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PHYSICS

Qubit parity measurement by parametric

driving in circuit QED

Baptiste Royer'#, Shruti Puri?, Alexandre Blais'>

Multiqubit parity measurements are essential to quantum error correction. Current realizations of these measurements
often rely on ancilla qubits, a method that is sensitive to faulty two-qubit gates and that requires notable experimental
overhead. We propose a hardware-efficient multiqubit parity measurement exploiting the bifurcation dynamics of a
parametrically driven nonlinear oscillator. This approach takes advantage of the resonator’s parametric oscillation thresh-
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old, which depends on the joint parity of dispersively coupled qubits, leading to high-amplitude oscillations for one parity
subspace and no oscillation for the other. We present analytical and numerical results for two- and four-qubit parity
measurements, with high-fidelity readout preserving the parity eigenpaces. Moreover, we discuss a possible realization
that can be readily implemented with the current circuit quantum electrodynamics (QED) experimental toolbox. These
results could lead to substantial simplifications in the experimental implementation of quantum error correction and

notably of the surface code.

INTRODUCTION

Quantum error correction (QEC) protects fragile quantum information
from decoherence and will play a vital role in large-scale quantum com-
putations. Typical QEC codewords are defined in a given eigenspace of
multiple parity operators. When an error occurs, the state of the qubits
leaves the codespace, something that is revealed by measuring the parity
operators. Because these measurements have to be performed re-
peatedly, it is crucial that they be of high fidelity. Moreover, to avoid
introducing errors, these measurements should leave the parity sub-
spaces intact, that is, states within a given parity subspace should re-
main unperturbed by the measurement.

In practice, parity measurement strategies can be broadly classified
as direct or indirect. The latter approach, used in recent experimental
demonstrations of small-scale error correction (1-3), relies on a series of
two-qubit entangling gates between the data qubits and an additional
ancilla qubit that is subsequently measured (1-7). Drawbacks of this
strategy are the accumulation of errors due to faulty two-qubit gates
and the experimental overhead that could become an impediment to
the implementation of larger QEC codes.

Faulty gates and overhead issues can be addressed by using direct
parity measurements. The central idea there is to map the parity informa-
tion onto the state of a common mode coupled to the data qubits and
which is then measured. For example, a possible strategy to realize direct
measurements of two-qubit parity in circuit quantum electrodynamics
(QED) is to monitor the response of a resonator dispersively coupled
to the qubits. In this situation, the frequency of the oscillator, and there-
fore its response to a drive, becomes dependent on the joint-qubit parity
(8-10). A challenge with this method is to design and implement a
protocol that preserves the parity eigenspaces. In other words, in an ideal
parity measurement, the common mode and its environment should gain
information only about which parity subspace (even or odd) the qubit
state belongs to. Possible improvements to overcome this eigenspace
dephasing were introduced in (11-14) but require quantum-limited
amplifiers with unit efficiency (11, 12) or high-efficiency single microwave
photon detectors (13, 14).
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Here, we introduce a scheme for direct, high-fidelity parity measure-
ments that leaves the parity subspaces intact. Our approach is based on
dispersively coupling multiple qubits to a nonlinear resonator driven by
a two-photon parametric pump. This situation leads to a qubit parity-
dependent parametric oscillation threshold. When the qubits are in the
even subspace, the amplitude of the two-photon drive is below the para-
metric oscillation threshold and the resonator state remains close to
vacuum. On the other hand, in the odd subspace, the parametric drive is
above threshold and the resonator bifurcates to a high-amplitude state.
We show that, by monitoring the amplitude of the resonator output
field with standard homodyne detection, it is possible to infer the parity
of the qubit ensemble with high fidelity while preserving both even and
odd parity subspaces. We show that the photon number in the high-
amplitude state can be increased by reducing the resonator nonlinearity,
leading to an increased signal-to-noise ratio (SNR) at constant eigen-
space dephasing. These ideas are generalized to more than two qubits
by using a multitone parametric drive targeting the multiple dispersive
shifts corresponding to the same parity subspace.

These ideas can be applied to different types of qubits coupled to
oscillators. For concreteness, here, we present a circuit QED implementa-
tion (15, 16) based on transmon qubits (17) that can easily be imple-
mented with the current circuit QED toolbox (18, 19).

RESULTS AND DISCUSSION

Parametrically driven nonlinear resonator

Before introducing our proposal for multiqubit parity measurements,
we present its main component: a resonator of frequency o, and Kerr
nonlinearity K. In the presence of a resonant parametric two-photon
drive &, of frequency @, = 2w, and in a frame rotating at o, this system
is described by the Hamiltonian (% = 1)

fataa (1)

where dand d" denote the resonator’s annihilation and creation operators,
respectively. When the drive is turned off, £, = 0, the steady state of the
system is the vacuum state. Below the parametric oscillation threshold,
Ep < /2, with « the single-photon loss rate of the resonator, this system
corresponds to the widely used Josephson parametric amplifier (JPA)
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(19) with a vacuum-squeezed steady state. Above &, > /2, this system
bifurcates into one of two states of equal amplitude but opposite phases
characterized by (d)ss = £ 0, with (20, 21)

Because both the Hamiltonian Hy and the dissipation are symmetric
under the transformation @ — — d (see Methods), in steady state, the
resonator occupies either of the two states with equal probability,
leading to a null average displacement of the resonator field. However,
a single shot homodyne measurement of the resonator steady state will
always reveal a large amplitude |o,|. Once the resonator has latched
onto one of its two steady states, tunneling to the other is highly sup-
pressed for large values of |0,| (21-23). In the limit where the two-
photon drive is well above the parametric oscillation threshold £, >
K/2, the two steady states are coherent states.

If the parametric drive is detuned such that o, — /2 = &, the
system Hamiltonian becomes

Hps=0a'a + Hy (4)

At large detunings 8* > &2 — k?/4, the vacuum-squeezed state is
a steady state of the system, with the squeezing axis governed by
the sign of the detuning § (21). The degree of squeezing decreases
as the ratio |8|/£,, increases and, for [3| > &, the steady state is very
close to the vacuum state.

Two-qubit parity measurement

We now turn to the core of our proposal, first considering two-qubit
parity measurements. More precisely, we aim to distinguish the odd
subspace spanned by the two-qubit states {|01), |10)} from the even sub-
space spanned by {|00), | 11)}. To this end, we take two qubits dispersively
coupled with equal strength y to the parametrically driven nonlinear
resonator. In a frame rotating at o,, this system is described by the
Hamiltonian

ﬁqu = (6. +6p)a"a + Hy (5)

where 6; is the Pauli Z operator for the ith qubit. Under this dispersive
coupling, the resonator frequency becomes qubit state dependent. We
note that single-qubit readout in a similar setup was proposed in (20)
and experimentally demonstrated in (18).

The above Hamiltonian, combined with the discussion of the pre-
vious section, immediately suggests an approach for multiqubit parity
measurement. In Eq. 5, the qubits induce a dispersive shift of the res-
onator frequency that will change the parametric oscillation threshold
of the two-photon pump in a parity-dependent manner. More precisely,
if the state of the qubit lies in the odd subspace, |y,) = ¢o1|01) + ¢10[10),
the two dispersive shifts cancel, as illustrated in Fig. 1A. With §, = 0, the
system then behaves as a resonantly driven nonlinear resonator. Con-
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sequently, in the odd subspace, the resonator bifurcates to a large-
amplitude state, as illustrated in Fig. 1B. The combined qubit-resonator
system thus evolves from the initial state, |¥'(0)) = |y,,) ® |0), to one of
the two steady states |'\P(t)) = [Wo) ® | £ a,). The phase of the oscilla-
tions, Arg[(d),] = 6,, 6, + T, is independent of the state of the qubits
within the odd subspace. In this situation, monitoring the output field of
the resonator using standard homodyne measurement of the Xo =
<&e’i9° + &Tei9°> quadrature reveals a large photon population in
the resonator, |(4)|” = |0,,|*. Note that during the homodyne measure-
ment, the field can, in principle, switch between the two steady states +
0., something that can reduce the measurement fidelity. However, these
switching events are rare for large |o,| (21-23).

On the contrary, in the even subspace, |We) = cpo|00) + ¢1|11), the
dispersive shifts of the two qubits add up and the two-photon drive is

off-resonant by 8. = + 2. For dispersive shifts |2y|>> 4 / E; — x2/4(20),

the vacuum state remains a stable steady state even after activation of
the two-photon drive, as schematically depicted in Fig. 1B. That is, the
system remains in the initial state, |w.) ® |0). In this case, tracking the
output of the resonator with homodyne measurement results in a null
amplitude |(d)| = 0.

In practice, because the dispersive shifts are finite, the resonator state
will deviate from vacuum when the qubits are in the even subspace
and will become slightly vacuum squeezed under the action of the off-
resonant two-photon drive. The axis of squeezing, schematically repre-
sented in the inset of Fig. 1B, depends on the sign of the parametric
pump detuning and is therefore different for the two even states |00)
and |11). This results in slow dephasing within the even parity subspace
at rate y. = K(ci'p/Z)()2 (see Methods). This dephasing can be made
small by limiting the amplitude of the two-photon drive £,/2y < 1.
Crucially, this does not limit the SNR of the measurement because |0,,|
can be made large by reducing the resonator nonlinearity, K, as shown
by Eq. 2. In other words, the measurement SNR and the eigenspace
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Fig. 1. Two-qubit parity measurement. (A) Qubit state-dependent frequency of
the resonator. The parametric two-photon drive (orange) is resonant when the qubits
are in the odd subspace, 8, = 0 (blue), and strongly detuned when the qubits are in the
even subspace, 8, = + 2y (red). (B) Resonator phase space under two-photon driving. In
the odd subspace, the resonator bifurcates in either + o, (blue), while in the even sub-
space, it stays close to vacuum (red). The qubit parity is inferred by monitoring the
amplitude of the field leaking out of the resonator. Inset: In the qubit even subspace,
fluctuations are increased in a qubit state—-dependent quadrature, leading to slow de-
phasing inside the subspace. (C) Possible circuit QED realization of the two-qubit parity
measurement. Transmon qubits (red) are capacitively coupled to an off-resonant, non-
linear resonator (green).
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dephasing rate y. can be optimized separately. This is in stark con-
trast with schemes based on coherent drives where, for a fixed dis-
persive coupling , the eigenspace dephasing increases with the SNR
(89, 11).

To numerically evaluate the performance of this measurement
scheme, we simulate the evolution generated by Eq. 5 under a stochastic
master equation (see Methods) (24), which implicitly includes switching
events between the two resonator steady states in the odd qubit parity
subspace. We first compute 2000 trajectories where the qubits are
initialized in the odd (even) subspace. For each trajectory, we inte-
grate the resulting homodyne current and categorize it as odd (even)
if the absolute value of the signal is above (below) an optimized thresh-
old value. The resulting measurement fidelity F,,(t) = 1/2[P(e|e) +
P(0|0)] is shown as a function of time in Fig. 2A. Starting at F,,,(0) =
0.5 corresponding to a random parity guess, the fidelity steadily in-
creases toward 1. For the realistic parameters K/x = 0.175, x/x = 25,
Ep/x = 2.5, and 1 = 5/x, we find a large measurement fidelity F,,, =
99.9%. In these simulations, the steady-state photon number (in the
odd subspace) is set to |a,|* ~ 14, leading to a high SNR once the
resonator reaches steady state. For these parameters, we observed
no switching events between *o,, and, consequently, the measure-
ment time is limited by the bifurcation time to the steady state,
which scales as ~ 1/(£}, — x/2) (see Methods). This could potentially
be shortened by shaping the two-photon pulse £,(t) or with further
parameter optimization. Moreover, the measurement fidelity might
be improved further by using more sophisticated signal analysis
methods such as machine learning (25).

Starting with an unentangled superposition of the odd and even
states, this parity measurement collapses the qubits to an entangled Bell
state within one of the two subspaces. To study the creation of entan-
glement and assess eigenspace dephasing, we initialize the system in an
unentangled state with both qubits in the +1 eigenstate of 6, and the
resonator in the vacuum state, | + + ) ® |0). We again compute 2000
realizations of the evolution and register the qubit state conditioned on
the measurement record, p... Figure 2B shows the concurrence of p. asa
function of the measurement time 7. From the initial unentangled state,
the qubits are rapidly projected on one of the two parity subspaces,
leading to a high concurrence at moderate times. At longer times, the
concurrence conditioned on an odd parity measurement approaches
unity and, in the even subspace, it slowly decreases due to the slow
dephasing y. (not apparent on the scale of Fig. 2B). To study the
properties of the measurement process only, we considered ideal qubits
(T}, T, — o) and perfectly matched dispersive shifts. In practice, these
imperfections will cause the concurrence to slowly decrease and, in the
case of relaxation errors during the measurement (T), will decrease
the measurement fidelity F ... Using realistic relaxation times for the
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Fig. 2. Measurement fidelity and concurrence. (A) Measurement fidelity as a
function of time. (B) Concurrence conditioned on the measurement record being even
(red) or odd (blue). The parameters are K/k = 0.175, x/k = 25, and Ep/x = 2.5 for both
panels.
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qubits, T = 50 ps, we compute a measurement fidelity 0of 98.2% in t=
1.56 us (see the Supplementary Materials).

After the measurement, the resonator is reset by turning off the
two-photon drive and waiting for a few resonator lifetimes 1/x or,
alternatively, by adiabatically ramping down the parametric drive (21).
Because the resonator ends up in a state close to a coherent state, this
process can also be sped up using active reset techniques (26-28).

Four-qubit parity measurement

We now turn to a generalization of the above approach to four qubits.
This is motivated by the many QEC codes that require frequent parity
measurements of more than two qubits. This is the case, for example, of
the surface code that relies on four-qubit parity measurements (29). Be-
cause of the larger Hilbert space, it is now challenging to extract the
measurement fidelity and study the entangle creation from numerical
simulations. As a result, in this section, we focus on the underlying con-
cepts and on analytical results.

Building on the results for the two-qubit scenario presented above,
we now consider four qubits dispersively coupled to a single nonlinear
resonator, where we aim to distinguish between two parity subspaces
that are eightfold degenerate. In the even subspace, the dispersive
shift can take three different values 8. = 0, + 4y (blue Lorentzians),
while in the odd subspace it can take two different values 8, = + 2y
(red Lorentzians), as schematically illustrated in Fig. 3A. Accordingly, a
naive generalization of the two-qubit scheme presented above is to ex-
cite the resonator with a two-tone two-photon drive £ (20) ot frequencies
2(o,  2y), as shown by the two sets of orange double arrows in Fig. 3A.
As in the two-qubit case, this two-tone drive leads to a situation where
the parity information is encoded in the amplitude of the resonator
field: A high amplitude corresponds to the odd subspace, and a null
amplitude corresponds to the even subspace. When the two tones of
the two-photon drive are of equal amplitude, the amplitude of the
output field does not depend on the two possible dispersive shifts within
the odd subspace 3, = + 2. However, the frequency of the output field
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Fig. 3. Four-qubit parity measurement. (A) Top: Nonlmear resonator qubit state—
dependent frequency. A two-tone two- photon drive Sp is sent to the resonator at
8 = £ 2y (orange double arrows). Bottom: Resonator photons are converted to a filter
frequency (purple) via a two-tone coupling modulation g(t) (dark green). (B) Possible
circuit QED realization. Transmon qubits (red) are capacitively coupled to a high-Q,
nonlinear resonator (light green), which is coupled via a tunable coupler (dark green)
to a low-Q filter mode (purple). A two-tone microwave drive on the nonlinear resonator
(orange) induces the two-photon drive, while the coupling modulation is induced by
the combination of a drive on the nonlinear resonator and a two-tone drive on the filter
mode (dark green).
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directly depends on 3, leading to fast dephasing inside the odd parity
subspace at a rate y, = k|0,,|*. A possible solution introduced for linear
drive schemes (13) and also applicable here is to use such a two-tone
drive £2¢) in combination with a detector that is sensitive exclusively
to the amplitude of the output field, that is, a broadband, high-efficiency
photon detector. However, the realization of this type of detector in the
microwave domain remains challenging. Alternative proposals also
offer solutions to this frequency distinguishability problem but at the
cost of higher experimental complexity (13, 30-33).

Here, we introduce a simpler, hardware-efficient approach to four-
qubit parity measurements where the nonlinear resonator is coupled to
a low-Q “filter” resonator of frequency «y through a tunable coupling
element. As we show, this effectively implements a “frequency erasure”
channel that converts resonator photons at o, + 2); to a single frequency
o As a result, only the parity information remains in the output field,
that is, the output field contains no information about the different dis-
persive shifts §, within the odd subspace. Crucially, this allows us to
infer multiqubit parity using standard homodyne detection without
inducing dephasing within that subspace.

To implement this frequency erasure channel, we consider a two-
tone modulation g®® of the resonator-filter coupling at frequencies
A¢ + 2, where A¢ = o, — ¢ This multitone coupling modulation is
schematically illustrated in Fig. 3A (dark green arrows), where one
modulation tone (full lines) brings the § = + 2y resonator peaks
(blue) in resonance with the filter mode (purple), while the other
coupling modulation tone (dashed lines) is off-resonant by F 4y and
has only a small effect. Irrespective of the dispersive shift & = + 2y, res-
onator photons are then converted to a single frequency wy. In a frame
rotating at w, * 2y for the resonator, ¢ for the filter resonator and ne-
glecting for now off-resonant terms, the above situation is described by
the Hamiltonian (see Methods)

(221 A et s
it = fix+8 [af +a'f] (6)

where f and f " denote the annihilation and creation operators, respec-
tively, of the filter mode.

Equation 6 crucially shows that the resonators’ dynamics does
not depend on the state of the qubits within the odd qubit subspaces,
3, = £ 2. Consequently, similar to the two-qubit case, four-qubit parity
information can be inferred without eigenspace dephasing by monitor-
ing the amplitude of the output field of the filter mode using homodyne
detection.

Expanding further the simple analysis leading to Eq. 6 reveals
that, in the odd parity subspace, the filter also emits in a qubit state—
dependent sideband @y + 4y, as illustrated by the dark green dashed
lines in Fig. 3A. Consequently, a small portion of the “which-frequency”
information is present in the output field, causing a slow dephasing
atarate Y™ = w0, |’ /(1 4 (8y/x¢)?) inside the odd subspace where
Keff = g2 /x¢ (see Methods). Taking a measurement time k.4t = 5, a
steady-state photon number |a,|* = 10, and a ratio y/x¢ = 20, this leads
to an approximate error probability Yt = 0.2%, which is below the
threshold for QEC with the surface code (34). Internal photon loss of
the nonlinear resonator at a rate k;,, will also induce dephasing inside
the odd subspace at a rate Y™ = icyc| 0t 2, something that should ideally
be minimized.

The mechanism responsible for this frequency erasure is the align-
ment of one nonlinear resonator sideband with the filter frequency for
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all odd parity qubit states. In the approach described above, we pro-
posed to activate these sidebands via a multitone modulation of the cou-
pling between the nonlinear resonator and the filter. An alternative
approach is to modulate the nonlinear resonator frequency. This leads
to FM (frequency modulation) sidebands that can be used, for example,
to perform entangling gates between superconducting qubits (35).
Moreover, we considered above that all qubits had the same dispersive
coupling  to the nonlinear resonator. As long as the absolute value of
the dispersive coupling stays homogeneous, its sign could vary among
the qubits, y — — , with sole consequence to exchange even and odd in
the discussion above. Last, an added advantage of introducing the filter
mode is that it acts naturally as a Purcell filter for the qubits (36).

Circuit QED implementation

Realization of the above ideas is natural in different quantum sys-
tems, and as a concrete example, we now describe a possible circuit
QED (15, 16) implementation with transmon qubits (17). Figure 1C
shows the circuit for a two-qubit parity measurement, where two trans-
mon qubits (red) are capacitively coupled to a nonlinear quarter-
wavelength resonator (green). Taking the transmons to be far detuned
from the resonator, the qubit-resonator coupling takes the dispersive
character shown in Eq. 5. The dispersive couplings y are adjusted
to be of equal magnitude, and we assume the transmon qubits to
be detuned from each other to avoid qubit-qubit interaction me-
diated by the resonator. The resonator nonlinearity K is induced,
in part, by a superconducting quantum interference device (SQUID)
located at the end of the resonator and, in part, by the qubits. The two-
photon drive is induced by modulating the SQUID’s flux at twice the
resonator frequency (orange). In short, the circuit that we propose con-
sists of two transmon qubits dispersively coupled to a JPA parametri-
cally driven above threshold and is well within reach of current
experimental capabilities. Alternatively, the need for flux modulation
can be removed by replacing the SQUID by a three-wave mixing ele-
ment (37).

Figure 3B shows a possible implementation of the four-qubit parity
measurement. Similarly to the two-qubit version, it consists of a non-
linear, quarter-wavelength coplanar resonator (green) capacitively
coupled now to four transmon qubits (red). To erase the which-frequency
information, the nonlinear resonator is coupled to a linear filter resonator
(purple) by a tunable coupling element (dark green). Multiple circuits can
be used to generate the necessary coupling modulation (38-41), and here,
we follow (41). With this approach, the two-tone coupling modulation
g% is activated by driving the linear resonator (purple) with a three-
tone coherent drive on the filter mode (dark green).

Surface code implementation

Figure 4 shows a schematic representation of what our proposed
hardware-efficient implementation of the surface code could look like,
here shown for nine qubits. Red circles represent data qubits, and non-
linear resonators are implemented using the circuit of Fig. 3B. Out-
of-plane interconnects, represented by squares, allow us to address
all elements in this planar architecture. Single-qubit readout is per-
formed through the yellow resonators, and single-qubit control is
performed through the brown lines. Light gray regions represent
measurement of G, error syndromes, while dark gray regions repre-
sent measurement of 6, error syndromes. The latter are realized by
applying Hadamard gates before and after the parity measurement.
In contrast to architectures based on indirect parity measurements
requiring 17 qubits, only 9 data qubits are necessary here.
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Fig. 4. Schematic for a possible circuit QED realization of the nine-qubit surface
code. Qubits are represented by red circles, and out-of-plane interconnects are repre-
sented by squares. Single-qubit readout and control are achieved through the yellow
resonators and brown lines, respectively. Parity measurements are performed using
the circuit of Fig. 3B, here represented with half-wavelength nonlinear resonators. 6,
error syndromes are measured in light gray regions, while &, error syndromes are
measured in dark gray regions.

To summarize, we have introduced a scheme for qubit parity readout
exploiting the bifurcation dynamics of a nonlinear oscillator. For two
qubits, this leads to a high-fidelity readout that preserves the parity
eigenspaces. We also presented an extension of this scheme to the parity
readout of four qubits using a multitone parametric drive in combina-
tion with a multitone modulation of the coupling between a nonlinear
resonator and a filter mode. Both schemes have a simple circuit QED
implementation that could be realized with current devices. This work
paves the way for a hardware-efficient implementation of QEC codes
such as the surface code in circuit QED.

METHODS

Stability of resonator vacuum state

When parametrically driven on resonance, the classical equations
of motion for the field quadratures of the nonlinear resonator x =
(@ +a"/2and y = - i(a — a"y/2 are given by

i=K(

+y%)y — 5y——x (7)

. K
y =K@ +y")x = Epx— 2y (8)

Computing the eigenvalues of the evolution matrix linearized
around vacuum (x, y) = (0, 0), we obtained A, = * &, — /2. Small fluc-
tuations around vacuum will thus make the system leave this unstable
point on a time scale given by A;! = (£, —1/2)""

Dephasing in the two-qubit parity measurement

In the odd qubit subspace, the dispersive shifts shown in Eq. 5 cancel out
and the qubits decouple from the resonator. Consequently, there is no
dephasing in that subspace. On the other hand, in the even subspace, the
two-photon parametric drive leads to a qubit state—dependent resonator
field. More precisely, and as schematically illustrated in the inset of
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Fig. 1B, when the dispersive shifts are much larger than the two-photon
drive and the resonator decay rate, 4y, >> &£, ¥, the resonator field is in
the slightly squeezed state |re’®). The squeezing parameter is r ~ & ol 4%
and the squeezing angle 8 = 0 or 7t/2 is qubit state dependent (19). The
overlap of these squeezed pointer states is (r|re™2) = 1/+/cosh2r. The
corresponding measurement-induced dephasing in this subspace is
then roughly given by Y. ~ x(1 — (r|re™?)) ~ k(E,/4y)” for small . A
more rigorous derivation of this rate can be found in the Supplementary
Materials.

Simulations

To model the back action of the homodyne measurement chain, we
simulated multiple realizations of the evolution of the system under
the stochastic master equation (24)

dp = —i[H,p|dt + xDlalpdt + v/xH[ae ™ ]pdW  (9)

where Dale = =aea’ — 1 2{uTa o} is the d1551pat10n superoperator
and H[M]e = Me + oM’ — Tr[Me + oM ]- is the homodyne mea-
surement back-action superoperator. Moreover, dW is a Wiener incre-
ment, which has statistical properties E[dW] =0, E [dW?] = dt, with
E[e] denoting the ensemble average. The results of Fig. 2 were ob-
tained using Eq. 9 with the Hamiltonian Eq. 5. Equation 9 shows that
the Hamiltonian and dissipation (first two terms) are symmetric under
the transformation @ — — 4. This symmetry is broken by the homo-
dyne measurement back action (last term), that is, by conditioning the
state on the measurement record. In other words, although the aver-
age displacement of the resonator is null, conditioning the state on the
measurement record makes it collapse onto + 0.

The homodyne current resulting from the stochastic master equa-
tion is given by j, (t) = v/x(@e ™ + a'e®) 4 dW/dt. For a given
measurement time 7, the dimensionless integrated signal is given by
s(%) = VT3t jy (1)

To focus solely on the measurement scheme itself, we considered a
homodyne measurement chain with unit efficiency. Because of the large
number of photons in steady state, |0,,|*, the measurement time and
fidelity are mostly limited by the bifurcation time. As a result, adding
imperfections to the measurement line affects the measurement time in
a negligible manner. Moreover, for the parameters considered in the
main text, the output power to amplify is below the 1-dB compression
point for state-of-the-art amplifiers (42).

Effective four-qubit Hamiltonian

As mentioned in the main text, we consider four qubits dispersively
coupled to a nonlinear resonator under a two-tone two-photon drive
€§)Z‘° () = Epcos[2(w, — 2x)t] + Epcos2(w; + 2x)t]. Coupling the
nonlinear resonator to a harmonic ﬁlter through a two-tone modulation
g(z‘”) = g cos[(Ag + 2x)t] + g cos[(A¢ — 2)t], this system is described by

the Hamiltonian

+

ey

4
H4qb = oa a+x2csz,a a——a'ataa + f
+

Eézw()[anra a"l+g®laf +a’f]  (10)

For the circuit of Fig. 3, this two-tone coupling modulation is ob-
tained by driving the filter mode with a three-tone linear drive at

50f 7
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frequencies 0,1, M, W 3. Setting w4; — 04 = Af— 2y and 04 — Oy =
Ag + 2y results in the desired two-tone modulation as well as AC-Stark
shifts of the resonator and filter mode frequencies (see the Supplemen-
tary Materials).

To go from Eq. 9 to Eq. 6 of the main text, we restrict the qubit state
to the one-excitation subspace spanned by {|0001), |0010), |0100),
|1000)}, leading to a dispersive shift 8, = — 2). We then go to a frame
rotating at ®, — 2y for the nonlinear resonator and at o for the filter
mode, and neglecting fast-rotating terms, Hy, takes the form

(= E K . N
LY = = (aa —Sa'a'aa+ a*aﬁ) +§ [af* + &Tf} +

% |:ei8xta& +ei8xt&T&T:|+

& ewaf 4 eatf] i

The first two terms correspond to the effective Hamiltonian Eq. 6.
The third term is the off-resonant two-photon drive tone and has a
small effect on the resonator. The fourth and final term leads to a small
photon emission in the filter sideband ¢ — 4y and, consequently, to a

dephasing rate x.ga|*/(1 + (8)/x)°) (see the Supplementary Materials).
The effective Hamiltonian H i;bsz) in the three-excitation subspace with

dispersive shift 3, = 2y is obtained in the same way.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/11/eaau1695/DC1

Supplementary Text

Fig. S1. Schematic representation of the steady state of a parametrically driven nonlinear
resonator in parameter space.

Fig. S2. lllustration of the resonator phase space when the qubits are in the even subspace.
Fig. S3. lllustration of the resonator phase space when the qubits are in the odd subspace.
Fig. S4. Possible circuit QED implementation of the two-qubit parity measurement.

Fig. S5. A possible circuit QED implementation for the four-qubit parity measurement.

Fig. S6. Fidelity of the two-qubit parity measurement as a function of measurement time for
different decay times of the qubits.
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