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We show how to realize fast and high-fidelity quantum nondemolition qubit readout using longitudinal
qubit-oscillator interaction. This is accomplished by modulating the longitudinal coupling at the cavity
frequency. The qubit-oscillator interaction then acts as a qubit-state dependent drive on the cavity, a situation
that is fundamentally different from the standard dispersive case. Single-mode squeezing can be exploited to
exponentially increase the signal-to-noise ratio of this readout protocol.We present an implementation of this
longitudinal parametric readout in circuit quantum electrodynamics and a possible multiqubit architecture.
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Introduction.—For quantum information processing,
qubit readout must be fast, of high fidelity, and ideally
quantum nondemolition (QND). In order to rapidly reuse
the measured qubit, fast reset of the measurement pointer
states is also needed. Combining these characteristics is
essential to meet the stringent requirements of fault-tolerant
quantum computation [1]. A common strategy, known as
dispersive readout, relies on coupling the qubit to an
oscillator acting as the pointer. With the qubit modifying
the oscillator frequency in a state-dependent fashion,
driving the oscillator displaces its initial vacuum state to
qubit-state dependent coherent states. Resolving these
pointer states by homodyne detection completes the qubit
measurement. This approach is used with superconducting
qubits [2–6] and quantum dots [7,8], and is studied in a
wide range of systems including donor-based spin qubits
[9] and Majorana fermions [10–12]. The same qubit-
oscillator interaction is used to measure the oscillator state
in cavity QED with Rydberg atoms [13].
In this Letter, we show that parametric modulation of

longitudinal qubit-oscillator interaction leads to a faster,
very high-fidelity and ideally QND qubit readout with a
simple reset mechanism. Moreover, we show how to
exponentially improve the signal-to-noise ratio (SNR) of
this measurement with the help of a single-mode squeezed
input state on the oscillator. Like dispersive readout, this
approach is applicable to a wide variety of systems. We start
by presenting the performances of longitudinal parametric
readout and finally consider as an example an implemen-
tation with transmon qubits [14].
While dispersive readout of σ̂z is based on transversal

qubit-oscillator coupling, Ĥx ¼ gxðâ† þ âÞσ̂x, here we pro-
pose to use longitudinal interaction, Ĥz ¼ gzðâ† þ âÞσ̂z.
Despite the apparently minimal change we show that, for
several reasons, this leads to vastly improved qubit readout.

First, longitudinal coupling leads to an optimal separation of
the pointer states. Indeed, Ĥz is simply the generator of
displacement of the oscillator field with a qubit-state depen-
dent direction. The resulting evolution from the initial
oscillator vacuum state is illustrated in phase space by the
full lines of Fig. 1(a). This is to be contrasted to dispersive
readout which, as illustrated by the dashed lines, leads to a
complex path in phase space and, in particular, to a poor
separation of the pointer states at short times (see colored
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FIG. 1 (color online). (a) Evolution in phase space of the
intracavity field â for longitudinal (full lines) and dispersive
coupling (dashed lines, dispersive shift χ ¼ κ=2). Blue and red
refer to qubit states. The circles illustrate the position of the pointer
states at characteristic times until steady state. (b) Pointer state
separation for the cavity output field âout as a function of time.
Vertical lines correspond to the circles of panel (a). (c) Readout-
reset cycle. After ameasurement time τ, the sign of the longitudinal
modulation amplitude is changed during a time τ to move the
pointer state to the origin irrespective of the qubit state.
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dots). For this reason, even for identical steady-state sepa-
ration of the pointers, longitudinal parametric readout is
significantly faster than its dispersive counterpart.
A second advantage of the present approach is that it

also allows for larger pointer state separations. This is a
consequence of the fact that Ĥz commutes with the
measured qubit observable, σ̂z, resulting in an ideally
QND readout. The situation is different for the dispersive
case simply because ½Ĥx; σ̂z� ≠ 0. In the dispersive regime,
where the qubit-oscillator detuning Δ is large with respect
to gx, this non-QNDness manifests itself with Purcell decay
γκ ¼ ðgx=ΔÞ2κ [15], where κ is the oscillator damping rate,
and with the experimentally observed measurement-
induced qubit transitions [16,17]. For these reasons, the
oscillator damping rate cannot be made arbitrarily large and
the measurement photon number n̄ is typically kept well
below the critical photon number ncrit ¼ ðΔ=2gxÞ2 [2]. In
other words, dispersive readout is typically slow (small κ)
and limited to poor pointer state separation (small n̄).
Because longitudinal coupling is genuinely QND, it does
not suffer from these two limitations [18,19].
Longitudinal parametric readout.—Under longitudinal

coupling, the qubit-cavity Hamiltonian reads (ℏ ¼ 1)

Ĥ ¼ ωrâ†âþ 1

2
ωaσ̂z þ gzσ̂zðâ† þ âÞ; ð1Þ

where ωr and ωa are respectively the cavity and qubit
frequencies, while gz is the longitudinal coupling strength.
The realization of multiqubit gates based on this interaction
has already been discussed in the context of trapped ions
[20–23] and superconducting qubits [18,19,24]. In steady
state, Eq. (1) leads to a qubit-state dependent displacement
of the cavity field of amplitude �gz=ðωr þ iκ=2Þ. In other
words, a static longitudinal interaction is of no consequence
for the typical case where ωr ≫ gz; κ.
Here we propose to render this interaction resonant

during readout by modulating the coupling at the resonator
frequency: gzðtÞ ¼ ḡz þ ~gz cosðωrtÞ. In the interaction
picture and neglecting fast-oscillating terms we obtain

~H ¼ 1

2
~gzσ̂zðâ† þ âÞ: ð2Þ

This now leads to a large qubit-state dependent displace-
ment �~gz=κ. Even with a conservative modulation ampli-
tude ~gz ∼ 10κ, the steady-state displacement corresponds to
100 photons and the two qubit states are easily distinguish-
able by homodyne detection. With this longitudinal cou-
pling, there is no concept of critical photon number and a
large photon population is therefore not expected to perturb
the qubit. Moreover, as already illustrated in Fig. 1(a), the
pointer states take the optimal path in phase space towards
their steady-state separation. As shown in Fig. 1(b), this
leads to a large pointer state separation at short times.
The consequences of this observation on qubit meas-

urement can be quantified with the SNR. This quantity is

evaluated using M̂ðτÞ ¼ ffiffiffi
κ

p R
τ
0 dt½â†outðtÞ þ âoutðtÞ�, the

measurement operator for homodyne detection of the
output signal âout with a measurement time τ. The signal
is defined as jhM̂i1 − hM̂i0j, where f0; 1g refers to the
qubit state, while the imprecision noise is ½hM̂2

N1ðτÞi þ
hM̂2

N0ðτÞi�1=2 with M̂N ¼ M̂ − hM̂i [25]. Combining these
expressions, the SNR for the longitudinal case reads [26]

SNRz ¼
ffiffiffi
8

p j~gzj
κ

ffiffiffiffiffi
κτ

p �
1 −

2

κτ
ð1 − e−κτ=2Þ

�
: ð3Þ

This is to be contrasted to SNRχ for dispersive readout with
drive amplitude ϵ and optimal dispersive coupling χ ¼
g2x=Δ ¼ κ=2 [25,26,33],

SNRχ ¼
ffiffiffi
8

p jϵj
κ

ffiffiffiffiffi
κτ

p �
1 −

2

κτ

�
1 − e−κτ=2 cos

1

2
κτ

��
: ð4Þ

Both expressions have a similar structure, making very
clear the similar role of ~gz and ϵ, except for the cosine in
Eq. (4) that is a signature of the complex dispersive path in
phase space. For short measurement times κτ ≪ 1we find a
favorable scaling for longitudinal parametric readout with
SNRz ∝ SNRχ=κτ. This advantage is illustrated in Fig. 2(a)

(a)
(b)

(c)

FIG. 2 (color online). (a) SNR in units of ~gz=κ as a function of
integration time τ. Longitudinal coupling (full green line) is
compared to dispersive coupling (dashed black line, χ ¼ κ=2) for
the same steady-state separation, j~gzj ¼ jϵj. The dotted cyan line
accounts for Purcell decay in dispersive readout. The full brown line
shows the exponential improvement obtained for a single-mode
squeezed inputstatewithe2r ¼ 100 (20dB). (b)Measurement timeτ
required to achieve a fidelity F ¼ 99.99% versus longitudinal
coupling modulation. (c) Cavity damping rate to reach a fidelity
of 99.99% in τ ¼ 50 ns versus intracavity photon number
n̄ ¼ ð~gz=κÞ2 ¼ 2ðϵ=κÞ2. Squeezing (fullbrownline) helps in further
reducing the required photon number or cavity decay rate. The
squeezestrengthisoptimizedforeachκ,withamaximumset to20dB
reached close to κ=2π ¼ 1 MHz. Inpanels (b) and (c), the results for
the dispersive readout are stopped at the critical photon number
obtained for a drive strength, ϵcrit ¼ Δ=

ffiffiffi
8

p
gx for gx=Δ ¼ 1=10.
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showing the SNR versus integration time for longitudinal
(full green line) and dispersive without Purcell decay
(dashed black line) coupling. Even for equal steady-state
separation (~gz ¼ ϵ), this leads to a shorter measurement
time for longitudinal coupling. This is made clear in
Fig. 2(b), showing the measurement time required to reach
a fidelity of 99.99% as a function of ~gz=κ (or ϵ=κ for the
dispersive case). When taking into account the nonpertur-
bative effects that affect the QNDness of dispersive readout,
the advantage of the present approach is made even clearer.
This is illustrated by the dotted light-blue lines of Figs. 2(a)
and 2(b) corresponding to the dispersive case with Purcell
decay. In this more realistic case, longitudinal readout
outperforms its counterpart at all times.
Up to now, we have assumed equal pointer state

separation for the two readouts. As already mentioned,
dispersive readout is, however, limited to measurement
photon numbers well below ncrit. This is taken into account
in Figs. 2(b) and 2(c) by stopping the dispersive curves at
ncrit (black circle) assuming the typical value, gx=Δ ¼
1=10. Panel (b) makes it very clear that only longitudinal
readout allows for measurement times < 1=κ. This is,
moreover, achieved for reasonable modulation amplitudes
with respect to the cavity linewidth. As a further illustra-
tion, panel (c) shows the cavity damping rate versus photon
number required to reach a fidelity of 99.99% in τ ¼ 50 ns.
Note that the dotted blue line corresponding to the
dispersive case with Purcell decay is absent from this
plot. In other words, with dispersive readout it appears
impossible to achieve the above target fidelity and meas-
urement time in the very wide range of parameters of
Fig. 2(c). On the other hand, this is achievable with
longitudinal readout with quite moderate values of κ and
n̄. Further speedups are possible with pulse shaping [6,34]
and machine learning [35]. Because the pointer state
separation is optimal even at short times, the latter approach
should be particularly efficient.
To allow for rapid reuse of the qubit, the cavity should be

returned to its ground state ideally in a time ≪ 1=κ after
readout. A pulse sequence achieving this for dispersive
readout has been proposed but is imperfect because of
qubit-induced nonlinearity deriving from Ĥx [34]. As illus-
trated in Fig. 1(c), in the present approach cavity reset is
simply realized by inverting the phase of the modulation.
Since Ĥz does not lead to qubit-induced nonlinearity, this
reset is ideal. In practice, reset can also be shorter than the
integration time. It is also interesting to point out that
longitudinal parametric readout saturates the inequality
Γφm ≥ Γmeas linking the measurement-induced dephasing
rate Γφm to the measurement rate Γmeas and is therefore
quantum limited [26].
Single-mode squeezing.—Another striking feature of this

new readout is that its SNR can be exponentially improved
by a single-mode squeezed input state on the cavity. For
this it suffices to chose the squeeze axis to be orthogonal to

the qubit-state dependent displacement generated by gzðtÞ.
In Fig. 1(a), this corresponds to squeezing along the vertical
axis. With this choice, and since the squeeze angle is
unchanged under evolution with Ĥz, the imprecision noise
is exponentially reduced and the signal-to-noise ratio
simply becomes erSNRz, with r the squeeze parameter
[26]. This exponential enhancement is apparent from the
full brown line in Fig. 2(a) and in the corresponding
reduction of the measurement time in Fig. 2(b). Note that
by taking ḡz ¼ 0, the cavity field can be squeezed prior to
measurement without negatively affecting the qubit.
This exponential improvement is in stark contrast to

standard dispersive readout where single-mode squeezing
can lead to an increase of the measurement time [25,36].
Indeed, under dispersive coupling, the squeeze angle under-
goes a qubit-state dependent rotation. As a result, both the
squeezed and the antisqueezed quadrature contributes to the
imprecision noise. We note that the situation can be different
in the presence of two-mode squeezing [36] where an
exponential increase inSNRcanbe recovered by engineering
the dispersive coupling of the qubit to two cavities [25].
Circuit QED implementation.—While this approach is

very general, we now turn to a possible realization in circuit
QED [2]. Longitudinal coupling of a flux or transmon qubit
to a LC oscillator has already been discussed in
Refs. [18,19]. There, longitudinal coupling results from
the mutual inductance between a flux-tunable qubit and the
oscillator. As another example, we follow the general
approach developed in Ref. [37] and focus on a transmon
qubit [14] phase biased by the oscillator. Figure 3(a)

FIG. 3 (color online). (a) Circuit QED implementation of
longitudinal coupling with a transmon qubit of Josephson
energies EJ1¼EJð1þdÞ=2, EJ2 ¼ EJð1 − dÞ=2 with d ∈ ½0; 1�.
(b) gz and gx versus flux. Around Φx ¼ 0, gz depends linearly on
flux. Spurious transverse coupling gx results from qubit asym-
metry. The full (dashed) lines correspond to Eqs. (5) and (6) with
d ¼ 0 (d ¼ 0.02). (c) Transmon frequency versus flux for
EJ=h ¼ 20 GHz, EJ=EC ¼ 67, and d ¼ 0.02.
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schematically represents a lumped version of this circuit. In
practice, the inductor can be replaced by a junction array
[38], both to increase the coupling and to reduce the qubit’s
flux-bias loop size. An in-depth analysis of an alternative
realization based on a transmission-line resonator can be
found in Ref. [26].
The Hamiltonian of the circuit of Fig. 3(a) is similar to that

of a flux-tunable transmon, but where the external fluxΦx is
replaced by Φx þ δ with δ the phase drop at the oscillator
[39]. Taking the junction capacitances to be equal and
assuming for simplicity that Z0=RK ≪ 1 with Z0 ¼ffiffiffiffiffiffiffiffiffi
L=C

p
and RK the resistance quantum, this Hamiltonian

canbe expressed as Ĥ ¼ Ĥr þ Ĥq þ Ĥqr. In this expression,
Ĥr ¼ ωrâ†â is the oscillatorHamiltonian and Ĥq ¼ ωaσ̂z=2
is the Hamiltonian of a flux-tunable transmon written here in
its two-level approximation [14]. The qubit-oscillator inter-
action takes the form Ĥqr ¼ gxðâ† þ âÞσ̂x þ gzðâ† þ âÞσ̂z
with [26]

gz ¼ −
EJ

2

�
2EC

EJ

�
1=2

ffiffiffiffiffiffiffiffi
πZ0

RK

s
sin

�
πΦx

Φ0

�
; ð5Þ

gx ¼ dEJ

�
2EC

EJ

�
1=4

ffiffiffiffiffiffiffiffi
πZ0

RK

s
cos

�
πΦx

Φ0

�
; ð6Þ

where EJ is the mean Josephson energy, d the Josephson
energy asymmetry, and EC the qubit’s charging energy.
Expressions for these quantities in terms of the elementary
circuit parameters are given in Ref. [26]. As desired, the
transverse coupling gx vanishes exactly for d ¼ 0, leaving
only longitudinal coupling gz. Thanks to the phase bias,
rather than inductive coupling, gz can be made large [37].
For example, with the realistic values EJ=h¼20GHz,
EJ=EC ¼ 67, and Z0 ¼ 50Ω we find gz=2π≈135MHz ×
sinðπΦx=Φ0Þ. The flux dependence of both gz (blue line) and
gx with d ¼ 0 (full red line) and d ¼ 0.02 (dashed red line)
are illustrated in Fig. 3(b). Modulating the flux by 0.05Φ0

aroundΦx ¼ 0, we find ḡz ¼ 0 and ~gz=2π ∼ 21 MHz.This is
accompanied by a small change of the qubit frequency of
∼40 MHz; see Fig. 3(c). Importantly, this does not affect the
SNR [26].
Tolerance to imperfections.—A finite gx is present for

d ≠ 0. This is illustrated in Fig. 3(b) where for a realistic
value of d ¼ 0.02 [40] and the above parameters we
find gx=2π ≈ 13 MHz × cos ðπΦx=Φ0Þ. The effect of this
unwanted coupling can be mitigated by working at large
qubit-resonator detuning Δ where the resulting dispersive
interaction χ ¼ g2x=Δ can be made very small. For example,
the above numbers correspond to a detuning of Δ=2π ¼
3 GHz where χ=2π ∼ 5.6 kHz. It is important to emphasize
that, contrary to dispersive readout, the longitudinal
approach is not negatively affected by a large detuning.

When considering higher-order terms in Z0=RK , the
Hamiltonian of the circuit of Fig. 3(a) contains a dispersive-
like interaction χzâ†âσ̂z even at d ¼ 0. For the parameters
already used above, we find χz=2π ∼ 5.3 MHz, a value that
is not made smaller by detuning the qubit from the
resonator. However, since it is not derived from a transverse
coupling, χz is not linked to any Purcell decay. Moreover, it
does not affect SNRz at small measurement times [26].
In the absence of measurement, ḡz ¼ ~gz ¼ 0 and the

qubit is, moreover, parked at its flux sweet spot. Dephasing
due to photon shot noise or to low-frequency flux noise is
therefore expected to be minimal. Because of the longi-
tudinal coupling, another potential source of dephasing is
flux noise at the resonator frequency which will mimic
qubit measurement. However, given that the spectral
density of flux noise is proportional to 1=f even at high
frequency [17], this contribution is negligible [26].
Multiqubit architecture.—A possible multiqubit archi-

tecture consists of qubits longitudinally coupled to a
readout resonator (of annihilation operator âz) and trans-
versally coupled to a high-Q bus resonator (âx). The
Hamiltonian describing this system is

Ĥ ¼ ωrzâ
†
z âz þ ωrxâ

†
xâx þ

X
j

1

2
ωajσ̂zj

þ
X
j

gzjσ̂zjðâ†z þ âzÞ þ
X
j

gxjσ̂xjðâ†x þ âxÞ: ð7Þ

Readout can be realized using longitudinal coupling while
logical operations can be done via the bus resonator. An
alternative architecture taking advantage of longitudinal
coupling is discussed at length in Ref. [19]. Here, taking
gzjðtÞ ¼ ḡz þ ~gz cosðωrtþ φjÞ, the longitudinal coupling
becomes, in the interaction picture and neglecting fast-
oscillating terms,

~Hz ¼
�
1

2
~gz
X
j

σ̂zje−iφj

�
âz þ H:c: ð8Þ

This effective resonator drive displaces the field to multi-
qubit-state dependent coherent states. For two qubits,
taking φj ¼ jπ=2 leads to the four pointer states separated
by 90° from each other or, in other words, to optimal
separation even at short times. Other choices of phase lead
to overlapping pointer states corresponding to different
multiqubit states. Examples are φj ¼ 0 for which j01i and
j10i are indistinguishable, and φj ¼ jπ where these states
are replaced by j00i and j11i. This can be exploited to
create entanglement by measurement [41]. As a final
example, with three qubits the GHZ state is obtained with
φj ¼ j2π=3 [26].
Conclusion.—We have proposed a new approach for

qubit readout based on the modulation of longitudinal
qubit-oscillator coupling. This new mechanism has several
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advantages over the standard dispersive readout: optimal
pointer state separation, purely QND (thereby avoiding
Purcell decay and allowing large pointer state separation),
rapid reset, and exponential improvement of the SNR using
single-mode squeezing. This is applicable to a wide variety
of physical systems and we have used circuit QED with
transmon qubits as a concrete example.
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