellation of the second and third terms at ⌧ = 0 in equation (7). On the other hand,
the second and third terms will add constructively for the output auto-correlation function at
⌧ = 0, corresponding to photon coalescence. Whether or not this constitutes Hong–Ou–Mandel
interference in the usual sense is determined by the input intensity correlation functions in the
first term of equation (7). Although the preceding statements are true in general, the signature
of the interference for non-zero ⌧ will depend on the form of the input fields.

2.3. Second-order correlation functions

The output intensity correlation functions, as expressed in equations (3) and (7), are explicitly
dependent on two detection times, t and t + ⌧ . The second-order correlation functions, giving
the likelihood of detecting a photon at some time ⌧ assuming detection at time zero, may be
obtained either by integrating or by taking a limit

G(2)
cd (⌧ ) =

Z
dth: n̂c(t + ⌧ )n̂d(t) :i or G(2)

cd (⌧ ) = lim
t!1

h: n̂c(t + ⌧ )n̂d(t) :i, (8)

respectively. Whether one integrates or takes a limit depends on whether the system’s evolution
is described in a (non-rotating) laboratory or a rotating frame. The quantities in equation (8) are
conventionally referred to as second-order correlation functions [24]. Similarly, we introduce
the first-order correlation functions

G(1)
c (⌧ ) =

Z
dthĉ†(t)ĉ(t + ⌧ )i or G(1)

c (⌧ ) = lim
t!1

hĉ†(t)ĉ(t + ⌧ )i. (9)

In the case where the second-order correlation functions are obtained by taking limits, the output
second-order correlation functions follow immediately from equation (7) as

G(2)
aa(ab)(⌧ ) = 1

4

X

(c,d)25(a0,b0)

{G(2)
c (⌧ ) + G(1)

c (0)G(1)
d (0) ± [G(1)

c (⌧ )]⇤G(1)
d (⌧ )}, (10)

where we have introduced the short-hand notation G(2)
c (⌧ ) ⌘ G(2)

cc (⌧ ). If both sources exhibit
identical statistics, meaning G(1)

a0 (⌧ ) = G(1)
b0 (⌧ ) ⌘ G(1)

i (⌧ ) and G(2)
a0 (⌧ ) = G(2)

b0 (⌧ ) ⌘ G(2)
i (⌧ ), the

output second-order correlation functions are simply

G(2)
aa(ab)(⌧ ) = 1

2
{G(2)

i (⌧ ) ± |G(1)
i (⌧ )|2 + [G(1)

i (0)]2}. (11)

As for equation (7), the second and third terms of the second-order cross-correlation functions
cancel at ⌧ = 0, corresponding to photon interference at the beam splitter. We now consider the
evaluation of these correlation functions for particular forms of the input fields.
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3. Pulsed single-photon sources

3.1. Temporal modes and correlation functions

The case relevant to the experiment described in [1] is that in which each source produces
a highly pure, microwave-frequency single-photon state. We shall evaluate the correlation
functions of equation (7) by introducing temporal mode functions to describe these single
photons. First, the time-dependent quantum fields introduced above, ĉ(t) in general, may be
represented in the frequency domain as ĉ(!) = 1p

2⇡

R
dt e+i!t ĉ(t). Then a single-photon pulse

is conventionally represented using the spectral density 8(!), that is,

|1i =
Z

d! 8(!)ĉ†(!) |0i . (12)

One can show, by considering the action of ĉ(t) on the state |1i, that the time-dependent
quantum field ĉ(t) may be represented as

ĉ(t) = ⇣(t)ĉ0, where ⇣(t) = 1p
2⇡

Z
d! 8(!)e�i!t (13)

is the temporal mode function of the single-photon pulse, and ĉ0 is the annihilation operator
corresponding to this temporal mode. It is then clear that hĉ†(t)ĉ(t)i = |⇣(t)|2, giving the
probability of the photon being detected at time t .

In the experiment of [1], there are two independent microwave-frequency sources
producing highly pure single-photon states. The sources are characterized via measurements
of their second-order correlation functions. We can write the beam splitter input fields (from
each source) in terms of temporal mode functions as

â0(t) = ⇣a(t)â0
0, b̂0(t) = ⇣b(t)b̂0

0. (14)

Accordingly, the two-mode state input to the beam splitter may be written as â0†(t)b̂0†(t) |0i.
From equation (7), the output intensity correlation functions are

h: n̂a(t + ⌧ )n̂a(b)(t) :i = 1
4
|⇣a(t + ⌧ )⇣b(t) ± ⇣b(t + ⌧ )⇣a(t)|2. (15)

Here, as in equation (7), the potential for cancellation of the terms on the right-hand-side in
the case of the intensity cross-correlation function is clear. Indeed, at ⌧ = 0, we see that the
intensity cross-correlation function vanishes irrespective of the precise form of the temporal
mode functions. Since there are now no additional contributions to the output intensity cross-
correlation functions, the intensity correlation function vanishes at ⌧ = 0. This suppression is
the signature of Hong–Ou–Mandel interference. On the other hand, the terms in equation (15)
add constructively for the intensity auto-correlation function, indicative of photon coalescence.
Of course, the form of the intensity correlation functions for non-zero ⌧ depends on the form of
the mode functions, and we evaluate this now for Gaussian and Lorentzian photons.

3.2. Single Gaussian photons

One form of mode function commonly produced by single-photon sources are Gaussian
modes. For example, this is the case for trapped atom sources in which linewidth broadening
mechanisms are dominant [8]. In the subsequent section we consider the case of Lorentzian
mode functions, which arise naturally for circuit QED systems. Given the recently demonstrated
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ability to shape the waveforms of single photons [25–27], we could consider more general mode
functions as well.

Two Gaussian modes, with a carrier frequency difference 1 (centred on !0), a relative
temporal offset �⌧ (centred on t = 0), and a common pulse width specified by � , are described
by the temporal mode functions:

⇣a(b)(t) = 4
r

1
⇡� 2

exp

�(t ± �⌧/2)2

2� 2
� i (!0 ± 1/2) t

�
. (16)

Substituting equation (16) into equation (15) gives the explicit form of the output intensity
correlation functions. Subsequently, integrating over the first detection time t leads to the
second-order correlation functions

G(2)
aa(ab)(⌧ ) = cosh

�
⌧ �⌧/� 2

�± cos (⌧1)

2
p

2⇡� 2
exp

⇥� �
�⌧ 2 + ⌧ 2� /2� 2⇤ . (17)

The total correlation probabilities, Paa and Pab, are then obtained by integrating over the
detection time ⌧ . The correlation probabilities Pcd simply give the probability of detecting one
photon in mode c and one photon in mode d, for one pair of input photons, irrespective of the
detection times. They are

Paa(ab) = 1
4


1 ± exp

✓
�12� 2

2
� �⌧ 2

2� 2

◆�
. (18)

Note that Pba = Pab and Pbb = Paa, such that
P

c,d2{a,b} Pcd = 1, as required for a beam splitter
that is assumed to be lossless. The total probability for photon coalescence at one output
port is Paa + Pbb = 2Paa, while the total probability for one photon in either output port, the
coincidence probability, is Pc ⌘ Pab + Pba = 2Pab. The correlation probabilities may be regarded
as probability distributions over the controlled parameters �⌧ and 1. For indistinguishable
photons (�⌧ = 0 and 1 = 0) the coincidence probability is Pc = 0, and for fully distinguishable
photons (i.e. |�⌧ | � � and/or |1| � 1/� ) we have Pc ! 1/2. The coincidence probability,
plotted as a function of either �⌧ or 1, exhibits the classic Hong–Ou–Mandel dip [2].

3.3. Single Lorentzian photons

The same calculation may be performed for Lorentzian photons. In the experiment of [1] the
temporal mode function of the released photon is determined by the decay rate of the coupled
circuit QED system. Accordingly, these photons have the shape of a truncated exponential
decay. Two such mode functions, with a relative temporal offset �t and a carrier frequency
difference 1, are given by

⇣a(b)(t) =
p

2� e�� (t±�t/2)u(t ± �t/2)e�i(!0±1/2)t , (19)

where � is the field decay rate of the coupled system, !0 is the frequency about which the
two carrier frequencies are centred and u(. . .) denotes the unit step function. Note that the field
decay rate is the characteristic decay rate of the electric field, in contrast to the commonly
quoted (cavity) decay rate of the energy stored in the cavity. According to equation (19), the
first photon (in mode a0) is ‘released’ at t = ��t/2, while the second photon (in mode b0) is
released at t = +�t/2. In the frequency domain, the mode functions correspond to the spectral
densities

8a(b)(!) =
r

�

⇡

1
� � i[! � (!0 ± 1/2)]

exp{�i[! � (!0 ± 1/2)]�t/2}. (20)
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This representation makes it clear why the exponentially decaying single-photon pulses
described by equation (19) are referred to as Lorentzian photons. Of course, the mode function
thus defined is unphysically sharp. The filtering effects of a finite measurement bandwidth shall
be addressed below.

Substituting equation (19) into equation (15), assuming that �t > 0 and ⌧ > 0, we find the
output intensity correlation functions to be

h: n̂a(t + ⌧ )n̂a(b)(t) :i = � 2e�2� (2t+⌧ )u(t + ⌧ � �t/2)u(t + �t/2)

�� 2e�2� (2t+⌧ )u(t � �t/2)

(
1 � 4 cos2(⌧1/2),

1 � 4 sin2(⌧1/2),
(21)

where the upper (lower) result corresponds to the auto-correlation (cross-correlation) function.
Equation (21) consists of two contributions, corresponding to different combinations of the unit
step functions switching on. The first product of step functions in equation (21) switches on
when both the first detection (t) is after the release of the first photon (��t/2) and the second
detection time (t + ⌧ ) is after the release of the second photon (+�t/2). The second unit step
function is switched on when the first, and therefore the second detection time (⌧ > 0) is after
the release of the second photon. Integrating over the first detection time t leads to the output
second-order correlation functions

G(2)
aa(ab)(⌧ ) = �

2
e�2� �t


sinh 2� ⌧ u(�t � ⌧ ) + 2e�2� ⌧ u(�t � ⌧ )

⇢
cos2 (⌧1/2)

sin2 (⌧1/2)

�

+
�

2
e�2� ⌧

"

sinh 2� �t u(⌧ � �t) + 2e�2� �tu(⌧ � �t)
⇢

cos2 (⌧1/2)

sin2 (⌧1/2)

#

. (22)

Again, equation (22) is split into two terms, depending on whether the difference in
measurement times (⌧ ) is greater or less than the temporal delay (�t) between the release of
photons from either source. Integrating over the difference in detection times ⌧ (positive and
negative) we obtain the correlation probabilities

Paa(ab) = 1
4

✓
1 ± 4� 2

4� 2 + 12
e�2� �t

◆
. (23)

As before, we have Pbb = Paa, Pba = Pab,
P

Pcd = 1, and the coincidence probability is
Pc = Paa + Pbb = 2Paa. Again, these probabilities may be regarded as probability distributions
over �t and 1. If the photons are indistinguishable (�t = 0 and 1 = 0), Pc = 0, while for fully
distinguishable photons (�t � 1/� and/or |1| � � ), Pc ! 1/2.

3.4. Trains of single photons

The experiment in [1] is performed with trains of pulsed single photons. In general, this can lead
to features in the correlation functions at (and around) integer multiples of the pulse period.
These are evaluated here. In order to determine the output intensity correlation functions in
this case, we write the time-dependent quantum fields at the inputs as the sum of the fields
corresponding to each temporal mode. For 2N + 1 photons in the pulse train we can write

â0(t) =
NX

k=�N

⇣ak(t)â0
0k, b̂0(t) =

NX

k=�N

⇣bk(t)b̂0
0k (24)
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with the temporal mode operator commutation relations being [ĉ0
0k, ĉ0†

0k0] = �kk0 , where ĉ0 denotes
an input mode lowering operator, â0 or b̂0. The appropriate temporal mode functions for the kth
photon of each input (assumed Lorentzian here) are

⇣ak(bk)(t) =
p

2� e�i(!0±1/2)te��(t�ktp±�t/2)u
�
t � ktp ± �t/2

�
(25)

with tp denoting the pulse period. The Kronecker delta in the commutation relations is justified
by the fact that the temporal mode functions are normalized and are approximately orthogonal
in the limit that the pulse period is much greater than the pulse width. Substituting the field
decompositions of equation (24) into the intensity correlation functions of equation (7) leads to

h: n̂a(t + ⌧ )n̂a(b)(t) :i = 1
4

X

(c,d)25(a,b)

(* 
X

k

⇣ ⇤
ck(t)ĉ

†
0k

! 
X

l

⇣ ⇤
cl(t + ⌧ )ĉ†

0l

! 
X

m

⇣cm(t + ⌧ )ĉ0m

!

⇥
 
X

n

⇣cn(t)ĉ0n

!+

+

* 
X

k

⇣ ⇤
ck(t)ĉ

†
0k

! 
X

l

⇣cl(t)ĉ0l

!+* 
X

m

⇣ ⇤
dm(t + ⌧ )d̂†

0m

!

⇥
 
X

n

⇣dn(t + ⌧ )d̂0n

!+

±
* 

X

k

⇣ ⇤
ck(t + ⌧ )ĉ†

0k

! 
X

l

⇣cl(t)ĉ0l

!+

⇥
* 

X

m

⇣ ⇤
dm(t)d̂†

0m

! 
X

n

⇣dn(t + ⌧ )d̂0n

!+)

. (26)

Using the assumption that the input state is separable with respect to the basis of temporal
modes introduced, equation (26) reduces to

⌦
: n̂a(t + ⌧ )n̂a(b)(t) :

↵ = 1
4

X

(c,d)25(a,b)

(
X

m

[⇣ ⇤
cm(t)⇣ ⇤

cm(t + ⌧ )⇣cm(t + ⌧ )⇣cm(t)hĉ†
0mĉ†

0mĉ0mĉ0mi]

+
X

m,n(m 6=n)

[⇣ ⇤
cm(t)⇣cm(t + ⌧ )⇣ ⇤

cn(t + ⌧ )⇣cn(t)hĉ†
0mĉ0mihĉ†

0nĉ0ni]

+
X

m,n(m 6=n)

[⇣ ⇤
cn(t)⇣cn(t)⇣ ⇤

cm(t + ⌧ )⇣cm(t + ⌧ )hĉ†
0mĉ0mihĉ†

0nĉ0ni]

+

 
X

k

[⇣ ⇤
ck(t)⇣ck(t)hĉ†

0k ĉ0ki]
! 

X

l

[⇣ ⇤
dl(t + ⌧ )⇣dl(t + ⌧ )hd̂†

0l d̂0li]
!

±
 
X

k

[⇣ ⇤
ck(t + ⌧ )⇣ck(t)hĉ†

0k ĉ0ki]
! 

X

l

[⇣ ⇤
dl(t)⇣dl(t + ⌧ )hd̂†

0l d̂0li]
!)

. (27)

The output second-order correlation functions, G(2)
aa(ab)(⌧ ), are then obtained by integrating over

the first detection time t , as in equation (8).
These correlation functions are plotted in figure 2. Note that we actually calculate circular

correlation functions, meaning that we evaluate these sums for a finite pulse train, and then wrap
the time index around the pulse train. This means that the peak heights at later pulse periods will
be at the same height as those at earlier pulse periods, rather than showing an artificial decay
in peak height that would otherwise be produced due to the finite nature of the pulse train.
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Figure 2. Output second-order (a) cross-correlation functions and (b) auto-
correlation functions for trains of Lorentzian single photons input at each port
of a beam splitter with pulse period tp, � = 107 s�1 and 1 = 0. The delay
of one source with respect to the other in each case is (from top to bottom
in each column) �t = 0, 50 and 150 ns, with tp = 0.5 µs in each case. For
indistinguishable photons, the signal in the first pulse period of the cross-
correlation function is suppressed, indicating interference.

Furthermore, the correlation functions are normalized such that the peaks at ±ktp in G(2)
ab (⌧ ) are

unity for indistinguishable photons input.
As expected, the signature of interference in figure 2 is the suppression of the output

second-order cross-correlation function for small delays ⌧ for indistinguishable photons
(�t = 0). As the distinguishability of the photons is increased through increasing �t , one clearly
sees corresponding peaks in the first repeat period. The peaks in the correlation functions at
±ktp (k an integer) exhibit side peaks at ±�t . This is easily understood: a given photon of each
pair may be correlated with the first or second photon of the subsequent pair, as well as with the
first or second photon of the preceding pair.

3.5. Filtered response

Integrating the intensity correlation function of equation (27) results in second-order correlation
functions with the very sharp features seen in figure 2, due to the abrupt switching of the single-
photon pulses described by the unit step and exponential function in equation (19). However,
such features are not observed in experimental data due to filtering in the detection scheme. To
facilitate comparison with experimental data, we incorporate this filtering into our calculations.
The filtering is performed on the time-dependent signals obtained by the data acquisition scheme
in [1], denoted by Sa(b)(t). The second-order correlation functions of the fields are obtained from
the filtered version of these signals, Sf

a(b)(t), given by the convolution integral

Sf
a(b)(t) =

Z +1

�1
Sa(b)(t 0) f (t � t 0)dt 0, (28)
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Figure 3. Output second-order (a)–(c) cross-correlation and (d) auto-correlation
functions for inputs corresponding to trains of Lorentzian photons. The theory
curves, including filtering as per equation (29), are shown as red lines. The
experimental data obtained by Lang et al [1] are shown as blue dots. The numbers
at the top right of each panel are offsets in the experimental data. The panels
correspond to pulse delays (of one input with respect to the other) of (a) and (d)
�t = 0 ns, (b) �t = 50 ns, and (c) �t = 150 ns. Figure adapted from [1].

where f is a filter function in the time domain. Now the correlation functions of the output
fields of interest may be obtained from the correlation functions of these measured signals, and
so for the sake of calculations, we may implement the filtering directly on the temporal mode
functions, that is,

⇣ f
a(b)k(t) =

Z +1

�1
⇣a(b)(t 0) f (t � t 0) dt 0. (29)

The filtering in [1] was implemented as a finite-impulse-response filter [28]. For the purpose
of calculations, equation (29) was implemented with a filter function representative of that
done experimentally. The intensity correlation functions are then given by equation (27),
evaluated using the filtered temporal mode functions of the form of equation (29). The second-
order correlation functions are obtained by integrating over the first detection time t , as in
equation (8). These are shown in figure 3, along with data from [1]. Very good agreement with
the experimental data is obtained.
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4. Continuously driven sources

4.1. Introduction

Rather than assuming the circuit QED systems are configured as pulsed single-photon
sources, we can assume that they are continuously driven and operated in the regime of
resonant photon blockade [23]. The output microwave field from each source will exhibit sub-
Poissonian and anti-bunched photon statistics [29, 30], leading to the possibility of observing
Hong–Ou–Mandel interference at the beam splitter [12]. Treating only the lowest transition of
the coupled circuit QED system [13], we consider the source simply as a driven quantum two-
level system (TLS). The physics of each source is then essentially the physics of resonance
fluorescence [31, 32], with additional dephasing included. Note that this TLS is in fact formed
from the coupled system, and is therefore not the ‘qubit’ typically employed for superconducting
quantum information processing.

We denote the TLS transition frequency by !c (where c denotes the corresponding input
mode, either a0 or b0), and assume that it is subject to driving by a resonant monochromatic,
large-amplitude microwave field. Each system is described, in a frame rotating with respect to
H0 = (h̄!c/2)�z, by the Hamiltonian HI = h̄ (��+ + �⇤��) /2 where � is the driving strength.
The coupling of the TLS to its environment may be fully described, in the Markovian white
noise approximation, by damping at a rate �1 and dephasing at a rate �p. Accordingly, the
evolution of the TLS density operator ⇢ may be given in the form of a Lindblad master equation
[24] as

⇢̇ = � i
2

⇥
��+ + �⇤��, ⇢

⇤
+ �1D

⇥
��

⇤
⇢ � �p

4

⇥
�z,

⇥
�z, ⇢

⇤⇤
, (30)

where D[ Â] ⌘ Â⇢ Â† � 1
2 Â† Â⇢ � 1

2⇢ Â† Â is the so-called dissipative superoperator. Note that
in this model each source is fully characterized by the parameters �1, �p, � and !c.

4.2. Output correlation functions

As in the case of pulsed sources, the quantities of interest are the second-order correlation
functions of the microwave fields at the outputs of the beam splitter. The master equation (30)
facilitates the evaluation of correlation functions of TLS operators, and from the theory of
atomic spontaneous emission [32], we know that the output field will be proportional to the
TLS lowering operator

ĉ(t) ⇠ � c
�(t), (31)

where c denotes the input mode a0 or b0. The output intensity correlation functions then follow
from equation (3), to within a constant factor, by making the substitution in equation (31).
Rather than explicitly evaluating the coefficient in equation (31), we shall ultimately calculate
normalized (field) correlation functions for which the coefficients will cancel.

First we calculate the output correlation functions in terms of the input correlation
functions. Suppose that the TLS transition frequencies are !0 ± 1/2 (for the sources
corresponding to the input modes a0 and b0, respectively), and that we are working in an
interaction picture with respect to H0 = P

c2{a0,b0}(h̄!0/2)� c
z . Then, from equations (7) and (31),
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the output intensity correlation functions (to within a constant factor) are

h: n̂a(t + ⌧ )n̂a(b)(t) :i ⇠ 1
4

X

(c,d)25(a0,b0)

[h� c
+(t)� c

+(t + ⌧ )� c
�(t + ⌧ )� c

�(t)i

+h� c
+(t)� c

�(t)ih� d
+ (t + ⌧ )� d

�(t + ⌧ )i] +
1
4

[±ei⌧1h� b0
+ (t + ⌧ )� b0

� (t)i
⇥h� a0

+ (t)� a0
� (t + ⌧ )i ± e�i⌧1h� a0

+ (t + ⌧ )� a0
� (t)ih� b0

+ (t)� b0
� (t + ⌧ )i]. (32)

Note that the validity of this expression depends on averaging out explicitly phase-
dependent contributions by randomizing the relative drive phases over repeated runs of the
experiment, as discussed in section 2.2. Taking the limit t ! 1 of equation (32) we have the
output second-order correlation functions

Gaa(ab)(⌧ ) ⇠ 1
4
{G(2)

a0 (⌧ ) + G(2)
b0 (⌧ ) + 2G(1)

a0 (0)G(1)
b0 (0)

± ei⌧1G(1)
a0 (⌧ )[G(1)

b0 (⌧ )]⇤ ± e�i⌧1[G(1)
a0 (⌧ )]⇤G(1)

b0 (⌧ )}, (33)

where the correlation functions on the right-hand-side are now TLS correlation functions:

G(1)
c (⌧ ) ⌘ lim

t!1
h� c

+(t)� c
�(t + ⌧ )i, (34a)

G(2)
c (⌧ ) ⌘ lim

t!1
h� c

+(t)� c
+(t + ⌧ )� c

�(t + ⌧ )� c
�(t)i. (34b)

If one assumes that (carrier frequency aside) the sources have identical characteristics, meaning
G(2)

a0 = G(2)
b0 ⌘ G(2)

i and G(1)
a0 = G(1)

b0 ⌘ G(1)
i , then we have

G(2)
aa(ab)(⌧ ) ⇠ 1

2
{G(2)

i (⌧ ) ± cos ⌧1|G(1)
i (⌧ )|2 + [G(1)

i (0)]2}. (35)

Again, the second and third terms in the output cross-correlation function of equation (35)
cancel at ⌧ = 0. For non-zero ⌧ , the interference is oscillatory, an effect sometimes referred
to as a quantum beat [8].

4.3. Resonant photon blockaded inputs

Now we turn to the evaluation of the input TLS correlation functions. The system of
equations for the expectations of TLS operators are readily calculated from equation (30).
They are commonly referred to as the optical Bloch equations, and may be expressed as the
inhomogeneous system [24]

d
dt

hE� i = A hE� i + Eb, (36)

where we have introduced the vector of expectations of TLS (Pauli) operators, hE� i =
(h�+i , h��i , h�zi)T. The inhomogeneity is given by Eb = (0, 0, ��1)

T, and the system matrix
is given by

A =

2

64
��2/2 + i1 0 �i�⇤/2

0 ��2/2 � i1 i�/2

�i� i�⇤ ��1

3

75 , (37)
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where we have also introduced the total dephasing rate, �2 ⌘ �1 + 2�p. One can find the steady-
state solution of equation (36), hE� iss, and subsequently recast equation (36) as the homogeneous
system, d hE� i0 /dt = A hE� i0 where hE� i0 ⌘ hE� i � hE� iss. Now the time-dependent solution of the
homogeneous system may be obtained by diagonalization, and subsequently the solution to
equation (36) may be written in the form

hE� (t + ⌧ )i = C(⌧ ) hE� (t)i + Ed(⌧ ), (38)

where we have introduced the notation

C(⌧ ) ⌘ X eX�1 AX⌧ X�1, (39a)

Ed(⌧ ) ⌘ (1 � X eX�1 AX⌧ )hE� iss (39b)

with X being the matrix of eigenvectors of A.
The form of the solution in equation (38) is amenable to application of the quantum

regression theorem [32]. In particular, for an element of the solution in equation (38), we can
write

h�i(t + ⌧ )i =
X

j

Ci j(⌧ )h� j(t)i + di(⌧ ), (40)

where i 2 {+, �, z}, the summation index j runs over this set, and Ci j(⌧ ) and di(⌧ ) denote
elements of the matrix C(⌧ ) and vector Ed(⌧ ), respectively. The quantum regression theorem
allows us to evaluate correlation functions as

h�k(t)�i(t + ⌧ )�l(t)i =
X

j

Ci j(⌧ )h�k(t)� j(t)�l(t)i + di(⌧ )h�k(t)�l(t)i. (41)

The TLS correlation functions in equation (32) are obtained using equation (41) and the
algebraic properties of Pauli operators.

According to equation (35), the output second-order correlation functions are fully
determined by the input first-order and second-order correlation functions. We can write
out G(1)

i (⌧ ) and G(2)
i (⌧ ), which are well-known results from the physics of resonance

fluorescence [32]. For the first-order correlation functions we have

G(1)
i (⌧ ) = |�|2

�1�2 + 2 |�|2


� 2
1

�1�2 + 2 |�|2 +
1
2

e��2⌧/2 +
1
4

e�(2�1+�2)⌧/4 ��+e+⌧ + ��e�⌧
��

, (42)

where we have introduced the notation

4 ⌘
q

(2�1 � �2)
2 � 16 |�|2, (43a)

�± = {2|�|2 � 2� 2
1 + �1�2 ± [2|�|2(6�1 � �2) � �1(2�1 � �2)

2]/4}�(�1�2 + 2|�|2). (43b)

Note that the usual resonance fluorescence spectrum follows from the result in equation (42),
and in the strong driving regime (|�| � �1, �2) we can obtain a simple analytical expression
describing the so-called Mollow triplet [31, 32] feature in the spectrum. For the second-order
correlation function we have

G(2)
i (⌧ ) =

✓ |�|2
�1�2 + 2 |�|2

◆2 
1 � e�(2�1+�2)⌧/4

✓
cosh ⌧ +

2�1 + �2

4
sinh ⌧

◆�
. (44)
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Figure 4. Output second-order (a) cross-correlation functions and (b) auto-
correlation functions for each source continuously driven in the regime of
resonant photon blockade. Again, interference is observed in the suppression
of the cross-correlation function for small ⌧ . Photon distinguishability may be
introduced through a carrier frequency difference 1, which leads to an oscillation
in the observed interference.

It is more common to quote the normalized result, which is

g(2)
i (⌧ ) ⌘ G(2)

i (⌧ )

[G(1)
i (0)]2

= 1 � e�(2�1+�2)⌧/4

✓
cosh ⌧ +

2�1 + �2

4
sinh ⌧

◆
. (45)

Of course, this is a normalized TLS correlation function. Here, we shall normalize the output
field correlation functions by imposing the requirement that they asymptotically approach unity.

Now the output second-order correlation functions are given by equation (35), using the
results in equations (42) and (44). They are shown in figure 4. As expected, the interference
effect is observed in the suppression of the cross-correlation function for small delays ⌧ , while
introducing distinguishability through the frequency difference 1 leads to an oscillation in the
observed interference for non-zero ⌧ .

4.4. Photon polarization

In the continuously driven case just considered, photon distinguishability can only be introduced
through a difference in the carrier frequencies. An alternative approach, relevant in the
trapped atom case [12] or in a three-dimensional circuit QED architecture [33], is to
introduce distinguishability through a polarization degree of freedom. To treat this problem,
we decompose the time-dependent fields into their (horizontal and vertical) polarization
components

ĉ(t) = ĉh(t) + ĉv(t), (46)

where the subscripts h and v denote the horizontally and vertically polarized components
of the field, respectively. Generalizing the expression of equation (2) to include polarization
indices, and then summing over these indices, we can write the output intensity correlation
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functions as

h: n̂a(t + ⌧ )n̂c(t) :i =
X

k,l2{h,v}
hĉ†

k(t)â
†
l (t + ⌧ )âl(t + ⌧ )ĉk(t)i (47)

with c representing either output mode (a or b), as before.
Now we take the components of the input fields to be related to the TLS lowering operators

by

â0
h(t) ⇠ � a0

� (t), â0
v(t) = 0, (48a)

b̂0
h(t) ⇠ � b0

� (t) cos �, b̂0
v(t) ⇠ � b0

� (t) sin �. (48b)

That is, the polarization of one input with respect to the other is specified by the angle
�. Accordingly, using equation (1) and the decomposition of equation (46), we can find the
polarization components of the output fields. Substituting these into the generalized intensity
correlation functions of equation (47) we find

h: n̂a(t + ⌧ )n̂a(b)(t) :i ⇠ 1
4

X

(c,d)25(a0,b0)

�⌦
� c

+(t)� c
+(t + ⌧ )� c

�(t + ⌧ )� c
�(t)

↵

+
⌦
� c

+(t)� c
�(t)

↵ ⌦
� d

+ (t + ⌧ )� d
�(t + ⌧ )

↵± cos2 �
⌦
� c

+(t + ⌧ )� c
�(t)

↵ ⌦
� d

+ (t)� d
�(t + ⌧ )

↵ 
.

(49)

The photon distinguishability, and therefore the presence or absence of two-photon quantum
interference, is determined by the relative polarization angle �. For � = 0, the photons at either
input are indistinguishable, and the second and third terms in equation (49) cancel for the
cross-correlation function, corresponding to interference. For the auto-correlation function, the
second and third terms will add constructively, indicative of photon coalescence. For � = ⇡/2,
the photons at either input are fully distinguishable, and the last term in equation (49) makes
no contribution. Now taking the limit t ! 1, as per equation (8), yields the second-order
correlation functions

G(2)
aa(ab)(⌧ ) ⇠ 1

4

X

(c,d)25(a0,b0)

{G(2)
c (⌧ ) + G(1)

c (0)G(1)
d (0) ± cos2 � G(1)

c (⌧ )[G(1)
d (⌧ )]⇤}. (50)

Under the additional assumption that the two sources (polarization aside) have identical
properties, meaning G(2)

a0 (⌧ ) = G(2)
b0 (⌧ ) ⌘ G(2)

i (⌧ ) and G(1)
a0 (⌧ ) = G(1)

b0 (⌧ ) ⌘ G(1)
i (⌧ ), then we find

G(2)
aa(ab)(⌧ ) ⇠ 1

2
{G(2)

i (⌧ ) + [G(1)
i (0)]2 ± cos2 �|G(1)

i (⌧ )|2}. (51)

As for equation (49), the dependence of photon interference on the relative polarization
angle � is clear. These output correlation functions are shown in figure 5. Clearly, access
to a polarization degree of freedom allows one to smoothly interpolate between the cases of
distinguishable and indistinguishable photons in the continuously driven case.
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Figure 5. Output second-order (a) cross-correlation and (b) auto-correlation
functions for each source continuously driven in the regime of resonant photon
blockade, for a range of polarizations of one input with respect to the other
(� = 0�, 45�, 90�). Here the carrier frequencies of both inputs are assumed to
be the same. For indistinguishable photons (� = 0�), the interference signature
of a suppressed cross-correlation function for small ⌧ is observed. As the
indistinguishability (i.e. relative polarization) is increased, the interference effect
is reduced.

5. Conclusions

Two-photon quantum interference at a beam splitter is observed in the suppression of the
output second-order cross-correlation function for small detection delay times. In the case of
pulsed single-photon sources, this quantity may be integrated over all detection delay times
to reproduce the classic Hong–Ou–Mandel dip in the coincidence probability at the output.
Accounting for a train of photons input leads to sidebands on the second-order correlation
functions around integer multiples of the pulse period, while the inclusion of a finite detection
bandwidth broadens the sharp features in the correlation functions that would otherwise be
observed. The second-order correlation functions calculated show very good agreement with the
experimental data in [1]. In the case of continuously driven sources, photon distinguishability
may be introduced through a difference in carrier frequency or via a polarization degree of
freedom. In the former case, an oscillation in the quantum interference is expected. These results
can be expected to be useful in future interference experiments with well-controlled sources and
time-resolved detection.
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