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Abstract
Weobserve the quantumZeno effect—where the act ofmeasurement slows the rate of quantum state
transitions—in a superconducting qubit using linear circuit quantum electrodynamics readout and a
near-quantum-limited following amplifier. Under simultaneous strongmeasurement and qubit
drive, the qubit undergoes a series of quantum jumps between states. These jumps are visible in the
experimentalmeasurement record and are analyzed usingmaximum likelihood estimation to
determine qubit transition rates. The observed rates agree with both analytical predictions and
numerical simulations. The analysismethods are suitable for processing general noisy random
telegraph signals.

1. Introduction

Thebackaction ofmeasurement is a peculiarly quantummechanical phenomenonwhich gives rise to striking
outcomes, such as the quantumZeno effect (QZE). In theQZE, the act ofmeasurement inhibits transitions
between eigenstates of themeasuredobservable, slowing the state evolution of a ‘watched’ quantumsystem.The
QZEwas described in itsmodern form in1977byMisra and Sudarshan [1], although some related questionswere
tackled inprior papers [2, 3], and the potential for repeatedmeasurements to influence the state evolution of a
quantumsystemwas already known to vonNeumann in 1932 [4]. The slowing of state evolution due to theQZE
disappears in the classical limit � 0,making theQZE auseful test for quantumbehavior in a system [5, 6].

TheQZEwasfirst observed experimentally in an ensemble of trapped ions [7], and has since been seen in a
variety of other systems, including the electronic, nuclear, ormotional states of atoms andmolecules [8–11],
optical photons [12–14], microwave photons [15], andNV centers [16]. In driven superconducting qubits, the
QZEhas been indirectly inferred from the transition between coherent Rabi oscillations and incoherent
exponential population decaywith increasingmeasurement strength [17], and by studying the dependence of
this exponential decay on the time between discrete qubit projection pulses [18]. However, theoretical proposals
also exist to observe theQZE in the quantum trajectory of a continuouslymonitored superconducting qubit [19]
or in the suppression bymeasurement of low-frequency superconducting flux qubit dephasing [20].

TheQZE and related phenomena can have practical applications in quantum control and the engineering of
decoherence. Carefully designedmeasurements can be used to divide a largerHilbert space into separate ‘Zeno
subspaces’ [21, 22], where state evolution between subspaces is inhibited by themeasurements. The resulting
‘quantumZeno dynamics’ have recently been demonstrated experimentally [23–25]. This technique can even be
used to generatemultiparticle entanglement directly [26–29].

OPEN ACCESS

RECEIVED

16December 2015

REVISED

18March 2016

ACCEPTED FOR PUBLICATION

23March 2016

PUBLISHED

17May 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/18/5/053031
mailto:slichter@berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/5/053031&domain=pdf&date_stamp=2016-05-17
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/5/053031&domain=pdf&date_stamp=2016-05-17
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


In this work, we report the direct observation of theQZE in a superconducting qubit undergoing continuous
strongmeasurement with simultaneous qubit driving. Themeasurement record is analyzed to extract quantum
jumps indicating individual qubit state transitions, and to determine the rates at which they occur in the
presence of simultaneous qubit drive andmeasurement. The extracted transition rates show inhibition of qubit
state transitions due to themeasurement, in agreement with both analytical Zeno theory and numerical
simulations. Additionally, we examine the excited state decay of the qubit duringmeasurement, finding
qualitative agreementwith predictions for the Purcell decay of amulti-level qubit [30, 31]. Themethod for
extracting transition rates can also be used to analyze general noisy random telegraph signals.

2. Theory of the Zeno effect

In the absence ofmeasurement, a resonantly driven qubit will undergo sinusoidal Rabi oscillations between
states at frequency pW 2 , whereΩ depends on the strength of the resonant drive. Repeated projective
measurementsmade on this system at time intervals �t W1 will tend to pin the qubit in one state, with
occasional state transitions occurring as sudden quantum jumps. The probability per unit time of a quantum
jumpout of the current state is given by (see e.g. [32]):

( )G =
W
f4

, 1
2

m

where t=f 1m is the frequency of themeasurements. A similar result can be derived in the case of a resonantly
driven qubit undergoing continuousmeasurement, parameterized by themeasurement rate Gm at which
information is extracted from the qubit [33]:

( )G =
W
G

. 2
2

m

These expressions show that the rate of quantum jumps between states for a qubit beingmeasured continuously
at rate Gm is the same as that for a qubit undergoing discretemeasurements at time intervals τwhen tG = 4m .
This prediction, due to Schulman [33], wasfirst demonstrated experimentally by Streed et al [10].

The twomajor hallmarks of theQZE can be seen in the expressions (1) and (2). First,Γ is independent of
time,meaning that the state evolution under repeatedmeasurement is exponential (linear in time at short
times), whereas in the absence ofmeasurement the qubit would exhibit sinusoidal state evolution (quadratic in
time at short times). Qubit evolution processes whichwere already exponential in time, for exampleT1 decay,
remain exponential and are unaffected by the presence of repeatedmeasurements. Second, the transition rate
varies inversely with themeasurement frequency, tending to zero in the limit of infinitely frequent
measurements. However, the complete ‘freezing’ of qubit evolution does not occur in real physical systems. This
is due to the energy-time uncertainty relationship, which causes the qubit to couple to an arbitrarily large energy
spectrum (and thus arbitrarilymany decay channels) as the time betweenmeasurements goes to zero [34, 35].

Our experiment uses a superconducting qubit in the circuitQED architecture [36].We bias the qubit in the
dispersive regime, where the qubit–cavity detuningΔ ismuch larger than the qubit–cavity coupling g. In this
limit, the cavity resonance frequency depends on the qubit state, enabling a quantumnon-demolition
measurement of the qubit state by driving the cavity near resonance and observing the response of its steady-
statefield. Themeasurement strength is directly related to the distinguishability of the different cavity field
amplitudes conditioned on the qubit states. For a linear cavity, the distinguishability is proportional to the
amplitude of themeasurement drive and could in principle be increased ad infinitum. In real systems, however,
cavity nonlinearities (both intrinsic and induced by coupling to the anharmonic qubit circuit) limit the
obtainablefield separations for readout, even atmoderate drive amplitudes [37].

Following [19], and as shown in appendix A, we derive the transition rate of a two-level qubit coupled to a
cavity in the Zeno regime startingwith the Jaynes–CummingsHamiltonian in the dispersive regimewith an
additional qubit drive:
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Here, ( )†a a is the annihilation (creation) operator for photons in the cavity, the qubit is described by the Pauli
matricesσ, andwe havemade a rotatingwave approximation in the two driving terms. The parameters are the
cavity resonance frequency wr, the qubit frequency wq , the qubit–cavity coupling g, and the dispersive shift
c = Dg 2 , where w wD = -r q.We apply ameasurement drive to the cavity with frequency wro and strength
�ro and aRabi drive to the qubit with frequency wd and amplitudeΩ.We then perform a polaron transformation
on the system,which effectively describes the cavity in a semi-classical picture with coherent state amplitudes
that are conditioned on the qubit state. This transformation enables us to decouple the dynamical equations of
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the qubit and cavity and obtain a qubit-only reducedmaster equation, where the qubit dynamics dependmainly
on qubit drive andmeasurement strength. Because of the presence of the Rabi drive, this treatment is only valid
in the case of smallmeasurement strength, when the cavity field amplitudes corresponding to the two qubit
states are nearly indistinguishable. Solving thismaster equation yields a qubit transition rate from the ground
state to excited state in the presence of continuous circuitQEDmeasurement [19]:

( )
( )

g
G =

W
+ G2

, 4,drive

2

2 d

where Gd is themeasurement-induced dephasing rate and g2 is the intrinsic qubit dephasing rate in the absence
ofmeasurement. Themeasurement rate is defined as G = G2m d, as in[19]. In the strongmeasurement limit
where � gGd 2, this expression is the same as equation (2). Although equation (4) is derived in the limit where
the cavity linewidth �k Gm, the similarity to equation (2)—which has no such constraint in its derivation—
suggests that the resultmay still be validwhen k < Gm, which is the regime of our experimental data.

3. Experimental setup and calibrations

The experimental setup is shown schematically infigure 1(a). Our qubit is a planar two-junction transmon qubit
[38], tunedwith a dcmagnetic flux to a Lamb-shifted qubit frequency of w̃ p =2 5.3556 GHzq and an
anharmonicity of a p = -2 258 MHz.We denote the two lowest transmon energy levels as ∣ ñg and ∣ ñe ,
respectively. The qubit is capacitively coupled ( p =g 2 105.3MHz) to a lumped-element readout cavity with
bare frequency of w p =2 6.2724 GHzr and linewidth k p =2 7 MHz. Qubitmeasurement was performed by
applying a readout drive to the cavity at w p =2 6.282 GHzro . The readout signal from the cavitywas amplified
with a near-quantum-limited superconducting parametric amplifier [39] followed by additional cryogenic and
room temperature amplification stages, detectedwith homodynemixing, and digitized at 10 ns intervals. Both
the qubit/cavity system and the parametric amplifierwere anchored to themixing chamber of a dilution
refrigerator at 50 mK.

The average cavity photon occupation n̄ and themeasurement-induced dephasing rate Gd, which
characterize themeasurement strength, were determined by qubit spectroscopywith a simultaneous readout
tone. The value of n̄ was determined from the ac Stark shift of the qubit frequency, accounting for qubit-induced
cavity nonlinearities [30]. Because of the choice of readout frequency, n̄ is different for the two qubit states ∣ ñg
and ∣ ñe ; the ac Stark shiftmeasurements give the average photon occupationwith the qubit in the ground state,
n̄g, since the qubit spectroscopy tonewasmuchweaker than the saturation amplitude of the qubit transition.We
use numerical simulations to infer the value of n̄e as a function of themeasured n̄g. The value of Gd is given by the
half-width at half-maximum (HWHM) of the ac-Stark-shifted qubit line [40], whichwas determined by fitting
to themeasured line shape for several qubit drive powers and extrapolating tofind theHWHMat zero qubit
drive power. Thismethod allows us to calibrate out the effects of power broadening due to the qubit drive tone
on themeasured qubit linewidth.With the readout tone off during qubit evolution, wemeasured a qubit
relaxation time of =T 5751 ns and a pure dephasing time of m=jT 7.9 s, corresponding to an intrinsic
dephasing rate g m= + =j

-T T1 2 1 1 s2 1
1.

The qubit drive frequency wd was chosen to be the ac-Stark-shifted qubit frequency ˜ ( ¯ )w nq g . Since the qubit
drive tone reaches the qubit via the cavity, its amplitude at the qubit (and thus the no-measurement Rabi

Figure 1.Experimental setup. A schematic of the experimental setup is shown in (a). The readout and qubit drive tones are sent to the
qubit/cavity circuit via a weakly coupled input port. The readout signal from the cavity exits through the strongly coupled port and is
amplified by a superconducting parametric amplifier, as well as further cryogenic and room temperature amplifiers (not shown),
before being detected with homodynemixing and digitized. TheZeno experiment pulse sequence is shown in (b). The readout is
turned on 3 μs before the qubit drive to allow the cavity to come to steady state. Only the data from the 10 μs with both qubit drive and
readout are processed for Zeno rate analysis.
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frequencyΩ) depends on both its frequency and its amplitude at the cavity input.We calibratedΩ bymeasuring
the frequency of Rabi oscillations (performedwithmeasurement off during the qubit drive) as a function of
qubit drive amplitude for a given qubit frequency.We performed this calibration at several different qubit
frequencies spanning the range of the wd values used in the Zeno experiments by tuning the qubit frequency with
an externalflux bias.We interpolated between these data points to determine the value ofΩ for a given wd and
qubit drive amplitude.

Each iteration of the experiment consisted of a singlemeasurement pulse lasting 17.5 μs, with simultaneous
qubit drive applied for 10 μs beginning 3 μs after themeasurement was turned on, as shown infigure 1(b). These
times are chosen to bemuch longer than the relevant timescales k G W1 , 1 , 1m , andT1, so that the
experimental record captures the steady-state dynamics of the system.We recorded 104 such iterations, spaced
100 μs apart, for each combination ofmeasurement strength and qubit drive strength. Themeasurement record
was digitized at 108 samples s−1.

4.Data processing and analysis

Themeasurement records described abovewere analyzed to extract the transition rates from ∣ ∣ñ ñg e , denoted
G , and from ∣ ∣ñ ñe g , denoted G .Withmultiple gigabytes of raw quantum jumpdata to analyze, the data
processing algorithmmust be able to operate withminimal user input and provide reliable output over a broad
range of signal-to-noise ratio (SNR) and qubit transition rates, including low-SNR, high-rate scenarios.

Wefirst perform filtering of the rawdata to reduce the noise bandwidth and increase the SNR.Weuse a zero-
delayGaussian finite-impulse-response filter to ensure that state transition edges will remain smooth andwill
not be shifted in time by the filtering process. The order of the filtermust be chosen to reduce the noise without
degrading the desired signal, and sowill depend both on the initial SNR and the transition rate between states.
For each experimental bias point, we histogram all 107 data points taken during simultaneous qubit driving and
readout (104 traces of 103 points each). Example histograms of raw data are shown as the red curves in
figures 2(a) and (c).We then perform filtering and histogram thefiltered data points, shown as black curves in
figures 2(a) and (c). The histogramof the filtered data forms a bimodal distribution8, with aminimumbetween
the two peaks corresponding to the two qubit states. The height of thisminimum is dictated both by the amount
of noise on the signal and the number of transitions in themeasurement record. Filteringwill reduce the noise
amplitude, and thus thewidth and overlap of the bimodal peaks, leading to a reduction in the height of the
minimum.However, filteringwill also slow the rise and fall times of state transition edges, whichwill increase
the height of theminimumbetween histogrampeaks. Based on these considerations, we designate the ‘optimal’
filter order as the onewhich gives the lowestminimumbetween the bimodal peaks of the resulting voltage
histogram, and determine it by applying filters of increasing order to the rawdata until the height of the

Figure 2.Data processing and quantum jump extraction. Part (a) is a histogramof detected voltages from the full data set (104 readouts
with 103 points each)with G = 134m m -s 1 ( ¯ =n 3.4g ) and pW =2 3.6 MHz, both for the raw data (red) and after filtering (black).
The hysteretic threshold voltages for state determination are shown as horizontal dashed lines. In (b), a typical singlemeasurement
trace from the same data set is shown both as raw data (red) and after filtering (black), with the state determination threshold voltages
shown as horizontal dashed lines. The background color indicates the extracted qubit state: white for ∣ ñg and blue for ∣ ñe . Panels (c)
and (d) show equivalent data for G = 134m m -s 1 and pW =2 0.8 MHz. Because the transition rates are lower than in (a) and (b), the
extraction algorithmperforms heavier filtering, resulting in larger filtered SNR and smaller hysteresis between the threshold voltages.

8
If the histogram is not bimodal, as for the raw data in figure 2(c), we perform additionalfiltering until it becomes bimodal.
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minimumbetween the peaks is as small as possible. This provides a simple, robustmethod for choosing filter
order. The ‘optimal’filter order was determined separately for each combination of qubit drive strength and
measurement strength.

After the data have beenfiltered, we determine the qubit state at each time point using a thresholding
algorithm. For increased robustness to noise, we use two hysteretic thresholds with ‘Schmitt trigger’ behavior
[41]; state transitions are registeredwhen the voltage crosses the higher threshold going upwards (if the statewas
low), or when it crosses the lower threshold going downwards (if the statewas high). The voltage thresholds are
shown as dotted horizontal lines infigure 2. Figures 2(b) and (d) show representative individual data traces from
the data sets histogrammed infigures 2(a) and (c), respectively, corresponding to two different values ofΩwith
identical Gm. The red curves show the rawdata, while the black curves are after filtering. The blue andwhite
background colors show the extracted qubit state (∣ ñe and ∣ ñg , respectively) as determined by the thresholding
algorithm. The data in (c) and (d) have fewer state transitions, and thus heavierfiltering can be employed to
increase the SNR.

The location of the thresholds is determined using histograms of thefiltered voltages, and depends on the
voltageVmof theminimumbetween the histogrampeaks and the voltagesVh (Vl) and theHWHMwh (wl) of the
high (low) histogrampeaks. The value ofwh (wl) is derived from the half-height of the histogram above (below)
the corresponding peakVh (Vl), amethod that works evenwhen the histogrampeaks are not well-separated.We
define the SNRof the filtered data to be ( ) ( )- +V V w w2 ln 2 h l h l . The thresholds are chosen to be

( )+
-

V w

V Vm 2 ln 2
h
2

h l
and ( )-

-
V w

V Vm 2 ln 2
l
2

h l
, as suggested in [41], although unlike thatworkwe do not perform

iterative refinement of the thresholds. The distance between the thresholds increases as the SNRdecreases to
reduce the likelihood of spurious state transitions being registered due to noise. For eachmeasurement trace, we
determine the initial state by comparing thefirst data point withVm.Given a low (high) state, we look for thefirst
upward crossing of the higher threshold (downward crossing of the lower threshold) and note the dwell time
before the state change.We continue in thismanner, alternating thresholds, until the end of the trace is reached,
noting down all dwell times in both the high and low states. For eachmeasurement trace, exactly one dwell time
is cut short by the end of the trace and ismarked as ‘right-censored’ [42].

We usemaximum likelihood estimation to determine the transition rates between states given the set of
observed dwell times in each state. However, thefiltering can cause some fast voltage excursions in the rawdata,
like the one infigure 2(d)near 8.25 μs, not to register as state transitions. In general, the finite bandwidth of the
measurement chain, combinedwithfiltering described above, skews the distribution of observed dwell times
toward longer times.We compensate for this in our analysis by assuming a probability distribution for the dwell
timeswhich takes these effects into account [43]. For right-censored dwell times, the observed time represents a
lower bound on the dwell time, rather than an exact value.However, we can include this partial information in
the likelihood function as well, which is particularly useful for data sets with relatively few state transitions and
thus a higher fraction of censored dwell times.We emphasize that thismaximum likelihoodmethod can be
applied to dwell times extracted using any technique; for example, it can be usedwith dwell times determined
fromwavelet analysis, which ismore robust than thresholding for signals with substantial low-frequency drifts
[44]. Details on themaximum likelihood estimation and functional forms of the likelihood function are
provided in appendixD.

The extraction algorithmwas tested on simulated noisy random telegraph datawith a variety of
experimentally relevant transition rates and SNRs.Wenote that these simulated data are not the same as the
numerical simulations of the qubit dynamics described in the next section. The 3 dBnoise bandwidth (14MHz)
and sample rate (108 sample s−1)were the same as in the raw experimental data. The error in the extractedmean
transition rate ( )G + G 2, relative to the truemean transition rate, is plotted infigure 3 for four values of the
initial SNR beforefiltering. For simulated data at the highest rates shown, themean dwell time in a given state
was 130 ns, while the shortest oscillation timescale of the simulated noise was around 70 ns,making the task of
distinguishing signal fromnoise challenging. Despite this, themean systematic bias in the extracted rates is
below 12%, even at an SNRof only 1.5. This performance is also notable because the algorithmoperates
autonomously, without the need for externally provided guesses or input, across the entire range of transition
rates and SNR shown.

The transition rates extracted from the simulated noisy random telegraph datawere used to calibrate
systematic bias and systematic uncertainty in the rates extracted from the experimental data, bymatching
experimental traces to simulated data sets with similar extracted transition rates and filtered SNR. Themedian
systematic bias andmedian systematic uncertainty for the experimental data were−3.5% and 2%of the
extracted rates, respectively. Themagnitude of the systematic bias (uncertainty)was below 20% (10%) of the
extracted rate for all experimental data points, and below 9% (5%) of the extracted rate for 90%of the
experimental data points.
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5.Numerical simulations

Wealso performed numerical simulations of the qubit/cavity systemover a range of bias points, using the
generalized Jaynes–CummingsModel for amulti-level qubit coupled to a cavity.We simulated the dynamics
numerically, including themeasurement, with a stochasticmaster equation [19, 45, 46], using experimentally
measured parameters for the qubit and cavity. Themaster equation included qubit relaxation and dephasing as
well as cavity photon loss. Themeasurement and qubit drivewere simulated as two independent coherent
microwave drives acting on the cavity. The simulations yieldmeasurement records for direct comparisonwith
experiment, as well as records of qubit populations, complex cavity field amplitudes, and cavity photon
occupation numbers. Details are given in appendix B.Qubit transition rates were then determined from the
simulated qubit state population record using the same rate extraction algorithmused to process the
experimental data.

The experimental data, and thus the rate extraction algorithm, do not distinguish between the qubit state ∣ ñe
and higher excited states. This occurs because we operate the parametric amplifier in phase-sensitivemode to
achieve the lowest noise performance, and thus only one quadrature of the readout signal from the cavity is
amplified [39]. The phase of the amplified quadrature was chosen tomaximize the ability to discriminate
between states ∣ ñg and ∣ ñe ; however, because of the parameters of the qubit/cavity system, the projection of the
complex cavity amplitudes corresponding to higher excited states onto this choice of amplified quadraturewas
essentially the same as that for ∣ ñe , rendering them indistinguishable from ∣ ñe in themeasurement record [47].
The populations of higher excited states weremeasured to be~ -1% 5% using a different data set which
distinguished ∣ ñe fromhigher qubit states by choosing a different amplified quadrature, at the expense of
substantially decreased SNR. These values are corroborated by the numerical simulations. However, the
presence of qubit population outside the {∣ ∣ }ñ ñg e, manifold is not expected to have an effect on the estimates
of G .

6. Results

Wefirst examine the qubit excitation rate during simultaneousmeasurement and qubit driving to look for the
QZE. Since ¯ ¯¹n ng e for our experimental parameters, the qubit drive tone at the ac-Stark-shifted qubit
frequency ˜ ( ¯ )w nq g was resonant when the qubit was in the ground state, but notwhen it was in the excited state.
For this reason, our analysis of driven transition rates is restricted to the ∣ ∣ñ ñg e transition rate, denoted G ,
which can be expressed as the sumof three rates:

( )G = G + G + G . 5,drive ,DD ,th

Here G ,drive is the transition rate due to the qubit drive, G ,DD is the contribution fromdressed dephasing
[37, 48], and G ,th represents thermal excitation of the qubit. To isolate G ,drive for comparison to the predictions
in equation (4), we determine G as a function ofmeasurement strength in the absence of qubit drive (W = 0),
which is equal to G + G,DD ,th.We can then subtract this contribution from the total rate G in the presence of
qubit drive tofind G ,drive. This calibrationwas performed for both experimental data and numerically simulated
data. The value of G + G,DD ,th wasmeasured to be between 0.018 and 0.022 m -s 1 for all bias points, which is
considerably smaller than G ,drive for all but the lowest values ofΩ.

Figures 4 and 5 show the extracted G ,drive as a function ofΩ for ten differentmeasurement strengths ranging
from G = 134m m -s 1 to G = 393m m -s 1, corresponding to values of n̄g between 3.4 and 37. The rates from the
experimental data and the numerical simulations are plotted as red squares and black circles, respectively, while

Figure 3.Performance of rate extraction algorithm.We show the percentage deviation of the extractedmean transition rate
( )G + G 2 from the truemean transition rate as a function of the extractedmean rate, as determined from roughly 7000 simulated
data sets. Error bars show the rootmean squared error. The four panels correspond to four different values of the initial SNR, as
described in the text.
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the rates predicted by the analytical theory in equation (4), with no adjustable parameters, are plotted as solid
blue lines.

The experimental data and numerics are in good agreement, and both coincidewith the prediction of the
analytical theory atmost points, showing the presence of theQZE across a broad range ofmeasurement
strengths and qubit drive amplitudes. Some deviations can be seen above pW »2 6 MHz, where both the
experiment and numerics give consistently lower values of G ,drive than predicted by the analytical theory.
Because the numerical simulations exhibit the same behavior as the experiment, we believe this is a real effect
and not an experimental artifact.We postulate that this additional slowing of the transition ratemay be due to
higher order terms neglected in the derivation of the analytical theory under the approximation � kGm , since
this approximation is no longer valid here. The effect is somewhatmore pronounced for larger Gm. This could
also be associatedwith the breakdown of the dispersive approximation for ¯ > = Dn n g4g crit

2 2, which
corresponds in our system to G » 340m m -s 1.

We additionally examine the qubitT1— the time constant for transitions from ∣ ñe to ∣ ñg —with
measurement on but no qubit drive. In the simple two-level picture used to derive equation (4), transition rates
from exponential processes such asT1 decay are unchanged by theQZE.However, in our drivenmultilevel
systemother effects are expected to give some dependence ofT1 onmeasurement strength. In circuit QED, the
T1 decay rate can in general be parameterized as the sumof the Purcell decay rate GP and a decay rate GNR from

Figure 4.Driven transition rates duringmeasurement.We plot values of G ,drive versus qubit drive strengthΩ for tenmeasurement
strengths Gm ranging between 134 m -s 1 ( ¯ =n 3.4g ) and 393 m -s 1 ( ¯ =n 37g ). Experimental data (red squares) are shown alongwith
numerically simulated data (black circles) and theoretical values calculated from equation (4)with no adjustable parameters (blue
lines). Error bars represent 95%confidence intervals. Horizontal error bars are smaller than the symbol widths and are not shown for
clarity.

Figure 5.Driven transition rates duringmeasurement on logarithmic axes. The data are the same as infigure 4, but the logarithmic
axes highlight the agreement between experiment, analytical theory, and numerics for the smallestΩ, as well as the W2 scaling expected
from equation (4). Experimental data (red squares) are shown alongwith numerically simulated data (black circles) and theoretical
values calculated from equation (4)with no adjustable parameters (blue lines). Error bars represent 95% confidence intervals.
Horizontal error bars are smaller than the symbol widths and are not shown for clarity.
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nonradiative loss channels such as dielectric loss [49, 50]. The Purcell effect can be thought of as the decay of the
photonic part of the qubit eigenstate in the coupled qubit–cavity system, as seen in the expression for the Purcell
rate [30, 31]

∣ ∣ ∣ ∣ ( )kG = á ñg n a e n, , , 6P
2

where ∣ ñg n, and ∣ ñe n, are eigenstates of the generalized Jaynes–CummingsHamiltonian for amultilevel qubit
correspondingmost closely to n photons in the bare cavity and the bare qubit in ∣ ñg or ∣ ñe , respectively. The
matrix elements in equation (6) can be calculated numerically, and become smaller for increasing n. As a result,
the Purcell decay of the qubit is suppressed by the presence of photons in the readout cavity [30, 31]. Note that in
our case we replace nwith n̄e, because Purcell decay from ∣ ñe occurswith n̄ephotons in the cavity initially.
Details of the calculation are given in appendix C.

Figure 6 shows the qubit decay rate as a function of n̄e. The expected decay rate GP due to the Purcell effect, as
calculated from equation (6), is plotted as a red solid line. ThemeasuredT1 decay of the qubit (red squares),
which shows some suppressionwith increasing n̄e, is larger than GP, indicating that non-radiative loss channels
are contributing to the qubit decay (i.e. G > 0NR ).We derive a value for GNR, whichwe assume to be
independent of n̄e, by subtracting the zero-photon Purcell decay rate k Dg 2 2 from the experimentally
determined value of g = T11 1 for ¯ =n 0e . The theoretically predicted total decay rate G + GP NR is plotted as a
red dotted line. This prediction is reasonably close to the experimental data for small n̄e, but deviates
substantially with increasing n̄e. To determinewhether this is an experimental artifact (due to readout-power-
dependent dielectric loss in the transmon capacitor [51], for example, whichwould give an n̄edependence to
GNR), we also performed numerical simulations of the qubit decaywith noRabi drive. The resulting rates (black
circles and black triangles) are also consistently lower than the theoretical prediction for G + GP NR, and are in
reasonable agreement with the experimental data. Because the numerical calculations assume that GNR is
independent of n̄e, this provides confirmation that the suppression inT1 decay is not an experimental artifact.
The numerics also allow us to determine the effect of qubit population in states higher than ∣ ñe on the observed
decay rate; the black circles show the observedT1 decay rate when ∣ ñe is not distinguished fromhigher qubit
states, as is the case with our experimental data, while the black triangles show the trueT1 decay rate from
∣ ∣ñ ñe g when ∣ ñe is distinguished fromhigher qubit states. The difference between these traces becomes
significant for ¯ 2n 8e , and shows that the inability to distinguish higher qubit states from ∣ ñe in this system
causes the qubit decay rate to appear lower than its true value, but the effect does not appear to be large enough to
fully account for the discrepancy between the experimental data and the analytical theory.We believe that other
effects, such as dressed dephasing [37, 48] and qubit-induced nonlinearities, are responsible for this deviation
from the simple theory in equation (6). The blue circles showhow the qubitT1 decay ratewould depend on n̄eif
it were subject to theQZE and scaled as G1 m, as in equation (4), relative to themeasured value for the lowest n̄e.
The large disparity between these points and the experimental and numerical data indicate that the variation of
G with n̄e is not due to theQZE; this agrees with the expected result that theQZEdoes not affect exponential
processes such asT1 decay.

Figure 6. G versus n̄e with no qubit drive. The red squares aremeasured values of the qubit decay rate as a function of n̄e. The black
triangles and circles are values derived fromnumerical simulations; the former distinguishes between state ∣ ñe and higher states in the
rate extraction process, while the latter does not (as is the case for our experimental data). These values differ somewhat for ¯ 2n 8e ,
indicating the presence of population in higher excited states. The solid red line is the predicted Purcell decay rate GP fromequation (6),
and the dashed red line is G + GP NR as described in the text. The blue circles show scaling of the qubit decay rate that would be
expected from equation (4) if the decaywere subject to theQZE. Error bars represent 95% confidence intervals.
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7. Conclusions

Wehave observed theQZE in a continuouslymeasured superconducting qubit and demonstrated quantitative
agreementwith both analytical theory and numerical simulations. Interestingly, the agreement holds even for
measurement strengthsmuch larger than are allowed by the assumptions of the analytical derivation.We have
shown thatT1 decay is not subject to theQZE, as predicted.We do observe an gradual increase in the qubitT1
with increasingmeasurement strength, in qualitative agreementwith the simple picture from the Purcell effect
in circuitQED.Wehave also demonstrated a robust algorithm for determining transition rates fromour
measurement record, which can be readily applied to the analysis of general noisy random telegraph signals.
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AppendixA.Details of analytical Zeno derivation

Herewe derive the expression for qubit transition rates given in equation (4).Wewill focus only on the steps
necessary to derive the qubit transition rates;more detail can be found in[19].We note that this derivation is for
the case of a two-level qubit, not amulti-level qubit such as a transmon.We describe the qubit–cavity system in
the Jaynes–Cummingsmodel (setting � = 1):

ˆ ( ) ( ) ( )† † † *� �w w s s s= + + + + +w w
- +

-H a a g a a a a
1

2

1

2
e e , A1z

t t
JC r q ro

i
ro

iro ro

where wr is the cavity frequency, wq the qubit energy, g is the qubit–cavity coupling, and �ro is the amplitude of
the cavity drive. Here a is the annihilation operator for cavity photons, and the Paulimatricesσ describe the
qubit. For large qubit–cavity detuning, such that �w wD = - gr q , wemove into the dispersive frame [36]

ˆ ( ) ˜ ( ) ( )† † † *� �w w w s c s= - + + + +H a a a a a a
1

2

1

2
, A2z zdisp r ro q ro ro

where c = Dg 2 is the dispersive shift and w̃ w c= +q q is the Lamb-shifted qubit frequency.We alsomove
the cavity into a rotating frame at frequency wro and assume that wro is far detuned from the qubit transition wq .
For a cavity drive used for a dispersivemeasurement, this condition is fulfilled. Sincewe are concernedwith the
qubitʼs dynamics under simultaneous qubit drive andmeasurement, we add a qubit driving term at frequency
wd to equation (A2), writing

ˆ ( ) ( )*s s= W + Ww w
-

-
+H

1

2
e e , A3t t

qd
i id d

whereΩ is the qubit Rabi frequency. Hereafter we examine the case of resonant qubit drive, where ˜w w=d q. In a

frame rotating at the qubit drive frequency, the uncoupled qubit dynamics are described by ˆ s= WH xq
1

2
, leading

to coherent qubit flopping at the Rabi frequency. The complete dynamics of the systemwill be described by a
master equation of the form

˙ [ ˆ ˆ ] [ ] [ ] [ ]� � �r r k r g s r g s r= - + + + + j-H H ai , ,zdisp qd 1

with the cavity loss-rateκ, the qubit decay rate g1, and the qubit pure dephasing rate gj. The total qubit
dephasing rate is then g g g= + j2

1

2 1 . The dissipative superoperators are defined by

[ ˆ]� ro ˆ ˆ ( ˆ ˆ ˆ ˆ)† † †r r r= - +o o o o o o1

2
.

Next we apply a polaron transformation to the system, defined by [19]

( ) ∣ ∣ ( )å a= ñáP D i i , A4
i

i

where ( ) { }† *a a a= -D a aexp is the usualfield displacement operator and the sum is over the qubit states.
The polaron transformation applies a qubit-state-dependent shift to the cavity field, where the complex-valued
displacement amplitudes ai are the cavity field amplitudes conditioned on the qubit states and are in general
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time-dependent. The equations ofmotion for the ai follow from the polaron transformation under the
constraint that the resultingHamiltonian represent an un-driven cavity. This treatment and the resulting
equations for the cavity field are similar to a semi-classical treatment of the cavity dynamics, while still keeping
track of intrinsic and qubit-induced nonlinearities [52]. The polaron frame best captures the dynamics of the full
systemwhen the cavity field can be accurately described as a coherent statewhose complex amplitude depends
on the instantaneous qubit state. In practice the use of the polaron frame is restricted toweakmeasurement
regime, as becomes evident when considering its effect on the qubit ladder operators:

( )†s s= b- -P P D . A5

Here the generalized displacement operator bD is defined by

( ) ( ) ( ) ( )† a a b= =b
j-D D D D e , A60 1

i

with themeasurement separability b a a= -1 0 and the phase ( )*j a a= Im 0 1 . This follows naturally from the
fact that the polaron transformation connects a given qubit state with a corresponding coherent state in the
cavity. Any change in the qubit statemust be connectedwith a simultaneous change in the cavity field.
Importantly, the transformation equation (A5) results in an expression that, for non-vanishing values of ∣ ∣b ,
contains all orders of the cavity annihilation and creation operators. Thismakes it impractical tofind a reduced
description of the dynamics of the qubit alone, except for theweakmeasurement case, when ∣ ∣ �b 1and

~b �D . In this case the system reduces to a set of equations for the classical field amplitudes ai conditioned on
the qubit state and aHamiltonian describing the qubit coupled to the ai and an effectively un-driven cavity,
describing the quantumfluctuations of the cavityfield.

By applying the polaron transformation to the dissipators, we immediately find themeasurement-induced
dephasing since

[ ] [ ] [ ] "� � �k r k r s r+ G +a a ,zd

where ∣ ∣k bG =d
1

2
2 is themeasurement-induced dephasing rate and the omitted terms can be absorbed into

the coherent part of themaster equation.
Wenowfind the qubit-only dynamics by tracing themaster equation over the cavity degrees of freedom in

the Fock basis ∣ ñn , tofind the time evolution of the qubitʼs reduced densitymatrix:

˜ ∣ ∣ ( )år r= á ñn n . A7
n

Finally, the jump rate in equation (4) can be found from the qubitʼs Bloch vector elements sá ñi . For resonant
qubit drive, where ˜w w=d q, onefinds

˙ ( )
˙ ( )
˙ ( ) ( )

s g s

s g s s

s s s g g

á ñ =- + G á ñ

á ñ=- + G á ñ + Wá ñ

á ñ= Wá ñ - G á ñ + -

,

,

, A8

x x

y y z

z y z

2 d

2 d

1

where g gG = +1 includes all dissipative transitions between qubit levels (i.e. thermally induced by the
environment aswell as dressed dephasing). Assuming that themeasurement-induced dephasing dominates,
such that ˙ ˙s sá ñ = á ñ = 0x y , the equation ofmotion for sá ñz takes the form:

˙ ( )

( ) ( ) ( )

s
g

s g g

s g g

á ñ = -
W
+ G

+ G á ñ + -

=- G + G á ñ + -

⎛
⎝⎜

⎞
⎠⎟ ,

. A9

z z

z

2

2 d
1

We identify gG = G +,drive and gG = G +,drive andfind the drive-induced transition rate as in equation (4):

( )
( )

g
G = G =

W
+ G2

. A10,drive ,drive

2

2 d

Appendix B.Details of the numerical simulations

In contrast to the simple two-level qubitmodel used in the previous description, the transmon qubit used in our
experiments is a genuinemulti-level system. In the presence of strong driving andmeasurement, which is the
regime of our experiments, the additional levels lead tomeasurably different behavior of the coupled system.
Our numerical simulations therefore take into account themulti-level nature of the transmon and cavity, using
experimentally determined parameters. In the rotatingwave approximation, theHamiltonian is given by:
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ˆ ( )

( ) ( ) ( )

† ( ) ( ) †

† †* *� � � �

åw s s=P + + +

+ + + +

w

w w w w

+ -

- -

H a a g a a

a a a a
1

2
e e

1

2
e e , B1

i
i

i i

t t t t

r

ro
i

ro
i

q
i

q
iro ro d d

where ∣ ∣wP = å ñáw i ii i describes the transmon qubit in its eigenbasis with eigenstates ∣ ñi and corresponding

energies wi. The qubitmulti-level ladder operators are defined as ∣ ∣( )s = + ñá+ i 1 ii and ( ) ( )†s s=- +
i i . The cavity

has frequency wr and is coupledwith the coupling strengths gi to the qubit transitions via a Jaynes–Cummings-
type interaction. Each of the gi can be determined from the dipolemoments corresponding to different qubit
transitions, which are obtained by diagonalizing the transmon qubitHamiltonian in the charge basis [38]. The
cavitymeasurement drive is applied at frequency wro andwith amplitude �ro. In the experiment, driving of the
qubit is achieved as a second order effect via off-resonant driving of the cavity at the desired qubit transition
frequency; therefore in ourmodel the qubit is driven indirectly via the cavity, with drive frequency wd and drive
strength �q. In the dispersive limit, ( ) �w w- = D gr 10 , this term can bewritten perturbatively as the directly
drivenmodel ( )( ) ( )s s~å W ++ -i i

i i
R, , with the Rabi frequencies for each qubit transition �W » Dgi iR, q .

However, we use the exactmodel equation (B1) for our simulations.
To calculate the time evolution of the systemunder the influence of the environment, wewrite themaster

equation for the densitymatrix as [30]

˙ [ ˆ ] [ ] [ ] [ ] ( )( )$ � � �år r r k r g r g s r= = - + + P +j dF -H ai , 2 , B2
i

i
i

with photon loss from the cavity at rateκ, qubit decay from state ∣ ñi at rate gi and pure dephasing acting
on the transmon due tofluctuations in its energy levels at rate gj. Here ∣ ∣dP = å F ñádF i ii i and dF =i

( )( ) ( )´w w w w¶ -
¶F

¶ -
¶F

-1
i 0 1 0 , whereΦ is the externalmagnetic flux applied to the qubit loop. Then [ ]� rPdF

describes dephasing of the transmon due to slowfluctuations in themagnetic field through the qubit loop. As
decay of superconducting qubits ismostly due to electromagnetic coupling to spurious environmentalmodes
[52, 54], the relevantmatrix elements are proportional to the respective dipole elements of the state transitions.
We therefore define the relaxation rates of higher transmon levels as ( )g g= g gi i 0

2
1, where g1 is the relaxation

rate of the first excited qubit level. All rates used in the simulationsweremeasured in independent experiments.
To simulate themeasurement process, we use a stochasticmaster equation technique [19, 45, 46]. For a

homodynemeasurement, wewrite the stochasticmaster equation as

˙ ( )(ˆ ˆ ˆ ˆ ) ( )† †$r r kh x r r r= + + - á + ñt c c c c , B3

where ˆ = jc aei is themeasurement operator for our systemwith the local oscillator phasej (with respect to the
cavity driving signal),κ is themeasurement rate (due to leakage out of the cavity) and η is themeasurement
efficiency. Here ( )x t is a stochastic noise process defined by ( ) ( )x =t W t td d , where ( )W td is theWiener
increment and dt is the timestep between successive evaluations of themaster equation. dW represents the
measurement noise and has the properties

( )á ñ = á ñ =W W td 0 d d , B4E E
2

where the average is over different realizations of the noise process.We then use the simulated stochastic
dynamics to numerically calculate the qubit populations ∣ ∣á ñá ñi i t and determine state transition rates with the
same algorithmused on the experimental data. Here the average is defined as ˆ { ( ) ˆ}rá ñ =o t oTrt .We also
calculate the cavity field amplitude á ña t , the photon number †á ña a t , and the associated ac Stark shifts to calibrate
themeasurement strength.

The numerical effort involved in these simulations is quite large, as the strongmeasurement and qubit drive
requires one to take into account up tofive levels of the transmon qubit as well as up to 50 photon states to ensure
proper convergence. In addition, the time steps used in the stochastic numerical simulationsmust be chosen
much smaller than any of the intrinsic timescales of the problem to ensure that no unphysical solutionswill be
reached. Due to these restrictions, the number of data traces from these numerical simulations ismuch smaller
than the number of experimental traces towhich they are compared, and thus the statistical error bars are
generally larger.

AppendixC.Multi-level driven Purcell effect

ThemodelHamiltonian for the Purcell decay rate of amultilevel qubit in a strongly driven cavity is:

ˆ ∣ ∣ ( ) ( )† †å åw w s s= + ñá + ++ -H a a g a ai i , C1
i

i
i

i i ir

where ∣ ∣s = + ñá+ i 1 ii and the sumgoes over all relevant qubit levels. Following[30, 31], we define the qubitʼs
Purcell decay ratewith the cavity in a Fock state with photon number n as
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( ) ∣ ∣ ∣ ∣ ( )kG = á ñn g n a e n, , , C22

where the eigenstates ∣ ñg n, and ∣ ñe n, belong to the subspaces of the Jaynes–CummingsHamiltonianwith n and
+n 1excitations, respectively. If the cavity is not in a Fock state with definite photon number n, the effective

Purcell rate can be found by averaging over the photon number distribution of the cavity state ( )P n as

( ) ( ) ( ) ( )å åG = GP n n P n . C3
n n

P

For a coherent statewithmean photon number n̄, the photon number distribution is ( ) ¯ !¯= -P n n ne n n . Since in
the absence of dissipation the Jaynes–CummingsHamiltonian preserves the number of excitations, the task of
calculating the Purcell rate reduces to diagonalizing theHamiltonian for each n-excitation subspace. The general
formof theHamiltonian in the n-excitation subspace can bewritten as

ˆ ( )( )
dw

dw

dw

=

¼

-

- -

-
¼ ¼

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
H

n g

n g n g

n g n g

n g

0 0 0

1 0

0 1 2

0 0 2

, C4n

0

0 1 1

1 2 2

2 3

with the dw w w= - kk k r giving the detuning between the kth qubit level and a k-photon–Fock state.We can
write the eigenstates of the n-excitation subspace in the basis of qubit–cavity product states as:

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ( )

"

"

ñ = ñ + - ñ + - ñ +

- ñ= ñ + - ñ + - ñ +

g n b g n b e n b f n

e n c g n c e n c f n

, , , 1 , 2 ,

, 1 , , 1 , 2 , C5

n n n

n n n

g, e, f,

g, e, f,

and so on for all other states involving higher qubit levels. Here ∣ ∣ñ ñg e, , and ∣ ñf denote the first three qubit
eigenstates, and the bi n, and ci n, are complex numbers calculated by diagonalizing equation (C4). Together with
the action of the photon annihilation operator on cavity-Fock states, ∣ ∣ñ = - ña n n n 1 , and noting that a
will lower the overall excitation number by one, we can then identify the relevantmatrix elements of a as

∣ ∣ ( )"á ñ = + + + - ++ + +g n a e n n b c n b c n b c, , 1 1 , C6g n g n e n e n f n f n, , 1 , , 1 , , 1

wherewe obtain the coefficients numerically, using the experimental parameters for our transmon qubit.
Figure 7 shows a plot of the calculated Purcell decay rates for our experimental parameters with a coherent state
in the cavity, accounting for various numbers of qubit levels. The Purcell decay is suppressed by the presence of
photons in the cavity, although the effect is less pronouncedwhen higher qubit levels are accounted for. The
calculated rates formore than five qubit levels (not plotted) are very similar to those forfive qubit levels.

AppendixD.Maximum likelihood expressions for rate estimation

Our qubit is a two-state systemwhere state transitions obey Poissonian statistics, but the finite bandwidth of the
measurement apparatus—which results from the inherent bandwidthκ of circuit QEDmeasurement, the
bandwidth of the superconducting parametric amplifier and other elements in themeasurement chain, and the
Gaussianfiltering employed to increase SNR in post-processing—tends to skew the observed dwell times in each
state toward longer times and reduces the number of events seenwith dwell times smaller than themeasurement

Figure 7.Calculated Purcell decay rate ( ¯)G nP for a coherent state withmean photon number n̄, from equation (C3). The different
curves are calculated by numerical diagonalization of theHamiltonian (C1)with between two and five qubit levels considered. Plots
aremade using the same qubit and cavity parameters used in the numerical simulations.
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bandwidth. Amathematicalmodel to compensate for these effects has been presented byNaaman and
Aumentado [43].

Theirmodel allows the states of the qubit (denotedA andB) to be independent of the corresponding states of
the readout (denoted *A and *B ). A diagramof thismodel, adapted from [43], is shown infigure 8. For each
readout state, the qubit can be in either stateA orB. Transitions occur betweenA andBwith rates GA and GB.
However, when the qubit and readout ‘disagree’, i.e. states ( )*B A, and ( )*A B, , the readout can alsomake a
transition (to ( )*B B, or ( )*A A, , respectively)with rate Gdet . Assuming that the readout does not change states
unless the qubit has changed states (no false positives), one canwrite the probability distribution function ( )h t
for the observed dwell times in *A as a function of the underlying rates G G,A B, and Gdet [43]:

( ) ( )
q

q
G G G = G G l- ⎜ ⎟⎛

⎝
⎞
⎠h t

t
; , ,

2
e sinh

2
, D1A B

A
A

t A
det det

2

where l = G + G + GA B det and q l= - G G4A A
2

det . The probability distribution for dwell times in state *B is

identical butwith GA and GB interchanged (defining q l= - G G4B B
2

det ), as can be seen from the symmetry of
themodel.We can calculate the complementary cumulative distribution function, often called the survival
function, by integrating the expression in (D1):

( ) ( ) ( )ò q
l

q
q

q
G G G = ¢ ¢ = +

l¥ -
⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥s t h t t

t t
; , , d

e
sinh

2
cosh

2
. D2A B

t

t

A

A
A

A
det

2

The survival function is useful for handling right-censored dwell times, where the observed dwell time
represents a lower bound on the true dwell time in the state. The survival function ( )ts gives the probability of a
dwell time t>t , which is precisely the probability distribution function needed for right-censored events.
Given a data set of *nA dwell times in state *A and *nB dwell times in state *B , denoted { }ti and { }tj , respectively,
as well as corresponding censoring variables { }di and { }dj , where ( )d = 0 1 indicates an uncensored (right-
censored) dwell time, we canwrite the likelihood function as:

( ) ( ) ( )

( ) ( ) ( )

*

*

$ G G G = G G G G G G

´ G G G G G G

d d

d d

=

-

=

-

h t s t

h t s t

, , ; , , ; , ,

; , , ; , , . D3

A B
i

n

i A B i A B

j

n

j B A j B A

det
1

det
1

det

1
det

1
det

A

i i

B

j j

We then use nonlinear optimizationmethods tomaximize the value of $ by varying the parameters G G,A B,
and Gdet . Because of the limitations offloating point arithmetic, we actually perform themaximization on the
log-likelihood function ( )$=L ln , which has the form:

( ) [( ) [ ( )] [ ( )]]

[( ) [ ( )] [ ( )]] ( )

*

*

å

å

d d

d d

G G G = - G G G + G G G

+ - G G G + G G G

=

=

L h t s t

h t s t

, , 1 ln ; , , ln ; , ,

1 ln ; , , ln ; , , . D4

A B
i

n

i i A B i i A B

j

n

j j B A j j B A

det
1

det det

1
det det

A

B

The functional forms of [ ( )]h tln and [ ( )]s tln for dwell times in state *A are:

[ ( )] ( )
q

l q
G G G =

G G
- + ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟h t

t t
ln ; , , ln

2

2
ln sinh

2
, D5A B

A B

A

A
det

Figure 8. State diagram forfinite bandwidth detection. This figure shows a system state diagram for finite bandwidth detection. The
qubit is in either stateA orB (circles), while the readout is in state *A or *B . For each qubit/readout state, the likelihood of
transitioning to a different qubit/readout state is determined by the rates G G,A B, and Gdet as indicated. Adaptedwith permission
from [41].
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The corresponding functions for dwell times in state *B can be found by interchanging GA with GB, and qA

with qB. For sufficiently large values of q tA , these expressionsmay cause overflows in double-precision floating
point arithmetic. Therefore, for q >t 40A , wemake the following approximations, which introduce fractional
errors of less than 10−18 for each approximated term:
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