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Deterministic quantum state transfer and remote 
entanglement using microwave photons
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Sharing information coherently between nodes of a quantum 
network is fundamental to distributed quantum information 
processing. In this scheme, the computation is divided into 
subroutines and performed on several smaller quantum registers 
that are connected by classical and quantum channels1. A direct 
quantum channel, which connects nodes deterministically rather 
than probabilistically, achieves larger entanglement rates between 
nodes and is advantageous for distributed fault-tolerant quantum 
computation2. Here we implement deterministic state-transfer 
and entanglement protocols between two superconducting 
qubits fabricated on separate chips. Superconducting circuits3 
constitute a universal quantum node4 that is capable of sending, 
receiving, storing and processing quantum information5–8. Our 
implementation is based on an all-microwave cavity-assisted Raman 
process9, which entangles or transfers the qubit state of a transmon-
type artificial atom10 with a time-symmetric itinerant single photon. 
We transfer qubit states by absorbing these itinerant photons 
at the receiving node, with a probability of 98.1 ± 0.1 per cent, 
achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a 
protocol duration of only 180 nanoseconds. We also prepare remote 
entanglement on demand with a fidelity as high as 78.9 ± 0.1 per 
cent at a rate of 50 kilohertz. Our results are in excellent agreement 
with numerical simulations based on a master-equation description 
of the system. This deterministic protocol has the potential to be 
used for quantum computing distributed across different nodes of 
a cryogenic network.

Remote entanglement has been realized probabilistically using her-
alded or unheralded protocols based on measurement projection11–14, 
single-15,16 or two-photon17–20 detection or direct transfer of a single 
photon21,22. See Methods and Extended Data Fig. 1 for an overview 
of selected experimental results, including a discussion of concur-
rent deterministic experiments performed with superconducting cir-
cuits23,24. However, a fully deterministic implementation25 of direct 
transfer protocols is more challenging to realize. In the protocol25, a 
stationary atom is coupled to a single-mode cavity in remote quantum 
nodes and a coherent drive entangles the state of the atom with the field 
of the cavity. The cavity is coupled to a directional quantum channel 
into which the field is emitted as a time-symmetric single photon. This 
photon travels to the receiving node where it is ideally absorbed with 
unit probability using the time-reversed coherent drive (Fig. 1a). In 
addition to establishing entanglement between the nodes, direct trans-
fer of quantum information offers the possibility to transmit arbitrary 
qubit states from one node to the other.

In our adaptation of this scheme (Fig. 1b) to the circuit quantum 
electrodynamic architecture, each quantum node (labelled A and B) is 
composed of a superconducting transmon qubit with transition fre-
quency νge

A = 6.343 GHz or νge
B = 6.093 GHz dispersively coupled to two 

coplanar microwave resonators, analogous to an atom coupled to two 
cavity modes. One resonator is dedicated to dispersive transmon read-
out and the other to excitation transfer. The transfer resonators at the 

two nodes are tuned to have matching frequencies νT ≈ 8.400 GHz and 
large bandwidths κT/(2π) of the order of 10 MHz (see Methods). All 
resonators are coupled to dedicated filters, to protect the transmons 
from Purcell decay26,27. An external coaxial line with a length of 0.9 m, 
bisected with a circulator, connects the transfer circuits of both chips. 
With this set-up, photons are routed from node A to B and from node 
B to a detection line. If perfect absorption of the photon can be realized 
and independent detection of the photon is not needed or desired, then 
the circulator can be omitted from the circuit25. To generate a control-
lable light–matter interaction, we apply a coherent microwave tone to 
the transmon, which induces an effective interaction �g t( ) with tunable 
amplitude and phase9,28 between states ∣ ⟩f , 0  and ∣ ⟩g , 1 . Here, ∣ ⟩s n,  
denotes a Jaynes–Cummings dressed eigenstate with transmon state 
∣ ⟩s  and Fock state of the transfer resonator ∣ ⟩n . The two lowest-energy 
eigenstates ( ∣ ⟩g  and ∣ ⟩e ) of the transmon form the qubit subspace; the 
second excited state ∣ ⟩f( )  is used as an auxiliary level to control the 
light– matter interaction in our experiment. This interaction swaps an 
excitation from the transmon to the transfer resonator, which then 
couples to a mode propagating towards node B. By controlling �g t( ) 
(see Methods), we shape the itinerant photon to have a time-symmetric 
envelope φ κ κ= /t t( ) sech( 2)1

2 eff eff , with an adjustable photon band-
width κeff limited only by κT. By inducing the reverse process 
∣ ⟩ ∣ ⟩↔g f, 1 , 0  with the time-reversed amplitude and phase profile of 
�g t( ), we absorb the itinerant photon in the transmon at node B. Ideally, 
this procedure returns all photonic modes to their vacuum state. We 
note that in our system this process could also be implemented with 
asymmetric photon shapes, or ones with a more structured time 
dependence29, as long as the physical constraints on the bandwidth 
required for its emission and absorption are met at the respective sites.

To characterize the excitation transfer, we start by initializing the 
transmon in its ground state30, after which we apply a sequence of two 
π pulses ( πR ge, 

πR ef) to prepare the transmon at the receiving node B in 
state ∣ ⟩f , 0 . Next, we induce the effective coupling �g t( ) with a  
modulated drive τR f0g1 to emit a symmetric photon9 (Fig. 2a). We vary 
the instantaneous frequency of τR f0g1 to compensate for the drive- 
amplitude-dependent a.c. Stark shift of the ∣ ⟩ ∣ ⟩↔f g, 0 , 1   
transition (see Methods). Here, and in all subsequent measurements, 
the population of the transmon states are extracted using single-shot 
readout with a correction to account for measurement errors 
(see Methods). The populations of the three lowest levels of the  
transmon Pg,e,f  are measured immediately after truncating the  
emission pulse τR f0g1 at time τ (Fig. 2b). In this way, we observe that the 
transmon evolves smoothly from ∣ ⟩f  to ∣ ⟩g  during the emission pro-
cess. At the end of the protocol, the emitting transmon reaches a 
ground-state population of Pg = 95.8%, which characterizes the emis-
sion efficiency.

To verify that the envelope of the emitted photon has the target shape 
and bandwidth κ π/(2 )eff

B  = 10.6 MHz, we repeat the emission protocol 
with an initial transmon state ∣ ⟩ ∣ ⟩+ /g f( ) 2  and measure the aver-
aged electric-field amplitude ⟨ ⟩ φ∝a t t( ) ( )out  of the emitted photon 
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state ∣ ⟩ ∣ ⟩+ /( 0 1 ) 2  using heterodyne detection31 (Fig. 2c). We pre-
pare this photon state because of its non-zero average electric field9.

Repeating the emission protocol from node A leads to similar 
dynamics of the transmon population (Fig. 2e). We adjust the amplitude 
and phase of the transfer pulse (Fig. 2d) so that the photons emitted from 
each node A and B have similar effective bandwidth κeff in spite of their 
respective transfer resonator bandwidths κT differing by approximately 
30% (see Methods). The detected integrated power ∣ ⟨ ⟩ ∣∫ a t t( ) dout

2  
of the photon emitted from node A (Fig. 2f) is lAB = 23.0% ± 0.5% lower 
than that emitted from node B owing to loss accumulated as the photon 
travels from node A to B. The photon loss lAB is extracted from the ratio 
of the integrated photon powers for emission from nodes B and A 
(see Methods). In addition, the envelope of the photon emitted from 
node A is slightly distorted by the reflection off node B, as determined  
by the response function of its transfer resonator, which is fully  
captured by our theoretical model.

To characterize the absorption of the single time-symmetric photon 
emitted from node A at the receiving node by time-reversing the emis-
sion pulse of node B (Fig. 2a, g), we measure the population of trans-
mon B during the process. We apply a π pulse to transmon B to map 
∣ ⟩f  back to the qubit subspace before performing the readout. We 
observe the population of ∣ ⟩e  to rise smoothly and saturate at 
Pe

sat = 67.5% (Fig. 2h). This saturation level reflects the efficiency of the 
protocol for the transfer of a single excitation (a single photon), which 
is executed in a pulse sequence of only 180-ns duration (Fig. 2g). From 
the ratio of the integrated power of the emitted photon in the absence 

(Fig. 2i) or presence (Fig. 2f) of the absorption pulse, the absorption 
efficiency is determined to reach 98.1% ± 0.1%.

The results of master-equation simulations of the excitation transfer 
(solid lines in Fig. 2), using parameters extracted from independent 
measurements (see Methods), display excellent agreement with the 
measured data. This demonstrates a high level of control over the 
emission and absorption processes and an accurate understanding of 
the experimental imperfections dominated by qutrit decoherence and 
photon loss.

We demonstrate the use of our protocol to transfer deterministically 
an arbitrary qubit state from node A over a distance of about 0.9 m 
along a coaxial line to node B. This is realized by preparing the receiving 
transmon (B) in state ∣ ⟩g , applying a πR ef pulse to the sending transmon 
(A), followed by the emission or absorption pulse and finally a rotation 

πR ef  on transmon B. We characterize the quantum state transfer by 
reconstructing its process matrix χ with quantum process tomography 
(Fig. 3b). For that purpose, we prepare all six mutually unbiased qubit 
basis states32 at node A, transfer them to node B, and reconstruct the 
transferred state using quantum state tomography (see Methods). We 
determine a process fidelity of Fp = tr(χχideal) = 80.02% ± 0.07%, well 
above the limit of 1/2 that can be achieved using local gates and classical 
communication only. The process matrix χsim calculated with the mas-
ter-equation simulations agrees very well with the data (absolute values 
shown as red outlines in Fig. 3b). This is supported by the small trace 
distance33 tr|χ − χsim|/2 = 0.015, which ideally is 0 for identical process 
matrices and 1 for orthogonal ones.
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Fig. 1 | Schematic and measurement set-up. a, Quantum optical 
schematic of a deterministic unidirectional entanglement protocol 
between two cavity quantum electrodynamic nodes of a quantum network. 
At the first node, a three-level system is prepared in its second excited state 
∣ ⟩f  (grey half-circle) and driven coherently (�g t( ), blue arrow) to ∣ ⟩g  (blue 
half-circle), creating the transfer cavity field ∣ ⟩1  (light yellow). The cavity 
field couples into the directional quantum channel with rate κT as a single-
photon wavepacket with an effective bandwidth κeff (yellow hyperbolic 
secant shape). In the second quantum node, the time-reversed drive −�g t( ) 
transfers the excitation from ∣ ⟩g  to ∣ ⟩f  in the presence of the transferred 
photon field ∣ ⟩1 . Finally, the protocol is completed with a transfer pulse 
between ∣ ⟩f  and ∣ ⟩e  (red half-circle) to return to the qubit subspace. In 
addition, each three-level system is coupled to a readout cavity (grey).  
b, Implementation of the system depicted in a in a planar, chip-based, 
circuit quantum electrodynamic architecture (Extended Data Fig. 2). At 
each node, a transmon (orange) is coupled capacitively to two λ/4 coplanar 
waveguide resonators and Purcell filter circuits27 that act as the transfer 
(yellow) and readout (grey) cavities, respectively. The output transmission 
lines are coupled galvanically to the corresponding circuit. A directional 

quantum channel is realized using a semi-rigid coaxial cable and a 
circulator connecting to the output port of the transfer circuit Purcell filter 
at each node. c, d, Details of the circuit quantum electrodynamic 
implementation. c, Combined qutrit (νqt) and ∣ ⟩ ∣ ⟩↔f g, 0 , 1  transition 
(νf0g1) microwave drive using single-side-band modulation with in-phase 
(I) and quadrature (Q) mixers driven by a local oscillator (LO) and with an 
envelope defined by an arbitrary-waveform generator (AWG) for node A. 
At node B, these drives are synthesized directly by a fast AWG with 
25 GS s−1. d, Schematic of microwave detection lines (black, red triangles). 
All detection lines consist of two isolators, a bandpass filter, a cryogenic 
amplifier (HEMT) and two room-temperature amplifiers followed by a 
filter and analogue down-conversion to an intermediate frequency of 
250 MHz. The down-converted signal is lowpass-filtered, digitized using 
an analogue-to-digital converter and recorded using a field-programmable 
gate array (FPGA). The transmon-readout lines include an additional 
Josephson parametric amplifier (JPA) circuit (red elements) between the 
first two isolators. The JPA is pumped by a signal generator and the 
reflected pump signal from the JPA is cancelled at a directional coupler 
using amplitude- and phase-controlled destructive interference.
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Furthermore, we use the excitation transfer to generate two-qubit 
remote-entangled states between nodes A and B deterministically. The 
protocol starts by preparing transmons A and B in states 

∣ ⟩ ∣ ⟩+ /e f( ) 2 and ∣ ⟩g , respectively, and then applying the emission 
or absorption pulses followed by a rotation πR ef on transmon B to gen-
erate the entangled Bell state ∣ ⟩ ∣ ⟩ ∣ ⟩ψ = + /+ e g g e( , , ) 2 . Because 
leakage to the ∣ ⟩f  level at both nodes leads to errors in the two-qubit 
density matrix reconstruction, we extract the full two-qutrit density 
matrix ρ3⊗3 from quantum state tomography experiments 
(see Methods). For illustration purposes, we display the two-qubit den-
sity matrix ρm (Fig. 4b, c), which consists of the two-qubit elements of 
ρ3⊗3. We find a state fidelity of ⟨ ⟩

∣ ⟩
ψ ρ ψ=

ψ
+ +

+F s
m

 = 78.9% ± 0.1% 
compared to the ideal  Bel l  state,  and a concurrence 

ρC( )m  = 0.747 ± 0.004 (see Methods for a detailed discussion). The 
density matrix ρsim calculated from the master-equation simulations of 
the entanglement protocol (red outlines in Fig. 4) is in excellent agree-
ment with the experimental results, displaying a small trace distance 
of tr|ρm − ρsim|/2 = 0.024. We decompose the infidelity into approxi-
mately 10.5% from photon loss, 9% from finite transmon coherence 
times and 2% from pulse truncation.

Using transmons with relaxation and coherence times of 
T1ge = T2ge = 30 μs and T1ef = T2ef = 20 μs, and with an achievable 12% 
loss between the nodes, we calculate that our protocol would enable 
deterministic generation of remote-entangled states with a fidelity of 
93%. In addition, we expect our protocol to be extendable to quantum 
network applications to generate deterministic heralded remote entan-
glement4, using the three-level structure of the transmons and encoding 
quantum information in different time bins to detect photon loss. These 
perspectives indicate that the approach demonstrated here may serve as 
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Fig. 2 | Emission, transfer and absorption of a single photon. a, d, The 
transmons at node B (a) and node A (d) are prepared in the state ∣ ⟩f  using 
Gaussian derivative removal by adiabatic gate (DRAG) microwave pulses 

=πRge
pre  and πRef . b, e, We characterize (filled circles) the time dependence 

(τ) of the qutrit populations Pg,e,f while driving the ∣ ⟩ ∣ ⟩↔f g, 0 , 1  
transition. The phase (white–blue shading) of the ∣ ⟩ ∣ ⟩↔f g, 0 , 1  transition 
drive is modulated to compensate the drive-induced quadratic a.c. Stark 
shift. c, f, The mean field amplitude squared ∣⟨ ⟩∣τa ( )out

2 of the travelling 
photons emitted from node B (c) and node A (f) is obtained for the photon 

state ∣ ⟩ ∣ ⟩+ /( 0 1 ) 2  that is emitted by preparing each transmon in 
∣ ⟩ ∣ ⟩+ /g f( ) 2  ( =π/Rge

pre 2 in a and d). The effective photon bandwidths 
are adjusted to be κ / π(2 )eff

A   = 10.4 MHz and κ / π(2 )eff
B   = 10.6 MHz. The 

solid lines in b, c, e, f, h and i are results of master-equation simulations 
(see text for details). g, Excitation transfer protocol. h, The time 
dependence of Pg,e,f when executing the excitation transfer protocol from 
qubit A to qubit B with =πRge

pre . i, The residual ∣⟨ ⟩∣τa ( )out
2 (light yellow, 

multiplied by 50) during the absorption process ( =π/Rge
pre 2 in g).
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experimentally obtain a process matrix (absolute value |χ| shown as 
coloured bars in the basis of the Pauli matrices I, X = σx, σ=�Y i y and 
Z = σz) with a fidelity of Fp = 80.02% ± 0.07% relative to the ideal identity 
operation. The grey and red outlines show the ideal value and the master-
equation simulation of the absolute values of the process matrix, 
respectively. The trace distance between the measurement and the 
simulation is 0.015.
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the basis for distributed quantum computation in the circuit quantum 
electrodynamic architecture using distinct cryogenic nodes.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
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Ỹ

Z
Z

X
Ỹ
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Ỹ
Z

Z
X

Z
Ỹ
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Fig. 4 | Remote-entanglement generation. a, Pulse scheme to generate 
deterministic remote entanglement between nodes A and B. b, Expectation 
values of two-qubit Pauli operators ⟨ ⟩σσi j . The coloured bars indicate the 
measurement results; the ideal expectation values for the Bell state 
∣ ⟩ ∣ ⟩ ∣ ⟩ψ = + /+ e g g e( , , ) 2  and the results of a master-equation 
simulation are shown as grey and red outlines, respectively. We calculate a 
fidelity of 

∣ ⟩ψ+F s  = 78.9% ± 0.1%, which is well explained by photon loss 
and decoherence. c, Reconstructed density matrix ρm after execution of the 
remote-entanglement protocol.
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MEthods
Literature overview. In Extended Data Fig. 1, we present a short overview of 
remote-entanglement experiments performed using the systems and schemes listed 
in the caption. We calculate bounds34 on the concurrence C  for papers in which a 
CHSH–Bell correlation S was specified but no value for C  was given, to provide a 
more complete comparison. However, we do not calculate C for papers that provide 
only a Bell-state fidelity because knowledge of the elements of the density matrix 
are necessary to determine C  without further assumptions.

In addition to the work described here, two independently performed experi-
ments23,24 concurrently realized deterministic remote state transfer and remote- 
entanglement generation with superconducting circuits along the lines of a  
previous proposal25. In contrast to our work, the other experiments23,24 use 
three-dimensional cavities and transmon qubits with superior coherence prop-
erties instead of planar two-dimensional systems. They also use radiation fields 
with a Gaussian profile and a duration of 2–4 μs for state transfer and remote- 
entanglement generation—substantially longer than used here—which made use 
of dedicated Purcell filters to increase the emission and absorption bandwidth of 
the fields used for state transfer. As a result, the concurrence and fidelity found in 
our experiments exceed those found in the experiments in refs 23,24 at comparable 
absorption efficiencies and despite the inferior coherence times. Going beyond our 
work and that presented in ref. 24, ref. 23 presents transfer of multi-photon states and 
discusses the potential of the scheme for implementing error correction at each site.

We also note a measurement-based probabilistic realization of remote entangle-
ment in superconducting circuits35 that improves on previous work14 and a recent 
experiment with nitrogen–vacancy centres36 using single-photon interference and 
detection to guarantee deterministic delivery of entangled states at a specified time.
Sample parameters. The designs are very similar to those used previously27, with 
only minor parameter modifications. The λ/4 coplanar waveguide resonators and 
feed lines are created from etched niobium on a sapphire substrate using standard 
photolithography techniques (Extended Data Fig. 2a) We define the transmon 
capacitor pads and junctions with electron-beam lithography and shadow- 
evaporated aluminium with lift-off. We extract the parameters of the readout cir-
cuit (grey elements, Fig. 1b) and transfer circuit (yellow elements, Fig. 1b), as well 
as the coupling strength of the transmon to these circuits, from fits to the trans-
mission spectra of the respective Purcell filter when the transmon is prepared in 
its ground or excited state using a technique and model discussed previously27,37,38. 
We obtained four working samples from two fabrication runs, with a standard 
deviation of approximately 8 MHz in the frequency νT of the transfer resonators, 
and used the pair with the best-matching frequencies. We then tuned the transfer 
resonators into resonance (ΔνT ≈ 0.2 MHz) using the dependence of the resonator 
dispersive shift39 on the transmon–resonator detuning δ = νge − νT. To tune the 
transmon frequencies we use a miniature superconducting coil to thread flux 
through the superconducting quantum-interference device (SQUID) at each node. 
Furthermore, the anharmonicity α and the coherence times T2ge

R  and T2ef
R  of the 

qutrits are determined using Ramsey-type measurements. We obtain T1ef ≈ T1ge/3 
for the energy decay times T1ge and T1ef of both transmons, which is lower than the 
expected40 T1ge/2. The excess decay rate may be caused by the more complicated 
environmental mode structure presented to our transmons due to the set of two 
resonators with their respective Purcell filters coupled to it. All relevant device 
parameters are listed in Extended Data Table 1.
Microwave drive schemes. We use resonant Gaussian DRAG41,42 microwave pulses 
of length 19.8 ns and 16.8 ns for πRge and πRef  to swap populations between the ∣ ⟩g  
and ∣ ⟩e  states and the ∣ ⟩e  and ∣ ⟩f  states, respectively. We extract an averaged 
Clifford-gate fidelity for the ∣ ⟩g  and ∣ ⟩e  pulses of more than 99.2% for both trans-
mon qubits, from randomized benchmarking experiments43.

We induce the effective coupling �g  between states ∣ ⟩f , 0  and ∣ ⟩g , 1  by applying 
a microwave tone with drive amplitude ε to the transmon, at the resonance fre-
quency of the transition (νf0g1

A  = 4.022 GHz and νf0g1
B  = 3.485 GHz). Following a 

procedure described previously9,30, we calibrate the a.c. Stark shift of the transmon 
levels induced by the ∣ ⟩ ∣ ⟩↔f g, 0 , 1  drive, and extract the linear relation between 
the drive amplitude ε and the effective coupling �g  (Extended Data Fig. 3). To 
remain in resonance with the driven transition, we adjust the phase of ε on the 
basis of the measured a.c. Stark shift. We calibrate the drive to reach maximum 
effective couplings of / π�g (2 )m

A  = 6.0 MHz and / π�g (2 )m
B  = 6.7 MHz (Extended 

Data Fig. 3b).
We generate photons with temporal shape φ κ κ= /t t( ) sech( 2)1

2 eff eff  by res-
onantly driving the ∣ ⟩ ∣ ⟩↔f g, 0 , 1  transition with

κ
κ

κ κ

κ κ
=

/
− + + /

+ / −

κ κ

κ κ
�g t

t
( )

4cosh( 2)
1 e (1 e )

(1 e ) e
(1)

t t

t t
eff

eff

T eff

T eff

eff eff

eff eff

where κT is the bandwidth of the transfer resonator and κeff ≤ κT is determined by 
the strength and duration of the transfer pulse. The dynamics are well described by 
a two-level model with loss, captured by the non-Hermitian Hamiltonian

κ
=





 − /





∗

�

�
H

g
g i
0

2
(2)

T

where ∗�g  is the complex conjugate of �g . This Hamiltonian acts on states ∣ ⟩f , 0  and 
∣ ⟩g , 1 , analysed in a rotating frame. The non-Hermitian term −iκT/2 accounts for 
photon emission, which brings the system to the dark state ∣ ⟩g , 0 . It can be shown 
that using the effective coupling of equation (1) in the Hamiltonian in equation (2) 
leads to the emission of a single photon with the desired temporal shape. This 
analytical solution provides the option of adjusting the effective bandwidth κeff of 
the emitted photon and of generating photon shapes with exponential falling and 
rising edges at rate κeff. In all experiments, we create photons with the maximum 
bandwidth achievable in our set-up, limited by κT of node A κ κ< � �g g( , 2 , 2 )T

A
T
B

m
A

m
B . 

κ κ=T
A

eff results in a symmetric amplitude and phase profile of the ∣ ⟩ ∣ ⟩↔f g, 0 , 1  
transfer pulse at node A and κ κ>T

B
eff  in an asymmetric drive shape at  

node B (equation (1)). For the absorption process of the photon we time-reverse 
the ∣ ⟩ ∣ ⟩↔f g, 0 , 1  drive at node B (Fig. 2g). The photon shape with the  
shortest pulse duration would require an exponential rising edge proportional  
to the bandwidth of the receiving node κ( )T

B  and a falling edge proportional  
to the bandwidth of the emitting node κ( )T

A . In our experiment, we create  
photons with a symmetric shape, approximately realizing the shortest photon 
duration.

An alternative protocol to generate a remote-entangled state involves preparing 
the transmon at node A in ∣ ⟩f , 0 , swapping half of the population to ∣ ⟩g , 1  π/(R )f0g1

2  
and using the same ∣ ⟩ ∣ ⟩↔g f, 1 , 0  absorption pulse at node B as actually realized 
in our experiment (Fig. 4a). π/Rf0g1

2 can be used to decrease the emission time. 
However, the absorption process requires the same time. Therefore, in our reali-
zation, there is no advantage to using this modified protocol.
Three-level single-shot readout. The state of transmon A (B) is read out with a 
gated microwave tone applied to the input port of the readout resonator Purcell 
filter at frequency νd

A = 4.778 GHz (νd
B = 4.765 GHz). As depicted in Fig. 1b, the 

output signal is routed through a set of two circulators and a combiner and then 
amplified at 10 mK with 22 dB (19.3 dB) gain using a Josephson parametric ampli-
fier (JPA). The JPA pump tone is detuned by 2 MHz from the measurement signal 
and has a bandwidth of 18.3 MHz (32 MHz). Using these JPAs we find a 
phase-preserving detection efficiency of η = 0.61 (η = 0.60) for the full detection 
line. The signal is then further amplified by a high-electron-mobility transistor 
(HEMT) at 4 K and two low-noise amplifiers at room temperature. Subsequently, 
the signal is down-converted to 250 MHz using an analogue mixer, lowpass- 
filtered, digitized by an analogue-to-digital converter and processed by a field- 
programmable gate array (FPGA). Within the FPGA, the data are digitally 
down-converted to d.c. and the corresponding I and Q quadrature values are 
recorded during a window of 256 ns in 8-ns time steps. The FPGA trigger is timed 
so that the integration window starts with the rising edge of the measurement 
pulse. We refer to a recording of the I and Q quadrature of a measurement pulse 
as a readout trace, S(t).

We prepare the transmon in states ∣ ⟩g , ∣ ⟩e  and ∣ ⟩f  25,000 times each and record 
the single-shot traces. Each trace is then integrated in post-processing, with two 
weight functions, w1(t) and w2(t), to obtain the integrated quadratures

∫ ∫= =u S t w t t v S t w t t( ) ( )d and ( ) ( )d1 2

The collected and integrated traces form three Gaussian-shaped clusters in the 
u–v plane (Extended Data Fig. 4), which correspond to the Gaussian probability 
distributions of the trace when the qutrit is prepared in one of the three eigen-
states. We model the probability distribution x = (u, v) as a sum of three Gaussian 
distributions, with density

∣ ∣∑ μ μ
Σ

Σ=
π






− − −







−x x xf A( )
2

exp 1
2

( ) ( )
s

s
s s

T 1

and estimate the parameters As, μs and Σ. On the basis of these parameters, we 
divide the u–v plane into the three regions used to assign the result of the readout 
of the qutrit state (Extended Data Fig. 4). If an integrated trace is in the region 
labelled s′, then we assign it state s′. By counting the number of traces prepared in 
state ∣ ⟩s  and assigned the value s′, we estimate the assignment probabilities 

∣∣ ⟩′ = ′R P s s( )ss  (Extended Data Fig. 4). We optimize the measurement power and 
signal integration time to minimize the measurement error probability ||I − R||1/6, 
that is, the sum of the off-diagonal elements of the assignment probability matrix 
(Extended Data Table 2) divided by the number of preparation states. The minimal 
measurement error probability is realized with an integration time of tm

A = 112 ns 
(tm

B = 216 ns) and a measurement power that results in a state-dependent photon 
number in the readout resonator between 0.1 and 2. The probabilities of correct 
assignment range from 93% to 98% for both qutrits (diagonal elements of Extended 
Data Table 2).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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The probability Ms′ to assign value s′ to a single-shot measurement of a qutrit 
in state ρ is

∣ ∣ ∣ ⟩∑ρ ρ= ′ = ′′M P s P s s( ) ( )s
s

ss

which can be expressed as M = Rρdiag where ρdiag is a vector consisting of the diag-
onal elements of ρ. The assignment probabilities M are typically estimated from 
assignment counts and a first approach to estimate ρdiag is to equate it to M. This 
approach is sensitive to measurement errors, but insensitive to state preparation 
errors. Setting ρdiag = R−1M effectively accounts for the effect of single-shot readout 
error. However, this approach relies on the ability to estimate R precisely and is 
therefore sensitive to state-preparation error. With transmon reset infidelities of 
approximately 0.2%30 and single-qubit gate errors of 0.8% (measured with rand-
omized benchmarking), state-preparation errors are expected to be lower than 
readout errors. For this reason, we chose to use the latter approach.

We  n o t e  t h a t  t h e  a s s i g n m e n t  p r o b a b i l i t y  m a t r i x 
∣∣ ⟩ ∣∣ ⟩ ∣∣ ⟩′ ′ ′ ′= =′ ′R P s s s s P s s P s s( ) ( ) ( )s s ,s s A B A B A A B BA B A B

 can be obtained as the outer 
product of the single-qutrit assignment probability matrices (compiled in Extended 
Data Table 3) and that we can extend this formalism to correct for single-shot 
readout errors and extract the state populations of a two-qutrit system.
Estimate of photon loss. We determine the photon loss lAB between node A and 
node B by emitting a photon in the coherent state ∣ ⟩ ∣ ⟩+ /( 0 1 ) 2 first from node 
A and then from node B independently, as discussed in the main text. Making use 
of the circulator between the two nodes, we detect the field of each of the emitted 
photons in the same detection line (Fig. 1). The path travelled by the two emitted 
photons towards the detector differs only by the length of the waveguide separating 
the two samples from each other. We evaluate the ratio of the integrated power of 
the detected fields

∣ ∣

∣ ∣

∫

∫

a t t

a t t

( ) d

( ) d

out
A 2

out
B 2

to extract the photon loss lAB between node A and node B. In addition, we estimate 
the photon loss between node A and B from the specifications of the individual 
elements connecting the nodes: two printed circuit boards, including connectors 
(each 2.5% ± 1%), two coaxial cables of length 0.4 m (each 4.0% ± 0.1%)44 and a 
microwave circulator (13% ± 2% according to manufacturer). With these para-
meters we estimate an accumulated photon loss between node A and node B of 
24% ± 3%, in good agreement with the measured value of lAB = 23.0% ± 0.5%.
Master-equation simulation. We model the transmons as anharmonic oscillators 
with annihilation (creation) operators b̂i (b̂i

†
)10, where the subscript i ∈ {A, B} 

denotes the emitter and receiver samples, respectively. The transfer resonator anni-
hilation (creation) operators are denoted as âi â( )i

† . Setting ħ = 1, the driven 
Jaynes–Cummings Hamiltonian for sample i is

â â

â â

ω ω Ω= + + +

+ + −

H b b t b b

g b b E b b b b
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T
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ge
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where g i
T

 denotes the coupling between the transmon and the transfer resonator, 
E i

C denotes the charging energy of the transmon and Ω Ω ω ϕ= +t t t( ) cos[ ( )]i i i i
d  

is the amplitude of the microwave drive that induces the desired coupling �g t( ). 
Because the readout resonators do not play a part in the photon transfer dynamics, 
they are omitted from the Hamiltonian; the static Lamb shifts that they induce are 
implicitly included in the parameters.

To make the effective coupling �g t( ) between the ∣ ⟩f , 0  and ∣ ⟩g , 1  states apparent 
and to simplify the simulations, we perform a series of unitary transformations on 
equation (3). We first move to a frame rotating at the drive frequency ω i

d, and then 
perform a displacement transformation β→ −b bˆ ˆ

i i
i, â â γ→ −i i

i, choosing βi and 
γi so that the amplitude of the linear drive terms is set to zero. Next, we perform a 
Bogoliubov transformation âΛ Λ→ −b bˆ cos( ) ˆ sin( )i

i
i

i
i, â âΛ Λ→ + bcos( ) sin( ) ˆ

i
i

i
i

i, 
where ∣ ∣Λ ω ω β= − / − +g Etan(2 ) 2 ( 2 )i i i i i i

T T ge C . Neglecting small off-resonant 
terms, we obtain the resulting effective Hamiltonian
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where α Λ= −E cosi i
C

4  is the transmon anharmonicity, Λ= −K E sini i i
C

4  is the 
qubit-induced resonator anharmonicity,  χ Λ Λ= −E cos sini i i i

T C
2 2  is the dispersive 

shift, ∣ ∣Δ ω Λ ω β Λ Λ ω= + − − −E gcos ( 2 )sin sin 2i i i i i i i i i i
T T

2
ge C

2 2
T d    is the resona-

tor–drive detuning and ∣ ∣Δ ω β Λ ω Λ Λ ω= − + + −E g( 2 )cos sin sin 2i i i i i i i i i i
ge ge C

2 2
T

2
T d 

is the qubit–drive detuning. In equation (4), the desired effective coupling 
β Λ Λ= −�g E 2 cos sini i i i i

C
2  between the ∣ ⟩f , 0  and ∣ ⟩g , 1  states is now made 

explicit.
Finally, moving to a frame rotating at Δ i

T for the resonator and Δ α+ /2i i
ge  for 

the transmon qubits, the combined effective Hamiltonian of the two samples is
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where ηc is the photon-loss probability of the circulator between the two samples.
Using this effective Hamiltonian, numerical results are obtained by integrating 

the master equation
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 denotes the dissipation super-operator, κ i
int the 

internal decay rates of the resonators, γ = /T1nm
i

nm
i

1 1  the decay rates of the trans-
mon qubits between the ∣ ⟩n i and ∣ ⟩m i states and γ = / − /φ T T1 (2 ) 1 ( )nm

i
nm

i
nm

i
1 2  

the dephasing rates between the ∣ ⟩n i and ∣ ⟩m i states of the transmon qubits. The 
last term in Ĥeff  combined with the resonator dissipators in the second line of the 
master equation (equation (5)), assure that the output of the emitter A is cascaded 
to the input of the receiver B45,46 through a circulator with photon loss ηc.
Quantum state and process tomography. Quantum state tomography of a single 
qutrit is performed by measuring the qutrit state population with the single-shot 
readout method, after applying the following tomography gates: Rx

ge
0 , π/Rx

ge
2, 

π/Ry
ge

2, πRx
ge, 

π/Rx
ef

2, π/Ry
ef

2, π π/( R R )x x
ge ef

2 , π π/( R R )x y
ge ef

2  and π π( R R )x x
ge ef . The 

elements of the density matrix are then reconstructed using a maximum-likelihood 
method, assuming ideal tomography gates.

To extend this quantum state tomography procedure to two-qutrit density 
matrices, we perform two local tomography gates (from the 81 pairs of gates 
that can be formed from the single-qutrit quantum state tomography gates) on 
transmons A and B, before extracting the state populations using the two-qutrit 
single-shot measurement method.

To characterize the qubit state transfer from node A to node B, we perform full 
quantum process tomography47 (Fig. 3, Extended Data Table 4). We prepare each 
of the six mutually unbiased qubit basis states32 ∣ ⟩g , ∣ ⟩e , ∣ ⟩ ∣ ⟩+ /g e( ) 2 , 
∣ ⟩ ∣ ⟩+ /g i e( ) 2, ∣ ⟩ ∣ ⟩− /g e( ) 2 and ∣ ⟩ ∣ ⟩− /g i e( ) 2, transfer the state to node 

B, then independently measure the qutrit density matrix at node A and node B 
with quantum state tomography. We obtain the process matrix from these density 
matrices through linear inversion. Quantum state tomography of the qutrit sub-
space is required to characterize the residual population in ∣ ⟩f  after the qubit state 
transfer, which is caused mainly by decay from the ∣ ⟩f  level in combination with 

πRef  swapping ∣ ⟩e  with ∣ ⟩f  populations. The density matrices that we obtain have 
a non-unit trace in the qubit subspace, and so does the qubit state transfer process 
matrix. Consequences of that observation are discussed below for the example of 
the Bell-state density matrix.
Two-qutrit entanglement. Owing to a residual population of 3.5% of the ∣ ⟩f  level 
of the transmons after the entanglement protocol, the entangled state cannot be 
described rigorously by a two-qubit density matrix. To be concise, we represent 
the reconstructed two-qutrit entangled state ρ3⊗3 (Extended Data Fig. 5, Extended 
Data Table 5) by a two-qubit density matrix ρm that consists of the two-qubit ele-
ments of ρ3⊗3. This choice of reduction from a two-qutrit to a two-qubit density 
matrix conserves the state fidelity ⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩

∣ ⟩
ψ ρ ψ ψ ρ ψ= =

ψ
+ + +

⊗
+

+F s
m 3 3

  ; how-
ever, ρm has a non-unit trace. In addition, this reduction method gives a  
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conservative estimate of the concurrence ρC( )m  compared to a projection of ρ3⊗3 
on the set of physical two-qubit density matrices.

To verify the three-level bipartite entanglement, we use the computable cross-
norm or realignment criterion48, which is well defined for multi-level mixed entan-
gled states. This criterion states that a state ρ must be entangled if λ∑ > 1k k , with 
ρ λ= ∑ ⊗G Gk k k k

A B and Gk
A(B) an orthonormal basis of the observable spaces of 

HA(B). We obtain λ∑k k = 1.612 ± 0.003 with the measured entangled state ρ3⊗3, 
providing unambiguous evidence for the existence of entanglement of the prepared 
state.
Data availability. The data that support the findings of this study are available 
within the paper.
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Extended Data Fig. 1 | Overview of remote-entanglement experiments. 
a, Entanglement generation rate Γent. b, CHSH–Bell inequality49,50 
correlation S. c, Concurrence C . d, Entangled state fidelity F s. The 
experiments are grouped by physical system: atomic ensembles 
(‘ae’)12,21,51–53, trapped ions (‘ion’)15,17,54–56, single-atom Bose–Einstein 
condensate (‘sab’)57, vibrational state of diamonds (‘vs’)18, rare-Earth-
doped crystals (‘rec’)58, single atoms (‘sa’)19,22, nitrogen–vacancy centres 
(‘nv’)20,36,59,60, superconducting circuits (‘sc’)14,23,24,35,61 or quantum dots 
(‘qd’)16,62. The colours indicate different implementations: probabilistic 
unheralded (red), probabilistic heralded (blue), guaranteeing a 
deterministic delivery of an entangled state at a pre-specified time (yellow) 
or fully deterministic (green). The plot markers indicate different schemes 
for realizing the remote interaction: measurement-induced (triangles), 
single-photon (crosses) or two-photon (squares) interference and 
detection, direct transfer (diamond) or direct transfer with shaped photons 
(circles). The lines in c are bounds34 on the concurrence C  calculated from 
measured CHSH–Bell correlations S. The shaded column highlights this 
study.
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Extended Data Fig. 2 | Micrograph of sample and energy-level diagram. 
a, False-colour micrograph of a sample of the same design co-fabricated 
with the one used for node A. The circuit elements are colour coded as in 
Fig. 1: transfer circuit (yellow), readout circuit (grey), transmon (orange) 
and input lines of the transmon and readout circuit (blue). The input 
to the transfer circuit is used as an auxiliary port to perform resonator 
spectroscopy in transmission. The inset shows a scanning electron 
microscopy (SEM) micrograph of the asymmetric SQUID with a ratio of 
5:1 between the areas of the Josephson junctions used in the transmon.  
b, Schematic of the energy-level diagram of the coupled transmon-transfer 
resonator system. The numerical values of all parameters are listed in 
Extended Data Table 1.
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Extended Data Fig. 3 | a.c. Stark shift and Rabi rate of the ∣ ⟩ ∣ ⟩↔f g, 0 , 1  
transition. a, b, Measurement (filled circles) of the a.c. Stark shift Δf0g1/
(2π) (a) and the effective coupling / π�g (2 )  of the ∣ ⟩ ∣ ⟩↔f g, 0 , 1  transition 
(b) versus drive amplitude εf0g1 for sample A (blue) and B (red). The solid 
lines in a (b) are quadratic (linear) fits to the data30.
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Extended Data Fig. 4 | Qutrit single-shot readout characterization.  
a–f, Scatter plot of the measured integrated quadrature values u and v for 
qutrit A (a–c) and B (d–f) when prepared in state ∣ ⟩g  (blue; a, d), ∣ ⟩e  (red; 
b, e) and ∣ ⟩f  (green; c, f). We plot only the first 1,000 of the 25,000 

repetitions for each state-preparation experiment. The dashed lines are the 
qutrit-state discrimination thresholds used to obtain the assignment 
probabilities (numbers, which are also listed in Extended Data Table 2).
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Extended Data Fig. 5 | Characterization of entangled states in a  
two-qutrit basis. a–c, Two-qutrit state tomography: real (a) and imaginary 
(b) part of the density matrix and expectation values of the Gell–Mann 
operators λk (c). The ideal Bell state ∣ ⟩ψ+  and numerical master-equation 
simulation are depicted as grey and red outlines, respectively. λ0 denotes 

the identity operation, λ1,2,3 denote the Pauli matrices σx y z, ,
ge  in the qubit 

subspace, λ4,5 correspond to σx y,
gf , λ6,7 correspond to σx y,

ef  and λ8 is the 
diagonal matrix σ σ+ /( 2 ) 3z z

ge ef . The trace distance between the 
measurement and the simulation is 0.107.
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Extended data table 1 | summary of device parameters for nodes A and B
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Extended data table 2 | Probabilities of identifying the prepared 
states (columns) as the measured states (rows) for qutrits A and B

The diagonal elements show correct identification; the off-diagonal elements show  
misidentifications.
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Extended data table 3 | Probabilities of identifying the prepared 
input states (columns) as the indicated output states (rows) for all 
possible tuples of two-qutrit basis states

The diagonal elements show correct identification; the off-diagonal elements show  
misidentifications.
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Extended data table 4 | Numerical values of the experimentally obtained process-matrix elements of the qubit state transfer

The absolute value of this process matrix is depicted in Fig. 3 as coloured bars.
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Extended data table 5 | Numerical values of the experimentally obtained density-matrix elements of the two-qubit remote-entangled state 
in a two-qutrit basis

The real and imaginary parts of this density matrix are depicted as coloured bars in Extended Data Fig. 5a and b, respectively.
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