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Superconducting qubit as a probe of squeezing in a nonlinear resonator
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1Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
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In addition to their central role in quantum information processing, qubits have proven to be useful tools in
a range of other applications such as enhanced quantum sensing and as spectrometers of quantum noise. Here
we show that a superconducting qubit strongly coupled to a nonlinear resonator can act as a probe of quantum
fluctuations of the intraresonator field. Building on previous work [M. Boissoneault et al., Phys. Rev. A 85,
022305 (2012)], we derive an effective master equation for the qubit which takes into account squeezing of the
resonator field. We show how sidebands in the qubit excitation spectrum that are predicted by this model can
reveal information about the squeezing factor r . The main results of this paper have already been successfully
compared to experimental data [F. R. Ong et al., Phys. Rev. Lett. 110, 047001 (2013)], and we present here the
details of the derivations.
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I. INTRODUCTION

Nonlinearity in oscillators was first observed by Huygens,
who discovered that large oscillations in pendulum clocks
introduced inaccuracies because of the resulting change in
natural oscillation frequency [1]. It is, however, most famously
Duffing, in the context of combustion engines, who tackled
the problem of nonlinear oscillators in a systematic way [2].
Although they have a long history in physics, nonlinear
oscillators still manage to surprise and are the focus of
intense research [3,4]. This is particularly true in optics, where
optical nonlinearity can be realized by taking advantage of
the change in index of refraction of certain media with light
intensity. This nonlinearity can lead to frequency down and up
conversion and parametric oscillations and amplification [3].
Nonlinearities produced in this context are, however, rather
weak, and nonlinear phenomena at optical frequencies are
therefore revealed mostly under high pumping intensities.

The situation is quite different with superconducting cir-
cuits where very strong nonlinearities at microwave frequen-
cies can be achieved [5], revealing nonlinear behavior even
at the single-photon level [6–8]. These circuits are based
on Josephson junctions embedded in otherwise linear circuit
elements to create superconducting qubits and nonlinear
microwave resonators. These resonators can take various
forms, ranging from LC circuits where the inductance is
replaced by a Josephson junction [9], to stripline resonators
with an embedded Josephson junction [10] and to metamaterial
resonators where the central resonator conductor is replaced
by an array of Josephson junctions [11].

These superconducting nonlinear resonators have proven
themselves to be valuable tools in the context of circuit
quantum electrodynamics (cQED) where one couples mi-
crowave resonators to superconducting qubits [12,13]. In
this context, nonlinear resonators have, for example, been
used as parametric [14–16] or bifurcation amplifiers [17–19]
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in qubit-state measurement. There, one is interested in the
information contained about the state of the qubit in the field
at the output of the resonator. In the present paper we take the
converse point of view: we show how the qubit can be used as a
probe of quantum fluctuations of the field inside the resonator.

The theory presented below was developed in parallel
to, and already tested against, the experimental results of
Ref. [20]. The goal of the present paper is thus to give the
details of the derivation of the model whose main results can
be found in Ref. [20]. Moreover, the present work is based on
the same experimental setup as studied in Ref. [21] and builds
on previous calculations presented in Ref. [22], which we will
refer to as Paper I from now on.

In Paper I, we have developed a model describing the
measurement back action of a driven nonlinear resonator on
a qubit strongly coupled to the resonator. This model went
beyond many approximations that are standard in the literature.
First, we considered a many-level instead of a two-level Hilbert
space for the superconducting qubit. Second, we took into
account the fact that the ac-Stark shift on the qubit caused by
a strong pump on the resonator depends on the detuning of
the qubit to the pump and not the qubit-resonator detuning as
is usually assumed [12]. Finally, our model went beyond the
standard linear response theory for the qubit-state dependence
of the resonator state. This model was compared with the
experimental results presented in Ref. [21] and was found
to be in quantitative agreement with the measured qubit’s
ac-Stark shift before and after bifurcation of the resonator. We
also found excellent agreement with the nontrivial dependence
of the qubit’s measurement-induced dephasing on the pump
power. From these results, we have concluded that the system
is close to the quantum limit for measurement in a parameter
range.

The model developed in Paper I, however, made two main
approximations that we relax here: small separation between
the two pointer states of the resonator corresponding to the
two qubit states and weak squeezing of the resonator field. We
still assume that the pointer-state separation and the squeezing
are both relatively small but take into account first-order
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corrections to these approximations. As we will show, relaxing
the first approximation leads to combined qubit-resonator
transitions, i.e., red and blue sideband transitions. Relaxing the
second approximation allows us to take into account squeezing
of the resonator field, and as predicted by the theory of quantum
heating [23–26], this leads to an effective temperature of the
resonator field. Using sideband spectroscopy, a standard tool
in ion-trapping experiments [27,28], we then discuss how
the qubit can act as an absolute thermometer of this effective
temperature. We note that this approach is sensitive to
the squeezing factor r but not to the squeezing angle. In
practice and as discussed in more detail below, the main
difference between the experimental results of Ref. [21] and
those of Ref. [20] is a drive of increased amplitude on the
qubit.

The production of squeezed light by nonlinear microwave
resonators has, of course, already been studied before [29,30].
While these studies focused on the light at the output of
the resonator, as mentioned above, here we are focusing on
the light inside the resonator. Moreover, our work adds to
an already quite extensive literature concerning nonlinear
resonators (see, for example, Refs. [3,4,23,31–36]). Here,
however, the usual assumptions, such as very small nonlin-
earities, small qubit-resonator dispersive coupling, or strictly
two-level qubits, cannot be made when comparing to the
experimental results of Ref. [20], and they are avoided in this
paper.

The paper is organized as follow. In Sec. II, we present the
system’s bare Hamiltonian and master equation and introduce
the notation for the nonlinear resonator and the qubit. In
Sec. III, we summarize the calculation presented in Paper I
and highlight the main approximations and results that were
obtained. In Sec. IV, we relax the small distinguishability
and small squeezing approximations and obtain first-order
corrections. In Sec. V, we compare our model to experimental
results first presented in Ref. [20]. Concluding remarks are
made in Sec. VI, while details of some of the calculations can
be found in Appendices A and B.

II. PRESENTATION OF THE SYSTEM

As discussed in the Introduction, we consider a nonlinear
resonator strongly coupled to a superconducting qubit. An
example of such a system is illustrated in Fig. 1, where a
transmon qubit [37] is coupled to a coplanar transmission-line
resonator rendered nonlinear by Josephson junction embedded
in the resonators’ center conductor. We introduce in Sec. II A
the notation used for the nonlinear resonator, and in Sec. II B
we focus on the qubit and its coupling to the resonator.

A. Nonlinear resonator

Following the notation of Yurke and Buks [34] that is also
used in Paper I, we define the Hamiltonian of the nonlinear
resonator as (� = 1)

Hr = ωra
†a + K

2
a†a†aa + K ′

3
a†3

a3, (2.1)

where ωr , K , and K ′ are, respectively, the resonator’s bare
resonance frequency, its Kerr coefficient, and a higher-order
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FIG. 1. (Color online) Schematic representation of a possible
implementation of the system considered in this paper and realized
in Ref. [20]. This represents a coplanar resonator (light blue) made
nonlinear using an embedded Josephson junction (dark green) and
capacitively coupled to a transmon qubit [37] placed between the
central conductor and the ground planes. The inset represents the
drives that have been used in Ref. [20], with one pump drive (εp,ωp),
one spectroscopy drive (εs,ωs), and one measurement drive (εm,ωm).
The model described in this paper, however, applies to other nonlinear
resonators, qubits, and sets of drives (see text).

nonlinearity Kerr coefficient. The operator a(†) annihilates
(creates) an excitation in the resonator.

An important aspect of the experiment described in
Ref. [20] is the presence of multiple drives on the resonator. We
will denote with the subscript d any drive, of amplitude εd and
frequency ωd , far detuned from the qubit transition frequency.
We will allow for many such drives in our description. In
addition, we will denote with the subscript s a spectroscopy
drive of amplitude εs and frequency ωs close to the qubit’s
transition frequency. The presence of these drives can be
represented by the usual Hamiltonians [38],

Hd =
∑

d

(εde
−iωd t a† + ε∗

de
iωd t a), (2.2a)

Hs = εse
−iωs t a† + ε∗

s e
iωs t a. (2.2b)

The drives d, far from the qubit resonance, are used
to populate the resonator and will not drive transitions of
the qubit. They will result in dispersive shifts of the qubit
frequency. On the other hand, the spectroscopy drive is aimed
specifically at driving the qubit. Because of their different
influences, we treat these various drives very differently below.

We finally introduce photon loss in the resonator at the rate
κ . Together with the above Hamiltonian, this is captured by
the Lindblad-form master equation

ρ̇r ≡ Lrρr = −i [Hr + Hd + Hs,ρr ] + κD[a]ρr, (2.3)

where we have introduced the usual dissipation superoperator

D[A]ρ ≡ 1
2 (2AρA† − A†Aρ − ρA†A). (2.4)

Nonlinear resonators in circuit QED typically have a
negative Kerr constant K [5]. As one drives the resonator,
the nonlinearity therefore causes a back bending of the
resonator’s response, as illustrated in Fig. 2(a). For large drive
amplitudes εd , the resonator becomes bistable, with the two
stable solutions denoted L and H for, respectively, low and
high amplitudes of oscillation. To simplify the description,
it is useful to introduce the reduced detuning � = 2(ωr −
ωd )/κ [21]. As a function of this reduced detuning and of the
drive amplitude εd , the resonator’s response is captured by
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FIG. 2. (Color online) (a) Amplitude of the resonator internal
field (arbitrary units) in response to a drive of reduced frequency
� = 2(ωr − ωd )/κ (�C = √

3) for increasing drive amplitudes εd .
(b) Stability diagram of the resonator. In region H (above the solid
line), the resonator is in a high-amplitude state. In region L (below
the dashed line), it is in a low-amplitude state. Between the dashed
and solid lines, the resonator is bistable. The dashed vertical line
corresponds to the detuning at which the data presented in this paper
were taken.

the stability diagram illustrated in Fig. 2(b). If � is smaller
than the critical detuning �C = √

3, the resonator can be in
the L state at low power and in the H state at high power,
with an intermediate region where both states are stable. Since
both states go from stable to unstable at different powers, the
resonator in this region is hysteretic and can be used as a
sample-and-hold detector [18,19,39].

B. Qubit and qubit-resonator coupling

Most superconducting qubits require a larger Hilbert
space than their logical subspace {|0〉 , |1〉} for an accurate
description. This is the case, for example, for the trans-
mon [37], the capacitively shunted flux qubit [40], the
fluxonium [41], the tunable-coupling qubit [42], and the phase
qubits [43]. Here, we consider up to M levels and write the
free-qubit Hamiltonian as

Hq =
M−1∑
i=0

ωi�i,i ≡ �ω, (2.5)

where ωi is the frequency of the qubit eigenstate |i〉, �i,j ≡
|i〉 〈j |, and where we have introduced the shorthand notation

�x ≡
M−1∑
i=0

xi�i,i . (2.6)

In practice, the values of the eigenfrequencies ωi should either
be extracted from experiments or computed by diagonalizing
the full-qubit Hamiltonian. For the results presented in this
paper, we considered a transmon qubit and carefully calibrated
the qubit frequencies from experimental spectroscopic data.

More details about the sample and its parameters can be found
in Refs. [20,21] and in Paper I.

As usual, we consider a dipolar qubit-resonator coupling

HI =
M−2∑
i=0

gi(a
† + a)(�i,i+1 + �i+1,i), (2.7)

where each qubit transition i ↔ j is coupled to the resonator if
and only if i = j ± 1. This restrictive condition is often made
true either by selection rules or because the other transitions
are too far detuned from the resonator frequency to have
an impact [37]. We stress that we use here the full Rabi
Hamiltonian rather than its Jaynes-Cummings counterpart
since, as will be seen below, the counterrotating terms in
Eq. (2.7) will play a predominant role in the sideband
transitions.

Taking into account qubit damping and pure dephasing,
we finally write the master equation describing the coupled
system as

ρ̇ = −i [H,ρ] + κD[a]ρ

+ γ

M−2∑
i=0

(
gi

g0

)2

D[�i,i+1]ρ + 2γϕD[�ε]ρ, (2.8)

where the total Hamiltonian is H = Hr + Hq + HI + Hd +
Hs . In this master equation, γ is the qubit |1〉 → |0〉 decay
rate, and γϕ is the qubit pure dephasing rate for the same
states. With the above form, we have assumed that qubit decay
between two consecutive states scales as the coupling of this
transition to the resonator. This assumption is not essential to
this work but is convenient and realistic. Moreover, to describe
pure dephasing of this multilevel system, we have defined
�ε with εi ≡ ∂(ωi−ω0)

∂X
[ ∂(ω1−ω0)

∂X
]−1, the X dispersion, and with

ε0 = 0, ε1 = 1 by definition. Here, X represents some control
parameter (for example, flux or charge) whose fluctuations
cause dephasing. The above master equation is the same as
the one used in Paper I, with the exception that we have set
here the resonator’s rate of two-photon loss [34] to zero for
simplicity [44].

Our goal in the next two sections is to obtain a reduced
qubit model that includes squeezing of the resonator field
and captures qubit-resonator sideband transitions in the high-
power regime of the spectroscopy drive. In Sec. III, we first
summarize the results obtained in Paper I. In Sec. IV, we then
build on these results and consider first-order corrections to two
main approximations that were used in Paper I and mentioned
in the Introduction. We will show that in the presence of
strong spectroscopy drive εs , these corrections will yield a
qubit spectrum displaying red and blue sidebands in addition
to the main qubit line and that the amplitude of these sidebands
reveals information about squeezing of the intraresonator field.

III. SUMMARY OF PREVIOUS RESULTS

In Paper I, we have performed a series of unitary trans-
formations on the master equation (2.8) and have obtained
an effective master equation for the qubit only. The first
step is to transform the master equation using a polaron
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transformation [45]

P =
M−1∑
i=0

�i,iD(αi), (3.1)

where D(α) = exp[αa† − α∗a] is the displacement opera-
tor [38]. This transformation displaces the resonator field in a
qubit-state-dependent manner, such that a → a + �α . If the
pointer states αi are chosen properly, the intraresonator field
in this transformed frame is in, or close to, the vacuum. In
this situation, it is simple to trace over the resonator states to
obtain an effective equation for the qubit only. This can be
done exactly within the linear dispersive approximation [45]
but, unfortunately, not when taking into account the full
Jaynes-Cummings coupling as in Paper I. In this situation, the
additional complexity arises from transforming the operator
�i,i+1 in Eq. (2.7), which yields

P†�i,i+1P = �i,i+1D(αi+1 − αi)e
−iIm[α∗

i+1αi ]. (3.2)

This transformed operator is problematic since it contains all
powers of the ladder operators a(†) throughout the displacement
operator, and these will not leave the resonator field in
its vacuum state in the transformed frame. To simplify the
situation we assumed in Paper I that the distinguishability
|αi+1 − αi | is very small and took P†�i,i+1P ≈ �i,i+1. With
this approximation, the interaction Hamiltonian HI transforms
into a detuned drive acting directly on the qubit.

The second step in Paper I is to remove this effective
detuned qubit driving using what we called a classical
dispersive transformation,

DC = exp

[
M−2∑
i=0

ξ ∗
i �i,i+1 − ξi�i+1,i

]
, (3.3)

where ξi is a classical (scalar) analog of the operator λia
† =

[gi/(ωi+1,i − ωr )]a† found in the usual dispersive transforma-
tion of the Jaynes-Cummings Hamiltonian [46].

After these two steps, the result is a transformed master
equation containing the ac-Stark shift of the qubit frequency,
dressed-dephasing of the qubit [47], and measurement-induced
dephasing [48]. These various quantities are related by the
nonlinear equations for the pointer states,

0 =
(

ωr − ωd − i
κ

2

)
αi,d + K|αi |2αi,d

+K ′|αi |4αi,d + εd +
(
Sd

i + 1

3!
Kd

i |αi |2
)

αi,d , (3.4)

where the expressions for Sd
i and Kd

i are given below. With
this formulation of Eq. (3.4) we have assumed that α can
be written as α = ∑

i αi = ∑
d,i αi,de

−iωd t + αi,se
−iωs t . This

form assumes that the multiple drives are spread out enough in
frequency such that one drive does not contribute significantly
to the field oscillating at another drive’s frequency.

In the third step, we apply one last transformation, the
quantum dispersive transformation, which takes here the form

D = exp

[
M−2∑
i=0

λia
†�i,i+1 − λ∗

i a�i+1,i

]
, (3.5)

with λi = gi/(ωi+1,i − ωr ). Since the polaron transformation
moves the system to a frame where the photon population is
small, this transformation can safely be performed to lowest
order. The resulting master equation now contains the Lamb
shift of the qubit frequency as well as Purcell decay.

After these three transformations and projecting the qubit
into its logical subspace {|0〉 , |1〉}, the effective Hamiltonian
takes the form H ′′′ = H ′′′

0 + H ′′′
2 (each prime indicates a

transformation), where

H ′′′
0 = ω′′′

1,0

2
σz + g0(α0,se

−iωs tσ+ + H.c.), (3.6a)

H ′′′
2 = [ω′

r (α) + �S(α)]a
†a + ϒa†2 + ϒ∗a2. (3.6b)

In these expressions, the ac-Stark and Lamb shifted qubit
frequencies are given by

ω′′′
i (α) ≡ ω′′

i (α) + Li(α),

ω′′
i (α) ≡ ωi +

∑
d

Sd
i |αd |2 + 1

4

∑
d

Kd
i |αd |4, (3.7)

where

Sd
i ≡ −(

Xd
i − Xd

i−1

)
,

Kd
i ≡ −4Sd

i

(∣∣�d
i

∣∣2 + ∣∣�d
i−1

∣∣2) − (
3Xd

i+1

∣∣�d
i

∣∣2 − Xd
i

∣∣�d
i+1

∣∣2)
+ (

3Xd
i−2

∣∣�d
i−1

∣∣2 − Xd
i−1

∣∣�d
i−2

∣∣2)
(3.8)

are the classical Stark shift coefficients, with �d
i ≡

−gi/(ωi+1,i − ωd ) and Xd
i ≡ −gi�

d
i , and where

Li(α) ≡ χi−1(α), (3.9a)

Si(α) ≡ −[χi(α) − χi−1(α)] (3.9b)

are the Lamb shift and the cavity pull, with χi(α) ≡ −giλi(α)
and λi(α) ≡ −gi/[ω′′

i+1,i(α) − ω′
r (α)]. We have also defined

ϒ ≡
(

K

2
+ K ′|�α|2

)
�2

α. (3.10)

Because of its a(†)2 dependence, the term proportional to ϒ

in the transformed Hamiltonian leads to squeezing of the
resonator field. This contribution was assumed to be small
in Paper I and dropped.

Putting all of this together, the resulting transformed qubit-
resonator master equation is then given by

ρ̇ ′′′ = −i[H ′′′
0 + H ′′′

2 ,ρ ′′′] + κD[a]ρ ′′′

+ γ ′′′
↓ D[σ−]ρ ′′′ + γ ′′′

ϕ

2
D[σz]ρ

′′′, (3.11)

where

γ ′′′
↓ = γ + λ2

0(α)κ, (3.12a)

γ ′′′
ϕ = γϕ + �ϕm, (3.12b)

�ϕm = κ|α1 − α0|2
2

(3.12c)
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are the modified rates having neglected dressed dephasing as
well as two-photon losses, both of which were included in
Paper I.

Using this master equation, we have shown in Paper I that
the measurement-induced dephasing rate given by Eq. (3.12c),
with the pointer states given by Eq. (3.4), is in quantitative
agreement with measured qubit spectroscopic linewidth within
the limits of the approximations that were made. There are a
few key points behind this good agreement between theory and
experiments. First, contrary to what is usually used in circuit
QED, our expression for the ac-Stark shift depends on the
pump drive frequency rather than the resonator frequency. Our
treatment moreover goes beyond linear response theory for
the resonator state. Indeed, in Paper I we show that for typical
circuit QED parameters, describing the measurement-induced
dephasing quantitatively with a nonlinear resonator always
requires going beyond a linear response. That is, whenever
the gain of the resonator is large, the susceptibility of the
resonator response to a shift in its resonance frequency is
large. Because of this large susceptibility, the qubit cannot be
treated as a simple perturbation causing a small shift of the
resonator frequency.

IV. SQUEEZING AND SIDEBANDS

In this section, we relax the two main approximations that
are discussed above (small distinguishability and negligible
squeezing) and include first-order corrections. First, instead of
approximating Eq. (3.2) as P†�i,i+1P ≈ �i,i+1, we now take

P†�i,i+1P ≈ �i,i+1(1 + βia
† − β∗

i a), (4.1)

where βi ≡ αi+1 − αi is assumed to be small. Taking these
terms into account when transforming HI yields a term in the
Hamiltonian that was neglected in Paper I and that is given by

H ′
SB ≡

M−2∑
i=0

gi(�
∗
α + �α)[(βia

† − β∗
i a)�i,i+1 + H.c.].

(4.2)

This Hamiltonian generates multiphoton qubit-resonator side-
band transitions that will appear in the qubit spectrum.

With the proper choice of polaron frame (i.e., of pointer
states αi), the average field 〈a〉 is small. Assuming that βi is
also small, we consider H ′

SB to be itself a correction to the
transformed system Hamiltonian. We therefore omit applying
the classical and quantum dispersive transformations on H ′

SB
since this would only yield even smaller corrections.

Taking into account this correction, the master equa-
tion (3.11) describing the system in the three-times-
transformed frame now reads

ρ̇ ′′′ = −i[H ′′′
0 + H ′′′

2 + H ′′′
SB,ρ ′′′] + κD[a]ρ ′′′

+ γ ′′′
↓ D[σ−]ρ ′′′ + γ ′′′

ϕ

2
D[σz]ρ

′′′, (4.3)

where H ′′′
SB = H ′

SB.

A. Bogoliubov transformation

In Paper I, we had only H ′′′
0 + H ′′′

2 as the Hamiltonian in the
transformed frame and assumed that H ′′′

2 was a perturbation

small enough that the state of the resonator was the vacuum
and could be readily traced out. In practice, however, the terms
proportional to a(†)2 in H ′′′

2 lead to squeezing of the stationary
state of the resonator. Here, we do not drop these terms and
take care of them using a Bogoliubov transformation before
adiabatically eliminating the resonator.

Indeed, assuming Hamiltonian H ′′′
2 of Eq. (3.6b) depends

only weakly on the qubit state, it can be diagonalized using a
Bogoliubov transformation, which takes the form

S = e
1
2 ξ∗a2− 1

2 ξa†2

(4.4)

and whose action on the field operator a is [38]

S†aS = cosh(r)a − ei2θ sinh(r)a†, (4.5)

where ξ = re2iθ is the squeezing parameter.
To keep the analytical calculations tractable, we will keep in

this transformation only the time dependence of θ , with θ (t) ≡
−ωpt + �. This implies that the field has reached a steady state
in a frame rotating at ωp. We show in Appendix A that under
transformation by S the qubit-resonator master equation now
takes the form

ρ̇(4) = −i
[
H (4)

s ,ρ(4)
] + γ ′′′

↓ D [σ−] ρ(4) + γ ′′′
ϕ

2
D[σz]ρ

(4)

+ κ[sinh2(r) + 1]D[a]ρ(4) + κ sinh2(r)D[a†]ρ(4),

(4.6)

where H (4)
s = H

(4)
0 + H

(4)
2 + H

(4)
SB , with

H
(4)
0 = g0(αs,0σ+eiδt + H.c.),

H
(4)
2 = �̃r (α)

(
a†a + 1

2

)
, (4.7)

H
(4)
SB = F (4)σ+eiδt + H.c.,

and

F (4) = g0αs,0(ca† − c∗a),

�̃r (α) ≡ [ω′
r (α) + �S(α) − ωp]/ cosh(2r), (4.8)

δ = ω′′′
1,0 − ωs,

with

c ≡ c(r,θ ) ≡ β cosh(r) + β∗ei2θ sinh(r). (4.9)

In obtaining this master equation, we have moved to a frame
rotating at ω′′′

1,0 for the qubit and at ωp for the resonator. We

have also neglected rapidly oscillating terms in H
(4)
SB using the

rotating-wave approximation.
Finally, and as presented in more detail in Appendix A, we

have assumed that the photon population in the transformed
frame is small. As can be seen from the term sinh2(r)D[a†]ρ
responsible for heating in Eq. (4.6), this assumption will
only be true in the limit of small squeezing. The squeezing
coefficient r is given by the solution of the equations

cos[arg(ϒp) − 2θ ] = ω′
r (α) + �S(α) − ωp

2|ϒp| tanh 2r, (4.10a)

sin[arg(ϒp) − 2θ ] = κ

4|ϒp| sinh(2r). (4.10b)
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While complicated and not reproduced here, the solution of
these equations is analytical and yields a maximum squeezing
coefficient

rmax = 1

2
arcsinh

(
4|ϒp|

κ

)
. (4.11)

Maximal squeezing is reached for ωp = ω′
r (α) + �S(α). For

the parameters of interest here and in Ref. [20], rmax ∼ 0.5 for
all qubit states corresponding to sinh2 rmax ∼ 0.3. Although
we would have preferred to have sinh2 r  1 to justify our
approximation, we will see below that this model nevertheless
semiquantitatively compares with experimental results.

B. Adiabatic elimination of the resonator

We now adiabatically eliminate the resonator to obtain a
master equation for the qubit only. As described in Appendix B,
we use the projector formalism [38,49] to obtain the following
reduced master equation:

ρ̇q = −i[H̃ ,ρq] + γ̃↓D[σ−]ρq + γ̃↑D[σ+]ρq + γ̃ϕ

2
D[σz]ρq.

(4.12)

In this expression, we have defined the rates

γ̃↓ = γ ′′′
↓ + |g0αs,0c|2{[L(−δ) + L(δ)] sinh2 r + L(−δ)},

(4.13a)

γ̃↑ = |g0αs,0c|2{[L(−δ) + L(δ)] sinh2 r + L(δ)}, (4.13b)

γ̃ϕ = γ ′′′
ϕ (4.13c)

and the Hamiltonian

H̃ = δ̃

2
σz + g0(αs,0σ+ + α∗

s,0σ−), (4.14)

where L(δ) = Re[f (δ)] is a Lorentzian with

f (ω) = κ/2 + i[�̃r (α) + ω]

κ2/4 + [�̃r (α) + ω]2
(4.15)

and c = c(r,θ ) is defined in Eq. (4.9). Moreover, δ̃ = ω′′′
1,0(α) −

ωs + Im[S↓(δ) − S↑(−δ)], where S↓(δ) and S↑(−δ) are de-
fined in Appendix B. The above master equation is one of the
central results of this paper, and the significance of the various
terms is discussed below.

C. Steady-state qubit population

We are now almost ready to compare the above model to
the experiments presented in Ref. [20]. It is, however, useful to
give some more details of the experiment so as to compute the
appropriate qubit observable for comparison with theory. In
the experiment presented in Ref. [20], a transmon qubit [37] is
coupled to a nonlinear transmission resonator. The nonlinearity
is provided by a Josephson junction embedded in the central
conductor of the resonator. The resonator is first driven with
a pump drive of frequency ωp and power Pp, pushing the
resonator field out of its ground state. The drive is chosen
to be long enough for the coupled resonator-qubit system to
reach its steady state. Under this steady-state resonator field,

the qubit is ac-Stark shifted as described in Eq. (3.7). This
frequency shift is then measured in order to reveal information
about the internal resonator field.

For this, a second (spectroscopy) drive at frequency ωs

close to the qubit frequency is turned on while the pump field
is still present. This spectroscopy drive excites the qubit only if
ωs matches the shifted qubit transition frequency. Both drives
are then turned off for a time longer than the resonator decay
time but shorter than the qubit’s relaxation time. The qubit
state is then measured using the standard bifurcation readout
procedure [19]. This process is then repeated multiple times
for different spectroscopy frequencies ωs and pump powers
Pp to extract the probability P (|1〉) of the qubit to be in its
excited state.

To compare our model to experimental results, we therefore
compute from Eq. (4.12) the steady-state probability of the
qubit to be in its excited state. We find

P (|1〉) = 〈�1,1〉eq
(
γ̃ 2

2 + δ̃2
) + 2γ̃2|g0αs,0|2/(γ̃↑ + γ̃↓)[(

γ̃ 2
2 + 4γ̃2|g0αs,0|2/(γ̃↑ + γ̃↓)) + δ̃2

] ,

(4.16)

where we have defined

γ̃2 ≡ γ̃ϕ + γ̃↑ + γ̃↓
2

, 〈�1,1〉eq ≡ γ̃↑
γ̃↑ + γ̃↓

. (4.17)

The above expression for P (|1〉) can be understood by
focusing on three different contributions, leading to three
peaks in P (|1〉) versus pump power Pp and spectroscopy
frequency ωs . The first peak is obtained for γ̃↓ � γ̃↑ such
that 〈�1,1〉eq ∼ 0. In this regime, P (|1〉) reduces to

P (|1〉) ≈ 2γ̃2|g0αs,0|2/γ̃↓[(
γ̃ 2

2 + 4γ̃2|g0αs,0|2/γ̃↓
) + δ̃2

] . (4.18)

That is, we find a Lorentzian centered at δ̃ = 0 with width γ̃2

in the absence of power broadening. This Lorentzian is the
main qubit line and is power broadened by the spectroscopy
field αs,0.

The two other contributions are found when γ̃↑ is large.
From the definition of γ̃↑ in Eq. (4.13b), this requires that
±δ̃ ∼ �̃r (α), which corresponds to L(±δ) taking its maximal
value. If |δ| is sufficiently large and if the undriven decay rate
γ ′′′

↓ is negligible compared to the effective rates arising from
squeezing ∝ |g0αs,0c|2/κ in Eqs. (4.13a) and (4.13b)], then
the dominant contribution is

〈
�1,1

〉
eq,

P (|1〉) ≈ 〈�1,1〉eq ≈ L(−δ) sinh2 r + L(δ)(sinh2 r + 1)

[L(−δ) + L(δ)](2 sinh2 r + 1)
.

(4.19)

In this situation, corresponding to the resolved sideband limit,
P (|1〉) takes the form of red and blue sidebands on either
side of the main qubit line. Interestingly, these two sidebands
depend on the squeezing parameter r . In the next section, we
compare this three-peak excitation spectrum to experimental
data and analyze the amplitude, width, and position of the
peaks to extract information about the internal resonator state
and, in particular, about the squeezing parameter.
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V. COMPARISON TO EXPERIMENTS

As discussed in Paper I and in Ref. [21], only the center
qubit line is observed under low spectroscopy power Ps . This
can be understood from the expressions (4.13a) and (4.13b) for
γ̃↑ and γ̃↓. Indeed, for negligible spectroscopy power |αs,0|2 →
0 and γ̃↓ � γ̃↑ such that, as discussed above, only the center
line is apparent. The position and width of this peak were
analyzed in detail in Paper I and in Ref. [21].

Here, we focus on the situation where the spectroscopy
power Ps is important such that γ̃↑ cannot be neglected with
respect to γ̃↓. The experimental results in this situation for
P (|1〉) versus pump power and spectroscopy frequency, first
presented in Ref. [20], are reproduced in Fig. 3(a). On the
right side of Fig. 3, we show the result of P (|1〉) as given by
the fully analytical expression of Eq. (4.16). In both cases,
we see a sudden jump in the qubit transition frequency. This
corresponds to switching of the resonator state from its L

to its H state and was discussed in detail in Ref. [21]. At
larger pump power, sidebands are clearly resolved, and the
agreement between experiments and theory is excellent. In
producing Fig. 3, all parameters except one have been extracted
independently and are given in Ref. [20] and Paper I. The
adjustable parameter is an ad hoc multiplicative coefficient
to the effective sideband driving amplitude F (4) defined in
Eq. (4.8). This parameter accounts for the large dependence
of the coefficient c in F (4) on the squeezing coefficient ξ =
re2iθ . For our model to reproduce the experimental sideband
amplitudes, we have multiplied c by 2. Considering the number
of approximations that are done in obtaining the model, we
consider such a factor to be an acceptable correction. It is
important to stress that this correction does not affect the
position (frequency) of any of the lines. Moreover, while it
changes the absolute amplitude of the sidebands relative to the
main line, it does not change their width, nor does it change
the ratio of their amplitude since both sidebands are affected
in the same way by this correction.

For a more quantitative comparison, we show in Fig. 4 four
line cuts of Figs. 3(a) and 3(b) for increasing pump power
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FIG. 3. (Color online) Qubit spectrum for a strong spectroscopy
amplitude εs as a function of the pump amplitude εp , in logarithmic
scale. (a) Experimental results are compared to (b) the analytical
spectrum. Results are for pump frequency ωp/2π = 6439 MHz,
corresponding to �/�C = 1.74, and spectroscopy power Ps =
−4 dBm, corresponding to εs/2π ≈ 25 MHz. All other system
parameters can be found in Ref. [20].
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FIG. 4. Line cuts of Fig. 3 for four pump powers. Black lines are
theoretical predictions. Dots are experimental data.

Pp. In these plots, the dots correspond to the experimental
data, while the lines are the analytical predictions. With the
above single correction, the agreement is almost quantitative
at all powers. We note, however, that at Pp = −5 dBm (top
left panel) the analytical results predict two peaks, while a
single one is observed experimentally [50]. In fact, in all cases
the sidebands are better resolved in the analytical model than
is observed experimentally, especially close to the bifurcation
threshold. We attribute this discrepancy to the rotating-wave
approximation made in Appendix B, where we neglected terms
oscillating at the sideband-detuning frequency. As is discussed
there and observed in Fig. 4, making this approximation
corresponds to considering the resolved-sideband limit.

While the analytical expression for P (|1〉) in terms of ωs

is not simply that of three superposed Lorentzians, it is useful
to compare fits of both the analytical expressions and the
experimental data to such a simplified model. The position,
amplitude, and widths of the three peaks were therefore
extracted by fitting the sum of three Lorentzian curves to
both the experimental and analytical spectra. We plot the
results of these fits in Fig. 5, where we show the sideband
detuning from the main line [Fig. 5(a)], the width of the three
peaks [Fig. 5(b)], and the ratio of amplitude of the blue to
the red sidebands [Fig. 5(c)]. Due to the breakdown of the
resolved-sideband approximation and as mentioned above, we
see in Fig. 5(a) that the sidebands are slightly more separated
in the analytical model (lines) than in the experimental data
(dots). We see from Fig. 5(b) that the width of the red sideband
(solid line and circles) and the center peak (dashed line and
squares) are in quantitative agreement. The model, however,
shows a blue sideband that is much wider than obtained
experimentally. We attribute this discrepancy to the small
signal-to-noise ratio of the blue sideband (i.e., it is not very
distinguishable from the noise), to the approximations made
in the model, and to the assumption that the lines can be
described by Lorentzians. The error bars correspond to the
statistical margin of error on the fitting parameters.

In Fig. 5(c), we show the ratio of the amplitude of the
blue sideband to that of the red sideband. In addition to the
data from the fit to the experimental data (black squares)
and to the analytical expression (orange double-dotted line),
we have extracted this ratio directly from the analytical
expression for P (|1〉), i.e., without assuming a Lorentzian
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FIG. 5. (Color online) (a) Sideband splitting fi − fc, (b) width
wi , and (c) ratio of amplitude Ab/Ar as a function of the pump
amplitude εp , in logarithmic scale. In (a) and (b), red circles (solid
red lines), blue crosses (dotted blue lines), and black squares (dashed
black lines) are experimental data (theoretical predictions) for the
red sideband (i = r), blue sideband (i = b), and main line (i = c),
respectively. In (c), black squares (orange double-dotted line) are
extracted from fits to the experimental (analytical) spectrum, while the
dotted gray line and dash-dotted green line correspond to Eqs. (5.1a)
and (5.1b), respectively. Error bars correspond to statistical errors on
the fitted parameters of the sum of three Lorentzians.

profile. Since the blue (red) sideband is at a frequency
corresponding to δ = �̃r (δ = −�̃r ), the ratio of amplitudes
is given by Ab/Ar = P (|1〉)|δ=−�̃r

/P (|1〉)|δ=�̃r
. Using the

simplified expression (4.19) for the amplitude of the sidebands,
we find

Ab

Ar

≈ [L(�̃r ) + L(−�̃r )] sinh2 r + L(−�̃r )

[L(−�̃r ) + L(�̃r )] sinh2 r + L(�̃r )
(5.1a)

≈ sinh2 r

sinh2 r + 1
, (5.1b)

where in the last approximation, we have assumed that
L(−�̃r ) � L(�̃r ), which is valid in the limit �̃r � κ , i.e.,

in the resolved-sideband limit. Equation (5.1a) corresponds to
the dotted gray line in Fig. 5(c), and Eq. (5.1b) corresponds
to the dash-dotted green line. Because of space constraints,
only the simpler expression, Eq. (5.1b), was used for compar-
ison to the experimental data in Ref. [20].

We emphasize once more that the correction factor applied
to the theoretical results does not affect any of the results
shown in Fig. 5. As a result, given the quantitative agreement
displayed in Fig. 5(c), it is possible to accurately determine the
squeezing coefficient r of the intraresonator field. As already
mentioned above, we find a maximal value of sinh2 rmax ∼ 0.3,
corresponding to rmax ∼ 0.5.

Alternatively, the ratio of the two sidebands also allows
us to extract the effective temperature of the oscillator as
described in the quadruply transformed frame by the master
equation (4.6). Indeed, the last line of this master equation
takes the standard form,

κ(nth + 1)D[a]ρ(4) + κnthD[a†]ρ(4), (5.2)

where we have identified sinh2(r) with an effective thermal
occupation number of the oscillator, nth = sinh2(r). Using the
Bose-Einstein distribution for nth then allows us to define an
effective temperature Teff for the system due to squeezing of the
resonator field. This corresponds to the essential prediction of
the quantum heating theory [23–26]. As discussed in more
detail in Ref. [20], Teff corresponds to a few tenths of a
quantum, much larger than the temperature expected from
the base temperature of the dilution refrigerator and filtering
of the lines.

Moreover, the nonmonotonic dependence of the spectrum
with pump power excludes a classical heating effect (due
to the contacts, for example) from being the cause of this
effective temperature. Indeed, actual thermal population of the
resonator would result in sidebands of increasing amplitude
with increased pump power, the opposite of what is observed
here. Moreover, thermal population of the qubit would cause
a widening of all the lines, as well as an increased background
population. This counterintuitive dependence of the spectrum
with respect to pump power is not surprising when one con-
siders that this effective temperature is not a real temperature,
but rather a consequence of the approximate description of
squeezing of the intraresonator field.

Finally, while the ratio of sidebands amplitude yields
information about the squeezing factor r but not the squeezing
angle θ , we note that the amplitude of both sidebands depends
on r and θ via the parameter c given in Eq. (4.9). As a result,
a change in squeezing angle changes the amplitude of both
sidebands. For example, with a squeezing factor r ∼ 0.3, the
coefficient c changes by approximately 60% with a change of
θ by π/2. Therefore, while the particular experiment we are
considering here did not probe θ , this could, in principle, be
done and analyzed using the model developed here.

VI. CONCLUSION

We have developed a theoretical model for a multilevel
qubit coupled to a pumped nonlinear resonator. The model
holds within the dispersive regime of circuit QED and for
pumping powers well above the bifurcation threshold of
the resonator. The reduced qubit master equation that we
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have obtained contains Purcell decay, measurement-induced
dephasing, dressed dephasing, quadratic ac-Stark shift, Lamb
shift, and the first-order correction of the resonator’s squeezing
on the qubit. This allows us to obtain quantitative agreement
with experimental data in a wide range of parameters, without
adjustable parameters. In this way, we show how the qubit
can be used as a probe of squeezing of the intraresonator
field. By comparing the ratio of the red and blue sidebands
in the qubit excitation spectrum, we have extracted the
squeezing coefficient of the field or equivalently the effective
temperature of the so-called quasioscillator, providing a direct
demonstration of quantum heating.

Interesting extensions to this model include a finer treat-
ment of the intraresonator squeezing, especially the squeezing
angle, as well as a qubit-dependent squeezing. This latter
aspect could provide insights on how to improve dispersive
qubit measurement using squeezing or on how measurement-
induced dephasing is changed by squeezing of the intrares-
onator field.

Note added. Recently, we became aware of related
work [51].
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APPENDIX A: BOGOLIUBOV TRANSFORMATION

In this Appendix, we diagonalize the sideband Hamiltonian
by applying the transformation S of Eq. (4.4) on the master
Equation (4.3). Given the action of S on a [see Eq. (4.5)], we
find for the transformed dissipator

D[a]ρ → cosh rD[a]ρ + sinh rD[a†]ρ

− i
sinh(2r)

4
[−i(e−i2θ a2 − e2iθ a†2

),ρ]

− cosh r sinh r{e−i2θa[ρ,a] + [a†,ρ]a†e2iθ }.
(A1)

As we can see in the first line, what was pure damping in
the original frame now sees heating in the transformed frame.
The second line of the above expression takes the form of a
commutator and can be added to the Hamiltonian part of the
master equation. Finally, we will neglect the last line because
it vanishes if the resonator is in its ground state. Because of
the presence of the heating term, this is an approximation
that restricts this theory to low squeezing (i.e., low effective
temperature).

Taking into account the above contribution from the
dissipation, we can then transform the system Hamiltonian
H ′′′

s = H ′′′
0 + H ′′′

2 + H ′′′
SB, yielding

H (4)
s = H ′′′

0 + (F (4)†σ− + F (4)σ+)

+ω′
r (α)a†a + �S(α)a

†a + {2 sinh2 r[ω′
r (α) + �S(α) − ωp] − sinh(2r)(ϒpe−i2θ + H.c.)}

(
a†a + 1

2

)

−
{

sinh(2r)

2
[ω′

r (α) + �S(α) − ωp] − ϒpe−2iθ sinh2 r − ϒ∗
p cosh2 rei2θ + i

κ sinh(2r)

4

}
e−i2θ a2 + H.c., (A2)

where F (4) is

F (4) = g0αs,0[(β cosh r + β∗ei2θ sinh r)a† − H.c.]. (A3)

We see that choosing r and θ such that

−[ω′
r (α) + �S(α) − ωp]

sinh(2r)

2
+ i

κ sinh(2r)

4

+ϒpe−2iθ cosh2 r + ϒ∗
pe2iθ sinh2 r = 0 (A4)

yields vanishing squeezing terms, leaving only a renormalized
harmonic oscillator and a driven qubit. The solution to this
equation can be expressed in the simpler form of Eq. (4.10)
when considering the real and imaginary parts separately.

Assuming that the squeezing coefficient does not depend
on the qubit state and moving to a frame rotating at ωp for
the resonator and ω′′′

1,0 for the qubit, we then obtain the master
equation (4.6).

APPENDIX B: ADIABATIC ELIMINATION THROUGH
THE PROJECTOR FORMALISM

In this Appendix we use the projector formalism [38,49] to
adiabatically eliminate the resonator’s degrees of freedom. We
first note that the master equation (4.6) can be expressed as

ρ̇ = Lrρ + Lc(t)ρ + Lqρ, (B1)

where to simplify the notation used in this Appendix we have
dropped the index on ρ and defined the resonator, qubit, and
coupling Lindbladians as

Lqρq ≡ −i
[
H

(4)
0 ,ρq

] + γ ′′′
↓ D[σ−]ρq + γ ′′′

ϕ

2
D[σ0]ρq,

Lrρr ≡ −i
[
H

(4)
2 ,ρr

] + κ[1 + sinh2(r)]D[a]ρr

+ κ sinh2(r)D[a†]ρr,

Lc(t)ρ ≡ −i
[
H

(4)
SB ,ρ

]
, (B2)

respectively. We then assume that the resonator relaxes much
faster than the qubit (i.e., κ � γ,γϕ). This allows us to assume
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a stationary state for the resonator given by ρ̇s
r = Lrρ

s
r = 0.

In the same way, we also assume that the qubit-resonator state
can be written as

ρ(t) = ρs
r ⊗ ρq(t), (B3)

where ρq(t) is the reduced qubit density matrix. In order to
find the evolution equation for ρq(t), we define the projector
on the qubit subspace Q,

Qρ ≡ ρs
r ⊗ Trr (ρ) , (B4)

and the complementary projector R ≡ I − Q, where I is the
identity. There are a number of useful identities that one
can prove with these projectors. Among these are LrQ =
QLr = 0, LqQ = QLq , RLr = LrR, and RLq = LqR. The
first property arises from the adiabatic approximation and the
trace-preserving nature of Lindbladians, while the other three
are consequences of the definition of Q and R [38].

Using the above properties and assuming, without loss of
generality, that QLc(t)Q = 0, we then search for the evolution
equations of v(t) = Qρ(t) and w(t) = Rρ(t). We obtain

v̇(t) = QLc(t)w(t) + Lqv(t),
(B5)

ẇ(t) = [Lr + RLc(t) + Lq]w(t) + RLc(t)v(t).

Assuming that Lr contains the dominant dynamic and that the
integration time is long compared to 1/κ yet short compared
to 1/γ,1/γϕ , we obtain the approximate solution for w(t),

w(t) ≈
∫ ∞

0
dt̄ exp [Lr t̄]RLc(t − t̄)v(t). (B6)

We can then replace this solution in the equation for v(t) and,
using the definition of Q, obtain an equation for ρ̇q ,

ρ̇q = Lqρq(t) +
∫ ∞

0
dt ′Trr[Lc(t)eLr t

′Lc(t − t ′)ρ(t)]. (B7)

Given the form of Lc(t), one can then show that the qubit
reduced master equation can be written as

ρ̇q = Lqρq − i[δH,ρq]

+ Re[S↑(−δ)]D[σ+]ρq + Re[S↓(δ)]D[σ−]ρq, (B8)

where we have defined the spectra

S↑(ω) =
∫ ∞

0
dt ′eiωt ′ 〈F (4)†(t ′)F (4)(0)〉s ,

(B9)

S↓(ω) =
∫ ∞

0
dt ′eiωt ′ 〈F (4)(t ′)F (4)†(0)〉s ,

with 〈·〉s = Trr(·ρs
r ) and where

δH = Im[S↑(−δ)]σ−σ+ + Im[S↓(δ)]σ+σ−. (B10)

Importantly, in obtaining the above master equation, we have
assumed that we could neglect terms oscillating at a frequency
2δ. As discussed in Sec. V, this approximation corresponds to
the well-resolved sideband limit.

Finally, we use the quantum regression theorem [38] to
obtain

S↑(ω) = |g0αs,0c|2[f (ω) sinh2 r + f ∗(−ω)(1 + sinh2 r)],

(B11)
where we have defined the complex function

f (ω) = κ/2 + i[�̃r (α) + ω]

κ2/4 + [�̃r (α) + ω]2
, (B12)

the coefficient c is given at Eq. (4.9), and S↓(ω) = S↑(ω). With
this spectrum, we easily get the reduced master equation (4.12)
for the qubit only.
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