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Abstract
Quantum state transfer into amemory, state shuttling over long distances via a quantumbus, and
high-fidelity readout are important tasks for quantum technology. Realizing these tasks is challenging
in the presence of realistic couplings to an environment. Here, we introduce and assess protocols that
can be used in cavity quantum electrodynamics to performhigh-fidelity quantum state transfer and
fast quantumnondemolition qubit readout throughHamiltonian engineering.We show that high-
fidelity state transfer between a cavity and a single qubit can be performed, even in the limit of strong
dephasing due to inhomogeneous broadening.We generalize this result to state transfer between a
cavity and a logical qubit encoded in a collectivemode of a large ensemble ofN physical qubits. Under
a decoupling sequence, we show that inhomogeneity in the ensemble couples two collective bright
states to only two other collectivemodes, leaving the remaining -N 3 single-excitation states dark.
Moreover, we show that large signal-to-noise and high single-shot fidelity can be achieved in a cavity-
based qubit readout, even in theweak-coupling limit. These ideasmay be important for novel systems
coupling single spins to amicrowave cavity.

1. Introduction

Spin qubits encoded in collectivemodes of ensembles [1–3] and single spins in quantumdots [4–6] can be
coupled tomicrowave cavities for cavity quantum electrodynamics (QED) experiments [7]. Spin qubits show
promise for use as long-lived quantummemories, but often suffer fromweak qubit–cavity coupling relative to
the inhomogeneously broadened linewidth [8]. Inhomogeneous broadening typically originates fromnuclear-
spin or electrical (charge)noise [9–12].While nuclear-spin noise [13] can often be controlled through isotopic
purification, strong coupling of a single spin to the electric field of a cavitymode typically requires a strong
correlation of spin and charge degrees of freedom [14–18]. This correlationmakes the spin qubit susceptible to
low-frequency charge noise [19, 20]. An alternative strategy is to enhance theweakmagnetic coupling of a spin
qubit (whichmay be otherwise insensitive to charge noise) by coupling to the collectivemode of a large spin
ensemble [21, 22]. However, spatial inhomogeneities in such ensembles can result in an inhomogeneous
linewidth that is comparable to the qubit–cavity coupling [3, 23].

It is well known that the effects of inhomogeneous broadening can be eliminated through a suitable
dynamical decoupling sequence. To determine the quality of a cavity-QED scheme, the coupling is therefore
often comparedwith the inverse qubit coherence time under a train of decouplingπ-pulses [14–16], rather than
the inhomogeneous linewidth.However, for a qubit coupled to a cavity, a sequence ofπ-pulses typically
generates unwanted cavity excitations on the same timescale as coherent qubit–cavity (vacuumRabi)
oscillations, severely reducing thefidelity of, e.g., quantum state transfer between a qubit and a cavity.
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In this paper, we show that these limitations can be overcome by engineering appropriate time-averaged
Hamiltonians [24–27] through a combination of qubit dynamical decoupling and control of the qubit–cavity
coupling. In particular, we introduce and quantitatively characterize protocols for a high-fidelity quantum state
transfer between a qubit and cavity, and for a fast quantumnondemolition qubit readout. Our readout protocol
yields a large signal-to-noise ratio (SNR) even in theweak-coupling regime, inwhich the qubit–cavity coupling
is small compared to the cavity damping rate.Moreover, we show that control of the qubit–cavity coupling
makes high-fidelity quantum state transfer possible even in the strong-dephasing limit, inwhich the
inhomogeneous linewidth dominates the qubit–cavity coupling. This result applies even to logical qubits
encoded in the collectivemode of an ensemble of physical qubits (relevant to, e.g., spin or atomic ensembles that
are routinely used for quantummemories [3, 28, 29]). Inhomogeneous broadening across an uncontrolled
ensemble ofN physical qubits would typically lead to coupling of the logical qubit to~N collectivemodes
[23, 30, 31]. However, remarkably, for our pulse sequence wefind that the leading corrections in average
Hamiltonian theory couple only four distinct collectivemodes in the large-N limit. Thismay allow for very high-
fidelity storage-and-retrieval or even coherentmanipulation of quantum information in the ensemble through
revivals.

This paper is organized as follows. In section 2, we introduce theHamiltonian engineering protocol studied
throughout this work. In section 3, we evaluate the fidelity of a quantum state transfer between a cavity and a
single physical qubit under theHamiltonian-engineering protocol presented here, and show that errors can be
strongly suppressed, even in the strong-dephasing limit (inwhich the inhomogeneous broadening is larger than
the qubit–cavity coupling). In section 4, we generalize this result to state transfer between a cavity and a collective
mode of a large ensemble of physical qubits. In section 5, we analyze realistic control limitations.We focus on
finite off/on ratio of the tunable qubit–cavity coupling, deterministic over (under)-rotations of the qubit during
imperfectπ-pulses,finite bandwidth of the qubit–cavity coupling pulses, andfinite duration of the qubit
π-pulses. Finally, in section 6, we assess a readout protocol based on theCarr–Purcell sequence that yields high
signal-to-noise and single-shotfidelity in theweak-coupling regime.

2.Hamiltonian engineering

Wefirst consider a single qubit coupled to a cavity.With the cavity and the qubit on resonance andworking in a
rotating framewithin the rotating-wave approximation, the system is described by a Jaynes–Cummings
Hamiltonian:

xs s s= + +- +( ) ( )( ) ( )†H t g t a a2 , 1zJC

wherewe have allowed for a tunable qubit–cavity coupling g(t) (setting = 1). In addition, the qubit is
controlled via ( )H tc , giving the totalHamiltonian

= +( ) ( ) ( ) ( )H t H t H t . 2JC c

In ( )H tJC , we take ξ to be aGaussian random variable with zeromean and variance xD( )2 that describes
inhomogeneous broadening in the qubit–cavity detuning.Most decoupling schemes rely entirely on qubit
control. However, electrical control of g(t) is nowpossible in several architectures [5, 6, 16, 32–34]. By
modulating ( )H tc and g(t) sufficiently quickly, we can eliminate unwanted terms and generate useful time-
averagedHamiltonians.

To average away unwanted terms, wemove to the toggling frame [35], which incorporates ( )H tc into the
transformed systemHamiltonian,

=( ) ( ) ( ) ( ) ( )†H t U t H t U t , 3T c JC c

where ò= - ¢ ¢( ) [ ( )]U t t H texp i d
t

c 0 c . To reduce dephasing due to the randomdetuning ξ, a natural choice for

( )U tc is the Carr–Purcell sequence: a train of sharpπ-pulses applied at times t+( )m 1

2
, with Î m (figure 1).

When ( )U tc generates fastπ-rotations about the x-axis,

xs s s

xs s s
=

+ +

- + +

- +

+ -
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( )[ ] ( )

( )[ ] ( )
( )

†

†

⎧
⎨
⎪⎪

⎩
⎪⎪

H t
g t a a n t

g t a a n t

1

2
, even,

1

2
, odd,

4
z

z

T

with n(t) the number ofπ-pulses applied before time t. For n(t) even, the qubit–cavity interaction is described by
a co-rotating term, preserving the total number of excitations, s sº + + -

†N a aex . However, for n(t) odd, the
interaction is rather given by a counter-rotating term, which does not conserve Nex. For fixed =( )g t g , the
counter-rotating term leads to simultaneous excitation of the qubit and cavity. This flowof excitations can be
blocked simply by taking =( )g t 0 for n(t) odd.With this choice, Nex is a constant ofmotion, allowing for
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coherent state transfer (vacuumRabi oscillations) between the qubit and theHilbert space spanned by the
vacuumandfirst excited state of the cavity.

In the rest of this paper, wewill use the acronymSQUarewave and dynamical decoupling (SQUADD) to
describe the simultaneous square-wavemodulation of g(t) and sequence ofπ-pulses shown infigure 1. In an
ideal implementation of SQUADD, qubitπ-pulses are infinitely narrow and couplingmodulations perfectly
square: =( )g t g for n(t) even and =( )g t 0 for n(t) odd.We focus on this idealized limit in sections 3 and 4.
Control imperfections will be considered in detail in section 5. In section 6, wewill show that the Carr–Purcell
sequencewith fixed =( )g t g can be used for fast readout of the qubit via the cavity.

3.Qubit–cavity state transfer

In this section, we assess the quality of a quantum state transfer realized using SQUADD. In particular, we show
that SQUADDallows for a high-fidelity quantum state transfer, even in the limit of strong inhomogeneous
broadening, xD > g .

To characterize the performance of SQUADD,we evaluate the average fidelity

ò y y y y y= á ñá ñ∣ (∣ ∣) ∣ ( )†F U Ud . 50 0

The integral in equation (5) represents an averagewith respect to theHaarmeasure yd (a uniform average over
the Bloch sphere) for the ensemble of states of the form y yñ º ñ ñ∣ ∣ ∣0q c, where yñ∣ q is a pure qubit state and ñ∣0 c is
the cavity vacuum.Wehave also introduced the unitary operatorU0 describing an ideal state transfer:

y yñ ñ = ñ ñ∣ ∣ ∣ ∣U g00 q c q c, with ñ∣g q the qubit ground state. In addition, is the completely positive trace-
preservingmap that describes the actual state transfer, accounting for an average over the randomdetuning ξ
and afinite cavity damping rateκ.Wefirst consider the case k = 0, then generalize tofiniteκ, below.

3.1. Exact solution (k = 0)
An exact solution is possible for SQUADDunder the ideal conditions described above: sharpπ-pulses, =( )g t g
for n(t) even, and =( )g t 0 for n(t) odd. The time-evolution operator then breaks into segments associatedwith
the intervals of duration τ betweenπ-pulses. In the single-excitation subspace, s s= + =+ -

†N a a 1ex , the
evolution operator for a single period of the decoupling sequence is

t xt t= W - W( ) ( ) ( ) ( )ˆ ˆ ˆU R R R , 6n z n1

with

xW = + ( )g 4 , 72 2

x
=

W
+

W
ˆ ˆ ˆ ( )n

g
x z

2
. 8

In equation (6), we have introduced the operator q º tq-( )ˆ
ˆ·R en
ni 2, which applies an SU(2) rotation by angle q

around the axis set by the unit vector n̂ in the space spanned by the vector of pseudospins t t t t= ( ), ,x y z . These
pseudospins are defined by

t = ñá + ñá∣ ∣ ∣ ∣ ( )g e e g1 0 0 1 , 9x

t = ñá - ñá(∣ ∣ ∣ ∣) ( )g e e gi 1 0 0 1 , 10y

t = ñá - ñá∣ ∣ ∣ ∣ ( )e e g g0 0 1 1 . 11z

In equations (9)–(11), g (e) labels the ground (excited) state of the qubit, while 0 or 1 is the number of photons in
the cavity. The product of the three rotationmatrices in equation (6) is itself a rotationmatrix J= ( )ˆU Rv1 ,

Figure 1. SQUADD (SQUarewave and dynamical decoupling): theCarr–Purcell sequence is applied to a qubit coupled to a cavity
while turning off the coupling g(t) (equation (4)) after each odd-numberedπ-pulse to prevent unwanted cavity excitations.
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= - - ( )A Bcos

2
1 , 122 2

=
+

+
+

ˆ ˆ ˆ ( )v
A

A B
x

B

A B
z, 13

2 2 2 2

with

t xt x t xt t
=

W
W

+
W

W W ( )⎜ ⎟⎛
⎝

⎞
⎠A

g2
cos

2
cos

2 2
sin

2
sin

2
sin

2
, 14

x t xt t xt t x t xt
=

W
W

-
W W

+
-
W

W ( )⎜ ⎟⎛
⎝

⎞
⎠B

g
sin

2
cos

2
cos

2
sin

2
cos

2

4

4
sin

2
sin

2
. 15

2 2

2
2

The evolution at the end of the full sequence of np pulses (and thus n 2p periods) is given by

J= =( ) ( ) ( ) ( )ˆU t U R n n2 , even . 16f
n

v p p1
2p

Equation (16) gives a closed-form analytical expression for the evolution operator under SQUADD. Taking
y y y yñá = ñá(∣ ∣) ( )∣ ∣ ( )† U t U tf f in equation (5), with ( )U tf given by equation (16), we obtain the average

state-transfer fidelity

J J
= + + ( )

⎡
⎣⎢

⎤
⎦⎥F v

n
v

n1

3
E 1 sin

4
sin

4
, 17x

p
x

p2 2

where [·]E is an ensemble average over the detuning ξ. Equation (17) is plotted as a function of np infigure 2
(purple solid line).

To clarify the parametric dependences in equation (17), we set t p= ( )gnp for a complete state transfer

(minimizing error to leading order in x t( )gmax , ) and expand to leading order in n1 p. This gives

p x x p
-

D
+

D ( )⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟F

g g n
1

1

6 4

1

3 2
, 18

p

2 4 2 4



valid for x tD( )gmax , 1 (equivalently, p xD( )n gmax 1,p  ). The error ( - µF n1 1 p
4) is thus strongly

suppressedwith an increasing number ofπ-pulses, as shown infigure 2.
A small error can be reachedwhen n 1p  , even for strong dephasing, x= D <*gT g2 1

2
, where *T2 is

the qubit free-induction decay time (dephasing time) due to inhomogeneous broadening xD . This result is
apparent infigure 2, which gives the exact solution described above (solid purple line), alongwith the large-np
expansion of equation (18) (dashed black line). Here, we have chosen =*gT 1 10

2 . Even for this choice of
parameters, placing the system in the strong-dephasing regime, errors smaller than 1%are reachedwith

~n 40p pulses, at the onset of the validity criterion for equation (18): p x> D ~n g 40p . Consequently, the

Figure 2. Suppression of state-transfer error - F1 with increasing number of pulses np for x= D =*gT g2 1 102
. Dashed black

line: equation (18). Solid purple line: exact solutionwithout cavity damping, equation (17). Blue dots: exact numericalmaster-
equation simulation including cavity damping, with k =g 1. Red triangles: k =g 1 100.

4

New J. Phys. 19 (2017) 023041 FBeaudoin et al



usual weak-dephasing criterion ( *T g1 2  ) has been traded for a fast-control requirement (t *T2 )5. Fast
π-pulses in this limit have already been demonstratedwith isolated spin qubits (not coupled to cavities)
[13, 19, 37], and could in principle bemade even faster for single spins by taking advantage of exchange coupling
and themagnetic field gradient generated by amicromagnet [38, 39]. Since g(t) can be controlled electrically
when these systems are coupled to cavities [5, 6], fast pulsing of g(t)may be possible in the very near future (we
give an analysis offinite-bandwidth control for g(t) and the influence of counter-rotating terms in section 5.3).

3.2. Finite cavity damping (k ¹ 0)
When  ¥np , inhomogeneous broadening becomes irrelevant and the fidelity will ultimately be limited by
cavity damping at rate k (weneglect intrinsic qubit decay due to a homogeneous linewidthwhen k >T 12 ).
Accounting forfinite cavity damping k ¹ 0 in themap in equation (5), and expanding for k g 1 , wefind
that the error saturates at

p k k
- = + ( )

⎛
⎝⎜

⎞
⎠⎟F

g g
1

6
19

2

2

when  ¥np . To establish the influence of cavity dampingmore generally as a function of k g and np, we
numerically solve the Lindbladmaster equation generated by a Liouvillian superoperator  accounting for both
Hamiltonian evolution under equation (4) and cavity damping. As shown infigure 2, cavity damping does
indeed lead to a saturation of the error as a function of np at k- ~F g1 (blue dots: k =g 1, red
triangles: k =g 1 100).

As a concrete example, a coupling pg 2 1 MHz has been predicted for spin qubits inGaAs double
quantumdots [15], leading to *gT 0.05

2
 due to hyperfine coupling to nuclear spins [13]. Even in this case,

SQUADDcould enable coherent coupling between a single spin and a cavity. In addition, SQUADDcould
improve state transfer between a single spin confined in a carbon nanotube and a coplanar-waveguide resonator.
In a recent experiment on this system, p =g 2 1.3 MHz, k p =2 0.6 MHz, and *T 602  ns have been
reported [5].With these parameters, a large state-transfer error - F1 0.42 results from equation (5)without
π-pulses. Using SQUADD, np= 10 (t = p 40

gnp

 ns) suffices to reduce the error frompure dephasing to 0.004.

The total error is then - F1 0.18 , limited by the largeκ/g ratio in this experiment.

3.3. AverageHamiltonian theory
For k = 0, some insight into the dependence of the state-transfer error on np can be gained using average
Hamiltonian theory, a standard tool in the analysis of open-loopHamiltonian engineering protocols [24]. In
averageHamiltonian theory, the evolution operator ò= - ¢ ¢( ) [ ( )]U t t H texp i d

t

0 T is recast in terms of a

Magnus expansion [40, 41]:

å= -
=

¥

( ) ( )( )
⎡
⎣⎢

⎤
⎦⎥U t t Hexp i . 20

k

k

0

Substituting ( )H tT (equation (4)) into the expressions for ( )H k [40, 41] gives the first few terms in theMagnus
expansion for SQUADD

òt
s s= = +

t
- +( ) ( ) ( )( ) †H t H t

g
a a

1

2
d

2
, 210

0

2

1 T 1

ò òt
= - =
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i
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d d , 0, 22
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1
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=- + - +
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[[ ( ) ( )] ( )]}

( ) ( )
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H t t t H t H t H t
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g
a a

g
a a

1

12
d d d , ,
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48 24

1

2
. 23

t t

z

2

0

2

1
0

2
0

3 T 1 T 2 T 3

T 1 T 2 T 3

2 2 2 2

1 2

The leading term, ( )H 0 , generates coherent vacuumRabi oscillations between the qubit and the cavity. In
equation (22), ( )H 1 vanishes because the toggling-frameHamiltonian given by equation (4)has the following
property: t= -( ) ( )H t H t2T T , corresponding to a symmetric cycle with period t=T 2 [35]. For such
symmetric cycles, all odd orders vanish in theMagnus expansion, leading to =( )H 01 [42]. The leading source
of error is then ( )H 2 . In the subspace containing a single qubit or cavity excitation ( =N 1ex ), thefirst and second
terms in ( )H 2 (equation (23)) lead to unwanted rotations by an angle tµ 2 around the axes defined by tx

5
Here, we consider static noise ξ, corresponding to an infinite correlation time, t  ¥c . For a fluctuating detuningwith afinite correlation

time, the pulse interval τmust also satisfy t t< c for significant error suppression [36].
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(equation (9)) and tz (equation (11)), respectively. For small rotation angles, this gives a correction tµ ( )2 2 to
thefidelity (which involves an overlap between two state vectors at an angle tµ 2), thus explaining the error
tµ µ n1 p

4 4 obtained in equation (18).
A sufficient criterion for convergence of theMagnus expansion (equation (20)) for a periodicHamiltonian
( )H tT with period t2 is [41]

ò p<
t

( ) ( )t H td , 24
0

2

T 

where O  is the 2-normofO, withO an arbitrary operator.Here, we have taken the detuning ξ to beGaussian
distributed over an infinite interval and the cavitymode is described by unbounded operators †a a, . Thus,

( )H tT  is formally unbounded.However, realistically, we expect that theGaussian distribution for ξ can be
truncated at a few xD , and the cavity occupation can be truncated to include only a few quanta in Fock space,

resulting in ~ ~∣∣ ∣∣ ∣∣ ∣∣†a a 1, which gives ò x tD
t

( ) ( )t H t gd max , 2
0

2
T  up to factors of order unity. Thus,

for afixed transfer time t p= =t n gf p , we expect convergence of theMagnus expansion
for xD( )n g2 max 1,p .

Absolute convergence of theMagnus expansion does not guarantee that the first few terms of average
Hamiltonian theory lead to an accurate description of the evolution operator. Since the terms of average
Hamiltonian theory appear within the argument of an exponential in equation (20), correction terms that are
small over a single period t2 may add up to produce large deviations over the entire evolution time

t t=t nf p  . However, for SQUADD, the duration of the sequence is set to p=t gf through the condition
for complete state transfer. This sets a bound on themagnitude of deviations of a truncatedMagnus expansion
from the exact solution. Indeed, for k 2, we have x x t pD D( ) ( )( ) H t g g gmax ,k

f
k k k 

x x~ D D[( ) ]g g nmax ,k
p
k, wherewe have used t p= gnp. Keeping only thefirst correction term in the

Magnus expansionwill then lead to an accurate description of the evolution operator (with
"( ) H t k1 2k

f   ) in the limit

xD ( )
⎛
⎝⎜

⎞
⎠⎟n

g
max 1, . 25p 

In this limit, equation (24) already ensures that the expansion of averageHamiltonian theory is convergent. In
this same limit, wefind that the expansion given in equations (21)–(23) leads to the error given in equation (18),
thus coincidingwith the exact solution.

4. Collectivemodes in qubit ensembles

In this section, we consider the application of SQUADD to quantum state transfer between a cavity and a
collectivemode of an ensemble ofN physical qubits.We account for leading corrections in theMagnus
expansion and show that, up to corrections~ ( ) N1 , this system evolves in a closed four-dimensional
subspace. Using this approach, wefind an expression similar to equation (18) for the state-transfer fidelity, but
applicable to a collectivemode.

For single spins coupled tomicrowave cavities, the k g ratio can be large [5, 43], limiting thefidelity
achievable through SQUADD.However, the effective coupling can be significantly enhanced by encoding a
logical qubit into a large number of physical qubits. Indeed, an ensemble ofN qubits coupled to a common
cavitymode hosts an excitation out of the ground state ñ = ñ Ä ñ ñ∣ ∣ ∣ ∣g g g g Nq 1 2  that is annihilated by the
collective lowering operator

å ås= º
=

-

=

( )b
g

N g
g

g

N
, , 26

i

N
i

i
i

N
i

1 av
av

1

2

where gi is the coupling for qubit i. For N 1 , the logical qubit encoded in the subspace of ñ∣g q and

ñ = ñ∣ ∣†e b gq q couples to the resonator with an ensemble coupling ºg N gens av [21]. However, an
inhomogeneity in qubit–cavity detunings across the ensemblemay lead to leakage from the collectivemode b to
many dark states [23, 30, 31].When xD  gens, leakage due to dephasingwill typically result in an error of
order one.

Errors due to inhomogeneous broadening in an ensemble can be suppressed through SQUADD. The
toggling-frameHamiltonian for a qubit ensemble is
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We thus consider an ensemble of qubits with couplings gi(t) and detunings xi from the cavity. As in the single-
qubit case, we assume that = "( )g t g ii i for n(t) even and = "( )g t i0i for n(t) odd. The time-dependent
Hamiltonian in equation (27) describes rapid periodicmodulation for small pulse interval τ. Under the
conditions described in section 3.3, above, we then expect convergence of theMagnus expansion for

x t pD( ) gmax , 2ens . Becausewe have assumed =( )g t 0 for n(t) odd, the total number of excitations
s s= + å + -†N a a i i iex is a constant ofmotion.We thus project each ( )H k into the subspace01 associated

with =N 0ex or 1. Explicitly,01 is spanned by the states ñ Ä ñ∣ ∣g 0q c, ñ Ä ñ∣ ∣g 1q c, and
ñ Ä ñ ñ ñ Ä ñ∣ ∣ ∣ ∣ ∣g g e g 0j N1 2 c  , where ñ∣0 c and ñ∣1 c label cavity Fock states, andwhere ñ∣g j and ñ∣e j label the

ground state and excited state of qubit j, respectively.We then have

= + =( ) ( )( ) † † ( )H
g

a b ab H
2

, 0, 280 ens 1

c= W + + W + +( ) ( ) ( )( ) † † † † †H b c c b a d d a a a. 292
1 2

In equations (28) and (29), we have introduced twonew collective qubit lowering operators
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x
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Equation (29) describes the coupling ofmodes a and bwith the newmodes c and dwith strengths

t
x

t
xW = - W = -( ) ( ) ( )N

g g
N

g
48

,
48

. 321

2

av av 2

2
2

av

In addition, equation (29) contains a resonator frequency shift

åc
t

x= ( )g
24

. 33
i

i i

2
2

By construction, after projecting into01, the collective qubit operators obey the commutation relations

= = = +[ ] [ ] [ ] ( ) ( )† † † b b c c d d N, , , 1 1 . 34

Therefore, in the large-N limit, theHamiltonian +( ) ( )H H0 2 can be expanded in the basis of single-excitation
states ñ º ñ Ä ñ∣ (∣ ∣ )†m m g 0q c , where Î { }m a b c d, , , . However, this basis is typically non-orthogonal. To see
this, we consider the casewhere the coupling strengths gi are uncorrelatedwith the detunings xi, implying that,
e.g., x x( )g gav av av for  ¥N .We also take the distribution of qubit-resonator detunings to beGaussian
withmean x =[ ]E 0i . Projecting into01, this gives

= =[ ] ( ) [ ] ( ) ( )† † b c N c d N, 1 , , 1 , 35

= +[ ] ( ) ( )† b d N, 1 3 1 , 36

all other relevant commutators between differentmodes being 0. Though [ ]†b c, and [ ]†c d, are suppressed in
the large-N limit, [ ]†b d, always remains of order 1.We thus introduce the overlap

º á ñ = á ñ = +∣ ∣[ ]∣ ( ) ( )† s b d b d N0 , 0 1 3 1 . 37

To avoid the complications associatedwith the non-orthogonal basis ñ ñ ñ ñ{∣ ∣ ∣ ∣ }a b c d, , , , we introduce a new set
of single-excitation states ñ ñ ñ ñ{∣ ˜ ∣ ˜ ∣˜ ∣ ˜ }a b c d, , , , where

ñ = ñ ñ = ñ∣ ˜ ∣ ∣˜ ∣ ( )a a c c, , 38

ñ = -
-

ñ +
-

ñ ñ =
+

ñ +
+

ñ∣ ˜
( )

∣
( )

∣ ∣ ˜
( )

∣
( )

∣ ( )b
s

b
s

d d
s

b
s

d
1

2 1

1

2 1
,

1

2 1

1

2 1
. 39

The states given in equations (38) and (39) form an orthonormal basis if we neglect overlaps~ ( ) N1 .
Writing amatrix representation of +( ) ( )H H0 2 in this basis, we find
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In equation (40), we have introduced couplings between the orthonormalmodes ã, b̃ , c̃ , and d̃ , given by

w x t w x t= 
 ¢ =  ( ) ( )

⎡
⎣⎢

⎤
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s g
g

s
g

1

2 2

1

48
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. 41ens

ens
2
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2

ens
2
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2 

For N 1 , we neglect corrections~ ( ) N1 . TheHamiltonian in equation (40) can then be represented
graphically, as shown infigure 3(b). For xtD = 0, equation (41) yields w¢ = 0. TheHamiltonian then has the
structure of a L system,with a basis state ñ∣ã coupled to the two basis states ñ∣b̃ and ñ∣d̃ . These couplings are
represented by the thick red arrows infigure 3(b). In this limit, theHamiltonian in equation (40) has two bright
eigenstates with energiesg 2ens . This is clearly seen infigure 3(a), which shows the eigenenergies of the
Hamiltonian in equation (40) as a function of xtD , where xD is the standard deviation of theGaussian
distribution of qubit-resonator detunings. For xtD = 0, all other -N 1eigenstates are zero-energy dark states
which do not couple to the resonatormode. In contrast, when xtD > 0, theHamiltonian has the structure of a
tight-binding problemon a ring; the basis states ñ∣b̃ and ñ∣d̃ becomeweakly coupled through an additionalmode
ñ∣c̃ . These additional hopping terms are represented by the thin blue arrows infigure 3(b).
Because of the simple tridiagonal formof theHamiltonian in equation (40), we are able tofind analytic

expressions for the eigenenergies of +( ) ( )H H0 2 for xtD > 0. Neglecting corrections~ ( ) N1 ,
diagonalization of theHamiltonian in equation (40) reveals two energy doublets: (i) a doublet of bright states
(which have finite overlapwith the cavity state ñ = ñ = ñ∣ ˜ ∣ ∣†a a a 0 ), and (ii) a doublet of states which are dark (no
overlapwith ñ∣ã ) for xtD = 0, but which become bright for xtD > 0. The eigenenergies of these two doublets
are

w w
= 

+ S
= 

- S
  ( )( ) ( )E E

2
,

2
, 42i tot

2 2
ii tot

2 2

respectively, where

w w w w w= + + ¢ + ¢+ - + -( ) ( ) ( ), 43tot
2 2 2 2 2

w w w w w w w wS = + ¢ + - ¢ - ¢ + + ¢+ + - - + + - -[( ) ( ) ][( ) ( ) ] ( ). 442 2 2 2 2

The eigenenergies given in equation (42) are shown infigure 3(a) (solid red lines). Introducing couplings to the
mode ñ∣c̃ by turning on xtD shifts the energies of the two initial bright states, and lifts the degeneracy between
two of the initial dark states by coupling them to the resonatormode. These two effects will generate errors in the
state transfer of the resonator quantum state into the ensemble of qubits.

Figure 3. Spectrumof the time-independent effectiveHamiltonian +( ) ( )H H0 2 for a qubit ensemble coupled to a resonator under
SQUADD. (a)Eigenenergies as a function of xtD , where xD is the standard deviation of theGaussian distribution of qubit-resonator
detunings xi , and τ is the dynamical-decoupling pulse interval. Solid red line: eigenenergies obtained by analytically diagonalizing the
effective 4×4Hamiltonian in equation (40), dropping corrections ~ ( ) N1 . Black dots: exact numerical diagonalization of

+( ) ( )H H0 2 given by equations (28) and (29), which include corrections~ ( ) N1 .We take x= Dgens , andN=1000. (b)
Couplings between the basis states ñ ñ ñ ñ{∣ ˜ ∣ ˜ ∣˜ ∣ ˜ }a b c d, , , , as given by equation (40).
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Wecharacterize errors in SQUADDdue to inhomogeneous broadeningwith the average fidelity F, as
defined in equation (5).We consider the initial state y yñ º ñ Ä ñ∣ ∣ ∣g q c, where yñ∣ c is an arbitrary superposition

of the cavity states ñ∣0 c and ñ∣1 c.We choose the evolution operator for an ideal state transfer to be = - †U ib a0 ,
where the-i phase factor appears because the state transfer described here is equivalent to an SU(2) rotation.
We take the linearmap representing imperfect state transfer to correspond to the evolution operator under
the effective time-independentHamiltonian in equation (40).We perform aTaylor expansion of the resulting
fidelity to leading (fourth) order in τ, assuming x tD( )gmax , 1ens  . Using the condition for complete state
transfer, t p= g npens , this assumption becomes p xD( )n gmax ,p ens , resulting in

p x x p
-

+ D
+

D ( )
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟
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⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟F

g g n
1

8

18 2

1

18 2 2
. 45

p

2

ens

4

ens

2 4



We recall that we have dropped corrections of ( ) N1 arising fromoverlaps between basis states. Ignoring
numerical prefactors of order 1, equation (45) exactly corresponds to equation (18) for a single qubit, after the
replacement g gens. In equation (45), the numerical prefactors (obtained for N 1 ) differ from those
obtained in equation (18) forN=1 because themode structure is not the same. Indeed, takingN=1 in
equations (26), (30), and (31) leads to s= = = -b c d . The overlap between excitations of any pair ofmodes
Î{ }b c d, , is then s sá ñ =- +∣ ∣0 0 1, in contrast with the overlaps obtained from equations (35) to (37)when
neglecting terms~ ( ) N1 for N 1 .

The above discussion shows that SQUADD is robust to inhomogeneous broadening, evenwhen coupling a
cavity to a collectivemode. Bymodulating the detuning rather than the coupling, itmay be possible to use a
variation of SQUADDon ensembles of nitrogen vacancy (NV)-center spin qubits in diamond coupled to
superconducting coplanar waveguides, for which xD ~ gens has been reported [23].

This treatment of collectivemodes in qubit ensembles also demonstrates a clear advantage of our analytical
approach over brute-force numericalmethods for optimal control. Indeed, the time required for numerical
exponentiation of the full systemHamiltonian grows exponentially with ensemble size,making the problem
numerically challenging for N 1 . In contrast, the analytical approach reveals a closed four-dimensional
subspace in the same large-Nlimit.

5. Control limitations

In this sectionwe evaluate the robustness of SQUADD to control imperfections.Wefirst discuss errors due to a
finite off/on ratio in the qubit–cavity coupling g(t) and pulse errors due to deterministic over-rotation or under-
rotation of the qubit.We then describe the effects of afinite bandwidth and of counter-rotating terms in the
qubit–cavity couplingHamiltonian.Wefinally discuss error due tofinite qubitπ-pulse duration, and show that
this source of error can be efficientlymitigated by properly alternating the qubitπ-pulse rotation direction.

5.1. Finite off/on ratio
The ideal SQUADD sequence analyzed in section 3 assumes that the coupling can be tuned to vanish identically
in the ‘off’ state. As a consequence, all terms in averageHamiltonian theory (equations (21)–(23)) commutewith
the total number of excitations Nex . If therewere some residual coupling ¹( )g t 0 for n(t) odd, terms that do
not commutewith Nex would appear in averageHamiltonian theory. Indeed, ( )H 0 would then contain a term

s sµ +- +( )†g a a . In addition, for a sequence that is not a symmetric cycle t¹ -[ ( ) ( )H t H t2T T ], ( )H 1 would
contain, e.g., a cavity-squeezing term t sµ -( )†g a ai z

2 2 2 . This squeezing termmay be useful, e.g., to enhance
thefidelity of a qubit readout [44].

Given afinite off/on ratio g goff (where =( )g t goff for n(t) odd), the term s sµ +- +( )†g a a in ( )H 0

generates a correction to the error given in equation (18) of order~ ( )g goff
2. This correctionwould ultimately

limit the saturationfidelity at large npwhenever ¹g 0off .

5.2. Pulse errors
In general, over-rotation or under-rotation of the qubit due to imperfect control can lead to an accumulation of
errors as the number of pulses np is increased. A simpleway to avoid accumulation of these pulse errors is to use a
phase-alternated sequence [35], inwhich the qubit rotation direction alternates fromoneπ-pulse to the next.
Consequently, the (fixed, deterministic) error e on the rotation angle of successive pulses cancels for n(t) even,
but introduces a small over-rotation for n(t) odd.We evaluate the resulting correction dF to the state-transfer

fidelity of equation (18) by expanding ò= - ¢ ¢( ) [ ( )]U t t H texp i d
t

0 T to leading order in e and in τ.When

x tD( )gmax , 1 , dF is thenwell-approximated by this leading correction:
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Thus, neglecting order-unity prefactors, pulse errors can bemade negligible compared to the error given in
equation (18)when e xD[( ) ]g nmax , 1 p

2 2 .

5.3. Finite bandwidth and counter-rotating terms
In this section, we evaluate the state-transfer fidelity using numerical simulations that take into account both the
finite bandwidth of the couplingmodulation g(t) and the counter-rotating terms in the RabiHamiltonian. In
these simulations, wefind the evolution of the systemunder the toggling-frameHamiltonian

=( )
( ) ( )
( ) ( )

( )
⎧⎨⎩H t

H t n t

H t n t

, even,

, odd,
47T

T
even

T
odd

where

xs s s

xs s s

= + + +

=- + + +

w

w

- +

+ -

( ) ( )[ ]

( ) ( )[ ] ( )

† †

† †

H t g t a a

H t g t a a

1

2
e h.c. ,

1

2
e h.c. , 48

z
t

z
t

T
even 2i

T
odd 2i

q

q

with wq the qubit frequency (assumed to be tuned to equal the resonator frequency). In contrast with
equation (4), equations (48) take into account the counter-rotating terms appearing in theRabiHamiltonian.
These terms give rise to leakage outside the subspace of zero or one excitationwhen

òw wº
-¥

¥
( ) [ ] ( )g t t g td exp i has significantweight at w w= 2 q.

To take into account thefinite bandwidth of the couplingmodulations, we convolve the ideal square-wave
train of pulses with aGaussian filter. In particular, we take the coupling to be given by

w w= -( ) [ ( ) ( )] ( )g t g f , 491
id

where

w w w s= = -( ) [ ( )] ( ) [ ] ( )g g t f, exp 2 . 50id id
2

f
2

In equations (49) and (50), -( ) 1 is the (inverse) Fourier transform, ( )g tid is an ideal train of square-wave pulses
havingwidth t¢, period t2 , and amplitude g. The function w( )f is a Gaussianfilter with standard deviation sf

which eliminates high-frequency components of ( )g tid . Evaluating equation (49) gives

å t= -
=

( ) ( ) ( )g t g t j2 , 51
j

n

0

2

sq

p

where ( )g tsq describes a singlefiltered square pulse centered around t=0,

s t s t
= +

¢
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⎡
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⎛
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erf
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f f

In equation (52), t¢may differ from the pulse interval τ (figure 4(a)). Neglecting corrections that are suppressed
exponentially with s t¢f , the time required for the coupling to rise from10% to 90%of itsfinal value is, using
equation (52),

s s

- ( ) ( )t
2 2 erf 4 5 2.563 103

. 53r

1

f f

 

When s w<f q, the spectral weight of w( )g is suppressed at w w= 2 q and the influence of the counter-rotating
terms becomes negligible.When s t t> ¢ ~1 1f , the pulse train g(t) closely approximates a sequence of
square-wave pulses. Crucially, there is always the possibility for a separation between wq, sf , and t1 , allowing
both conditions to be satisfied simultaneously:

w s
t

> > ( )1
. 54q f

To verify the analysis given above, we numerically evaluate the fidelity of a state transfer using equation (5),
considering evolution under the toggling-frameHamiltonian given in equation (47), which fully accounts for
counter-rotating terms. For a finite pulse rise time, ¹t 0r , g(t)will be non-zero even for n(t) odd. To suppress
the resulting unwanted excitations of the qubit and cavity, we then take t t¢ = - tr (t¢ and tr are illustrated in

figure 4(a)). Consequently, the time-averaged coupling ò t=
t

( )g t g td 2
0

2
also decreases; the pulse interval

that results in a complete state transfer is then obtained by numerically solving t p=g n 2p for a given value of g
and np. The resulting state-transfer error is shown infigure 4(b) (blue dots) as a function of s gf for np= 100,
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=*gT 1 10
2 , and k = 0. As s gf increases, the error decreases, approaching the value given by equation (18)

for perfectly squaremodulation of g(t) (dashed black line). Additional error due to afinite pulse rise time
becomes negligible compared to the error already present for an ideal pulse (for this choice of parameters) for
s  g500f . Evenwhen the bandwidth is too narrow for saturation to have occurred, s < g500f , figure 4(b)
shows that the error due to inhomogeneous broadening can be suppressed substantially (without SQUADD,
errorwould be of order 1 for =*gT 1 10

2 ). In the simulations, we have taken w = g2000q . This choice allows
us tofilter out the effect of the counter-rotating terms over the entire parameter range of the simulation,
guaranteeing that s w<f q is satisfied.

To give a concrete example, taking p =g 2 1 MHz and s = g100f , the parameters used in the simulation

presented infigure 4(b) correspond to s p =2 100 MHzf , w p =2 2 GHzq , and *T 162  ns. Numerically
solving t p=g n 2p then gives pg 2 0.27 MHz and t 9 ns for np= 100. Even for this narrow bandwidth

(which leads to t 4r  ns), our simulation yields a relatively small error, - -F1 10 3 .

5.4. Finiteπ-pulse duration
In typical experimental settings, the finite duration ofπ-pulses poses an important practical limitation to the
achievablefidelity of quantumoperations [13, 45–49]. Therefore, in this section, we numerically evaluate the
state-transfer fidelity under SQUADDas a function of theπ-pulse duration.

With the cavity and the qubit on resonance, andworking in the rotating frame, we describe qubitπ-pulses
withfinite duration using theHamiltonian

Figure 4.Error due to control limitations. (a)Coupling g(t) (thick blue line) and amplitudew(t) of the qubit drive (thin black line) for a
single period of SQUADD.The coupling is given by equation (51), which takes into account afinite bandwidth sf leading to a finite
rise time tr, equation (53). Coupling pulses have awidth t¢. Qubitπ-pulses are rectangular with amplitudew0 and duration tp. (b)
Error - F1 due to finite tr. Blue dots: error from a finite-bandwidthmodulation (resulting from aGaussian filter with standard
deviation sf ). Dashed black line: error for a perfectly squaremodulation of g(t), given by equation (18). The parameters used for this
plot are: np= 100, =*gT 1 102

, w = g2000q , t t¢ = - tr, and k = 0. (c)Error under SQUADDusing a train of qubitπ-pulses
with duration tp. Blue dots: error fromπ-pulses with identical phase (rotations about +x̂; top-left inset, period t=T 2 ). Red
triangles: error fromπ-pulses that alternate rotations about x̂ and-x̂ after every pair of pulses (bottom-right inset, period t=T 4 ).
Parameters are np= 100, =*gT 1 102

, s =g 1000f , t t¢ = - -t tr p, and k = 0.
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s=( ) ( ) ( )H t
w t

2
, 55xc

valid under the rotating-wave approximation for the qubit drive. In equation (55), we have introduced the drive
amplitude,w(t).Within the rotating-wave approximation for the qubit–cavity coupling (which is justified for
s w<f q, as explained above), substituting ò s= -( ) [ ( ) ]U t t w texp i d 2

t
xc 0 1 1 into equation (3) leads to the

toggling-frameHamiltonian

x
q s q s

q
s s

q
s s q s

= +
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+
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+ +
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- + + -
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a a t
a a

2
cos sin

1 cos

2

1 cos

2
i sin

2
, 56

z y

z

T

wherewe have introduced the qubit rotation angle

òq =( ) ( ) ( )t t w td . 57
t

0
1 1

We takew(t) to describe a train of identical pulses. For numerical evaluation, we consider perfect rectangular

pulses of amplitudew0 and duration tp centered around t+( )m 1

2
, Î m (figure 4(a)). For p=w t0 p ,

evolution under ( )H tT leads toπ-pulses.We retrieve the toggling-frameHamiltonian for instantaneous
π-pulses (equation (4))when taking the limit t 0p in ( )H tT given by equation (56)while requiring p=w t0 p .
In plots and numerical evaluations, we take g(t) to be given by equation (51), above. The strategies proposed here
for error suppressionwith afinite pulse duration are, however, independent of the specific shape ofw(t) and g(t).
Importantly, the counter-rotating s sµ ++ -[ ]†a a and cavity-displacement sµ -[ ( ) ]†a a z terms in
equation (56) both vanish for times t satisfying q p=( )t j2 (with Î j ), at which the state-transfer is
complete. These unwanted terms are, however, finite for q p¹( )t j2 (i.e., duringπ-pulses and for n(t) odd). The
error that results can be suppressed by approximately turning off the coupling during the qubitπ-pulses (by
choosing, e.g., t t¢ = - -t tr p as shown infigure 4(a)), in addition to turning the coupling off for n(t) odd.
Any error arising froma finite pulse duration is then predominantly due to the term x q sµ ( )tsin y in
equation (56).

As in section 5.3, we numerically evaluate the fidelity F (equation (5)) of a quantum state transfer generated
by the toggling-frameHamiltonian given in equation (56). Figure 4(c) displays the resulting error - F1 as a
function of tp (blue dots) for np= 100, =*gT 1 10

2
, s =g 1000f , t t¢ = - -t tr p, and k = 0. To suppress

the error below 1%, p < -gt 2 10p
4 is required for these parameters. For, e.g., p =g 2 1 MHz, this level of

error suppressionwould require <t 0.1p ns. Realizing such short pulsesmay be challenging experimentally.
To explain this poor suppression of error in the limit of small tp, we note that, for the pulse sequence

described below equation (57) (top-left inset in figure 4(c)), ( )H tT does not result in a symmetric cycle (in the
sense described in section 3.3). Indeed, for this sequencewith period t=T 2 , q p q- = -( ) ( )T t t2 , leading
to q q- = -( ) ( )T t tsin sin and thus to - ¹( ) ( )H T t H tT T (see equation (56)).We thus expect the error to
befinite at first order in averageHamiltonian theory [35], ¹( )H 01 (see the discussion following equation (23)).
This sequence only becomes a symmetric cycle (i.e., - =( ) ( )H T t H tT T , leading to =( )H 01 ) in the
limit t 0p .

A symmetric cycle (leading to =( )H 01 )may be obtained using the phase-alternated sequence described in
section 5.2, inwhich the qubit rotation direction (i.e. the sign of ( )w t ) alternates fromoneπ-pulse to the next.

However, for this sequence, ò q ¹( )t td sin 0
T

0 1 1 , leading tofinite error at zeroth order ( ( )H 0 ) for any pulsewith
finite tp due to the term q sµ ( )tsin y in equation (56). A sequence that is a symmetric cycle (leading to

=( )H 01 ) and forwhich ò q =( )t td sin 0
T

0 1 1 (leading to vanishing error at zeroth order) is obtainedwhen:

(i) w(t) is periodic and odd, = - -( ) ( )w t w t ;

(ii) w(t) describes identical π-pulses that come in pairs with common phase, corresponding to successive
rotations about+ + - -ˆ ˆ ˆ ˆx x x x, , , , ... , with no specific assumption about the pulse shape except
that t> " Î( ) [ ]w t t0 0, .

Error due tofinite pulse duration then arises entirely from terms of order ( )H 2 or higher. A sequence that fulfills
the above criteria is shown in the bottom-right inset infigure 4(c), inwhichwe consider the specific example of
square pulses.

As expected from the above discussion, the phase-alternated sequence shown in the bottom-right inset in
figure 4(c) leads to an error (red triangles infigure 4(c)) that is significantly reduced comparedwith the original
fixed-phase sequence (blue dots infigure 4(c)). The error is also significantlymore strongly suppressed in the
limit of small tp for the phase-alternated sequence, relative to the fixed-phase sequence. For the same parameters
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as above, an error<1% is obtained for p = -gt 2 10p
3, corresponding to =t 1p ns for p =g 2 1 MHz. For

p < -gt 2 10p
3, the error quickly decreases and plateaus near the value given by equation (18). Finally, as

explained in section 5.2, phase-alternated sequences have the additional advantage of suppressing an
accumulation of deterministic pulse errors.

6.Qubit readout

Recently, a longitudinal qubit–cavity interaction sµ +[ ( ) ]†g a a z has been considered theoretically and shown
to produce a quantumnondemolition readout that is faster than the usual dispersive readout [44]. Here, we
showhow this type of interaction can be engineered simply by applying theCarr–Purcell sequence on a qubit
with afixed coupling to the cavity, = "( )g t g t , leading to qubit readout. To simplify the discussion,
throughout this sectionwe neglect contributions from inhomogeneous broadening (i.e., we take x = 0 in
equation (4)).

If the Carr–Purcell sequence shown infigure 1 is appliedwith a fixed coupling, = "( )g t g t , the counter-
rotating term in equation (4) contributes. Although this is harmful to state transfer, this term can also generate
otherwise useful quantumoperations. Indeed, the evolution operator from leading-order averageHamiltonian
theory is then

s= = -s- +( ) ( ) ( )( )†
U t D gte i 2 , 58f

g a a t
x fR

i 2x f

where a( )D is the displacement operator producing the coherent state a añ º ñ∣ ( )∣D 0c c [50]. The interaction
appearing in equation (58) is longitudinal with respect to sx eigenstates, ñ∣ q. Applying ( )U tfR on ñ ñ∣ ∣0q c then
gives

añ ñ = ñ  ñ( )∣ ∣ ∣ ∣ ( )U t 0 , 59fR q c q c

with a º - gti 2f . Thus, in combinationwith a qubit rotation conditioned on the cavity state [51], ( )U tfR can
be used tomap a qubit state to a superposition of cavity coherent states; a Schrödinger’s cat state [52, 53].
Alternatively, the states a ñ∣ c can be resolved by homodyne detection of the signal leaking from the cavity,
enabling quantumnondemolition readout of the qubit in the basis ñ{∣ }q .

In the rest of this section, we investigate the limitations of the qubit readout resulting from this combination
ofHamiltonian engineering and homodyne detection. For averagedmeasurements, the appropriate figure of
merit is the signal-to-noise ratio (SNR) of an associated estimator for the qubit expectation value. For single-shot
measurements, the appropriate figure ofmerit is the single-shotmeasurement fidelity.Wewillfind that these
twomeasures can indicate a high-quality readout for this protocol even in theweak-coupling regime ( k<g ).

6.1. Signal-to-noise ratio
When a qubit is successively prepared andmeasured m 1 times to estimate an expectation value, the
measurement statistics describing themean ofmany independent repeatedmeasurements (a so-called ‘soft
average’ [54, 55]) becomeGaussian due to the central limit theorem. The performance of the readout is then
well-characterized by the SNR. For a qubit beingmeasured through a cavity, as considered here, the SNR
compares thefirst twomoments of themeasurement operator

òk= -[ ( ) ( )] ( )†M t a t a ti d , 60
t

0
out out

f

which gives the integrated homodyne-detection signal for ameasurement time tf, with ( )a tout the outputfield
leaking from the cavity with damping rate k. Thesefirst twomoments ofM are quantified by themeasurement
signalX and noiseΞ,

= á ñ - á ñ+ -∣ ∣ ( )X M M , 61

X = D + D+ -( ) ( )M M , 622 2 1 2

D = á ñ - á ñ   ( )M M M , 632 2 2

where rá ñ º [ ( ) ( )]O O ttr 0f and r º ñá Ä ñá( ) ∣ ∣ ∣ ∣0 0 0q c. The SNR is then simply

= X ( )XSNR . 64

In this section, we evaluateX andΞ for the readout scheme described below equation (59), accounting for the
first two nonvanishing orders in theMagnus expansion for the time-periodic Liouvillian  (defined explicitly in
equation (68), below): = +( ) ( )  0 2 .Wewill show thatwhile ( ) 0 generates the required conditional
coherent-state displacement, ( ) 2 results in qubit switching at a rate t kG g 242 2 in the basis ñ{∣ }q . This
qubit switching acts as a source of telegraph noise in the Langevin equation for the cavity field a(t) [56].Wewill
evaluate the SNR including noise fomqubit switching and show that for a sufficiently short pulse interval,
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kt < 1, the readout considered here can result in a large SNR >( )SNR 1 even in theweak-coupling
regime ( k<g ).

To evaluate the SNR for a givenmeasurement scheme, it is useful to relateM to the inputfield ( )a tin and to
thefield a(t) inside the cavity. This relation is given by the input–output formula [56]

k= +( ) ( ) ( ) ( )a t a t a t . 65out in

Assuming that the input is vacuum, substitution of equation (65) into (60) gives

òká ñ = á ñ - á ñ  [ ( ) ( ) ] ( )†M t a t a ti d , 66
t

0

f

ò òk ká ñ = + á + ñ - á + ñ +

-

 [ ( ) ( ) ( ) ( ) ] ( )†M t t t a t t a t a t t a t2 d d h.c. . 67f

t t t
2 2

0
1

0
2 1 2 1 1 2 1

f f 1

Equations (66) and (67) relate á ñM and á ñM 2 —and thus the SNR—to simple expectation values and
autocorrelation functions of the cavity field a(t). Employing standard formulas [56], these expectation values
and autocorrelation functions are easily calculated knowing the time-evolution superoperator ( )V t t, 0 ,
generating evolution for the qubit–cavity densitymatrix.Wefind ( )V t t, 0 by solving the (time-inhomogeneous)
master equation

=˙ ( ) ( ) ( ) ( )V t t t V t t, , . 680 0

In equation (68), we have introduced the Liouvillian ( ) t describing cavity damping at rate k and unitary
evolution under the qubit–cavity toggling-frameHamiltonian, ( )H tT ,

k= - +( ) · [ ( ) ·] [ ] · ( ) t H t ai , , 69T

= - +[ ] · · ( · · ) ( )† † † a a a a a a a
1

2
, 70

where the centerdot (‘·’) represents an arbitrary operator uponwhich the relevant superoperator is applied. In
equation (69), ( )H tT is given by equation (4), taking x = 0 and = "( )g t g t .

To evaluate ( )V t t, 0 analytically, we assume that t- =t t n2 p0 .We then use theMagnus expansion

å= -
=

¥

( ) ( ) ( )( )
⎡
⎣⎢

⎤
⎦⎥V t t t t, exp . 71

k

k
0 0

0

As in averageHamiltonian theory, the terms ( ) k are time-independent because ( ) t is periodic,
t+ = "( ) ( ) t t t2 . Thefirst few terms of the expansion in ( ) k are obtained by replacing ( ) ( )H ik k and

( ) ( )H t tiT in equations (21)–(23) [41].
To gain insight into the problem,we evaluate the SNR to leading order in theMagnus expansion,

equation (71). In thisfirst approach, we neglect any qubit decay thatmay arise fromhigher-order terms in the
expansion.We thenfind

= -( ) [( ) ] ( )( )V t t t t, exp , 720 0
0

k= - +· [ ·] [ ] · ( )( ) ( ) H ai , , 730 0

s= +( ) ( )( ) †H
g

a a
2

. 74x
0

According to equations (72) and (73), the qubit forever remains in its initial state ñá∣ ∣q. For kt 1f  , the
cavity correspondingly settles in the coherent state a a k kñá = ñá∣ ∣ ∣ ∣g gi ic c  . Since the cavity field leaks
from the output port at a rate k 2, this steady state leads to k kµ ´ µX t g gtf f . In addition, noise in the

outputfield then entirely comes from shot noise: kD =M tf
2 , giving [44]

k= X =  µ ( )X gt t t4 , 2 SNR . 75f f f

Therefore, in this ideal scenario, signal always accumulates faster than noise,making it possible to achieve
arbitrarily large SNR simply by increasing tf.

In practice, qubit relaxation leads to a saturation of the signal and to an enhancement of the noise, thus
limiting the achievable SNR.Qubit relaxation can be intrinsic, coming from coupling of the qubit to a decay
channel independent of the cavity. Higher-order corrections to the leading-orderMagnus expansion taken here
also lead to qubit decay via the cavity. This can be seen bymeans of a short-time expansion of sá ñ( )tx . Indeed,
the termof order ( ) t in this short-time expansion gives decay at a rate analogous to that of Purcell decay:

s s r
t

kG º á ñ =


( ) ∣ {[ ] ( )}∣ ( )( ) †
t

t
gd

d
tr 0

24
. 76x

t
x

0

2
2 2



The termof order ( ) t in the above expansion of sá ñ( )tx dominates over the correction termof order ( ) t 2

when k kt< [ ( ) ]t 256 3 2 .
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To take qubit relaxation into account in the calculation of the SNR, we employ the Langevin equation for the
cavity field a(t), considering the averageHamiltonian ( )H 0 in equation (74). This gives

k
s k+ = - -˙ ( ) ( ) ( ) ( ) ( )a t a t

g
t a t

2
i
2

. 77x in

Equation (77) has the formof the equation ofmotion of a Brownian particle withmassm, momentum p, and
friction coefficient g : g h+ =˙ ( ) ( )p m p t [56]. In equation (77), thefluctuating force h ( )t comes from a
combination of shot noise from the inputfield ( )a tin and telegraph noise from the qubit through the
Heisenberg-picture operator s ( )tx .We assume that the qubit–cavity coupling is turned on at time t=0 and
that the cavity interacts with its environment starting in the distant past, at  -¥t . The solution to
equation (77) is then

ò òs k= - ¢ ¢ - ¢ ¢k k- - ¢

-¥

- - ¢( ) ( ) ( ) ( )( ) ( )a t
g

t t t a ti
2

d e d e . 78
t

t t
x

t
t t

0

2 2
in

For a qubit undergoing simultaneous excitation and relaxation at equal rates G 2 in the eigenbasis of sx, we have

sá ñ =  -G( ) ( ) ( )t texp , 79x

s sá ¢ ñ = -G - ¢( ) ( ) ( ∣ ∣) ( )t t t texp . 80x x

Substituting equations (78)–(80) into equations (66) and (67), we evaluate the signal and noise using
equations (61) and (62).Wefind

k
k k

=
- G

-
G

-
- k-G -

( )
⎛
⎝⎜

⎞
⎠⎟X

g2

2

1 e 1 e

2
, 81

t t 2f f

k
k

k
X = +

- G G
-

( )
( ) ( )t

g
f t

X
2

4

4 2
, 82f f

2 2

2 2 2

2

wherewe have introduced

k k k

k k k k

= G -
G

G +
+

G
- - -

G
-

+
G

- +
G

- -
G

G -
G

- +

k k

k k k k

- G+ - -G

- -G - - -

( ) [ ] ( )

( ) ( ) ( ) ( )

( )⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

f t t

t

2
1

2
1 e 1

2
e 1 e

2
1 e e 1 e

4
3 4e e . 83

t t t

t t t t t

2 2

2 2
2

2
2

To simplify the above expressions, we expandX and ( )f tf to leading order in Gtf around G =t 0f .We also
assume that the cavity has reached its steady state; we thus have kGt t1f f  . Therefore, in equations (81)
and (83), we drop corrections that are exponentially small for kt 1f  . In equation (81), we also drop terms of
order kG( ) or higher, which do not change the dependence ofX andΞ on tf. However, in equation (83), we
keep the terms of order kG( ) , since they grow faster than linearly with tf, but drop corrections of order

kG( ) 2 2 or higher.We thenfind

kX + G ( )X gt t g t4 , 2
16

3
. 84f f f

2 3 

Equation (84) shows that X2 contains two terms: one fromphoton shot noise, kµ tf , and an additional
contribution fromqubit switching,µ Gg tf

2 3. Therefore, including qubit switching, the noise grows faster than
the signal (µ tf ) for sufficiently large tf. This is visible infigure 5(a), inwhichwe plot ( )X tf and X( )tf resulting
froman exact numerical solution of themaster equation given by equation (68). Infigure 5(a), ( )X tf and X( )tf

are represented by the solid black line and the dotted red line, respectively. Using the dashed blue line, we also
plot kX =( )t t2f f , expected for pure photon shot noise, equation (75). Clearly, excess noise due to qubit decay
determines the optimalmeasurement time topt. thatmaximizes the SNR (shownby the double arrow in
figure 5(a)).We evaluate topt. analytically bymaximizing = XXSNR , withX andΞ given by equation (84).We
find

k
G

G ( )t
g

1

2

3

2
, 85opt. 

kG
=( ) ( )

⎛
⎝⎜

⎞
⎠⎟

g
t tSNR

6
, . 86f

2 1 4

opt.

Equation (86) provides a simple relationship between themaximal SNR and the cooperativity
kº GC g 2 , ( )CSNR 6 1 4 .

Equation (86) gives themaximal SNRwhen the qubit undergoes switching in the eigenbasis of sx. As seen
above, this can be due to the subleading term ( ) 2 in theMagnus expansion, equation (71), which leads the qubit
to decay at the rate given in equation (76).When thismechanism is the dominant source of decay in the
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eigenbasis of sx, we substitute equation (76) into (86) tofind the corresponding optimal SNR,

kt
=( ) ( )t tSNR

2 3
, 87f opt.

valid for k ktG [ ( ) ]t t1 256 3f f
2   . The last inequality arises from the short-time expansion performed

in equation (76). Equation (87) implies that >SNR 1 is achievable even in theweak-coupling regime, k<g .
This result is shown infigure 5(b), inwhichwe plot themaximal SNRobtained from an exact numerical solution
of equation (68) as the black dots for k =g 1 10. This numerical result is in good agreementwith the optimal
SNR given in equation (87), displayed as the dashed blue line.

We nowdiscuss conditions underwhich theMagnus expansion used here (equation (71)) converges. The
Magnus expansion converges when ò p<

t
( )t td

0

2
  [41]. For k<g , the steady-state cavity population is

small: ká ñ = <( ) ( )†a a t g 12 for kt 1f  . In this situation, we can represent the operators a and †a by
truncatedmatrices of small dimension,making ~(†)a 1  . This implies that k~( ) t  , andwe conclude that
theMagnus expansion converges for kt p 2 under the assumption that k<g . This statement is consistent
withfigure 5(b), which shows excellent agreement between the exact numerical solution (black dots) and
equation (87) (dashed blue line) for kt p< 2.

6.2. Single-shotfidelity
In contrast to the case ofmany repeatedmeasurements (described above), for a single-shot readout, the
measurement statistics are typically non-Gaussian. Indeed, while the conditional probability distribution
describing the integrated signal á ñM would simply describe a displacedGaussian in the absence of switching,
random switching events (e.g. qubit decay due to themechanismdescribed above) lead to significant bimodality
[57]. To characterize readout, the full probability distribution of themeasurement outcomes is then needed; the
first and secondmoments (characterized by equations (61) and (62)) are typically not sufficent. A goodmeasure
of quality that accounts for the full probability distribution is the single-shotfidelity. To evaluate thefidelity, we
use a readoutmodel that takes into account qubit switching at symmetric rates G 2, where G is given by
equation (76) [57, 58]. In the same regime as above ( kg  and kt 1 ), this leads to a single-shotfidelity that
converges asymptotically to

kt
kt

kt= - + -( )
( )

(∣ ∣ ) ( )
⎡
⎣⎢

⎤
⎦⎥F 1

192
log

96
log 881

2

2
1 2

as kt  0. For kt = 0.1, this yields a single-shotfidelity of 99.95%, showing that the error due to the first
correction term in theMagnus expansion is rapidly suppressed in the limit of short pulse intervals.

Equation (88) also shows that the readout proposed here can have a high single-shotfidelity even in the
weak-coupling regime ( k<g ). This readoutmay then be useful in several novel experimental settingswhere it
is challenging to achieve strong coupling. For example, a spin qubit in a carbon nanotube has recently been
successfully coupled to amicrowave resonator, but the coupling achieved ismarginal, k ~g 1 [5]. Alternative
setups for semiconductor spin qubits in quantumdots or at single donor impurities coupled tomicrowave

Figure 5. Signal-to-noise ratio (SNR) for the proposed readout with k =g 1 10. (a)Dynamics of signal and noise accumulation for
measurement time tf. Solid black line:measurement signalX, equation (61). Red dotted line:measurement noiseΞ, equation (62).
Dashed blue line:Ξ for shot noise only, equation (75). The double arrow indicates themeasurement time that optimizes the ratio

= XXSNR .X andΞ are evaluated for kt = 0.2. (b)Maximal SNR as a function of kt . In (a) and (b),X andΞ are evaluated using a
numerical solution of themaster equation, equation (68). For k =g 1 10, a cavityHilbert space of dimension 3 is sufficient for
accurate numerical evaluation ofX andΞ.
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cavities have predicted couplings p g 2 1 MHz [15, 18, 43], typically smaller than the damping rate
k p = –2 2 10MHz [59, 60].

7. Conclusion

In summary, we have introduced and assessed protocols for two quantumoperations relevant to cavityQED: (i)
quantum state transfer between a qubit and a cavity, and (ii) qubit readout through the cavity outputfield.

For quantum state transfer, the protocol presented here (SQUADD) can lead to a highfidelity even in the
limit of strong dephasing due to inhomogeneous broadening. This result holds alsowhen storing the logical
qubit in a collectivemode of a large ensemble ofN physical qubits. To evaluate the state-transfer fidelity for
ensembles of physical qubits, we have shown that the dynamics of the state transfer under SQUADD is well
approximated in a closed subspace formed by only four collectivemodes in the limit N 1 . For quantum state
transfer between a cavity and a single physical qubit, we have considered error arising fromafinite off/on ratio
in the tunable qubit–cavity coupling, deterministicπ-pulse errors, finite bandwidth of the coupling pulses, and
finite duration of the qubitπ-pulses.We have also considered phase-alternated versions of SQUADDwith
reduced error from finite pulse duration and deterministic over (under)-rotations.

We have shown that applying theCarr–Purcell sequence on a qubit with constant coupling to a cavity leads
to a longitudinal interaction that can be used to produce a fast qubit readout (comparedwith the dispersive
readout that is commonly used in cavityQED). This readout can have a large signal-to-noise and a high single-
shotfidelity even in theweak-coupling regime. The above results for quantum state transfer and qubit readout
are especially relevant to spin qubits [5, 13, 15, 23], for which coupling to the cavity is typically weak compared
with inhomogeneous broadening and/or cavity damping.

Since SQUADDbuilds on thewell-knownCarr–Purcell sequence, itmay be easily incorporated into near-
term experiments. In the future, applyingmore complex dynamical decoupling sequences (e.g., Uhrig [61] or
concatenated [62] dynamical decoupling) to a qubit coupled to a cavitymay be a promising avenue for both
quantum state transfer and qubit readout. Indeed, these alternative protocolsmay allow for a better suppression
of error due to qubit dephasing and cavity-mediated qubit switching.

Moving forward, the ideas presented here could lead to applications well beyond state transfer and readout.
For example, going to second order in averageHamiltonian theory yields terms tµ -[ ( ) ]†g a ai 2 2 2 , which could
be used to generate cavity squeezing (see section 5.1). Such squeezingmay be useful, e.g., to further improve
qubit readout [44], or to realize a high-fidelity two-qubit gate [63, 64]. In addition, bymonitoring the coherence
of a state that is periodically swapped between a qubit and a bosonicmode, itmay be possible to characterize
noise processes affecting a harmonic system (e.g., a cavity or amagnonmode [65]). Thismay allow for the
application of noise spectroscopymethods [66] to harmonic systems in situations where dynamical decoupling
through parity kicks [67]may be challenging.
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