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We characterize a fluxonium qubit consisting of a Josephson junction inductively shunted with a NbTiN
nanowire superinductance. We explain the measured energy spectrum by means of a multimode theory
accounting for the distributed nature of the superinductance and the effect of the circuit nonlinearity to all
orders in the Josephson potential. Using multiphoton Raman spectroscopy, we address multiple fluxonium
transitions, observe multilevel Autler-Townes splitting and measure an excited state lifetime of T1 ¼ 20 μs.
By measuring T1 at different magnetic flux values, we find a crossover in the lifetime limiting mechanism
from capacitive to inductive losses.

DOI: 10.1103/PhysRevLett.122.010504

The development of superinductors [1–5] has received
significant interest due to their potential to provide noise
protection in superconducting qubits [6–8]. Moreover,
inductively shunted Josephson junction based supercon-
ducting circuits are known to be immune to charge noise
[1], and to flux noise in the limit of large inductances
[9–12]. Despite remarkable progress, the superinductances
that have been so far reported in the literature are still small
compared to those needed for qubit protection [7,8,11,12].
A thin-film nanowire built from a disordered super-

conductor constitutes an alternative approach to reach the
required superinductance regime. High-kinetic inductance
superconducting materials, such as NbTiN and TiN, have
been studied in the context of microwave detectors [13–15],
parametric amplifiers [16–18], and rfSQUID qubits [19,20].
In a nanowire, the inertia of the Cooper pair condensate is
manifested as the kinetic inductance of the superconducting
wire, and can be expressed as

Lk ¼
!

m
2e2ns

"!
l
wd

"
; ð1Þ

where m is the free electron mass, e is the electron charge,
and ns is the density of Cooper pairs [14,21]. The second
bracketed term in Eq. (1) is a geometric factor dependent on
the length l, width w, and thickness d of the nanowire. By
choosing a disordered superconductor with a low ns and
fabricating a sufficiently long and thin wire, the kinetic
inductance can be made large enough to reach the super-
inductance regime. In this regime, the presence of stray
ground capacitance and the large kinetic inductance lower
the frequencies of the self-resonant modes of the device. As
is the case of long junction arrays [2], the multimode
structure of the device needs to be taken into account to
produce an accurate theoretical description [22,23].

In this Letter, we demonstrate a fluxonium circuit
integrating a NbTiN nanowire superinductance. We char-
acterize the effect of the nanowire modes on the qubit
spectrum with a multimode circuit theory accounting for
the distributed nature of the superinductance. Importantly,
and in contrast to previous approaches tailored to weakly
anharmonic qubits [24,25], our theory incorporates the
circuit nonlinearity to all orders in the Josephson potential.
Such difference allows us to treat the strong anharmonicity
of the fluxonium qubit efficiently, and to retain the effect of
charge dispersion in the multimode Hamiltonian.
A simplified circuit schematic of the nanowire super-

inductance fluxonium is shown in Fig. 1(a). In contrast to
standard fluxonium devices, where a lumped element
inductor shunts the Josephson junction [1,3,4,26–28],
our circuit model takes into account the fact that the
nanowire superinductor is a high-impedance transmission
line. We present data from measurements of three devices
fabricated on two different films. The nanowires in devices
1 and 2 have widths of 110 and 40 nm, respectively, equal
lengths of 730 μm, and a film thickness of 15 nm. The
nanowire in device 3 is fabricated on a 10 nm thick film, has
a width of 100 nm, and length of 630 μm. All the nanowires
are fabricated by etching a wire pattern into the NbTiN film,
with a single Al=AlOx=Al junction connecting the two ends
of the superinductor together. The qubit on devices 1 and 2
is capacitively coupled to a lumped element Nb resonator,
with resonance frequency ωr=2π ¼ 6.08 GHz and a loaded
quality factor of Q ¼ 8; 400. The qubit on device 3 is
coupled to a half-wavelength coplanar waveguide resonator
withQ ¼ 14 800 andωr=2π ¼ 7.50 GHz. An optical image
of device 1 is shown in Fig. 1(c).
The fluxonium energy spectrum is obtained by perform-

ing two-tone spectroscopy measurements as a function
of the external magnetic flux, Φext. The amplitude of the
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transmitted power is monitored at the dressed cavity
frequency while sweeping a second spectroscopic tone
of frequency ωspec=2π. The measurement results are shown
in Fig. 2. Labeling the energy eigenstates within a single
potential well as jgii; jeii; jfii;…, where the index i
indicates the potential well to which these belong [see
Fig. 1(b)], the fluxonium transitions are classified in two
types: intrawell plasmons, such as jg0i → je0i, and inter-
well fluxons, such as jg0i → jg−1i. Parity selection rules of
the fluxonium circuit allow for transitions between adjacent
plasmon states by absorption of a single photon. However,
the direct transition jg0i → jf0i can only be completed via
a two-photon process in which je0i serves as an intermediate
virtual state. We note that devices 1 and 2 operate in a similar
parameter regime to “heavy fluxonium” [9,29], where the
ratio between the Josephson (EJ) and charging (EC) energies
is large. As a consequence, transitions between the fluxo-
nium potential wells are exponentially attenuated. Therefore,
such excitations are most clearly visible in the regions where
they hybridize with the plasmon energy levels.
Figure 2(a) shows the presence of a second fluxonium

mode for device 1 at 16.3 GHz. While similar character-
istics have been observed in previous fluxonium devices,

high-frequency modes have been so far phenomenologi-
cally modeled as harmonic oscillators linearly coupled to
the qubit degree of freedom [1]. Here we go beyond such
an approximation and derive a multimode Hamiltonian
considering the complete device Lagrangian, which
accounts for the distributed nature of the superinductance.
Importantly, we find that the qubit spectrum is determined
by the nonlinear interaction of the circuit modes which
are antisymmetric at the Josephson junction ports [see
Fig. 1(a)]. The agreement with the measured data is
excellent over a very large frequency range.
The nanowire is described as a homogeneous trans-

mission line with distributed capacitance c ¼ Cnw=2l and
inductance l ¼ Lnw=2l, where Cnw, Lnw, and 2l are,
respectively, the total ground capacitance, inductance,
and length of the nanowire. Defining the flux operator
ψðx; tÞ in terms of the dimensionless coordinate x ¼ x=l,
the nanowire Lagrangian can be written as

Lnw ¼
Z

1

−1
dx

ðCnw=2Þ
2

_ψðx; tÞ2 − 1

2ðLnw=2Þ
ψðx; tÞ2: ð2Þ

Additionally, we consider gate capacitances (Cg) placed
at the two ports of the device (xp ¼ $ 1) with respective
driving voltages fVxpg, as well as ground capacitances (C0).

(a) (b)

FIG. 2. Two-tone spectroscopy of device 1 (a) and device
2 (b) as a function of Φext. The experimentally measured
transition frequencies are indicated with blue markers. The
result of a fit to the two-mode Hamiltonian in Eq. (5) and
detailed in Ref. [30] is shown with red dashed lines corre-
sponding to the fluxonium spectrum and with purple dashed
lines indicating sideband transitions [31]. In (a), the inscription
“JJ mode” (Josephson junction mode) identifies the second
antisymmetric nanowire mode.

(a)

(c)

(b)

FIG. 1. (a) The circuit diagram for the qubit, with the first
antisymmetric standing wave nanowire mode in blue. ψðx; tÞ
denotes the flux operator as a function of the dimensionless
coordinate x ¼ x=l. An off-chip coil generates the magnetic flux
(Φext) that is threaded through the loop formed by the nanowire
and the junction. Cg and C0 are the coupling capacitances to the
readout resonator and to ground, respectively. (b) The first few
fluxonium eigenstates plotted for Φext=φ0 ¼ −0.38π, and the
respective qubit potential with wells around ϕ=φ0 ¼ −2π and
ϕ=φ0 ¼ 0, where φ0 ¼ ℏ=2e. (c) False colored image of the
device with the NbTiN nanowire shown in blue, the single
Josephson junction and gate capacitors in red, the readout
resonator in purple, and the input transmission line in green.
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The Lagrangian of the inductively shunted Josephson
junction then reads

L ¼
X

xp

Cg

2
ð _ψðxp; tÞ − VxpÞ

2 þ C0

2
_ψðxp; tÞ2

þ Lnw þ CJ

2
_δψðtÞ2 þ EJ cosðδψðtÞ=φ0Þ; ð3Þ

where

δψðtÞ=φ0 ¼ ðΔψðtÞ þ ΦextÞ=φ0 ð4Þ

is the gauge-invariant superconducting phase difference
across the junction, ΔψðtÞ ¼ ψð1; tÞ − ψð−1; tÞ is the flux
operator difference at the boundaries of the superinductor,
and EJ is the Josephson energy [32,33].
To obtain a tractable theoretical description of our

device, we map Eq. (3) into the Lagrangian of an infinite
number of nonlinearly interacting normal modes [30]. We
observe that modes which are symmetric at the junction
ports are not coupled to the Josephson nonlinearity, and
thus do not contribute to the qubit Hamiltonian. We
therefore derive a multimode Hamiltonian for the antisym-
metric normal modes, which is later truncated to a finite
number of modes. The truncation is possible due to the fact
that only few antisymmetric modes lie in the frequency
range of interest. Furthermore, the effective normal mode
impedance decreases quickly with the mode number such
that high-frequency modes are only weakly anharmonic.
We find that the spectra of our devices can be accurately

described by a two-mode Hamiltonian of the form

Htwo-mode ¼
ðq0 − qg0Þ2

2C̃0

þ ϕ2
0

2L̃0

þ
ðq1 − qg1Þ2

2C̃1

þ ϕ2
1

2L̃1

−
ϕ0ϕ1

LJ
− EJ cos

!
ϕ0 þ ϕ1

φ0

þ Φext

φ0

"
; ð5Þ

where C̃i, L̃i, and qgi are, respectively, the effective
capacitance, inductance, and offset charge corresponding
to the first two antisymmetric modes labeled by i¼ f0; 1g
and LJ ¼ EJ=φ2

0. The definitions of the various parameters
in Eq. (5) is provided in Ref. [30]. The results in Fig. 2
are obtained by numerical diagonalization of the com-
plete Hamiltonian of the device, including Eq. (5), the
resonator Hamiltonian, and the interaction between such
systems [30].
From our two-mode fit to the qubit spectrum, we find

nanowire inductances of 121, 314, and 309 nH for devices
1, 2, and 3, respectively, and corresponding characteristic
impedances (Znw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lnw=Cnw

p
) of about 1.85, 7.38, and

12.43 kΩ. The inductance values from the fit are within
7% of the theoretical prediction given by Eq. (1) [30].
Table I provides the Hamiltonian parameters extracted
from a single-mode fit allowing direct comparison to

previous implementations of JJ array based fluxonium
devices [1,3,9,10,29].
In devices 1 and 2, the small dipole element between

the fluxon states makes it experimentally challenging to
directly drive the jg−1i → jg0i transition. By using multiple
drives, we are able to transfer the ground state population
between the neighboring wells using the intermediate jh0i
state, which is located close to the top of the barrier and has
spectral weight in both wells. We apply three coherent and
simultaneous drives of frequencies ωα=2π, ωβ=2π, and
ωγ=2π, respectively, targeting the jg0i→ jf0i (two-photon),
the jf0i → jh0i (one-photon), and the jh0i → je−1i (one-
photon) transitions [see Fig. 3(a)].

TABLE I. Device parameter table obtained from a single-mode
fit to the fluxonium qubit spectrum, for devices 1, 2, and 3.

Device EC [GHz] EL [GHz] EJ [GHz]

1 0.89 1.37 10.95
2 0.56 0.52 16.16
3 1.90 0.53 5.90

(a) (b)

(c) (d)

FIG. 3. The multitone spectroscopy data, taken at Φext=φ0 ¼
−0.46π, demonstrating population transfer between jg0i and jh0i
(a) with Ωγ ¼ 0, and jh0i to je−1i (b) with fixed ωα=2π ¼
7.78 GHz. The white dashed lines indicate the maximum
population from a multilevel master equation simulation [30].
(c) A schematic diagram of the device 2 level structure in the
presence of coherent external drives. The drives, with frequencies
ωi=2π and amplitudes Ωi are detuned from the levels by Δi=2π.
(d) Three sequential π pulses (σ ¼ 15 ns) are applied at the
transition frequencies to perform T1 measurements of the jg−1i
state. The demodulated homodyne voltage from the readout
resonator is measured as a function of twait.
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AtΦext=φ0 ¼ −0.46π, we setΩγ ¼ 0 and simultaneously
vary ωα=2π and ωβ=2π around the jg0i → jf0i and jf0i →
jh0i transitions. We observe a vertical band corresponding to
the jg0i → jf0i transition at 7.8 GHz, and a diagonal band
with a slope ofωα=ωβ ¼ −1=2, corresponding to the Raman
transition between the jg0i and jh0i states [Fig. 3(a)].
Around the resonance condition (2ℏωα≈Ef0 −Eg0 and
ℏωβ ≈ Eh0 − Ef0), the two bands exhibit an avoided cross-
ing, which is the hallmark of the Autler-Townes doublet
previously observed in other superconducting qubits
[34–37]. Next, we fix the frequency of the α tone at
Δα=2π ¼ 20 MHz, turn on the γ drive, and simultaneously
scan the frequencies ωβ=2π and ωγ=2π. Figure 3(b) displays
the resulting Autler-Townes splitting, where the Raman
transition manifests itself here with a slope of ωγ=ωβ ¼
þ 1, corresponding to the three-drive Raman condition. This
method allows us to experimentally determine the energy
levels of the fluxonium qubit using population transfer.
With complete information regarding the energy of the

fluxonium excited states, we determine the relaxation rate
of the jg−1i state by performing time-resolved measure-
ments [38]. We use the frequency values obtained from
the Raman spectroscopy and perform a pulse sequence
which consists of three sequential π pulses at the
transition frequencies ðEf0 − Eg0Þ=h, ðEh0 − Ef0Þ=h and
ðEh0 − Ee−1Þ=h to prepare the system in the je−1i state. At
the end of this procedure, the system relaxes into the jg−1i
state, on the timescale of the plasmon T1 (∼600 ns). On a
longer timescale, the system relaxes back to jg0i. For
twait ≫ T1e0 , the reduction in jg−1i population follows an
exponential decay with T1g−1 ¼ 20 μs.
Because of the highEJ=EC ratio, devices 1 and 2 lack flux

insensitive sweet spots at zero and half flux. In order to
fully characterize the coherence properties of the qubit and
demonstrate coherent control between the fluxon states, we
reduced theEJ=EC ratio in device 3. The overlap between the
fluxon wave functions is made sufficiently large to directly
observe the transition with a one-photon drive, which comes
at the cost of increased sensitivity to different relaxation
mechanisms. The low frequency, two-tone spectroscopy data
for device 3 are shown in Fig. 4. At Φext=φ0 ¼ −π, the
spectrum shows a flux-insensitive fluxon transition, where
we perform coherence measurements and find T1 ¼ 220 ns,
T2Ramsey ¼ 380 ns, andT2Echo ≈ 2T1 indicating that thequbit
dephasing is dominated by qubit relaxation.
By changingΦext, we measure T1 of the fluxon transition

as a function of qubit frequency. The data show an increase
in T1 as the qubit frequency is increased to a maximal value
of 7 μs for frequencies between 2–3 GHz. Upon further
increasing the qubit frequency, T1 decreases by an order of
magnitude [Fig. 4(c)].
To understand the T1 frequency dependence, we take

into account inductive and capacitive loss mechanisms,
which can be described with the following expressions:

Γind ¼
EL

ℏQL

!
coth

!
ℏωq

2kBT

"
þ 1

"
jhg−1jφ̂jg0ij2; ð6Þ

Γcap ¼
ℏω2

q

8ECQC

!
coth

!
ℏωq

2kBT

"
þ 1

"
jhg−1jφ̂jg0ij2; ð7Þ

where jhg−1jφ̂jg0ij2 is the transition matrix element
between the fluxon states, QL and QC are the inductive
and capacitive quality factors, respectively, kB is the
Boltzmann constant, T is the temperature, and ωq is the
fluxon transition frequency [39]. Based on previously
reported measurements [3], the lifetime limitation from
nonequilibrium quasiparticles is at least an order of
magnitude larger than the observed relaxation times at
all frequencies and is therefore not considered. Radiative
loss due to the Purcell effect [40] is only significant when
the qubit frequency is within ∼50 MHz of ωr=2π ¼
7.5 GHz [30]. Figure 4(c) shows the measured T1 (blue
markers) values along with the fitted T1 ¼ ðΓ−1

cap þ Γ−1
indÞ−1

(red line). The fit of T1 vs ωq in Fig. 4, givesQL ¼ 39; 000
and QC ¼ 15; 100, where the lifetime at low ωq is
dominated by inductive loss and at high ωq by capacitive
loss. The inductor can be modeled as a lossless inductor
in series with a frequency dependent resistor, where R ¼
ωL=Qind corresponds to R ¼ 27 mΩ at ω=2π ¼ 550 MHz.
The possible sources of the inductive loss can arise from a
finite contact resistance between the NbTiN wire and the Al
Josephson junction leads, loss from charge impurities on

(a)

(c)

(b)

FIG. 4. (a) Low frequency spectroscopy data from device 3.
(b) T1 (red) and T2Ramsey (blue) data taken at Φext=φ0 ¼ −π.
(c) T1 as a function of qubit frequency. The lines represent the
theory fits for total (red), inductive (blue), and capacitive (green)
T1. The T1 values were obtained with both pulsed and mixed state
driving. Measurements using both types of excited state prepa-
ration at the same flux gave the same value of T1.
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the surface of the wire, or some intrinsic loss from the
bulk NbTiN material. In future devices, the geometry of the
Al/NbTiN contact and nanowire dimensions could be
modified to better determine what limits the inductive
quality factor. Improvements to QC could be made by
moving to a 3D architecture, where the electric field
participation at lossy interfaces is reduced [41].
In conclusion, we have fabricated and measured a

nanowire superinductance fluxonium qubit. We find that
the transition energy levels are modified due to the
distributed nature of the nanowire, which is well explained
in the framework of a multimode theory. As the modes of
the nanowire strongly depend on the parasitic and stray
capacitances of the wire, using a shorter wire with higher
sheet inductance (for example high quality granular alu-
minum films with one hundred times larger Lk ¼ 2 nH=□
[42–44]), or integrating the fluxonium into a 3D cavity or
waveguide [45], could reduce unwanted capacitances and
help to push the nanowire self-resonant modes to higher
frequencies. The multimode theory developed here is an
important step towards understanding large circuits beyond
the lumped element approximation, such as the 0 − π qubit
[7,8], where the distributed nature of the circuit elements is
critical to device design.
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I. SUPPLEMENTARY INFORMATION

A. Fabrication details

Device fabrication begins with sputtering 15 nm of NbTiN onto a 500 µm thick C-plane sapphire substrate. A small
patch of NbTiN, where the nanowire will be fabricated later in the process, is protected with MicropositTM S1811
photoresist and the remaining NbTiN is removed with an SF6/Ar dry etch. For the lumped element readout resonator
and transmission line, 200 nm of Nb is sputtered over the areas of the chip which had no NbTiN and subsequently
patterned and etched with another SF6/Ar dry etch. Next, a layer of ZEP520A (1:1 dilution in anisole) e-beam resist
is spun on the chip and the nanowire pattern is exposed and developed with standard e-beam lithography techniques.
Finally, an MMA/PMMA bilayer e-beam resist is placed on the chip and the Josephson junction layer is patterned
with e-beam lithography. To ensure metallic contact between the junction and the NbTiN nanowire, a high-voltage
Ar ion beam milling process is used to remove the native oxid layer formed on the surface of the NbTiN film. The
JJ layer is fabricated with a double angle evaporation of 30 nm and 60 nm of Al, with a 15 minute oxidation step
in between the first and second evaporation angles to form the oxide layer of the junction. For measurement, the
samples are attached to the base plate of a dilution refrigerator with a mixing chamber temperature of 12 mK.

B. Properties of NbTiN film

Room temperature resistance measurements are performed on 7 di↵erent nanowires with l = 100 µm and varying
widths, ranging from 50 to 900 nm. From these measurements, we extract a sheet resistivity of R = 97 ± 5 ⌦/⇤.
Temperature dependent resistivity measurements on the film used in devices 1 and 2 show a superconducting critical
temperature of Tc = 9.5 K. The resistance increases by ⇠20 % as the film is cooled from room temperature to right
above Tc. From scanning electron microscope images and the resistance measurements of the test structures, we infer
nanowire widths of 110 ± 5 nm and 40 ± 5 nm for the two devices. Based on the resistivity, Tc, and the geometry
of the nanowires, we estimate an ns = 7.0 ⇥ 1025 m�3. The predicted inductances based on Eq. (1) are Lk = 112
and Lk = 309 nH for devices 1 and 2, respectively. This is within 7% and 2% of the two-mode fit values in Eq. 5 of
the main text. Similar resistance and Tc measurements on the 10 nm thick NbTiN film used for device 3 predict an
Lk = 307 nH, which is < 1% from the measured value of 308 nH.

C. Modeling of the Autler-Townes splitting

We model the system with a four-level Hamiltonian which, in the (|g0i , |f0i , |h0i , |e�1i) energy eigenbasis and in
the absence of external drives, reads

H0 =Eg0 |g0i hg0| + Ef0 |f0i hf0|+
Eh0 |h0i hh0| + Ee�1 |e�1i he�1| , (1)

where the groundstate energy is chosen to be Eg0 = 0, and the energies of excited levels satisfy the relations Eg0 < Ef0 ,
Ee�1 < Eh0 (see figure 3 (a) of the main text). We work in a semiclassical picture where the external drives !↵/2⇡,
!�/2⇡, !�/2⇡ with respective Rabi frequencies ⌦↵, ⌦� , ⌦� introduce coupling exclusively between neighboring energy
levels. In the rotating-wave approximation, this situation is described by the interaction Hamiltonian

Hint =
1

2
~⌦↵

�
|f0i hg0| e�i2!↵t + |g0i hf0| ei2!↵t

�
+

1

2
~⌦�

�
|h0i hf0| e�i!�t + |f0i hh0| ei!�t

�
+

1

2
~⌦�

�
|e�1i hh0| ei!�t + |h0i he�1| e�i!�t

�
. (2)

Since Eh0 > Ee�1 , the time-dependent phase corresponding to the third term in Eq. (2) has the opposite sign.
Combining the above expressions, the total Hamiltonian of the system is defined as H = H0 + Hint
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We now move to the rotating frame of the drives by applying the unitary U = |g0i hg0| + e
i2!↵t |f0i hf0| +

e
i(2!↵+!�)t |h0i hh0| + e

i(2!↵+!��!�)t |e�1i he�1|, which results in
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Here, the detunings are ~�↵ = Ef0 � 2~!↵, ~�� = Eh0 � Ef0 � ~!� and ~�� = Eh0 � Ee�1 � ~!� . We account for
dissipation in the system with a Lindblad master equation of the form

⇢̇ = � i

~ [H, ⇢] +
X

j


cj⇢c

†
j �

1

2
{c†jcj , ⇢}

�
, (5)

where the collapse operators cj are defined as cj =
P

i

p
�ij�ij , for given energy states |ii and |ji, where �ij is

the decay rate between them and �ij = |ii hj|. The steady-state solution of Eq. (5) is numerically obtained and the
maximal excited state population, max

�
⇢f0f0 + ⇢h0h0 + ⇢e�1e�1

�
, is shown with dashed lines in figure 3 (b) and (c)

of the main text.

D. Pulse calibration for population transfer

The amplitude of the ⇡ pulses is found by measuring Rabi-oscillations between consecutive levels in device 2 at
�ext/�0 = �0.46⇡. The amplitude of each pulse is chosen based on the value for which the oscillation between adjacent
levels reaches its first extrema. First, we determine the amplitude of the g0 ! f0 pulse. Second, after applying a ⇡
pulse between states g0 and f0, we apply a second pulse of varying amplitude corresponding to the h0 ! f0 transition
frequency to observe Rabi oscillations between h0 and f0. Finally, we apply these two ⇡ pulses (g0 ! f0, f0 ! h0),
and then a third pulse of varying amplitude to perform Rabi oscillation between h0 and e�1. The measured T1 of e�1

state is ⇠ 600 ns.



E. Raw Two-tone spectroscopy data
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FIG. 1. The amplitude response of the cavity transmission when applying a second spectroscopic tone (!spec/2⇡) taken at

di↵erent �ext for devices 1 and 2. The data points in Fig. 2 of the main text were obtained by finding the peak positions of

the spectroscopic data. The upper panels correspond to the two-photon peaks and the lower panels correspond to the single

photon data. The satellite peaks on the raw data is a result of the presence of thermal cavity photons.

F. Spectrum Characterization

1. Multimode Hamiltonian

In this section, we outline the theory developed to treat the multimode structure of the device in figure 1 (a) of
the main text. Our derivation is inspired by ideas introduced in Refs. [1–3]. For simplicity, we assume the absence of
disorder in gate and ground capacitances, although the e↵ect of a small amount of disorder is discussed below.

Considering the fluxonium Lagrangian of main text Eq. 3, we first introduce approximations to reduce the problem
to that of two nonlinearly interacting bosonic modes, which is then numerically diagonalized to fit the experimentally
measured spectrum of Fig. 2 in the main text.

The circuit normal modes are a convenient basis where the fluxonium Hamiltonian is diagonal to second order in
the Josephson nonlinearity. In addition, the symmetry of such modes unequivocally identifies the degrees of freedom
that are e↵ectively coupled to the JJ. For these modes only does the Josephson non-linearity needs to be taken
into account. Writing the wave equation which holds in the bulk of the nanowire @2

t  (x, t) = !
2
nw@

2
x (x, t), with

!nw = 1/

p
(Cnw/2)(Lnw/2), we look for normal modes of the form

 m(x, t) = um(x)⇠m(t), (6)

satisfying u
00
m(x) = �k2

mum(x) and ⇠̈m(t) = �!2
m⇠m(t). Here, km is a dimensionless wave vector and !m = !nwkm

(linear dispersion). The mode frequencies are determined by the boundary conditions that we derive taking the
continuous limit of the equations of motion for the discretized field  (x, t) ! {�(xn)}, where �(xn) is defined in a



lattice with 2N + 1 points in the range [�1, 1]. To this end, we consider the lattice Lagrangian linearized in absence
of the external voltage drives and flux (V±1,'ext ! 0), for which the equations of motion simply read

C�̈+ L�1� = 0. (7)

Here, C and L�1 are, respectively, the capacitance and (inverse) inductance matrices for the lattice model, while �
is the corresponding 2N + 1-dimensional node-flux vector. As illustrated in Fig. 2, the transmission line is modeled
as a chain of 2N LC resonators, with single nodes connected to ground by a capacitance �xCnw/2 and neighboring
nodes coupled by an inductance �xLnw/2. Taking the continuous limit of Eq. (7) by letting �x ! 0 and N ! 1
with N�x = 1, we find the field boundary conditions

Cbc ̈bc + L�1
bc  bc = 0, (8)

where  bc = ( (1, t), (�1, t))T
, Cbc = C⌃1 � CJ�x and Lbc =

h
x

(Lnw/2)@x + 1
LJ

i
1 � 1

LJ
�x. Here, we have defined

the identity (1) and Pauli-X (�x) matrices, the capacitances C⌃ = Cp + CJ and Cp = Cg + C0, and the operators
(x, @x), which are evaluated at the boundaries xp = ±1. We note that our formalism can be also applied to more
general superconducting circuits including distributed elements.

FIG. 2. Discretized model for the nanowire including 2N+1 nodes with ground capacitance �xCnw/2 and couping inductance

�xLnw/2. The field operator  (x, t) is replaced by the node flux operators {�(xn)} defined in the lattice.

We now consider  (x, t) to be the normal mode solution in Eq. (6), and parametrize the mode function as

um(x) = Am cos(kmx) + Bm sin(kmx), (9)

where Am, Bm are constants to be determined. With this choice, Eq. (8) can be rewritten in the form M(Am, Bm)T =
0, where M is a coe�cient matrix (omitted for brevity). Nontrivial solutions to this homogeneous system of equations
follow from the condition det(M) = 0, implying

Cp

2
Lnw!

2
m + km tan km = 0, (10)

or

LJ

Lnw
km +


1 �

✓
CJ +

Cp

2

◆
LJ!

2
m

�
tan km = 0. (11)

Eq. (10) and Eq. (11) allow us to find the modes frequencies {!m}, which are then plugged back into Eq. (8) to
determine the mode function Eq. (9). We stress that Eq. (10) does not includes any of the Josephson junction
parameters. In fact, this equation determines the frequency of symmetric nanowire modes, which have zero voltage
di↵erence across the Josephson junction: �um = um(1)� um(�1) = 0. In contrast, Eq. (11) depends on CJ and LJ ,

and determines the frequency of antisymmetric modes which do couple to the junction (�um 6= 0). This fundamental
di↵erence is discussed in more detail below.

We are now in position to expand the field in the normal mode basis, as

 (x, t) =
X

m

um(x)⇠m(t), (12)



where, in principle, the sum over m is extended to all circuit modes. Making use of the orthogonality relations [1, 4]

Z 1

�1
dx(Cnw/2)um(x)un(x) + CJ�um�un

+
X

xp

Cpum(xp)un(xp) = Cm�mn,

(13)

and

Z 1

�1
dx

1

(Lnw/2)
u
0
m(x)u0

n(x) +
�um�un

LJ
=
�mn

Lm
, (14)

where L
�1
m = Cm!

2
m, and substituting Eq. (12) into Eq. 3 of the main text, we arrive to the circuit Lagrangian in the

normal mode basis

L =
X

m

Cm

2
⇠̇
2
m +

X

xp

Cgum(xp)Vxp ⇠̇m � ⇠
2
m

2Lm

+ EJ

⇥
cos(� /'0) + (� /'0)

2
/2
⇤
,

(15)

where explicit time dependence has been omitted and � /'0 is defined in Eq. 4 of the main text. We note that
Eq. (15) is diagonal to second order in the Josephson potential for �ext = 0, as a consequence of our normal mode
basis choice. Writing

� =
X

m

�um⇠m, (16)

we verify that symmetric modes do not couple to the Josephson nonlinearity, thus behaving as a collection of non-
interacting harmonic oscillators. Accordingly, we disregard symmetric modes in our treatment and consider the set
{m̊}, consisting of antisymmetric modes for which �um̊ 6= 0. With the change of variables �m̊ = �um̊⇠m̊, we rewrite
Eq. (15) as

L =
X

m̊

C̃m̊

2
�̇

2
m̊ +

X

xp

Cg
um̊(xp)

�um̊
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2
m̊

2L̃m̊

+
X

m̊<n̊

1

LJ
�m̊�n̊ + EJ cos(� /'0),

(17)

where � /'0 conserves the definition in main text Eq. 4 with the replacement � /'0 =
P

m̊ �m̊/'0. Here,

C̃m̊ = Cm̊/�u
2
m̊,

L̃
�1
m̊ =

1

�u
2
m̊

Z 1

�1
dx

u
0
m̊(x)2

(Lnw/2)
,

(18)

denote the mode m̊ e↵ective capacitance and inductance, respectively. The multimode Hamiltonian

H =
X

m̊

H
(0)
m̊ + Hint, (19)

follows immediately from Eq. (17), and includes the set of noninteracting terms {H(0)
m̊ }, with

H
(0)
m̊ =

(qm̊ � qgm̊)2

2C̃m̊

+
�

2
m̊

2L̃m̊

, (20)



where qgm̊ =
P

xp
Cgum̊(xp)Vxp/�um̊, and the interaction potential

Hint = �
X

m̊<n̊

�m̊�n̊

LJ
� EJ cos

 
X

m̊

�m̊

'0
+

�ext

'0

!
. (21)

Eq. (19) is approximated into a tractable Hamiltonian making use of a frequency and e↵ective impedance hierarchy
of the normal modes. Indeed, if these are sorted in frequency as !0 < !1 < ... < !n, it is possible to see that
Z0 � Z1 � ... � Zn. Therefore, as the frequency range of interest is bounded, a good approximation for Eq. (19) can
be obtained taking into account a finite number of modes covering such a spectral range, and considering the rest of
the modes in a vacuum state. We note that vacuum fluctuations are strongly suppressed for high-frequency modes,
thanks to their vanishing e↵ective impedance. In our particular case, the experiment probes frequencies in [0,!max],
with !0 < !max < !1, !max ⌧ !2. Therefore, we approximate the device’s Hamiltonian by the two-mode Hamiltonian
in main text Eq. 5, which includes the two first antisymmetric modes. As shown in Fig. 2 of the main text, we find
excellent agreement between the main text Eq. 5 diagonalization and the measured fluxonium spectrum. Moreover,
we verify that the inclusion of the third antisymmetric normal mode in the fluxonium Hamiltonian does not modify
appreciably the qubit spectrum. Regarding device 1, an estimation of a dispersive-like coupling strength for the first
order mode-mode interaction gives g

2
/� < 100 kHz between the first and third JJ modes, and g

2
/� < 1 kHz between

the second and third JJ modes, while the same quantities are negligible for device 2.
We note that the symmetry of the self-resonant nanowire modes is lost in the presence of circuit disorder. However,

if disorder is small (< 10%), one can still work in the symmetric-antisymmetric normal mode basis, deriving a
capacitive coupling between the two sets of modes proportional to the amount of disorder. Therefore, the e↵ect of
symmetric modes could be taken into account within a dispersive (thus perturbative) theory, as it was previously
done in the literature [5, 6]. However, due to the generality of our fit routine (see Sect. I F 2), we do not find necessary
to consider such a dispersive shift (which adds a fit parameter) to obtain a high-accuracy agreement between theory
and experiment.

Finally, we highlight some important di↵erences of our formalism to previous approaches. We note that the
full cosine potential of the Josephson junction has been exactly resummed in Eq. (17), before proceeding to the
quantization in Eq. (19). Importantly, this step allows us to treat the strong nonlinearity of the fluxonium qubit
e�ciently by exact diagonalization of Eq. (19) in the phase basis, and to recover the e↵ect of charge dispersion.
Other approaches including Black-Box quantization [7, 8], rely on a series expansion of the cosine potential in terms
of bosonic creation and annihilation operators for the normal modes. While this method has been proved to be
convenient for the study of weakly anharmonic devices, it is not straightforward to capture the physics of strongly
nonlinear devices for which a potentially infinite number of terms in the series expansion of the cosine potential needs
to be considered.

The problem of characterizing the multimode structure of the fluxonium qubit has also been addressed for the
case of Josephson junction array based devices by considering the normal modes of the superinductor [2, 3]. While
this approach was successfully used to understand the overall complexity of these devices and study the e↵ect of the
multimode structure on the coherence times of the qubit, it is not of direct applicability to our experimental setup
and to our experimental results.

To conclude, we note that our theory admits a purely discrete formulation where the nanowire is modeled as chain
of LC oscillators (see Fig. 2) and the normal modes of the fluxonium device are computed by means of Eq. (7). For
N > 100, the normal mode structure of such a system converges quickly to the result in the continuous limit and
reproduces the results in Fig. 2 of the main text.

2. Fluxonium Spectrum

As the two-tone spectroscopy experiment probes the qubit spectrum in presence of the resonator, our data includes
the Lamb shift contribution arising as a consequence of the dispersive coupling between the fluxonium and the
resonator.

Lamb and dispersive shifts can be computed by means of the bare qubit level structure using the framework
developed in [6], for any qubit-resonator system in the dispersive regime. Equivalently, such quantities can be obtained
from full diagonalization of the transversally coupled qubit-resonator Hamiltonian. In this work, we use the second
approach to compute the qubit spectrum.

We assume a readout resonator of nominal frequency (!r) and impedance (Zr), according to the measured resonator
mode frequency and specifications. Considering first, a single mode m̊ in Eq. (20), and making use of the antisymmetry
of the mode function, the corresponding voltage coupling operator, as derived from the o↵set charge term, takes the



form �qm̊(Cg/C̃m̊)(V1 �V�1)/2. In the present case, the weak fluxonium-resonator coupling Hamiltonian is obtained
by replacing the voltage di↵erence (V1 � V�1) by the resonator voltage operator Vr =

p
~Zr/2(a + a

†), where a (a†)
is the photon annihilation (creation) operator. Therefore, in a two-mode approximation for the fluxonium qubit, we
consider the complete Hamiltonian

H = Hr + Htwo-mode + Hr0 + Hr1, (22)

where Hr = !ra
†
a denotes the resonator Hamiltonian, Htwo-mode is given in Eq. 5 of the main text, and Hrm̊

Hrm̊ = �qm̊(Cg/C̃m̊)
p
~Zr/2(a + a

†)/2 (23)

is the coupling Hamiltonian between the resonator and the m̊
th fluxonium mode.

The Lamb-shifted i
th qubit energy-level is identified by the energy eigenstate of Eq. (22) exhibiting maximum

overlap with |0, ii (0 resonator excitations, i fluxonium excitations). The fluxonium parameters Cp, CJ , LJ , Cnw, Lnw,

and the fluxonium-resonator coupling capacitance Cc, are considered input variables for the qubit spectrum fit in Fig.
2 of the main text. The results of the fit are listed in Table I.

Device Cg [fF] Cp [fF] CJ [fF] LJ [nH] Cnw [fF] Lnw [nH]

1 14.33 30.20 3.52 14.33 35.49 121.38

2 15.89 60.89 4.67 9.82 5.79 314.75

TABLE I. Circuit element parameters as obtained from the two-mode fit to the fluxonium qubit spectra presented in Fig. 2

of the main text.
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