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Single-mode Josephson-junction-based parametric amplifiers are often modeled as perfect amplifiers
and squeezers. We show that in practice, the gain, quantum efficiency, and output field squeezing of these
devices are limited by usually neglected higher-order corrections to the idealized model. To arrive at this
result, we derive the leading corrections to the lumped-element Josephson parametric amplifier of three
common pumping schemes: monochromatic current pump, bichromatic current pump, and monochromatic
flux pump. We show that the leading correction for the last two schemes is a single Kerr-type quartic term,
while the first scheme contains additional cubic terms. In all cases, we find that the corrections are
detrimental to squeezing. In addition, we show that the Kerr correction leads to a strongly phase-dependent
reduction of the quantum efficiency of a phase-sensitive measurement. Finally, we quantify the departure
from the ideal Gaussian character of the filtered output field from numerical calculation of third- and
fourth-order cumulants. Our results show that while a Gaussian output field is expected for an ideal
Josephson parametric amplifier, higher-order corrections lead to non-Gaussian effects which increase with
both gain and nonlinearity strength. This theoretical study is complemented by experimental characteri-
zation of the output field of a flux-driven Josephson parametric amplifier. In addition to a measurement of
the squeezing level of the filtered output field, the Husimi Q function of the output field is imaged by the
use of a deconvolution technique and compared to numerical results. This work establishes nonlinear
corrections to the standard degenerate parametric amplifier model as an important contribution to the
Josephson parametric amplifier’s squeezing and noise performance.
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I. INTRODUCTION

Driven by the need for fast, high-fidelity single-shot
readout of superconducting qubits, superconducting low-
noise microwave amplifiers are the subject of intense
research. Following the path of the work of Yurke et al.
in the late 1980s [1–3], several designs of Josephson-
junction-based parametric amplifiers (JPAs) have been
introduced [4–11]. In addition to high-fidelity supercon-
ducting qubit readout leading to the observation of quan-
tum jumps [12,13], this generation of near-quantum-limited
amplifiers have opened up experimental possibilities
such as the creation and tomography of squeezed micro-
wave light [14–16] and detailed weak measurement experi-
ments [17–19]. JPAs are now ubiquitous in current

superconducting circuit experiments, and applications in
other research communities are growing [20–23].
Depending on their design and operating mode, JPAs

can fall into either of two broad categories of linear
amplifiers: phase preserving and phase sensitive [24,25].
JPAs in the former category amplify both quadratures of
the signal, and quantum mechanics put a strict lower
bound on the noise added by this process. On the contrary,
JPAs in the latter category can amplify the signal of a
single quadrature without any added noise by proportion-
ally attenuating the conjugate quadrature. In other words,
a phase-sensitive amplification is a source of squeezed
radiation [26,27]. The properties of JPAs as a source of
squeezed light are, therefore, intimately related to their
noise properties as a phase-sensitive amplifier. While
JPAs are usually modeled as quantum-limited amplifiers
and, thus, perfect squeezers, experimental results indicate
that nonidealities limit both the achievable level of
squeezing [28–30] and the measurement quantum effi-
ciency [17,29,31,32].
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We show that these nonidealities are linked to higher-
order corrections to the JPA Hamiltonian due to the
Josephson cosine potential. We go beyond the standard
analytical results by considering numerical solutions to
the quantum master equation, including these usually
neglected higher-order corrections. We derive the correc-
tions to the JPA Hamiltonian for the single-mode and
single-port lumped-element JPA [7,25]. Using the forma-
lism of quantum optics, we compare three frequently used
pumping schemes of the JPA: monochromatic current
pump [7,33], bichromatic current pump [34], and mono-
chromatic flux pump [5,35,36]. We derive the leading
higher-order corrections for each and study numerically
their effect on gain, quantum efficiency, squeezing level,
and Gaussianity of the output field. In addition, by
comparing numerical results to an experimental characteri-
zation of the JPA output field, we show that the squeezing
level saturation previously reported in the literature [28,29]
can be explained by including leading nonquadratic cor-
rections in the Hamiltonian. The focus of this work on
higher-order corrections complements recent theoretical
investigations of various JPA designs [25,33–35,37,38].
The paper is organized as follows. In Sec. II, we set the

notations and recall useful results for the standard quantum-
optics model of the degenerate parametric amplifier (DPA).
In Sec. III, we introduce the lumped-element JPA and the
three different pumping schemes investigated in this work.
For each scheme, we derive the higher-order corrections
and show how, in the low-gain and low nonlinearity regime,
the system can be mapped back to the DPA. The respective
advantages of the three pumping schemes are compared. In
Sec. IV, we compare the intracavity field properties of the
different schemes including deviations from the results
of the DPA. We also show that higher-order corrections
can lead to non-Gaussian intracavity fields. In Sec. V, we
characterize the JPA as an amplifier by calculating the gain
and the quantum efficiency for both the phase-sensitive
and phase-preserving modes of operation. In order to relate
these results to a series of experiments [28–30], in Sec. VI,
we focus on the phase-sensitive amplification of vacuum,
i.e., squeezed vacuum. We characterize the JPA as a source
of squeezed light by calculating moments and cumulants
of the filtered output field. This allows us to obtain the
squeezing level of the light generated, as well as estimate its
non-Gaussian character. In this section, numerical results
are discussed together with an experimental characteriza-
tion of the output field, including a direct imaging of the
non-Gaussian distortions of the field due to nonidealities.
Finally, Sec. VII summarizes our work.

II. DEGENERATE PARAMETRIC AMPLIFIER
IN A NUTSHELL

To set the notation, we begin by presenting the DPA
model and its solution [27,33,39]. In the next sections, we
show how the JPA can be mapped to the DPA and study

deviations from this simple model due to higher-order
corrections.
The DPA is a standard model of quantum optics

exhibiting parametric amplification and squeezing. In this
model, as illustrated in Fig. 1(a), a nonlinear medium
inserted in a single-mode cavity is pumped in order to
modulate its refractive index at twice the cavity frequency
[26]. This modulates the effective length of the cavity
and, as a consequence, its frequency. This modulation acts
as an external source of energy leading to parametric
amplification [40,41].
Introducing the annihilation (creation) operator âð†Þ for

excitations in the cavity, the DPA Hamiltonian is (setting
ℏ ¼ 1 for the remainder of the paper)

H ¼ ωcâ†âþ χðâ†2âp þ â2â†pÞ; ð1Þ

withωc the cavity frequency, χ the nonlinearity, and â
ð†Þ
p the

annihilation (creation) operator of an excitation in the
external pump mode. In the strong classical pump regime,
where âp ≈ αpe−iωpt and in a frame rotating at half the
parametric pump frequency ωp ∼ 2ωc, the Hamiltonian is
[26,42]

ĤDPA ¼ Δâ†âþ λ

2
â†2 þ λ�

2
â2; ð2Þ

with the detuning Δ ¼ ωc − ωp=2 and λ ¼ 2χαp the
amplitude of the parametric pump.
Using input-output theory [26,27], the equation of

motion for the intracavity field is

_̂a ¼ i½ĤDPA; â� −
κ̄

2
âþ ffiffiffi

κ
p

âin þ
ffiffiffi
γ

p
b̂in; ð3Þ

where the input mode âin (coupled to the cavity with rate κ)
carries the signal to be amplified, while the input mode b̂in
(coupled to the cavity with rate γ) mixes additional vacuum

(a)

(b)

FIG. 1. (a) Schematic of a DPA as a two-sided cavity in the
optical domain. (b) Circuit of a lossless lumped-element JPA, a
reflection amplifier in the microwave domain.
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noise to the signal due to undesired losses. The total
damping rate of the cavity is given by κ̄ ¼ κ þ γ.
As shown in Appendix A, the solution to Eq. (3) can be

obtained in Fourier space. Using the boundary condition
[26,27]

âout ¼
ffiffiffi
κ

p
â − âin; ð4Þ

where âout is the output field carrying the amplified signal,
one obtains the solution

âout½ω� ¼ gS;ωâin½ω� þ gI;ωâin
†½−ω�

þ
ffiffiffi
γ

κ

r
½ðgS;ω þ 1Þb̂in½ω� þ gI;ωb̂in

†½−ω��; ð5Þ

where the signal and idler amplitude gains are defined as

gS;ω ¼
�
κκ̄=2 − iκðΔþ ωÞ

D½ω� − 1

�
; ð6Þ

gI;ω ¼ −iκλ
D½ω� ; ð7Þ

with D½ω� ¼ Δ2 þ ðκ̄=2 − iωÞ2 − jλj2, and the frequency ω
defined in the rotating frame such that a signal at ω ¼ 0 is
in resonance with the rotating-frame frequency ωp=2.
The output signal at frequency ω mixes and amplifies
the input signal and idler modes at frequencies �ω. In the
lossless case (γ ¼ 0), the signal and idler gains obey
jgS;ωj2 ¼ jgI;ωj2 þ 1, and the input-output relation is a
unitary squeezing transformation [24]. On the contrary,
in the presence of losses (γ ≠ 0), additional noise is mixed
with the input signal, and the DPA is not a quantum-limited
amplifier.
If the measurement bandwidth includes both the signal

and idler modes, these two modes act effectively as a single
mode, and the DPA is a phase-sensitive amplifier. On
the contrary, if the idler frequency (−ω) falls outside the
measured frequency band, the idler mode acts as a noise
mode, and the DPA is a phase-preserving amplifier with
phase-preserving photon-number gain [24,37]

Gω ¼ jgS;ωj2: ð8Þ

Hence, depending on the experimental details, the same
system can act either as a phase-sensitive or phase-
preserving amplifier. The same holds true for the JPA,
and we, thus, consider both cases when characterizing the
JPA properties as an amplifier in Sec. V.
Finally, in both operating regimes, the gain diverges

(D½ω� ¼ 0) at the parametric threshold [35,39]

λcrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ κ̄2=4;

q
ð9Þ

and large gain is obtained near but below this value. Indeed,
above the threshold, spontaneous parametric oscillation
effects will occur, leading to the generation of photons
activated by vacuum and thermal fluctuations [35,43]. In
thiswork,we focus on parameter regimeswhere theDPA acts
as an amplifier, and, thus, λ < λcrit is always considered.

III. HIGHER-ORDER CORRECTIONS TO THE
JPA: COMPARISON OF PUMPING SCHEMES

In this section, we introduce the standard lumped-
element JPA circuit and consider three pumping schemes:
the monochromatic current pump, the bichromatic current
pump, and the monochromatic flux pump. We show how
these amplifiers can be mapped back to the DPA model and
compare their respective advantages. Importantly, for each
pumping scheme, we derive the leading nonidealities which
cause deviations from the DPA model. The study of these
deviations in the following sections constitutes the core of
our results.

A. JPA circuit

As we illustrate in Fig. 1(b), the lumped-element JPA is
simply a capacitively shunted Josephson junction coupled
to a transmission line [1,7]. The Hamiltonian of this
standard circuit is

ĤJPA ¼ Q̂2

2C
− EJ cos

�
ϕ̂

φ0

�
; ð10Þ

with C the capacitance, EJ the Josephson energy,
φ0 ¼ ℏ=2e the reduced flux quantum, Q̂ the charge, and
ϕ̂ ¼ R t−∞ dτV̂ðτÞ the generalized flux. As usual, the charge
and the flux are conjugate quantum operators obey-
ing ½ϕ̂; Q̂� ¼ i.
Expanding the cosine and introducing bosonic annihi-

lation (creation) operator âð†Þ, one obtains [44]

ĤJPA ¼ ω0â†â − EJ

X∞
n>1

ð−Φ2
ZPFÞn

ð2nÞ! ðâþ â†Þ2n; ð11Þ

with ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
the bare frequency of the resonator,

EC ¼ e2=2C the charging energy, and ΦZPF ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC=ω0

p
the unitless zero-point flux fluctuations.
As JPAs are usually weakly nonlinear devices, the next

step is to perform a quartic potential approximation by
keeping only the first correction to the standard harmonic
oscillator

ĤJPA ≈ ω0â†âþ Λ
6
ðâþ â†Þ4; ð12Þ

with the Kerr coefficient Λ ¼ −EJΦ4
ZPF=4 ¼ −EC=2. As

the leading neglected correction is of order Λ2=ω0, this
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approximation is valid in the regime jΛj=ω0 ≪ 1, which is
relevant for typical JPA frequencies and Kerr nonlinearities
corresponding to jΛj=ω0 ∼ 10−2 to 10−6 [44]. We note that
the transmon qubit has the same circuit and Hamiltonian as
a JPA but operates at larger Kerr nonlinearities [45].
In the rotating-wave approximation (RWA), also valid

for jΛj ≪ ω0, we obtain the standard Kerr Hamiltonian

ĤKerr ¼ ~ω0â†âþ Λâ†2â2; ð13Þ

with ~ω0 ¼ ω0 − 2Λ the renormalized oscillator frequency.
By normal ordering and performing the RWA prior to the
quartic potential approximation, corrections from all orders
renormalize the resonator frequency and the Kerr non-
linearity [46]. To keep the notation light, we neglect this
simple renormalization of parameters in the present work.
While the Kerr Hamiltonian is obtained above from the

lumped-element circuit, the same Hamiltonian with renor-
malized parameters applies for a distributed nonlinear
resonator in the single-mode approximation [9,44] or a
lumped-element JPA with additional linear inductances
[36]. However, it is worth noting that in both cases, the
additional inductances can reduce the validity of the quartic
potential approximation. See Ref. [9] for details.
As we discuss in Sec. II, in order for this system to act

as a parametric amplifier, a pump must modulate one of
the parameters at twice the resonance frequency. We now
consider three pumping schemes leading to such a
modulation.

B. Monochromatic current pump

We first consider the standard current-pumped JPA
[1–4,7,9,33]. In this scheme, a single-current pump near
resonance with the oscillator is used. Because of the
Josephson relations, the junction acts as a current-
dependent nonlinear inductance with [47]

LNLðIÞ ¼ LJ

�
1þ 1

6

�
I
Ic

�
2

þ � � �
�
: ð14Þ

For a monochromatic current pump Ip ∝ cosωpt, the
first nonlinear contribution to the inductance is the cosine
squared, which leads to a modulation of the inductance at
twice the pump frequency.
Using standard circuit quantization techniques [48] and

using the quantum-optics language, the current pump is
equivalent to adding a single-photon drive, such that the
total Hamiltonian of the pumped circuit is

Ĥ1 ¼ ĤKerr þ ϵe−iωptâ† þ ϵ�eiωptâ; ð15Þ

where ϵ and ωp are the pump amplitude and frequency. In a
frame rotating at the pump frequency, it is useful to
eliminate the pump Hamiltonian using a displacement
transformation, which leads to â → αþ d̂, with α the

classical field and d̂ the quantum fluctuations [33,39];
see Appendix B for details. In this displaced frame, the
Hamiltonian takes the form

Ĥ0
1 ¼ Δ1d̂

†d̂þ λ1
2
d̂†2 þ λ�1

2
d̂2 þ Ĥ1c; ð16Þ

with the shifted detuning due to the cavity population

Δ1 ¼ ~ω0 þ 4jαj2Λ − ωp; ð17Þ

the effective parametric pump strength λ1 ¼ 2α2Λ, and the
classical field α obeying the nonlinear differential equation

i _α ¼ ϵþ
�
~ω0 − ωp þ 2Λjαj2 − i

κ̄

2

�
α: ð18Þ

In general, the steady state of this cubic equation can
exhibit bifurcation physics [33,47]. However, for the
current-pumped JPA, the bifurcation threshold coincides
with the parametric threshold, and in the context of para-
metric amplification, parameters are chosen to be below the
bifurcation point [39]. Thus, in what follows, αðtÞ is always
a single-valued function.
For simplicity, Ĥ0

1 in Eq. (16) is obtained by performing
the quartic approximation before the displacement trans-
formation. However, one can perform the displacement
transformation on the full cosine potential before perform-
ing the RWA and the quartic potential approximation.
These corrections, which mainly shift the operating fre-
quency and bifurcation point of the amplifier, are studied in
detail in Ref. [38].
The displaced Hamiltonian of Eq. (16) also includes the

nonlinear corrections to the single-pump scheme

Ĥ1c ¼ μd̂†2d̂þ μ�d̂†d̂2 þ Λd̂†2d̂2; ð19Þ

with the cubic term coefficient μ ¼ 2αΛ and the standard
quartic Kerr coefficient Λ. These corrections originate
from the displacement of the Kerr nonlinearity. In order
to obtain linearized equations, they can be neglected in the
small quantum-fluctuations limit [33]. In the following
sections, we explore the validity of this approximation
and show that it is valid in the low-gain and low-Kerr-
nonlinearity regime.
When neglecting the corrections Ĥ1c, the displaced

Hamiltonian Ĥ0
1 can be related to ĤDPA with the mapping

Δ1 → Δ, λ1 → λ, d̂ → â, and d̂out ¼ âout −
ffiffiffi
κ

p
α → âout.

Thus, in this linear regime, the monochromatic current-
pumped JPA is equivalent to the DPA but in a displaced
frame. From the lab frame, this implies that while the
output of a DPA is squeezed vacuum, the output of this
current-pumped JPA is a displaced squeezed state.
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C. Bichromatic current pump

We now consider an alternative scheme with two current
pumps of frequencies ω1 and ω2 that are chosen such that
ω1 þ ω2 ≈ 2 ~ω0 [34]. As shown in Fig. 2, while in the
monochromatic case, the pump is at a frequency close to
the amplified signal [Fig. 2(a)], in the bichromatic case, the
pumps are separated spectrally from the signal [Fig. 2(b)].
Similar to Eq. (15), the starting Hamiltonian is

Ĥ2 ¼ ĤKerr þ
X2
n¼1

½ϵne−iωntâ† þ H:c:�; ð20Þ

with ω1;2 and ϵ1;2 the frequencies and amplitudes of the two
pumps. In order to remove the pumps in a similar way as
in the monochromatic case, we consider two displacement
transformations instead of one. This allows us to consider
two classical fields, each rotating at one of the pump
frequencies, and to separate them from the quantum
fluctuations of the cavity mode possibly rotating at a third
frequency.
Choosing a frame rotating at the average pump fre-

quency Ω12 ¼ ðω1 þ ω2Þ=2 ≈ ~ω0, the double displacement
transformation leads to

â → d̂e−iΩ12t þ α1e−iω1t þ α2e−iω2t: ð21Þ

A more detailed and formal treatment of the transformation
is presented in Appendix B. By applying this transforma-
tion, one obtains

Ĥ0
2 ¼ Δ2d̂

†d̂þ λ2
2
d̂†2 þ λ�2

2
d̂2 þ ĤR þ Ĥ2c; ð22Þ

with the shifted detuning

Δ2 ¼ ~ω0 þ 4Λðjα1j2 þ jα2j2Þ − Ω12; ð23Þ

and the effective parametric pump strength λ2 ¼ 4Λα1α2.
All the rotating terms are grouped in the Hamiltonian

ĤR ¼ 8ΛRefα1α�2e−iΔ12tgd̂†d̂
þ ½Λðα21e−iΔ12t þ α22e

iΔ12tÞd̂†2 þ H:c:�
þ ½2Λðα1e−iΔ12t=2 þ α2eiΔ12t=2Þd̂†2d̂þ H:c:�; ð24Þ

where Δ12 ¼ ω1 − ω2 is the detuning between the two
pump frequencies. Finally, we define

Ĥ2c ¼ Λd̂†2d̂2; ð25Þ

the nonlinear correction to the Hamiltonian.
The rotating Hamiltonian ĤR can be dropped by a RWA.

Assuming symmetric pumps (α1 ∼ α2), this RWA is valid
for Δ12 ≫ 8Λα1α2 ¼ 2λ2. Since the effective parametric
pump strength is bounded by the parametric threshold λcrit
defined in Eq. (9), one can choose the detuningΔ12 in order
to enforce the validity of the RWA. For zero detuning in
Eq. (22) (Δ2 ¼ 0), the RWA condition is simply Δ12 ≫ κ̄.
An advantage of the bichromatic pump compared to the
monochromatic pump is, thus, that the cubic terms
(μd̂†2d̂þ H:c:) are now rotating and can be safely
neglected. The elimination of the cubic terms reduces
the nonidealities of the amplifier and implies that with
respect to the monochromatic current pump, the bichro-
matic current-pumped JPA acts as an ideal phase-sensitive
amplifier for a larger parameter range (see Sec. IV).
Again, in the small quantum-fluctuations limit, we can

neglect the higher-order correction Ĥ2c. Under this approxi-
mation, the system is related to the DPA with the mapping
Δ2 → Δ, λ2 → λ, d̂ → â, and

d̂out ¼ âout −
ffiffiffi
κ

p ðα1e−iΔ12t=2 þ α2eiΔ12t=2Þ → âout: ð26Þ

Whereas in the monochromatic case, the pump leads to a
displacement of the output field at the center frequency of the
amplified band, in this case, the two pumps lead to displace-
ments far detuned from the band of interest. This spectral
separation allows us to filter the pumps without the need for
a more involved pump-cancellation scheme [37].

D. Monochromatic flux pump

Current pumps are an indirect way to modulate the
inductance of the JPA by using the nonlinearity of the
Josephson junction. A well-studied alternative is to use
an adjustable inductance that can be directly modulated.
In superconducting circuits, this can be done by replacing
a single Josephson junction with a superconducting
quantum-interference device (SQUID), a flux-dependent
nonlinear inductance. With this slight modification of the
circuit, parametric amplification can be obtained by flux
pumping. This pumping scheme has been extensively
studied both experimentally [5,36,49] and theoretically
[35]. Here, we derive the Hamiltonian of the flux-pumped

(a) (b)

FIG. 2. Relative position of the current-pump frequencies
(black vertical arrows), and the frequency band of amplification
(dark blue region) is shown for (a) the monochromatic current
pump with a single pump of frequency ωp ≈ ω0 and (b) the
bichromatic current pumps with two pumps of frequencies
ω1 þ ω2 ≈ 2ω0.
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JPA similar to Ref. [35], with an additional focus on higher-
order corrections to the Hamiltonian.
Replacing the Josephson junction by a SQUID modifies

the Josephson energy in the equations of Sec. III A such
that [50]

EJ → EJ cos

�
Φx

2φ0

�
; ð27Þ

whereΦx is the external flux applied in the SQUID loop. In
order to obtain parametric amplification, the external flux is
modulated at frequency ωp ≈ 2 ~ω0, with an additional static
component chosen such that [35]

Φx

2φ0

¼ F þ δf cosωpt; ð28Þ

with F the unitless static flux and δf the modulation
amplitude.
In order to separate the harmonics of the pump, we

Fourier expand the flux-dependent Josephson energy

EJ cosðF þ δf cosωptÞ ¼
X
n

EðnÞ
J cosðnωptÞ; ð29Þ

where the coefficients of the expansion EðnÞ
J are given in

Appendix C. In the relevant limit of small pump amplitude
(δf ≪ 1), one obtains that the leading contribution of each

Fourier coefficient is EðnÞ
J ∝ ðδf=2Þn=n!, and the expansion

of Eq. (29) can be safely truncated.
Because of the flux modulation, the result of the RWA

on Eq. (12) is modified, and the Hamiltonian is

Ĥf ¼ Δfâ†âþ λf
2
ðâ†2 þ â2Þ þ Ĥfc; ð30Þ

with the detuning Δf ¼ ~ω0 − ωp=2 and the effective

parametric pump strength λf ¼ Eð1Þ
J Φ2

ZPF=2. In the quartic
potential approximation, the nonquadratic corrections to
the Hamiltonian are now

Ĥfc ¼ Λfâ†2â2 −
Eð1Þ
J Φ4

ZPF

12
ðâ†â3 þ â†3âÞ

−
Eð2Þ
J Φ4

ZPF

48
ðâ4 þ â†4Þ; ð31Þ

with Λf ¼ −Eð0Þ
J Φ4

ZPF=4 ¼ ΛJ0ðδfÞ cosF the Kerr non-
linearity renormalized by the flux modulation.
While the Kerr nonlinearity is essential for parametric

amplification in the current-pumped cases, the parametric
pump strength of the flux-pumped JPA is independent of
this quantity. It is merely an artifact of the use of Josephson
junctions to build a flux-dependent inductance. More
explicitly, in the limits of a resonant pump Δf ∼ 0 and a

small pump amplitude δf ≪ 1, the ratio of the parametric
pump strength to the parametric threshold is

jλf=λcritj ≈ δfQ tanF; ð32Þ

with Q ¼ ω0=κ̄ the JPA quality factor [36]. This ratio is
independent of the Josephson energy or of the Kerr
nonlinearity.
For standard JPA quality factors Q ∼ 10–100 and static

flux bias such that tanF ≳ 1, Eq. (32) implies that para-
metric pump strengths close to the parametric threshold
can be obtained even in the small flux-pump limit δf ≪ 1.
Thus, the leading correction to the JPA Hamiltonian is the
first term of Eq. (31), which is independent of δf. The other
corrections, respectively, linear and quadratic in δf, can be
dropped in this small flux modulation limit. This implies
that the leading higher-order correction to the flux-pumped
JPA is the same as in the bichromatic current-pump case
(Ĥfc ≈ Ĥ2c), and, thus, the flux-pumped JPA Hamiltonian
reads

Ĥf ≈ ĤDPA þ Ĥ2c: ð33Þ

Again, in the limit of small quantum fluctuations, higher-
order corrections can be dropped, and the JPA related to
the DPA model with the mapping Δf → Δ and λf → λ.
Since there is no displacement transformation, this pump-
ing scheme is more closely related to the DPA than the
current-pumped JPAs.

E. Summary and comparison of pumping schemes

Table I compares and summarizes the pumping schemes
reviewed in this section. It is divided into two parts: the
first presents the general properties of each pumping
scheme, while the second summarizes the expressions
for the parameters and leading higher-order corrections
to the ideal DPA Hamiltonian.
The first distinction to make between these schemes is the

spatial and spectral separation of the pump and signal. In the
flux-pump case, two distinct ports are used for the signal and
the pump, while in the current-pump cases, the same input
port is used for both the pump and the signal. Hence, while
the output of the flux-pumped JPA is squeezed vacuum, the
output of the current-pumped JPAs is displaced due to
reflected pump field(s). In the bichromatic case, these fields
are far detuned from the amplified signal and can be filtered
out prior to the measurement. On the contrary, in the
monochromatic case, the reflected pump is at the frequency
where the amplifier gain is maximal. This implies that great
care must be taken to either cancel the pump or separate it
from the signal [37].
Moreover, all three pumping schemes lead to a negative

pump-induced frequency shift of the resonator. While in
the case of the current pumps, the shift follows from the
population of the nonlinear cavity by the pump field(s), in
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the case of the flux pump, the shift is a geometric effect due
to the cosinusoidal dependence of the SQUID’s Josephson
energy on the external magnetic flux [35,49]. These pump-
induced detunings obey the relation

jΔðpÞ
f j ≪ jΔðpÞ

1 j ≤ jΔðpÞ
2 j; ð34Þ

where the ðpÞ superscript is used to note that we are
considering the pump-induced shift. Note that for the current
pumps, this shift scales asQ−1, while in the flux-pump case,
it scales as Q−2 (see Table I).
Finally, we note that while the leading higher-order

correction is the same for the bichromatic current pump
and the flux pump, the monochromatic current-pump
Hamiltonian has additional cubic corrections. This implies
that without any change to the actual amplifier circuit (fixed
parameters), using a bichromatic current pump instead of a
monochromatic current pump decreases the nonidealities
of the JPA.

IV. SIGNATURE OF HIGHER-ORDER
CORRECTIONS IN THE INTRACAVITY FIELD

In order to evaluate the impact of the higher-order
corrections that we discuss in the previous section, we
numerically compute first- and second-order moments of
the steady-state intracavity field. These quantities show that
while the JPA acts as an ideal DPA in the low nonlinearity
regime, the higher-order corrections can play a significant
role in the presence of larger nonlinearities. To give a more
intuitive representation of the effect of the nonidealities on
the amplifier state, we also calculate Wigner functions of
the intracavity field.
The numerical results of this section are obtained by

finding the steady-state solution of the master equation

_̂ρ ¼ −i½ĤDPA þ Ĥα; ρ̂� þ κ̄D½d̂�ρ̂; ð35Þ

where Ĥα ¼ Ĥ1c, Ĥ2c are the higher-order corrections
considered, and D½d̂�ρ̂ ¼ d̂ ρ̂ d̂† − ðd̂†d̂ ρ̂þρ̂d̂†d̂Þ=2 is the
standard dissipation superoperator [26,27].

A. Deviation from standard DPA results

With the ideal DPA model, the first-order moment of the
intracavity field is hd̂i ¼ 0. However, in the case of the
monochromatic current-pumped JPA, the cubic corrections
act as an effective pump leading to an additional displace-
ment of the field and, thus, a nonzero first moment.
To understand this effect, one can consider a mean-field
treatment of the cubic corrections, where [9]

μd̂†2d̂þ H:c: ≈ ½ð2μn̄þ μ�m̄Þd̂† þ H:c:�; ð36Þ

with n̄ ¼ hd̂†d̂i, and m̄ ¼ hd̂2i the second-order moments
of the JPA state. Under this approximation, the cubic
terms act as an additional state-dependent pump and can
be eliminated by a second displacement transformation.
Such a mean-field treatment was used to study pump
depletion effects and the dynamic range of the JPA
in Ref. [9].
A mean-field solution requires the self-consistent sol-

ution for n̄, m̄. Instead, we numerically find the steady state
of the master equation (35). Figure 3(a) shows the ratio of
the displacement induced by the cubic terms to the steady-
state solution of Eq. (18) for the displacement field α.
While negligible in the low nonlinearity limit, the induced
displacement becomes significant for larger Kerr non-
linearities. On the contrary, and as expected from mean-
field theory, no additional displacement is observed for the
bichromatic current and monochromatic flux-pump cases.
We now consider signatures of the corrections in the

second-order centered moments Mi ¼ hd̂2i − hd̂i2 and
Ni ¼hd̂†d̂i− jhd̂ij2, where the subscript i¼DPA, JPA
refers to the model that is used. It follows from

TABLE I. Comparison of pumping scheme properties, parameters, and leading Hamiltonian corrections.

Pumping scheme Monochromatic current Bichromatic current Monochromatic flux

Spectral separation No Yes Yes
Spatial separation No No Yes
Output statea D̂ðαÞŜðξÞj0i D̂ðα1eiΔ12t þ α2e−iΔ12tÞŜðξÞj0i ŜðξÞj0i
Effective parametric pump (λ) 2Λα2 4Λα1α2 4ΛfðEð1Þ

J =ω0Þ
Pump-induced frequency shift (ΔðpÞ

1;2;f) 4Λjαj2 4Λðjα1j2 þ jα2j2Þ ω0

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
J0ðδfÞ

p
− 1
�

Relative shift (ΔðpÞ
1;2;f=ω0)

b −jλ1=λcritj=Q −jλ2=λcritjðxþ x−1Þ=2Q −jλf=λcritj2=2 ~Q2

Corrections (Hð1;2;fÞc) μd̂†2d̂þ μ�d̂†d̂2 þ Λd̂†2d̂2 Λd̂†2d̂2 Λfâ†2â2

aWe use the standard notation of quantum optics, where D̂ðβÞ and ŜðξÞ are, respectively, the displacement and squeezing
operators [51].

bWe introduce the compact notation x ¼ jα1=α2j, and ~Q ¼ Q tanF.
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Heisenberg uncertainty principle, that for any state, these
moments obey the relation

jMij ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NiðNi þ 1Þ

p
; ð37Þ

where the equality is obtained only for pure states [27].
From the analytical solution to the DPA model (see Sec. II
and Appendix A), one obtains a value of jMDPAj below this
bound

jMDPAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDPAðNDPA þ 1=2Þ

p
: ð38Þ

This result can be understood from the fact that due to
damping, the steady state of the DPA is not a pure squeezed
state [42].
To quantify the deviation of the JPA moments from the

expected results of an ideal DPA due to the corrections, we
define the deviation

ΞJPA ¼ 1 −
jMJPAjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NJPAðNJPA þ 1=2Þp ; ð39Þ

where MJPA, NJPA are the centered moments of the JPA
intracavity field, here calculated numerically including
higher-order corrections. The deviation ΞJPA is zero in the
case of an amplifier that maps exactly to a DPA (negligible
higher-order corrections) and increases towards 1 as the
corrections to the DPA Hamiltonian become important.

As observed in Fig. 3(b), the deviations increase with
the amplitude of the Kerr nonlinearity. The additional
cubic terms of Ĥ1c lead to larger deviation for the same
parameters. Thus, by simply using two current pumps
instead of one, the deviation from the expected results for a
DPA is reduced by approximately 2 orders of magnitude.
To put in context the range of Kerr nonlinearity considered,
the vertical lines indicate the approximate experimental
parameters of three recent experiments with JPAs [7,29,37].
We note that in practice, the smaller nonlinearity (dashed
gray line) is obtained using junction arrays. Indeed, the
Kerr nonlinearity with a junction array is inversely propor-
tional to the square of the number of junctions in the
array [4,9].

B. Phase-space representation

In order to visually represent the deviation from the
DPA, we present in Fig. 4 the Wigner function of the
intracavity field for increasing Kerr nonlinearities (from left
to right). For each value of jΛj=κ, we present results for
the monochromatic current-pumped JPA (including cubic
and quartic corrections Ĥ1c) in the top panels and for the
bichromatic current-pumped (quartic correction Ĥ2c) or,
equivalently, the flux-pumped JPA in the bottom panels.
In all cases, we consider a phase-preserving gain of
G ¼ 16 dB. While in the low nonlinearity case presented
in Fig. 4(a), we observe a quadrature squeezed state for
both types of corrections, and in the increased nonlinearity
of Fig. 4(b), non-Gaussian signatures appear in the mono-
chromatic pump case. Increasing even more the nonlinear-
ity amplitude in Figs. 4(c) and 4(d), both types of
corrections lead to non-Gaussian signatures.
In the limit of large nonlinearity jΛj=κ, we observe that

the shape of the Wigner function varies with the pumping
scheme. In the monochromatic current-pump case, we
observe the so-called crescent- or banana-shaped defor-
mation of the distribution [52]. Similar distributions are
observed in the transient dynamics of a driven Kerr non-
linear resonator. In particular, the large nonlinearity regime
jΛj ≫ κ has been well studied both theoretically [53] and
experimentally in superconducting circuits [54].
In the case of a single Kerr-type correction, we observe a

more symmetric “S”-shaped Wigner function deformation.
In the case of the flux-pumped JPA, S-shaped features have
been predicted theoretically and observed experimentally
using a semiclassical analysis of the phase dependence of
the JPA response [30,35]. This deformation of the Wigner
function is also consistent with experimental studies
imaging the JPA output field; see Sec. VI D.
From the observed deformation of the Wigner function

in Figs. 4(c) and 4(d), one can expect the higher-order
corrections to limit the squeezing produced by a JPA. Such
a saturation of squeezing has been observed experimentally
[28,29] and is discussed in more detail in Sec. VI B. In
addition, one can expect the output field of the JPA to

(a)

(b)

FIG. 3. (a) Ratio of the displacement induced by higher-order
corrections to the steady-state solution of Eq. (18). The Kerr
correction (bichromatic current pump and monochromatic flux
pump) induces no displacement. (b) Deviation from standard
DPA results as defined in Eq. (39). From left to right, the vertical
lines are approximate Kerr nonlinearity for the experiments of
Ref. [37], Ref. [7], and Ref. [29], respectively. The amplitude
of the Kerr coefficient Λ is varied for a fixed gain G ¼ 16 dB
(λ1;2 ¼ 0.85λcrit) with Δ1;2, γ ¼ 0.
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exhibit significant non-Gaussian signatures for large gain
and nonlinearity. Both the squeezing level and the non-
Gaussian character of the output field are characterized
more quantitatively in Sec. VI. More generally, the results
of this section indicate that for the same parameters,
the additional cubic terms in the monochromatic current-
pump case lead to additional nonidealities limiting JPA
performance.

V. GAIN AND QUANTUM EFFICIENCY

To characterize the effect of higher-order corrections on
amplifier properties, in this section, we numerically com-
pute the low power gain and added-noise number of the
JPA. From these, we obtain the phase-sensitive and phase-
preserving quantum efficiency of the amplifier.

A. Phase-sensitive and phase-preserving gain

The gain is computed by considering the linear response
of the JPA to a narrow-band signal probe or, in other words,
the same approach as is used experimentally. More con-
cretely, starting from the steady-state solution of the JPA
master equation (35), we add to the Hamiltonian the probe
field

Ĥprobe ¼ ϵprobeâ† þ ϵ�probeâ; ð40Þ

with ϵprobe the drive amplitude and find the new steady state
under this weak drive. From the displacement of the cavity
field generated by the probe, one can calculate the output
field response. As already clear from Eq. (5), the gain is a
function of the probe frequency. Using a time-independent
probe, we compute the JPA gain at the center frequency
ω ¼ 0.
As we discuss in Sec. IV, the cubic corrections in the

Hamiltonian of the monochromatic current-pumped JPA
also induce a displacement of the cavity field. This addi-
tional displacement modifies the bifurcation point of the

system, something that can lead to instabilities in the
numerical calculations. Hence, this section considers only
the effect of a Kerr-type correction, which is the leading
correction for the bichromatic current pump and the
monochromatic flux pump. In the case of the monochro-
matic current pump, the additional cubic terms can lead to
corrections which, following the results of the previous
sections, will appear at lower gain and nonlinearity than
those due to the quartic term.
To study the linear response regime, we limit our

analysis to a low-power probe where ϵprobe ≪ κ. While
an analysis of the dependence of the gain on the probe
amplitude would allow us to calculate the dynamic range of
the JPA [9,38], this is beyond the scope of this paper.
Using the input-output relation Eq. (4), the displacement

generated by the probe and the input field amplitude
hâini ¼ iϵprobe=

ffiffiffi
κ

p
, we can compute the gain matrix g,

whose elements are defined by the linear input-output
equation

�
X̂out

P̂out

�
¼
�
g11 g12
g21 g22

��
X̂in

P̂in

�
; ð41Þ

where we define the standard quadratures X̂¼ðâþ â†Þ= ffiffiffi
2

p
and P̂ ¼ iðâ† − âÞ= ffiffiffi

2
p

. By considering separately the
response to two probes with orthogonal phases, we can
calculate all elements of the gain matrix.
To obtain the phase-preserving gain, we express the

above quadrature input-output relation in terms of field
operators. Using Eqs. (5) and (8), we then find that the JPA
phase-preserving gain is related to the phase-sensitive gain
matrix by

~G ¼ 1

4
jg11 þ g22 þ iðg21 − g12Þj2: ð42Þ

Figure 5 presents the phase-preserving gain, as well as
the elements of the phase-sensitive gain matrix for a JPA

(a) (b) (c) (d) FIG. 4. Steady-state Wi-
gner function WðβÞ of the
JPA intracavity field for a
gain G ¼ 16 dB (λ1;2;f¼
−0.85λcrit) with Δ1;2;f, γ¼
0. Numerical result ob-
tained via master equation
simulation of the Hamilto-
nians of the monochroma-
tic current pump Eq. (16) in
the displaced frame (top
row) and of the bichromatic
current pump Eq. (22) after
RWA, which is equivalent
to the monochromatic flux
pump (bottom row).
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with increasing Kerr nonlinearities. These quantities are
plotted as a function of the phase-preserving gain calcu-
lated from Eq. (8) for an ideal DPA. As expected, Fig. 5(a)
shows that in the low nonlinearity regime (blue diamonds),
the JPA phase-preserving gain is equal to the ideal DPA
gain, and the corrections are negligible. As the Kerr
nonlinearity increases (green squares and red circles), the
JPA nonidealities result in a decreased gain, with deviations
increasing with gain.
Figure 5(b) presents the diagonal elements of the phase-

sensitive gain matrix, while Fig. 5(c) shows the off-
diagonal elements. In the low-gain regime, as expected
for a phase-sensitive amplifier, the diagonal elements are
inversely proportional with one quadrature amplified and
the other attenuated. In this regime, the gain matrix is
diagonal. When the off-diagonal terms become significant,
the attenuation coefficient g22 starts to increase, deviating
significantly from the expected behavior of an ideal phase-
sensitive amplifier.
For higher gain and nonlinearities, the gain matrix is not

symmetric and cannot be diagonalized with orthogonal
eigenvectors. In this regime, the amplification process
mixes quadratures. Noting that a similar effect occurs for
a DPAwith pump-cavity detuning [39], we can interpret the

effect of the nonlinearity as a gain-dependent detuning of
the system. Hence, for a given gain, choosing a slightly
different detuning can mitigate higher-order effects and
reduce quadrature mixing. This implies that when higher-
order corrections are important, the optimal phase and
frequency of operation of the JPA is gain dependent. The
interplay of the optimal frequency of operation and non-
linear corrections has recently been the subject of exper-
imental investigation in a similar device [55].

B. Phase-preserving quantum efficiency

To characterize the effect of Kerr-type correction on the
JPA noise properties, we now evaluate its added noise and
quantum efficiency. As we illustrate in Fig. 6, the quantum
efficiency η can be interpreted as the transparency of a
fictitious beam splitter added at the input of a noiseless
amplifier in order to model the noise added by the
amplification as additional input vacuum noise [15,56].
With this picture in mind, we define the quantum

efficiency η such that the input-output field fluctuations
are related by

hjâoutj2i ¼
G
η

�
ð1 − ηÞ 1

2
þ ηhjâinj2i

�
; ð43Þ

with hj · ji the symmetrized fluctuations of an operator

hjÔj2i ¼ 1

2
hÔ†Ôþ ÔÔ†i: ð44Þ

Note that the case η ¼ 0 corresponds to having no output
signal and is, therefore, not relevant here. The first term of
Eq. (43) is the added noise due to the amplification process
represented as vacuum fluctuations in Fig. 6, while the
second term is fluctuations in the input signal. It is useful to
express Eq. (43) in a simpler form

hjâoutj2i ¼ GðAþ hjâinj2iÞ; ð45Þ

where A ¼ ð1 − ηÞ=2η is the added noise referred to the
input. Using the inequality hjÔj2i ≥ h½Ô; Ô†�ij=2, one
can derive the well-known quantum limit for a phase-
preserving amplifier [24]

(a)

(b)

(c)

FIG. 5. (a) Numerical phase-preserving gain for a JPA with
Kerr-type correction Ĥ2c calculated from Eq. (42) versus gain
for the DPA calculated from Eq. (8). (b) Norm of the diagonal
elements g11 (solid curves) and g22 (dashed curves) of the phase-
sensitive gain matrix defined at Eq. (41). (c) Off-diagonal
elements jg21j2 (solid curves) and jg12j2 (dashed curves). For
all curves, the gain is calculated for ω ¼ 0, Δ ¼ 0, and γ ¼ 0.

FIG. 6. Schematics of the quantum-efficiency definition as a
beam splitter with transparency η and input vacuum noise. The
blue disks represent signal noise before and after amplification,
while red disks represent noise added by the amplification
process.

SAMUEL BOUTIN et al. PHYS. REV. APPLIED 8, 054030 (2017)

054030-10



A ≥
1

2

�
1 −

1

G

�
; ð46Þ

which simplifies in the large gain limit to A ≥ 1=2.
Using these definitions, the quantum efficiency can be

expressed as

η ¼ 1

1þ 2A
≤

G
2G − 1

; ð47Þ

where we use the quantum limit of Eq. (46). This inequality
implies, in the large-gain limit, that the bound on the
quantum efficiency of a phase-preserving measurement is
η ≤ 1

2
. This result simply reflects the well-known fact that

ideal phase-preserving amplification can be obtained by the
use of two ideal phase-sensitive amplifiers and a beam
splitter which adds vacuum fluctuations [24].
Note that the alternative definition η̄ ¼ 1=ð1þ N̄Þ ¼ 2η

of the quantum efficiency is also found in the literature,
with N̄ ¼ A − 1=2 a number of added-noise photons. This
definition relates the amplifier performance to an ideal
phase-preserving amplifier instead of a noiseless amplifier.
However, this expression implicitly assumes the large-gain
limit of Eq. (46) and, therefore, overestimates the quantum
efficiency in the low-gain regime where 1=G cannot be
neglected. In this work, we consider the definition of
Eq. (47), as this allows us to treat phase-preserving and
phase-sensitive amplification on the same footing and is
independent of gain.
Figure 7 shows the quantum efficiency in the phase-

preserving case as a function of gain and for three Kerr
nonlinearities. In the low-gain regime, all curves are equal
to the quantum limit. For higher gains, the Kerr nonlinearity
leads to a decreased quantum efficiency. These results are
obtained by numerically calculating the gain and the output
field spectrum of the amplifier, with

hjâoutj2i ¼ nout½0� þ
1

2
: ð48Þ

In this calculation, we neglect any bandwidth or detuning
effect and consider the zero-frequency component of the
spectrum.
Surprisingly, even for a significant phase-preserving gain

~G ¼ 20 dB and Kerr nonlinearity jΛj ¼ 0.01κ, the JPA
with Kerr-type corrections is nearly quantum limited with-
out any tuning of parameters. On the contrary, we show in
the following section that the same Kerr-type correction
strongly influences the quantum efficiency of a phase-
dependent measurement. In that case, a careful choice of
the phase of operation of the JPA is essential in order to
obtain near-quantum-limited amplification.

C. Phase-sensitive quantum efficiency

We now generalize the concepts of the previous section
to the case of phase-sensitive amplification. Contrary to
the simpler case of phase-preserving amplification, the
quantum efficiency is not a single number but rather a
function of the measurement phase θ. Hence, one must
choose the measured quadrature in order to maximize
quantum efficiency.
For the ideal DPA, no noise is added independently of

the phase considered and ηðθÞ ¼ 1 for all θ. In that specific
case, the quantum efficiency of the full measurement chain
[57] is maximized for the measurement phase θm which
maximizes the gain g11. However, when including a Kerr
correction, we show in Sec. VA that the gain matrix
becomes nonsymmetric. In that case, the nonzero g12 leads
to quadrature mixing during the amplification, which can
be seen as a source of added noise. Thus, we show that
contrary to the ideal DPA, in the presence of a Kerr
correction, the maximal quantum efficiency is not obtained
by maximizing g11 but rather by minimizing g12. We note
θ0 the phase of the quadrature which minimizes the mixing
of noise with the signal.
More formally, in order to characterize the field fluctua-

tions, we define the matrix of the symmetrized moments as
the matrix analog of Eq. (44) [24]

σj ¼
 hΔX̂2

ji 1
2
hfΔX̂j;ΔP̂jgi

1
2
hfΔX̂j;ΔP̂jgi hΔP̂2

ji

!
; ð49Þ

with j ¼ out, in, and fÂ; B̂g ¼ Â B̂þB̂ Â the anticommu-
tator. Similarly, the added-noise matrix is defined through a
generalization of Eq. (45)

σout ¼ gðσA þ σinÞgT: ð50Þ

We note that the product of the diagonal elements of
this matrix are bounded by the quantum limit to amplifi-
cation [24]

FIG. 7. Phase-preserving quantum efficiency (η) as a function
of gain for a JPA with Kerr correction. The two lower Kerr
nonlinearity cases considered jΛj=κ ¼ 10−4 (blue diamonds) and
jΛj=κ ¼ 10−3 (green squares) are near quantum limited and, as a
result, are difficult to resolve from the quantum limit (dashed
black curve) for the full range of parameters considered. For all
curves, the quantum efficiency is calculated for ω ¼ 0, Δ ¼ 0,
and γ ¼ 0.
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σA11σA22 ≥
1

4

				1 − 1

g11g22

				: ð51Þ

For the standard lossless DPA, we obtain noiseless ampli-
fication since g22 ¼ 1=g11 and σA11 ¼ σA22 ¼ 0.
In the presence of Kerr correction, to make explicit the

choice of the measurement phase, we define the phase-
dependent added noise

AðθÞ ¼ ½RTðθÞσARðθÞ�11 ð52Þ

as the first diagonal element of the rotated added-noise
matrix, with RðθÞ the counterclockwise orthogonal rotation
matrix. From Eq. (52), we define the phase-dependent
quantum efficiency ηðθÞ ¼ 1=½1þ 2AðθÞ� ≤ 1. While we
focus in the following on the diagonal element of the
added-noise matrix, with AðθÞ characterizing the noise
added to the amplified quadrature, in general, σA is
nondiagonal, and the amplification can lead to added
cross-correlations between the quadratures.
Figure 8 shows the quantum efficiency and gain as a

function of the quadrature phase θ for increasing values of
jΛ=κj. In Fig. 8(a), we observe that the quantum efficiency
oscillates with θ and becomes increasingly peaked around a
value of the phase with increasing nonlinearity. For a fixed
nonlinearity, increasing the gain leads to the same effect
(not shown). We note that the position of the peak in the
quantum efficiency correlates with a dip in the off-diagonal
matrix element g12 shown in Fig. 8(b). This dip is shifted to
a narrower range of phases as the Kerr nonlinearity is

increased. This is in agreement with Fig. 5(c), which shows
that for a fixed quadrature phase, increasing the non-
linearity leads to larger g12 and, thus, requires a larger
phase correction. Thus, as expected, the quantum efficiency
is maximized when the noise added through quadrature
mixing is minimized.
Figure 9 presents 1 − ηðθÞ as a function of phase-

sensitive gain for increasing Kerr nonlinearities. To further
illustrate the importance of choosing the appropriate phase,
results for both the optimal phase θo of minimal cross gain
jg12j (dashed curves) and for the nonoptimal phase θm of
maximal gain (jg11j, solid curves) are shown. As expected,
the quantum efficiency is reduced [larger 1 − ηðθÞ] for
increased gain and nonlinearities. Strikingly, when consi-
dering a gain of 25 dB and jΛ=κj ¼ 10−2, the quantum
efficiency at phase θo is around 0.9, while it is close to zero
for θm. Figure 9(b) shows that this dramatic difference in
performance is obtained with less than 0.2-rad (12°)
difference in phase.
These results point to both the Kerr nonlinearity and the

nonoptimal choice of measurement phase as a possible
explanation for a series of experiments that have reported
smaller than expected quantum efficiencies for JPAs
[17,29,31,32]. A more detailed experimental study of the
quantum efficiency as a function of both detuning and
measurement phase could confirm these results and would
allow for a better understanding of these nonlinear effects.

VI. OUTPUT FIELD CHARACTERIZATION

Following the results of the previous sections, one can
expect to also find signatures of the nonidealities in the JPA

(a)

(b)

FIG. 8. (a) Phase-sensitive quantum efficiency as a function
of the phase of the measurement quadrature. (b) Matrix elements
of g (g11 solid curve, g12 dashed curve) as a function of the
quadrature phase θ. All data correspond to a photon-number
gain GJPA ¼ 23 dB for a JPA with Kerr correction and
ω ¼ Δ ¼ γ ¼ 0.

(a)

(b)

FIG. 9. (a) Reduction in the phase-sensitive quantum efficiency
due to Kerr-type corrections. Solid curves correspond to the
phase of maximal gain θm, while dashed curves correspond to the
phase θo, where the cross gain g12 is minimal. (b) Shift in rad of
the phases θm and θo as a function of gain.
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output field, including in squeezing experiments. In this
section, we compute moments of the output field which
allow us to characterize the JPA as a source of squeezed
light. Following the results of Sec. IV, and more generally
for Kerr cavities [52,54], we expect the higher-order
corrections to lead to a non-Gaussian output field. To
verify this, we calculate third- and fourth-order cumulants
which reveal departure from Gaussianity.
Throughout this section, we compare our numerical

results to an experimental characterization of the output
field of a flux-driven JPA. Moments of the JPA output field
are obtained using a single-path reconstruction method
[58], while a full output field imaging is obtained from a
deconvolution technique. Details of the experimental setup
and methods are presented in Appendix D.

A. Filtered output field:
Definition and numerical technique

In order to compare our numerical results to experi-
mental data, we consider the finite bandwidth of the
measurement chain in our calculations. To this end, we
define the filtered output field D̂ðtÞ as the convolution of
the full output field âout [59],

D̂ðtÞ ¼ f⋆âoutðtÞ ¼
Z

∞

−∞
dτfðt − τÞâoutðτÞ; ð53Þ

with a filter function f normalized such that
R
∞
−∞ dtjfðtÞj2 ¼

1 in order to ensure standard bosonic commutation relations
½D̂; D̂†� ¼ 1. The moments of this field can be evaluated
by numerical integration of correlation functions using the
quantum regression formula [27]. The details of the numeri-
cal technique are presented in Appendix E. We note that the
complexity of the calculation scales exponentially with the
order of the moment considered [59]. As a result, fourth-
order moments are at the limit of our current computational
capacities. Fortunately, this is sufficient to characterize the
departure from ideal Gaussian behavior. Unless otherwise
specified, the filter used is a time-domain boxcar filter
of 256 ns (bandwidth of approximately 4 MHz), which
coincides with the experimental method.

B. Squeezing level

In order to characterize the squeezing produced by the
JPA, we calculate the filtered output field squeezing level
defined as [28]

Sf ¼ hΔX̂2
vaci

hΔX̂2
mini

; ð54Þ

with hΔX̂2
vaci ¼ 1=2 the variance of the vacuum state, and

hΔX̂2
mini ¼ Nf þ

1

2
− jMfj; ð55Þ

the minimal variance of the filtered field. Here, we define
the centered moments of the filtered output field Nf ¼
hD̂†D̂i − jhD̂ij2 and Mf ¼ hD̂2i − hD̂i2.
Figure 10(a) shows the filtered squeezing level Sf as a

function of phase-preserving gain for a JPA with Kerr
correction. For an ideal JPA, the squeezing level of the
center frequency (Dirac-δ filtering) increases with gain
without bound (dashed black curve). On the other hand,
even for an ideal JPA (no higher-order corrections), the
filtered squeezing level saturates for a finite-bandwidth
filter (dotted-dashed gray curve). Indeed, as the gain
increases, the squeezing bandwidth is reduced and even-
tually becomes smaller than the filter bandwidth. At that
point, nonsqueezed radiation contributes to Sf limiting the
measured squeezing level. This relation is a different
illustration of the gain-bandwidth trade-off in cavity-based
parametric amplifiers [60]. A more detailed discussion of
this effect is given in Appendix F. The three remaining
curves show the effect of the Kerr nonlinearity on Sf as a
function of the numerically calculated gain [vertical axis of
Fig. 5(a)]. As expected, while at low gain all curves
overlap, for increasing gain, Sf reaches a maximal value,
which decreases with Kerr nonlinearity.
Figure 10(b) compares the squeezing level of a mono-

chromatic current-pumped JPA (up and down triangles) and

(a)

(b)

FIG. 10. (a) Squeezing level of the filtered output field (Sf)
versus numerical calculation of the gain using Eq. (42). The filter is
a time-domain boxcar filter of length 256 ns. Dashed black curve
(dotted-dashed gray curve) is themaximal squeezing level of aDPA
without (with) the filter. Solid curves are numerical results includ-
ing Ĥ2c ≈ Ĥfc corrections. (b) Comparison of the squeezing level
with Ĥ1c corrections (dashed curves) or Ĥ2c ≈ Ĥfc corrections
(solid curves) as a function of the photon-number gain calculated
without corrections [Eq. (8)]. (All panels: κ=2π ¼ 50 MHz,
Δ ¼ γ ¼ 0.)
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a bichromatic current-pumped JPA or monochromatic flux-
pumped JPA (circle and squares) for two Kerr nonlinear-
ities. As we discuss in Sec. V, the effect of nonidealities on
the gain could not be obtained in the case of the mono-
chromatic current-pumped JPA. To compare pumping
schemes on equal footing, squeezing levels are shown as
a function of the phase-preserving photon-number gain
calculated for an ideal DPA using Eq. (8). Note that the
solid curves for the bichromatic current-pumped JPA
present the same squeezing levels as in Fig. 10(a) but as
a function of the ideal DPA gain. The curves have similar
shapes for both pumping schemes. However, due to the
additional cubic corrections, the monochromatic current-
pumped JPA achieves a smaller maximal squeezing level
than is possible for a bichromatic current-pumped JPAwith
single Kerr-type correction. Hence, for the same JPA, going
from a monochromatic to a bichromatic current pump leads
to a significant increase in the maximal squeezing level that
can be produced. These results are in agreement with what
can be expected from intracavity signatures in Sec. IV,
where both the second-order moments and the Wigner
functions present stronger nonidealities in the monochro-
matic current-pump case.
In order to confirm that these higher-order correction

effects explain the experimentally observed reduction in
squeezing levels of JPAs [14,15,28,29], we compare our
numerical results to experimental data. Using a moment-
based reconstruction method, the squeezing level of a flux-
pumped JPA is measured [58,59,61]. Figure 11 shows
experimental results and numerical data together. The
reconstruction technique being highly sensitive to the gain
of the measurement chain, the green diamonds (red squares)
are the higher (lower) estimate of the squeezing level based
on the corresponding measurement chain gain estimate,
while the error bars correspond to statistical error evaluation.
The blue circles are numerical results where all parameters of
the simulations are obtained from independent experiments

with no fitting parameters. As a comparison, the dotted-
dashed light blue line indicates the result expected for an
ideal DPA. While there is quantitative agreement between
numerics and experiment for the maximal squeezing level
measured, the overall agreement is only qualitative. The
small discrepancies could be due to spatial variations in the
impedance of the JPA environment that leads to an exper-
imentally observed variation in the gain-bandwidth product
of the JPA with increasing gain.
We note that contrary to previous hypothesis [28], our

results indicate that the squeezing saturation happens at
pump powers below the bifurcation threshold of the JPA.
Our results strongly indicate the JPA higher-order correc-
tion as the main contributing factor to the experimentally
observed decrease of squeezing in the large-gain limit.

C. Cumulants

The Wigner functions of Fig. 4 clearly indicate that the
higher-order corrections lead to non-Gaussian intracavity
fields. In order to characterize the non-Gaussianity of the
filtered output field, we compute third- and fourth-order
cumulants ⟪D̂3⟫ and ⟪D̂4⟫. In the case of a univariate
distribution, the third- (fourth-) order cumulant can be
normalized to define the skew (kurtosis) of the distribution.
While such definitions are not as straightforward in the
case of the multivariate distribution considered here,
the third- and fourth-order cumulants still characterize the
non-Gaussian character of the field. Indeed, recall that a
cumulant of order n is a polynomial of moments of order n
and less, and that for a Gaussian field, only the cumulants
of order one and two are nonzero [62].
Figure 12(a) shows numerical calculation of j⟪D̂3⟫j for

the JPAwith a monochromatic current pump. The cumulant
increases following a power law with gain and nonlinearity.
The numerical results for the bichromatic current and
flux pump are not shown here, as they are exactly zero.
Figure 12(b) shows a fourth-order cumulant for both types
of corrections. Again, in agreement with the results of
Fig. 4, non-Gaussianity increases with gain and nonlinear-
ity. In addition, we observe that the slope is larger for
the monochromatic current pump (cubic corrections). The
other third- and fourth-order cumulants ⟪D̂†D̂2⟫, ⟪D̂†D̂3⟫,
and ⟪D̂†2D̂2⟫ are also calculated, and similar trends are
observed (data not shown).
These numerical results present higher-order corrections

to the DPA Hamiltonian as a significant source of non-
Gaussianity in the output field. In addition to the exper-
imental data presented below, these corrections could
explain previously reported experimental observation of
non-Gaussian features for JPAs [15,28].

D. Output field imaging

In order to further investigate the non-Gaussian features
that we discuss above, we experimentally image the Husimi

FIG. 11. Experimental characterization (green triangles and red
squares) of the squeezing level of a monochromatic flux-
driven JPA with comparison to numerical results (blue circles).
Numerical calculations are performed with the parameters
Λ=2π ¼ −1.55 MHz, κ̄=2π ¼ 130 MHz, and γ ¼ κ=10 obtained
from independent measurements (no fitting parameters). The
experimental parameters, setup, and method are presented in
Appendix D.
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Q function of the output field of a flux-driven JPA. A
deconvolution technique is used to extract the JPA output
field from the noisy histograms resulting from sampling the
measurement chain output via homodyne detection. This
methodology not only provides an experimental analysis
of the higher-order cumulants of the output field but also
provides a direct image of the output field that can be
compared with qualitative expectations based on the intra-
cavity fields calculated in Fig. 4. See Appendix D for
experimental details of the method.
Figure 13 presents a comparison of the output field for

low JPA gain (5 dB, top row) and high JPA gain (24 dB,
bottom row). In the figures, both the raw noisy histo-
grams, which are the convolution of the signal with noise
due to the amplification chain (left column), and the
Husimi Q function extracted through the use of deconvo-
lutions (right column) are shown. In addition, Fig. 13(e)
presents the magnitude of the cumulants up to fourth
order extracted from the deconvolved distributions of
Figs. 13(b) and 13(d). As expected from the numerical
calculations, the low-gainQ function appears Gaussian up
to experimental resolution, and third- and fourth-order
cumulants are small. On the contrary, the Q function at
high gain is non-Gaussian with a noticeable S-shaped
distortion, consistent with expectations based on the
intracavity fields presented in Fig. 4 and also consistent
with a recent semiclassical analysis of the JPA response
[30]. The inferred third- and fourth-order output field

cumulants presented in Fig. 13(e) clearly deviate from the
ideal value of zero expected for a Gaussian distribution.
However, from the numerical results of Fig. 12 and the
symmetry with respect to the centroid of the Q function
in Fig. 13(d), one expects the role of the third-order
cumulants to be small. To this end, we note that the third-
order cumulants are smaller than the second-order cumu-
lants, in support of the numerical predictions and the
imaged Q functions.
To conclude, our experimental results are consistent with

the numerically calculated intracavity Wigner functions
presented in Fig. 4. While the different orientations of the
squeezed ellipse relative to the axes is a consequence of

(a)

(b)

FIG. 12. Numerical calculation of representative third-order (a)
and fourth-order (b) cumulants of the filtered output field. The
dashed curves are for the monochromatic current pump (cubic
and quartic correction), while the solid curves are for the Kerr
quartic correction (bichromatic current pump or monochromatic
flux pump). The third-order cumulant is exactly zero in the
quartic correction case. The filter is a Gaussian filter with 4-MHz
bandwidth. In all calculations, we consider γ ¼ Δ ¼ 0 and
κ=2π ¼ 50 MHz.

(a) (b)

(c)

(e)

(d)

FIG. 13. Raw phase-space images of the JPA measurement
chain output (including HEMT noise) as determined via homo-
dyne measurements for (a) 5 dB and (c) 24 dB of phase-
preserving gain. Each histogram is formed of 256 × 256 points
where the axes indicate the homodyne quadrature voltages VX,
VP (�400-mV range), and the color scale indicates the relative
count intensity for each bin. The corresponding JPA output field
Q functions inferred via the Lucy-Richardson deconvolution are
shown in (b) and (d). The deconvolved distributions are plotted
on the same measurement voltage range so that the larger areas of
the distributions in (a) and (c) reflect the relative contributions
of HEMT noise to those measurements. The magnitude of the
corresponding output field cumulants scaled via the gain cali-
bration described in Appendix D are shown in panel (e).
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different pump phases, the different orientations relative to
the ellipse of the S-like nonideality for the numerically
computed intracavity field and the measured output field
are explained by input-output theory.

VII. CONCLUSION

In summary, the Kerr-type nonlinear correction is a
limiting factor for the measurement quantum efficiency of
JPAs and the squeezing level of their output field. This
correction also leads to non-Gaussian signatures observed
both in the intracavity field Wigner function and the fourth-
order cumulants of the output field. Our combined numeri-
cal and experimental results allow us to explain a broad
range of experimental observations, such as the smaller
than expected quantum efficiency of the JPA [17,29,31,32],
the saturation and decrease of squeezing at high gain in
JPAs [14,15,28,29], and non-Gaussian signatures of the
output field [15,28]. In particular, this work presents an
experimental characterization of the output field of a flux-
driven JPA, as well as a direct experimental imaging of the
non-Gaussian distortions of the output field. In addition,
we derive and compare the higher-order corrections to the
JPA Hamiltonian for three different pumping schemes. Our
work shows that in addition to a Kerr-type quartic correc-
tion, cubic terms in the Hamiltonian are important in the
case of the monochromatic current pump. These additional
corrections lead to larger deviations from the expected DPA
behavior such as lower attainable squeezing levels and
larger non-Gaussian signatures.
In short, our results indicate three pathways to improving

the performance of the JPA as a squeezer and amplifier.
First, in the case of a JPA operated with a monochromatic
current pump, moving instead to a bichromatic current-
pumping scheme eliminates cubic corrections, leading to a
greatly increased maximal squeezing level and reduced
non-Gaussian signatures. Remarkably, this improvement
can be obtained for the same circuit and parameters.
Otherwise, at the cost of a small added circuit complexity,
but using only a single drive, flux pumping offers similar
advantages. Second, our results illustrate clearly the value
of designing JPAs with small Kerr nonlinearities. This can
be obtained by using SQUID arrays to dilute the non-
linearity [4,9] or adding additional linear inductance [36].
Finally, our work emphasizes the phase sensitivity of the
JPA in the high-gain regime and the importance of fully
characterizing the phase and frequency dependence of the
gain matrix in order to operate at the optimal phases and
frequencies where the effects of nonidealities are minimal.
To complement the numerical approach considered in this

paper, a better understanding of the higher-order corrections
discussed might be obtained by considering analytical
perturbation theory techniques [63]. Preliminary results
are promising [64]. Similar analysis for a Josephson-
junction-based traveling-wave parametric amplifier could
help the current experimental and theoretical effort [65–69].

Finally, while higher-order corrections hinder the perfor-
mance of the JPA for squeezing and amplification, it can
become a feature for other applications of the JPA such as
robust cat-state preparation and stabilization [70], which can
be used for quantum computation [71] and quantum
annealing [72].
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from Université de Sherbrooke, managed by Calcul Québec
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APPENDIX A: SOLUTION TO THE DPA’S
INPUT-OUTPUT EQUATIONS

For this work to be self-contained, we present the
standard solution to the equations of motion of the DPA
discussed in Sec. II [27,42]. Starting from Eq. (3), and
introducing the vectors

â¼
�

â

â†

�
; âin¼

 
âin
â†in

!
; and b̂in¼

 
b̂in
b̂†in

!
; ðA1Þ

the DPA can be described by the system of linear equations

_̂a ¼ Mâþ ffiffiffi
κ

p
âin þ

ffiffiffi
γ

p
b̂in; ðA2Þ

where the matrix M is

M ¼

2
64−
�
iΔþ κ̄

2

�
−iλ

iλ�
�
iΔ − κ̄

2

�
3
75: ðA3Þ

This system of linear equations is solved by introducing the
Fourier-transformed operator

ā½ω� ¼
Z

∞

−∞
dt eiωtâðtÞ: ðA4Þ

We note that a†½ω�, the Fourier transform of the creation

operator is related to the adjoint of ā½ω� by a†½ω� ¼ ā†½−ω�.
Thus, the solution to the linearized equations of motion in
Fourier space is [27,42]
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ā½ω� ¼ −ðMþ iω1Þ−1ð ffiffiffi
κ

p
ain½ω� þ ffiffiffi

γ
p

bin½ω�Þ: ðA5Þ

Using the input-output boundary condition Eq. (4), this
result leads to Eq. (5) of the main text.
For completeness, we obtain from this expression the

general expressions for the second-order centered moments
of the intracavity field used in Sec. IV,

NDPA ¼ jλj2
2ðΔ2 þ κ̄2=4 − jλj2Þ ; ðA6Þ

MDPA ¼ −λðΔþ iκ̄=2Þ
2ðΔ2 þ κ̄2=4 − jλj2Þ : ðA7Þ

Using the input-output boundary condition Eq. (4), the
output field spectrums are [42]

N̄out½ω� ¼
jλj2κκ̄

ðΔ2 þ κ̄2=4 − ω2 − jλj2Þ2 þ κ̄2ω2
; ðA8Þ

M̄out½ω� ¼
−iκλ½ðκ̄ − iΔÞ2 þ ω2 þ jλj2�

ðΔ2 þ κ̄2=4 − ω2 − jλj2Þ2 þ κ̄2ω2
; ðA9Þ

with N̄out½ω� ¼
R
dω̄hâ†out½ω�âout½ω�i=2π, and similarly,

M̄out½ω� ¼
R
dω̄hâout½ω�âout½ω�i=2π. These expressions

allow us to calculate analytically the DPA filtered output
field spectrums presented in Sec. VI.

APPENDIX B: DETAILS OF THE
DISPLACEMENT TRANSFORMATIONS

In this appendix, we detail the displacement transforma-
tions used to derive the Hamiltonian Eq. (16) for the
monochromatic current-pumped JPA and the Hamiltonian
Eq. (22) for the bichromatic current-pumped JPA. The
unitary displacement transformation is [26]

D̂ðβÞ ¼ expðβâ† − β�âÞ; ðB1Þ

with D̂†ðβÞâ D̂ðβÞ ¼ âþ β, D̂ðβ1ÞD̂ðβ2Þ ¼ D̂ðβ1 þ β2Þ,
and β, βð1;2Þ scalar complex numbers.
Applying this transformation on the driven Kerr

Hamiltonian

Ĥi ¼ Δâ†âþ Λâ†2â2 þ ϵðtÞâ† þ ϵ�ðtÞâ: ðB2Þ

With Δ ¼ ~ω0 − ωrot the detuning between the cavity and
the rotating-frame frequency, one obtains

Ĥ0
i ¼ D̂†ðβÞĤ D̂ðβÞ − i _̂DðβÞD̂†ðβÞ: ðB3Þ

Dropping constant terms and taking â → d̂ to emphasize
the frame change, one obtains the Hamiltonian

Ĥ0
i ¼ ðΔþ 4Λjβj2Þd̂†d̂

þ Λ½β2d̂†2 þ βd̂†2d̂þ H:c:� þ Λd̂†2d̂2; ðB4Þ

where the linear pump term is canceled by choosing the
displacement parameter β such that

i _β ¼ ϵðtÞ þ
�
Δþ 2Λjβj2 − i

κ̄

2

�
β: ðB5Þ

The additional term −iκ̄β=2 originates from applying the
displacement transformation on the master equation (35)
instead of only the Hamiltonian.
In the single-current-pump case of Sec. III B, in a frame

rotating at the pump frequency (ωrot ¼ ωp) the pump is
simply ϵðtÞ ¼ ϵ, and one obtains the results of the main text
by taking α ¼ β.
In the double-pump case of Sec. III C, in a frame rotating

at the average pump frequency Ω12 ¼ ðω1 þ ω2Þ=2, the
driving term is

ϵðtÞ ¼ ϵ1eþiΔ12t=2 þ ϵ2e−iΔ12t=2; ðB6Þ

with the detuning between the pumps Δ12 ¼ ω1 − ω2.
Inserting Eq. (B6) in Eq. (B5) and taking the ansatz
β ¼ α1eþiΔ12t=2 þ α2e−iΔ12t=2 leads to the coupled nonlinear
differential equations

i _α1 ¼ ϵ1 þ
�
~ω0 − ω1 þ 2Λjα1j2 − i

κ̄

2

�
α1

þ 2Λð2jα2j2 þ α1α
�
2e

−iΔ12tÞα1; ðB7Þ

i _α2 ¼ ϵ2 þ
�
~ω0 − ω2 þ 2Λjα2j2 − i

κ̄

2

�
α2

þ 2Λð2jα1j2 þ α2α
�
1e

iΔ12tÞα2; ðB8Þ

and to the Hamiltonian of Eq. (22). For Δ12 ≫ 2jΛα1α2j,
we can neglect the rotating terms under the RWA.
Since the parametric resonance condition depends only

on the sum of the pump frequencies, and the amplitude of
the classical field is bounded by the parametric threshold,
one can choose Δ12 in order to enforce the validity of the
RWA. Under this approximation, the equations are the
same as Eq. (18) in the monochromatic current-pump case,
except that the equations are coupled through the frequency
shift induced by the cavity population at both pump
frequencies.

APPENDIX C: EXPANSION OF THE
FLUX-MODULATED JOSEPHSON ENERGY

In this appendix, we complement Sec. III D by giving
the analytical expressions for the Fourier coefficients of
the Josephson energy of a flux modulated SQUID used in
Eq. (29). Using the Jacobi-Anger formula [73]
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expðix cos θÞ ¼ J0ðxÞ þ 2
X∞
n¼0

inJnðxÞ cos nθ; ðC1Þ

where JnðxÞ is the nth Bessel function of the first kind, one
obtains the Fourier coefficients

Eð0Þ
J ¼ EJJ0ðδfÞ cosF; ðC2Þ

Eð2n−1Þ
J ¼ 2EJð−1ÞnJ2n−1ðδfÞ sinF; ðC3Þ

Eð2nÞ
J ¼ 2EJð−1ÞnJ2nðδfÞ cosF; ðC4Þ

with n ∈ f1; 2; 3…g.
In the case of a small amplitude flux pump (δf ≪ 1), the

Bessel functions can be expanded. The leading term of each
coefficient is such that

EðnÞ
J ∝

1

n!

�
δf
2

�
n
: ðC5Þ

More explicitly, the first three coefficients of the Fourier
expansion are, to leading order in δf,

Eð0Þ
J ≈ EJ cosF; ðC6Þ

Eð1Þ
J ≈ −EJδf sinF; ðC7Þ

Eð2Þ
J ≈ −

EJδf2 cosF
4

; ðC8Þ

in agreement with the expressions of Refs. [35,49].

APPENDIX D: EXPERIMENTAL SETUP
AND METHODS

This appendix presents details of the experimental setup
and techniques used to obtain the experimental data for a
flux-driven JPA presented in Figs. 11 and 13.

1. Experimental setup

We focus our characterization on an aluminum, lumped-
element JPA. This design is of particular interest, as it has
been widely adopted for superconducting qubit readout
[8,13,17]. The device consists of a capacitance (3.2 pF)
shunted by a SQUID [LJðΦ ¼ 0Þ ¼ 45 pH]. From simu-
lations, we estimate the geometric inductance of our design
is 35 pH leading to a participation ratio p ¼ 0.8. From
these values, we estimate a Kerr nonlinearity Λ=2π ¼
−1.55 MHz and from gain-bandwidth measurements a
cavity damping rate κ̄=2π ¼ 130 MHz. This empirical
value of κ is lower than expected from the lumped-element
capacitance; we attribute this difference to spatial imped-
ance variations in the JPA environment [10]. The SQUID
is flux pumped to provide up to 25 dB of gain using an

on-chip bias line [5], and the device is mounted with a 180°
hybrid launch to reject common mode noise. The amplifier
is shielded by an aluminum box and mounted at the base
plate of a dilution refrigerator (approximately 20 mK). The
signal from the JPA is further amplified with a commercial
HEMT amplifier at 4 K and subsequent room-temperature
amplifiers before being down-converted and digitized in a
homodyne measurement.
The homodyne measurement samples the values of the

conjugate quadrature components X̂ and P̂ described by
the complex quadrature operator Ŝ ¼ X̂ þ iP̂ [59]. For each
measurement, we average 256 consecutive voltage samples
acquired at 1 GS=s, effectively filtering Ŝ so as to analyze
only highly squeezed spectral components near the cavity
frequency. The flux pump at frequency 2ω is generated
using a frequency doubler and the same microwave source
that produces the local oscillator tone for the homodyne
setup, allowing for good phase stability over the course of
extended measurements. In addition, the JPA is hooked up
to a switch on the base stage of the dilution refrigerator. The
other port of the switch connects to a qubit dispersively
coupled to a tunable resonator [74]. Through measurements
of the qubit Stark shift, this setup enables a precise
calibration of the power gain between the JPA and the
analog-to-digital converter (ADC) [69], a necessary input
for our analysis.

2. Single-path reconstruction method

To characterize the properties of the output field, we
utilize the single-path reconstruction method developed
by Eichler et al. [58]. We construct two histograms of Ŝ,
corresponding to the distribution with the JPA pump on,
D½ρ�ðSÞ, and to the distribution with the JPA pump off,
D½j0ih0j�ðSÞ. We interleave the two measurements to mitigate
the effects of experimental drift. We analyze the moments
of the two histograms hðŜ†ÞnŜmiρ and hðŜ†ÞnŜmij0ih0j to
infer the normally ordered moments of the output field
hðâ†Þnâmi through the expressions

hðŜ†ÞnŜmiρ ¼ GðnþmÞ=2
c

Xn;m
i;j¼0

�
m
j

��
n
i

�
hðâ†Þiâji

× hĥn−iðĥ†Þm−ji ðD1Þ

and

hðŜ†ÞnŜmij0ih0j ¼ GðnþmÞ=2
c hĥnðĥ†Þmi: ðD2Þ

Here, Gc is the gain of the measurement chain between
the JPA output and the ADC in the photon-number basis
[61,75], and ĥ is an effective noise mode dominated by
the added noise of the HEMTamplifier. Experimentally, the
power gain of the measurement chain is measured to be
between 100.1 and 100.5 dB. These bounds on the power
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gain are reflected in the systematic uncertainty in the
squeezing levels presented in Fig. 11. Note that
Eq. (D2) is a limiting case of Eq. (D1) when the JPA
pump is off and â is in the vacuum state. We iteratively
solve these equations to compute the moments of the JPA
output field and also quantify the cumulants of the output
field denoted by ⟪ðâ†Þnâm⟫. For Gaussian states, such
as ideal squeezed states, the cumulants are zero for
nþm > 2. At each gain setting, we histogram 108 noise
measurements, which provides sufficient resolution to infer
the field moments up to fourth order.

3. Imaging the output field using deconvolutions

To directly image the distortions of the output field due
to nonidealities, we implement a complementary analysis
technique based on applying a series of deconvolutions to
D½ρ�ðSÞ and D½j0ih0j�ðSÞ. This method relies on the fact that
these discrete distributions can be approximated as a
convolution of quasiprobability distributions for the JPA
output field and an effective noise mode of the measure-
ment chain [76]:

D½ρ�ðSÞ ≈ 1

Gc
ðQJPA⋆PHEMTÞ

�
αffiffiffiffiffiffi
Gc

p
�

ðD3Þ

and

D½j0ih0j�ðSÞ ≈ 1

Gc
ðQvacuum⋆PHEMTÞ

�
αffiffiffiffiffiffi
Gc

p
�
: ðD4Þ

Here, QJPA, Qvacuum, and PHEMT are Husimi Q and
Glauber-Sudarshan P representations that describe the
JPA output field, the vacuum state, and the noise mode
[77]. Given that the Q function can be obtained from the
Wigner function via a Gaussian smoothing filter, we expect
the distortions imaged by this deconvolution technique to
be characteristic of both phase-space representations.
To reconstruct the output field, we first deconvolve

D½j0ih0j�ðSÞ with Qvacuum to obtain ð1=GcÞPHEMT and then
deconvolve D½ρ�ðSÞ with ð1=GcÞPHEMT to obtain QJPA.
Both deconvolutions are performed in MATLAB using the
Lucy-Richardson method [78]. For the measurements in
Fig. 13, the power gain of the measurement chain is
increased by 5 dB relative to the bounds quoted in
Appendix D 2. We empirically find this larger gain leads
to improved resolution of the low-density tails of the output
field Q functions. In all cases, inferences of the output field
cumulants obtained via the moment-based reconstruction
agree with inferences of the cumulants calculated from the
Q functions.

APPENDIX E: NUMERICAL CALCULATION
OF FILTERED MOMENTS

In Sec. VI, we calculate moments of the filtered output
field. Here, we give the details of the numerical technique

used to obtain the results presented there. As an illustration
of the technique, we consider the third-order moment

hD̂†D̂2i ¼
ZZZ

∞

−∞
dt1dt2dt3fð−t1Þfð−t2Þ

× fð−t3ÞMt1;t2;t3 ; ðE1Þ

with the three-time correlation function

Mt1;t2;t3 ¼ hâ†outðt1Þâoutðt2Þâoutðt3Þi
¼ κ3=2hâ†ðt1Þâðt2Þâðt3Þi; ðE2Þ

where the last equality is valid for a vacuum input
field [79].
In order to use the quantum regression formula, we

separate the integral in a sum over all possible time
orderings

hD̂†D̂2i ¼
ZZ

∞

0

dt1dt2Ft1;t2 ½Mt1þt2;t1;0

þMt1;t1þt2;0 þM0;t1þt2;t1 �; ðE3Þ

where using the invariance under time translation for a
steady state and assuming a purely real filter, we define

Ft1;t2 ¼
Z

∞

−∞
dt3fð−t1 − t2 − t3Þfð−t2 − t3Þfð−t3Þ: ðE4Þ

Finally, we integrate over each correlation function that
we calculate using the general formula of the quantum
regression result [27]. For the three-time correlation func-
tion, we obtain

Mτ;t1;0 ¼ Trfâ†outVτ;t1 ½âoutVt1;0ðâoutρ̂ssÞ�g;
Mt1;τ;0 ¼ TrfâoutVτ;t1 ½Vt1;0ðâoutρ̂ssÞâ†out�g;
M0;τ;t1 ¼ TrfâoutVτ;t1 ½âoutVt1;0ðρ̂ssâ†outÞ�g; ðE5Þ

with Vðt1; 0Þ the evolution superoperator from t ¼ 0 to
t ¼ t1, and τ ¼ t1 þ t2. Numerically, the evolution is
performed by integrating the master equation using the
Runge-Kutta solver of the GSL numerical library [80].

APPENDIX F: SQUEEZING LEVEL OF THE
FILTERED DPA OUTPUT FIELD

In addition to the numerical approach of Appendix E,
the results of Figs. 10 and 11 for the DPA can be obtained
more simply by integrating the analytical expressions of
Eqs. (A8) and (A9) using

hD̂†D̂i ¼
Z

∞

−∞
dωjf̄½ω�j2N̄out½ω� ¼ Nf; ðF1Þ
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hD̂2i ¼
Z

∞

−∞
dωjf̄½ω�j2M̄out½ω� ¼ Mf; ðF2Þ

with f̄½ω� the Fourier transform of a real-time-domain filter
function fðtÞ. In particular, in the case of Fig. 10 where
κ̄ ¼ κ and Δ ¼ 0, the minimal variance of the filtered
output field is

hΔX̂2
mini ¼

1

2

Z
dωjf̄½ω�j2

�
1 −

2κjλj
ðκ=2þ jλjÞ2 þ ω2

�
:

ðF3Þ
As we mention in the main text, the integrand is minimal
(maximal squeezing) at the center frequency ω ¼ 0 and
increases (reduced squeezing) away from this frequency.
Thus, as we discuss in Sec. VI B, the minimal variance of
the filtered field will always be equal to or larger than the
variance at the center frequency. This limits the squeezing
level of the JPA filtered output field, even without any
nonidealities.
To further illustrate this effect, we consider the case

of a narrow-band filter centered at frequency ω0 such that
jf̄½ω�j2 ≈ δðω − ω0Þ. In that case, the squeezing level is

Sfðω0Þ ¼ 1þ 2κjλj
ðκ=2 − jλjÞ2 þ ω2

0

; ðF4Þ

which diverges only for ω0 ¼ 0 and otherwise reaches a
finite maximal value of 1þ κ2=ω2

0 even at the parametric
threshold. Neglecting the constant background, the half
width at half maximum of Sfðω0Þ is κ=2 − jλj, which
decreases with increasing gain reaching zero at the para-
metric threshold. This relation is a different illustration of
the gain-bandwidth trade-off in cavity-based parametric
amplifiers [60].
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