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Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada

2Canadian Institute for Advanced Research, Toronto, M5G1M1 Ontario, Canada
(Dated: May 2, 2023)

Time-dependent drives play a crucial role in quantum computing efforts with circuit quantum
electrodynamics. They enable single-qubit control, entangling logical operations, as well as qubit
readout. However, their presence can lead to deleterious effects such as large ac-Stark shifts and
unwanted qubit transitions ultimately reflected into reduced control or readout fidelities. Qubit
cloaking was introduced in Lledó et al. [1] to temporarily decouple the qubit from the coherent
photon population of a driven cavity, allowing for the application of arbitrary displacements to the
cavity field while avoiding the deleterious effects on the qubit. For qubit readout, cloaking permits
to prearm the cavity with an, in principle, arbitrarily large number of photons, in anticipation to
the qubit-state-dependent evolution of the cavity field, allowing for improved readout strategies.
Here we take a closer look at two of them. First, arm-and-release readout, introduced together with
qubit cloaking, where after arming the cavity the cloaking mechanism is released and the cavity
field evolves under the application of a constant drive amplitude. Second, an arm-and-longitudinal
readout scheme, where the cavity drive amplitude is slowly modulated after the release. We show
that the two schemes complement each other, offering an improvement over the standard dispersive
readout for any values of the dispersive interaction and cavity decay rate, as well as any target
measurement integration time. Our results provide a recommendation for improving qubit readout
without changes to the standard circuit QED architecture.

I. INTRODUCTION

Qubit readout is an indispensable operation in quan-
tum information processing [2]. For superconducting
qubits, the standard method is the dispersive readout
which consists in driving and measuring the response
of a cavity whose resonant frequency is shifted depend-
ing on the state of a far detuned coupled qubit [3, 4].
An advantage of dispersive readout is that it is quan-
tum non-demolition (QND), at least for small measure-
ment drive powers. However, non-QDNness at moder-
ate power results in readout errors which have not yet
reached the 10−3 level for measurement times of the order
of 100 ns [5–8], lagging behind the best performance num-
bers of single-qubit and entangling gates [9–12]. Improv-
ing dispersive readout further is crucial to reach fault-
tolerance in the circuit QED architecture for applications
such as quantum error correction [13–16].

In principle, increasing the strength of the cavity drive,
leading to larger cavity photon population, can lead to
improved readout [3]. However, this is not an ideal
solution as even modest photon population can result
in unwanted qubit transitions including leakage out of
the transmon’s computational subspace [17–22]. Cavity
drives also cause ac-Stark frequency shift of the qubit
and broadening of the qubit linewidth via measurement-
induced dephasing [23]. Recently, an alternative ap-
proach to accelerating and improving the fidelity of dis-
persive readout has been demonstrated [1]. It is based
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on adding a cloaking drive on the qubit which allows
the cavity to be armed with photons in a qubit-state-
unconditional way. During the arming phase, the qubit
is oblivious to the coherent state in the cavity thereby not
experiencing ac-Stark shifts or measurement-induced de-
phasing. Once the desired mean photon population is
reached, the cloaking mechanism can be released allow-
ing the cavity field to evolve in a qubit-state-dependent
way as in standard dispersive readout. In this paper,
we explore how this additional knob—the armed pho-
ton population— allows for optimizations of the cavity’s
phase-space trajectories to maximize readout fidelity at
short integration times.

One readout strategy where phase-space trajectories
of the cavity field maximally distinguish the ground and
excited states of the qubit at short measurement times
is the longitudinal readout [24]. It relies on a qubit-
resonator coupling between the qubit σz and one of the
resonator quadrature operators (e.g. the P quadrature)
with a modulated coupling frequency gz. This interac-
tion produces a cavity field displacement in opposite di-
rections in phase space when the qubit is in the ground
or excited state. While longitudinal interaction has been
physically implemented in circuit QED [25, 26], modula-
tion of the coupling frequency has remained challenging,
with no experimental demonstration so far of longitudi-
nal readout except in its synthetic versions [27, 28].

Building upon the arm-and-release idea, in this work
we introduce a protocol for synthesizing a longitudinal
readout process after the release step. The intuition is
that the positions of the fixed point of the average cavity
field—αs

g,e for the (g)round or (e)xcited qubit state—can
be pushed or pulled by slowly modulating the drive am-
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FIG. 1. Path in phase-space of the cavity amplitude when
the qubit is in ground (blue) or excited (red) state for
the three different schemes: dispersive (dashed line), arm-
and-release (A&R, dashed-dotted), and arm-and-longitudinal
(A&L, full line). The coloured dots indicate different times
in the evolution, κt = 0, 1, 2, 4, 10, 20. The parameters are:
|χ|/κ = 1, and ε1/2π = 19.85 MHz and 18.49 MHz as well as
αarm/

√
nmax ≈ 0.8 and 1/

√
2 for A&R and A&L, respectively.

plitude, tailoring the trajectories followed by the time-
dependent amplitudes αg,e(t). This can be arranged
in such a way that αg(t) and αe(t) separate from each
other in exactly opposite directions in phase space, as
under the longitudinal interaction, something we refer to
as arm-and-longitudinal readout. This is illustrated in
Fig. 1 which shows the path in phase space of the cavity
pointer states for the dispersive readout (dashed lines),
the arm-and-release approach (dash-dotted lines), and
the arm-and-longitudinal protocol (full lines). Crucially,
this arm-and-longitudinal readout protocol is only pos-
sible thanks to qubit cloaking [1], as the cavity needs to
start from an armed state with non-zero field amplitude.
To account for and avoid ionization [18–21], it proves
convenient that, under this modulation, the amplitudes
|αg,e(t)| increase monotonously in time until they reach a
chosen maximum value, which can be taken to be below
the ionization threshold.

In this paper we show that either arm-and-release or
arm-and-longitudinal always outperforms the standard
dispersive readout for any measurement time and any
ratio χ/κ of the dispersive interaction χ and the cavity
decay rate κ. In particular, we show that for signal inte-
gration times & 10/κ, the arm-and-longitudinal protocol
outperforms the other two. These results can inform the
design and manipulation of current and future supercon-
ducting qubit devices. Moreover, while we focus on cir-
cuit QED with superconducting qubits, these results are
general and can be used in other platforms.

The rest of this manuscript is organized as follows. In
Sec. II we briefly remind the reader about standard dis-
persive readout in the two-level system approximation,
and in Sec. III about qubit cloaking and the arm-and-
release scheme. In Sec. IV, we explain how to transform
arm-and-release into arm-and-longitudinal readout. Hav-
ing introduced all the main ideas, in Sec. V we provide a

performance comparison between the three schemes. In
Sec. VI we show that the arm-and-longitudinal is valid
beyond the two-level system approximation for the trans-
mon, the rotating-wave approximation, and the disper-
sive approximation. Finally, in Sec. VII we discuss our
results and offer an outlook.

II. BRIEF ON DISPERSIVE QUBIT READOUT

We start by giving a short introduction to dispersive
qubit readout in the two-level system approximation [3].
The Jaynes-Cummings Hamiltonian (~ = 1)

ĤJC = ωrâ
†â+

ωq
2
σ̂z + gc(σ̂

+â+ σ̂−â†) (1)

describes the interaction between a qubit and a cavity
mode in the rotating-wave approximation. Here, â is the
annihilation operator of the cavity mode of fundamental
frequency ωr, σ̂

z,+,− are respectively the Pauli z, rais-
ing, and lowering operators for the qubit of fundamental
frequency ωq, and gc is the interaction frequency. In the
dispersive regime where |ωq − ωr| � gc, the Hamilto-
nian is approximately diagonalized, up to second order
in gc/|ωq − ωr|, as

Û†ĤJCÛ ≈ Ĥdisp =
(
ωr +

χ

2
σ̂z
)
â†â+

ωq
2
σ̂z, (2)

where χ = 2g2c/(ωq − ωr) is the (full) dispersive interac-
tion.

As the arrangement of the interaction term in Eq. (2)
suggests, here we take the convention that the cavity fre-
quency is pulled by −χ/2 if the qubit is in the ground
state |g〉 and by +χ/2 if it is in the excited state |e〉.
As a result, measuring the response of the cavity to an
external drive, one can infer the state of the qubit. For
example, an initial condition (cg |g〉+ce |e〉) |0〉 evolves to
cg |g, αg〉+ce |e, αe〉 under the combined action of Eq. (2)
and the drive

Ĥ1(t) = −ε1(t)(âeiω1t + h.c.)/2, (3)

where |0〉 is the cavity vacuum state and αg,e are coherent
state amplitudes which act as pointer states and evolve
as

α̇g,e = −[i(ωr − ω1 ∓ χ/2) + κ/2]αg,e + iε1(t)/2 (4)

in a frame rotating at the drive frequency ω1 and where
ε1(t) is the cavity drive amplitude. Equation (4) is
obtained by using the dispersive approximation on the
Lindblad master equation [29, 30]

∂tρ̂ = −i[ĤJC + Ĥ1(t), ρ̂] + κD[â]ρ̂, (5)

where D[â]ρ̂ ≡ âρ̂â† − (1/2){â†â, ρ̂}. For simplicity, one
assumes in Eq. (4) that the qubit state remains constant.
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III. QUBIT CLOAKING AND
ARM-AND-RELEASE READOUT

As introduced in Ref. [1], cloaking a qubit in a cavity
allows to decouple the qubit from the classical part of a
cavity field. This approach, which is achieved with an ap-
propriately chosen drive on the qubit, has been shown to
lead to faster dispersive readout via an arm-and-release
(A&R) scheme. The latter consists in arming the cav-
ity with photons while cloaking the qubit, and to sub-
sequently release the cloaking mechanism allowing the
dispersive readout dynamics to proceed. Noting from
Eq. (4) that the path of the coherent states αg,e will (for
ω1 = ωr) initially separate from one another along the X

quadrature at a speed Re[α̇g− α̇e] ∝ χ
√
n̄(t), where n̄(t)

is the mean photon number, the A&R approach has the
clear advantage of having a finite initial speed (n̄(0) 6= 0)
thanks to the armed photons, unlike in dispersive read-
out where n̄(0) = 0. Moreover, since high-fidelity qubit
gates can be realized on a cloaked qubit, the arming time
does not factor into the readout time [1].

The intuition behind the cloaking mechanism is the
following. The cavity drive Eq. (3) results in a coherent
state inside the cavity which acts as an effective classi-
cal drive on the qubit [21]. An additional drive on the
qubit can destructively interfere with this effective drive,
leaving the qubit to experience the cavity as if it was
in the vacuum state. To make this observation more
precise, consider applying a displacement transformation
â→ â+α(t) on Eq. (5) with α(t) chosen to eliminate the
effect of the cavity drive. Due to the qubit-cavity cou-
pling term (∝ gc), this transformation effectively passes
the drive to the qubit and the displaced Hamiltonian
reads ĤJC + gc(α(t)σ̂+ + α∗(t)σ̂−). With an additional
qubit cancellation drive

Ĥ2(t) = −gc(α(t)σ̂+ + α∗(t)σ̂−), (6)

the effective drive on the qubit is cancelled out in the
displaced frame, where the Hamiltonian is just the un-
driven ĤJC of Eq. (1). Here, the complex amplitude α(t)
corresponds to the coherent state amplitude of the cavity
field in the absence of the qubit, namely, it evolves ac-
cording to α̇(t) = −(iωr+κ/2)α(t)+iε1(t)e−iω1t/2 in the
laboratory frame. The above results are exact and can
be made to account for the rapidly rotating terms which
were (implicitly) ignored in Eq. (1), as well as account for
the multilevel nature of superconducting qubits. More-
over, the result remains unchanged if qubit dissipation
and dephasing are included [1]. The picture emerging
from qubit cloaking is that the cavity field is displaced in
phase space by an amount α(t) that is qubit-state inde-
pendent. Equivalently, the qubit is not affected by this
displacement.

Having introduced the fundamentals of qubit cloak-
ing and described the steps involved in arm-and-release
readout, we study the expected performance of this ap-
proach. Since the arming time does not factor into the
readout time, for the rest of this section we assume the

intracavity field to start at a chosen position along the
P quadrature in phase space. That is, without loss of
generality we take a purely imaginary α(0) = iαarm with
some real and positive αarm. Furthermore, during the re-
lease step (t > 0) we take the amplitude ε1 of the cavity
drive to remain constant. With these two conditions, we
can integrate Eq. (4) to obtain

αe(t) = αarm

[
sin

(
χt

2

)
+ i cos

(
χt

2

)]
e−

κ
2 t

+ε̃1

{
χ−

[
χ cos

(
χt

2

)
+ κ sin

(
χt

2

)]
e−

κ
2 t

}
+iε̃1

{
κ+

[
χ sin

(
χt

2

)
− κ cos

(
χt

2

)]
e−

κ
2 t

}
,

(7)

where ε̃1 = ε1/(χ
2 + κ2) and the expression for αg(t) is

obtained by replacing χ→ −χ. We recover the result ex-
pected for the standard dispersive readout when taking
αarm → 0 in Eq. (7). By noting that the expressions for
αe(t) and αg(t) differ only in their real part, the contribu-
tion of the term proportional to αarm to the measurement
signal is ∝ Re[αg(t) − αe(t)] = 2αarm sin(|χ|t/2)e−κt/2.
At short times this contribution is positive, enriching the
signal.

For fixed parameters, the amplitudes αg,e reach the
same steady states for both dispersive and A&R readout,
but the maximum mean photon number n̄max visited dur-
ing the trajectories are not the same—see Appendix A
for an explicit expression for n̄(t). Since qubit ioniza-
tion sets a maximum mean photon number for quantum
nondemolition readout [20], to make a fair comparison
we first choose (χ, κ, ε1) for the standard dispersive dy-
namics and then we adjust ε1 for A&R such that both
schemes share the same n̄max. In Fig. 1 we compare
the phase-space trajectories for dispersive (dashed lines)
and arm-and-release (dashed-dotted lines). While A&R
is clearly faster than dispersive (see the colored dots),
fixing the maximum photon number makes the two fixed
points of A&R have a smaller separation than those of
dispersive. As we will discuss in Sec. V, there is an im-
portant trade-off between speed at short times and long-
time state discrimination that influence the performance
of the different readout schemes.

To compare the performance of the A&R approach to
dispersive readout, we compute for both cases the signal-
to-noise ratio (SNR) for homodyne detection of the X-
quadrature of the cavity output field. The corresponding
integrated measurement operator up to time τ is given

by M̂(τ) =
√
κ
∫ τ
0
dtK(t)[â†out(t) + âout(t)] [4, 31]. In

this expression, K(t) is a filter function and âout repre-
sents the output field related to the intracavity field via
the input-output boundary condition âout = âin +

√
κâ,

with âin the input field [32]. The signal is defined as

|〈M̂(τ)〉e − 〈M̂(τ)〉g| and the imprecision noise is given

by the fluctuations around the mean-field of M̂ , that is,
M̂N (τ) = M̂(τ) − 〈M̂(τ)〉. Putting these two elements
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FIG. 2. (a) Signal-to-noise ratio (SNR) as a function of mea-
surement integration time for dispersive (dashed) and A&R
(solid) readouts, for the corresponding pairs of trajectories
shown in Fig. 1. (c,d) Normalized SNR vs |χ|/κ for dispersive
(b) and A&R (c) readout. The different curves corresponds
to different measurement integration times in units of 1/κ.

together, the squared SNR can be expressed as [4]

SNR2 =
|〈M̂(τ)〉e − 〈M̂(τ)〉g|2

〈M̂2
N (τ)〉e + 〈M̂2

N (τ)〉g
. (8)

The filter K(t) should favorably weight times where the
signal is larger, thus naturally the optimal filter is K(t) =

|〈M̂(t)〉g − 〈M̂(t)〉g| [31, 33]. Assuming that the input
and output fields remain coherent and in the limit of
unit-efficiency measurement one obtains [31]

SNR2 = 2κ

∫ τ

0

dtRe[αe(t)− αg(t)]2. (9)

Even though the full analytical expression of the SNR
for A&R is rather long and thus uninformative (see Ap-
pendix A), there are some interesting properties worth

discussing. As pointed out previously, the A&R scheme
receives a boost compared to dispersive readout stem-
ming from the nonzero photons in the initial condition.
This is manifested in the SNR whose short-time scaling
(κτ � 1) reads

SNRA&R ≈
√

2

3

αarmχ

κ
(κτ)3/2, (10)

and is to be contrasted with the short-time scaling of
standard dispersive readout

SNRdisp ≈
1

8

√
3

2

ε1χ

κ2
(κτ)5/2. (11)

With A&R we thus acquire signal at a faster rate propor-
tional to αarm. Remarkably, this rate is equal to the rate
exhibited by the ideal longitudinal qubit readout [24]. We
illustrate this in Fig. 2b by comparing the SNR as a func-
tion of the integration time for the case of χ/κ = 1 which
is optimal for the dispersive readout [4]. In the short
measurement time regime, the different scalings are evi-
dent from the slopes of the dashed-dotted line (arm-and-
release) and the dashed line (dispersive), furthermore,
even at κτ → 0 a clear improvement is observed, corrob-
orating our observation of the enhancement provided by
a nonzero αarm.

In the opposite limit of long measurement times, κτ �
1, the SNR is dominated by the term

SNRA&R ≈
√

8
ε1
κ

χ/κ

1 + (χ/κ)2
√
κτ, (12)

which is the same long-measurement-time SNR as for dis-
persive readout. This is because at long times the con-
tribution coming from αarm has decayed, as is evident
from the first line of Eq. (7). As such, in this asymp-
totic limit the ratio χ/κ = 1 corresponds to the optimal
working point for both A&R and dispersive readout. To
illustrate this, Fig. 2b,c shows the SNR at different mea-
surement times versus χ/κ for dispersive (b) and A&R
(c) readouts, respectively. In both cases, the maximum
approaches χ/κ = 1 at long times. It is also worth notic-
ing that for short measurement times the optimal value
of χ/κ is > 1 in both cases, with A&R reaching the
asymptotic value faster. Moreover, for each of the mea-
surement times used in Fig. 2b,c, A&R has a larger max-
imum SNR than dispersive as a consequence of the boost
coming from αarm.

IV. ARM-AND-LONGITUDINAL READOUT

As anticipated in the introduction, arm-and-release
(A&R) readout can be transformed into arm-and-
longitudinal (A&L) readout by the appropriate choice of
the time-dependent drive amplitude ε1(t). Let us start
with a simple intuition behind this scheme. As shown
in Fig. 1, the A&R amplitudes αg,e(t) curve towards the
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real phase-space axis as time increases, moving towards
their fixed points αs

g,e = ε1/(∓χ− iκ). To make the co-
herent amplitudes separate along the X-quadrature in a
straight line without curving, we slowly increase ε1(t) in
time so as to push away the fixed points the trajectories
follow.

The explicit form of ε1(t) needed to obtain
longitudinal-like displacements of the cavity field αg,e(t)
can be obtained from Eq. (4) by imposing the displace-
ment to be only along the X quadrature (ωr = ω1). With
the initial condition α(0) = iαarm, we obtain (see Ap-
pendix B)

ε1(t) = αarm
χ2

κ

(
1− e−κ2 t

)
+ αarmκ. (13)

Using this expression, the qubit-state dependent coher-
ent amplitudes take the desired longitudinal-like motion
along the real phase-space axis

αg,e(t) = ∓αarm
χ

κ

(
1− e−κ2 t

)
+ iαarm. (14)

This arm-and-longitudinal scheme requires αarm 6= 0
and is thus enabled by our ability to prearm the cav-
ity field using qubit cloaking [1]. We remark that the
frequency of the drive needs to be chosen in between
the two qubit-state-dependent frequency responses of the
cavity (ωr ± χ/2), which is important to ensure that the
drive modulation necessary for arm-and-longitudinal is
independent of the qubit state.

In Fig. 1 we show the A&L trajectories in phase space
corresponding to Eq. (14) (solid lines), comparing them
to the A&R and the dispersive readouts. For a fair com-
parison, the three pairs of trajectories visit the same max-
imum mean photon number. While at short times the
coherent amplitudes αg,e(t) separate faster for A&R, at
long times the separation is larger for A&L, hinting at
an interesting trade-off between the two schemes. We
can anticipate that, depending on the ratio χ/κ and the
aimed measurement integration time, one or the other
might be the best strategy. We devote Sec. V to this
analysis.

Replacing Eq. (14) into Eq. (9), we find for the SNR
of the A&L readout

SNRA&L =
√

8
αarmχ

κ

√
κτ − 3 + 4e−

κ
2 τ − e−κτ . (15)

At short times κτ � 1, it takes the simpler form

SNRA&L ≈
√

2

3

αarmχ

κ
(κτ)3/2, (16)

and thus offers better performance than the dispersive
readout whose SNR is ∝ (κτ)5/2, see Eq. (11). We note
that the expression in Eq. (15) has the same functional
form as the SNR obtained for a modulated longitudinal
qubit-cavity interaction [24], whose Hamiltonian is

Hz(t) = igz(t)σ̂
z(â† − â), (17)

with g̃z the amplitude of gz(t) which is modulated at the
cavity frequency, provided that one includes the optimal
filter [34] and identifies αarmχ with g̃z.

This comparison suggests that, in a prearmed cavity,
the product αarmχ plays the role of an effective interac-
tion driving the readout dynamics. Importantly, realizing
the Hamiltonian Eq. (17) requires a qubit-cavity coupling
that is different from the standard capacitive coupling of
circuit QED which rather leads to Eq. (1) [24, 35, 36]. In
contrast, our A&L approach can be implemented without
changes to the standard circuit QED architecture [4].

Although A&R and A&L share the same short-time
SNR scaling, see Eqs. (10) and (16), their prefactors sat-
isfy different constraints. For fixed ratio of χ/κ, mea-
surement time and maximum mean photon number n̄max,
one can optimize over αarm to maximize the SNR of arm-
and-release. On the other hand, for arm-and-longitudinal
readout the value of the initial amplitude αarm is fixed
and from Eq. (14) it reads

αarm =

√
n̄max

1 + (χ/κ)
2 . (18)

The reason is just that for A&L the mean photon number
reaches its maximum in the steady state, compare the full
and dashed-dotted lines in Fig. 1.

For long times, κτ � 1, we obtain

SNRA&L ≈
√

8
αarmχ

κ

√
κτ

=
√

8nmax
χ/κ√

1 + χ2/κ2

√
κτ,

(19)

where in the second line we have used Eq. (18). This
has the same long-time scaling with measurement time
as dispersive and arm-and-release readout. Fixing n̄max

and the integration time, the SNR saturates at large χ/κ.

V. COMPARISON OF THE READOUT
APPROACHES

Let us now put in perspective the results and discus-
sions of the previous three sections. We have introduced
an extra level of time-dependent control to extend arm-
and-release to arm-and-longitudinal readout. Both of
these schemes have a short-time SNR which scales with
time as the ideal longitudinal readout [24], and which of-
fers an improvement over that of dispersive readout. For
the opposite limit of long times, all three schemes have
the same scaling with time. These two observations beg
the questions of which one is the superior scheme and how
much do we gain with it. We will see that this question
does not have a simple answer, and in fact, depending
on the device parameters represented by the ratio χ/κ
and the measurement time (see the examples given in
Sec. I), either arm-and-release or arm-and-longitudinal
is the best alternative.
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FIG. 3. Top row: Path in phase-space of the cavity amplitude αg(t) for the three different schemes: standard dispersive (black
dashed line), arm-and-release (A&R, full lines), and arm-and-longitudinal (A&L, red dashed line). The different colours for
A&R trajectories indicate different initial amplitudes αarm, while the coloured dots indicate different times in the evolution,
κt = 0, 1, 2, 4, 10, 20. All trajectories, in all three panels, visit the same maximum mean photon number nmax = 2.44. Bottom
row: Assignment error as function of measurement integration time for the corresponding trajectories depicted in the top row’s
panels. The parameters are from left to right: |χ|/κ = 1/3, 1, 3, and, for A&L, αarm/

√
nmax =

√
9/
√

10, 1/
√

2, 1/
√

10. For
dispersive, ε1/2π = 15.77 MHz, 19.85 MHz, 34.38 MHz. For A&R, αarm ∈ (0,

√
nmax] and ε1 is obtained, after fixing αarm, from

the constraint of having less than the maximum mean photon number.

Let us start this discussion with a close inspection of
phase-space trajectories of the three readout schemes. In
top row of Fig. 3 we show the trajectories for αg(t)—since
αe(t) is its mirror image—for the ratios |χ|/κ = 1/3, 1, 3.
In all three panels, the full lines show the trajectories
for arm-and-release for some illustrative values of αarm,
the black dashed line shows the trajectory of dispersive
readout, and the red dashed line of arm-and-longitudinal.
Same color dots on different trajectories represent the
positions of the evolving amplitude at equal times (κt =
0, 1, 2, 4, 10, 20). Importantly, across all three panels and
all trajectories the maximum mean photon number that
is attained is the same.

As can be observed, interestingly when χ/κ is small
αarm in arm-and-release can be used as a control param-
eter to interpolate between dispersive (αarm → 0) and
arm-and-longitudinal (αarm →

√
nmax). Notice, how-

ever, that for arm-and-release the constraint of a fixed
maximum mean photon number implies that the drive
amplitude depends on the value of the initial cavity am-
plitude, i.e., ε1 → ε1(αarm). To see this, consider a fixed
value of the ratio χ/κ. Then, as the value of αarm is in-
creased, the maximum mean photon number is reached
at shorter and shorter times. As a consequence, the value
of ε1 decreases, thus effectively moving the steady-state
fixed points αs

g closer to the origin. This can be seen
more markedly in the top row of Fig. 3 for |χ|/κ = 3,

indicating the existence of a trade-off between the speed
of evolution at short times and the separation distance
between the steady-state fixed points. As a result, for
large values of χ/κ, arm-and-release might not provide an
advantage over dispersive readout, an observation which
can be made precise by studying the SNR. Indeed, in
the intermediate to long-time regime the SNR is domi-
nated by a term proportional to ε1, c.f. Eq. (12), thus
having a ε1 which decreases with increasing αarm highly
diminishes the performance of the scheme.

In contrast, the horizontal trajectory of arm-and-
longitudinal avoids altogether this trade-off. In fact, we
are guaranteed to reach the maximum separation dis-
tance between the time-evolving amplitudes at steady
state. As such, arm-and-longitudinal might be slower at
short times than, say arm-and-release for some values of
αarm, as can be appreciated from the equal time dots in
Fig. 3 top row. However, in the regime of intermediate to
long times, the position of the time-evolving amplitude is
further away from the P-quadrature phase-space axis as
the ratio χ/κ is increased than in the other two readout
schemes. This yields a purely geometrical advantage for
arm-and-longitudinal over the other two approaches.

It is also useful to consider the assignment (or single-
shot) measurement error defined as Em = (1/2)[P (e|g)+
P (g|e)], where P (n|m) is the probability of assigning
the qubit to be in the state n when it was actually in
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m [37]. For the Gaussian distributions we are consider-
ing, the assignment error is related to the SNR [4] by
Em = (1/2)erfc(SNR/2), where erfc is the complemen-
tary error function. In the bottom row of Fig. 3 we plot
the assignment error for each of the trajectories of the top
row in the same figure. For |χ|/κ = 1/3 in Fig. 3, the er-
ror of the A&R scheme (solid lines) always improves over
the error of dispersive readout (black dashed line), and
at larger αarm it is always better. Upon increasing the
value of χ/κ there is crossing of the curves correspond-
ing to the different schemes. For short times, the largest
αarm results in the smallest error, yet for larger times
its performance is the worst. This is in agreement with
the geometric picture of the trajectories, which is most
evident in panel for |χ|/κ = 3 where the largest arm-
ing amplitude gives the worst performance and instead
A&L readout gives a large improvement (note the change
in the range of the vertical axis amongst the three pan-
els). This observation opens the door to achieve improved
readout performance in parameter regimes far from the
well known optimal working point χ/κ = 1 of dispersive
readout.

A. Arm-and-release readout vs dispersive readout

Up to this point we have presented qualitative and
quantitative arguments in support of an improvement of-
fered by arm-and-release readout over dispersive readout,
noticing that there may exists a region in the parameter
space (χ/κ, κτ) where dispersive readout is the superior
scheme. In this subsection, we quantify the extent of the
improvement offered by arm-and-release as well as iden-
tify the region in parameter space where this improve-
ment is guaranteed.

To quantify the improvement offered by arm-and-
release readout, we introduce the relative gain

GA&R(χ, κ, τ) =
max
αarm

{SNRA&R(χ, κ, τ, αarm)}

SNRdisp(χ, κ, τ)
, (20)

where SNRdisp(χ, κ, τ) = SNRA&R(χ, κ, τ, αarm = 0).
The maximization is taken considering the constraint
that both methods should lead to the same maximum
mean photon number. In Fig. 4a we show this relative
gain as a function of the ratio χ/κ and the measurement
time κτ . We observe a large region of this parameter
space where arm-and-release is advantageous, reaching
gains as large as GA&R ∼ 400 for κτ � 1 (not shown)
and small χ/κ, and GA&R ∼ 2 at intermediate times.
However, this advantage decreases at large χ/κ and for
readout times ranging from intermediate, κτ ∼ 4.5, all
the way to the asymptotic limit where dispersive read-
out is advantageous. The gray region in Fig. 4a delimits
the transition between the two regimes where one or the
other scheme performs better. This is consistent with
the geometrical argument for the trajectories discussed
before, by which at intermediate to long times the coher-
ent amplitudes are in close proximity to the steady-state

fixed points, and these are closer to the origin for A&R
when χ/κ is large.

In Fig. 4b we show the normalized value of the am-
plitude, α̃arm = αoptimal

arm /
√
n̄max, that maximizes the

relative gain GA&R of panel (a). The normalization
bounds it to α̃arm ∈ [0, 1]. An important remark is that
the phase space trajectories can be rescaled by taking
αarm → αarm

√
n and ε1 → ε1

√
n leaving all relative per-

formances and optimal values unchanged. Therefore the
optimal value of αarm for any system parameters can be
deduced from Fig. 4b by rescaling α̃arm by the appropri-
ate maximum mean photon number that is desired. This
panel gives an interpretation to the region on the right of
the grey contour in Fig. 4a, where A&R does not offer an
advantage over dispersive. Since in this region α̃arm ∼ 1
the maximum mean photon number of the phase-space
paths occurs at times κτ → 0 thus leading to fixed points
αsg,e which are almost at the origin.

B. Arm-and-longitudinal readout vs dispersive
readout

While there is a region of parameter space where dis-
persive readout is favourable with respect to A&R, c.f.
Fig. 4a, we now show that A&L offers a large improve-
ment over A&R in that region. To quantify this, we
introduce the relative gain of A&L as

GA&L(χ, κ, τ) =
SNRA&L(χ, κ, τ, αarm)

SNRdisp(χ, κ, τ)
. (21)

In Fig. 4c we show this relative gain in the parameter
space (χ/κ, κτ). The A&L readout scheme offers a large
gain GA&L ∼ 400 at κτ � 1 (not shown), similar to the
relative gain of arm-and-release, a consequence of the fi-
nite armed photons. Overall, arm-and-longitudinal per-
forms better than dispersive, except in the region of large
χ/κ and short measurement times, which is delimited
by the gray contour in Fig. 4c. In particular, in the re-
gion where the advantage of A&R over dispersive was not
guaranteed, now A&L is the best of the three methods
(compare Fig. 4a and c). In short, qubit cloaking always
allows to improve readout fidelity regardless of the value
of χ/κ and the measurement integration time.

We stress that even a modest gain GA&L ∼ 2 will
yield a large improvement for the measurement discrim-
ination error. This is illustrated in Fig. 3 which shows
the assignment error Em for |χ|/κ = 3 where A&L gives
an improvement of several orders of magnitude at in-
termediate to long times. In fact, for a large SNR,

Em = (1/2)erfc(SNR/2) ≈ e−SNR2/4/(
√
πSNR), which

means that a larger prefactor in the long-time scaling of
the SNR can have a huge impact in the reduction of the
error.
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FIG. 4. (a) SNR relative gain between A&R and dispersive, Eq. (20), as a function of |χ|/κ and measurement integration time.
(b) Optimal value of the (normalized) amplitude α̃arm associated to the best SNR in panel (a). (c) SNR relative gain between
arm-and-longitudinal and dispersive, Eq. (21), as a function of |χ|/κ and measurement integration time. (d) Ratio between the
relative gains of A&L and A&R, Eq. (22). The black stars correspond to the parameters of the experiment in Ref. [5] and the
red dot to those of Ref. [1] (in which A&R was used), see text. In (a,c,d) the gray contours indicate the separation between
the regions with different optimal readout strategy. In all panels, for a given |χ|/κ all other parameters are fixed by the choice
of nmax.

C. Arm-and-release vs. arm-and-longitudinal:
which one should you use?

The results of the previous two subsections are sum-
marized in Fig. 4d, where we show the ratio

G(χ, κ, τ) =
GA&L(χ, κ, τ)

GA&R(χ, κτ)

=
SNRA&L(χ, κ, τ, αarm)

max
αarm

{SNRA&R(χ, κ, τ, αarm)}

(22)

between the SNRs of A&L and A&R. Together these
two schemes always provide a better strategy than stan-
dard dispersive readout on current superconducting cir-
cuit experiments. All that is left is thus for us to make
the recommendation of how, given the device parame-
ters |χ|/κ and a target measurement integration time,
to make the more out of this pair of schemes. The gray
contour in Fig. 4d indicates G(χ, κ, τ) = 1, separating the
region where A&L or A&R is more advantageous. In the
case where A&R is the preferable choice, one can resort
to Fig. 4b to identify the appropriate arming amplitude
yielding the maximum improvement.

As an example, the experiment of Ref. [5] performed
readout of a transmon qubit with |χ|/κ = 0.42 in κτ =
11.31 and 20.73 with 98.25% and 99.2% average fidelity,
respectively. In Fig. 4d we show these two configura-
tions (black stars), with our recommendation being A&R

and A&L, respectively. We also indicate with a red dot
the parameters of the qubit cloaking experiment in which
A&R was used [1]. In all cases the expected gain on SNR
over dispersive readout is in the 20%-30% range. Albeit
modest, it can signify a large improvement in the discrim-
ination error and thus the readout fidelity, as mentioned
in the discussion of Fig. 3 bottom row.

VI. FULL SYSTEM DYNAMICS

To simplify the presentation, the above discussion re-
lied on the following three approximations: (i) truncating
the multilevel nonlinear system to a two-level system,
(ii) the rotating-wave approximation, and (iii) the dis-
persive approximation. We now show that the readout
trajectories can be made longitudinal-like even without
using these approximations. As a concrete example, we
consider a transmon qubit [38] coupled capacitevely to a
cavity with the Hamiltonian (~ = 1)

Ĥ0 = ωrâ
†â+4EC n̂

2
tr−EJ cos(ϕ̂tr)+ign̂tr(â

†− â). (23)

In this expression, n̂tr and ϕ̂tr are the transmon charge
and phase operators, and EC , EJ , and g the charging,
Josephson, and coupling frequencies, respectively [4]. To

this Hamiltonian we add the cavity drive term Ĥ1(t) =
iε1(t) sin(ω1t)(â

†−â), and solve numerically the Lindblad
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FIG. 5. Numerically obtained paths of the cavity pointer
states in phase space using a transmon multilevel Hamilto-
nian, no RWA, and no dispersive approximation for A&L
(full lines) and standard dispersive (dashed lines). In (a) [(b)]
we use κ/2π = 1 MHz (10.1 MHz), and for A&L readout we
choose ntar = 2 (1), which is in between zero photons and
the maximum number attained n̄max = 4 (2). This results in
|χntar |/κ = 3.286 in (a) and 0.326 in (b). For the standard
dispersive case, we use ω1/2π = 7.665 GHz (7.666 GHz) and
ε1/2π = 4.876 MHz (15 MHz) for (a) [(b)]. All other system
parameters read EJ/2π = 16.93 GHz, EC/2π = 200.4 MHz,
g/2π = 159.1 MHz, and ωr/2π = 7.655 GHz.

equation

∂tρ̂ = −i[Ĥ0 + Ĥ1(t), ρ̂] + κD[â](ρ̂). (24)

We modulate ε1(t) as in Eq. (13). Given that the arming
time does not factor into the readout time, we begin our
simulation for A&L, shown in Fig. 5b, with a preloaded
cavity, and simulate the readout dynamics following the
release of the cloaking mechanism.

In Fig. 5 we show the numerically obtained readout
phase-space trajectories for A&L (full lines) and the stan-
dard dispersive (dashed lines) for two values of the ratio
|χntar |/κ ≈ 3.3 (a) and |χntar |/κ ≈ 0.3 (b). Here χntar is
the numerically obtained dispersive shift evaluated at a
target photon number ntar, see Appendix C for details.
The colored dots corresponds to times t = 0, 0.5, 1, 2,
3.5 and 10 in units of 1/κ. This figure shows that, even
when using the full transmon Hamiltonian and not us-
ing the rotating-wave nor dispersive approximations, the
readout trajectories can be made longitudinal-like via the
modulation of the drive amplitude as in Eq. (13). More-
over, in agreement with Figs. 3 and 4, the best improve-
ment of A&L over standard dispersive is obtained for
long times when |χ|/κ > 1, as is evident here from the
much larger separation of the average cavity amplitudes
for A&L readout in panel (a) [notice the change in ver-

tical scale between the two panels]. The only system
parameter that we change in (a) and (b) is κ/2π, taking
values 1 MHz and 10.1 MHz, respectively. We note that
the asymmetry observed between the ground and excited
state paths in phase space is due to Purcell decay which
affects both dispersive and A&L in similar ways. As dis-
cussed in Ref. [1], qubit cloaking and thus A&L works
with minimal change in the presence of a Purcell filter.

VII. DISCUSSION AND OUTLOOK

We have studied the arm-and-release and arm-and-
longitudinal readout schemes which are derive from qubit
cloaking [1]. Both, are a direct consequence of our ability
to prearm the cavity with photons in anticipation to the
readout dynamics. These two approaches complement
each other and together offer a modest advantage over
the standard dispersive readout for all values of the ratio
χ/κ and measurement times. Since qubit cloaking relies
on standard circuit QED hardware [1], this advantage
can be achieved free of hardware overhead. Arm-and-
longitudinal is realized by a slow turn-off of the cavity
readout drive. The resulting control over the cavity mean
photon population makes this scheme suitable to prevent
undesirable measurement-induced transitions and qubit
ionization. These results illustrate the existence and fea-
sibility of an excellent readout far from the usual optimal
working point χ/κ = 1 of the established dispersive read-
out. We thus hope that our results will help current and
future circuit QED experiments to perform readout at
or close to the state-of-the-art level while relaxing some
parameter optimizations.

An interesting future avenue of research which might
yield improved readout schemes is to exploit the comple-
mentarity of the two schemes discussed in this work. The
combination of rapid evolution under arm-and-release for
short times, κτ ∼ 2, followed by time modulation of the
drive amplitude could bring together the best of both
schemes. This hybrid strategy is guaranteed to succeed
provided Im[αg(t0)] = Im[αe(t0)] is treated as a new ini-
tial condition for the dynamical problem [c.f. the discus-
sion around Eq. (13)].

The longitudinal phase-space evolution of the cavity
amplitude during arm-and-longitudinal may also be use-
ful beyond the task of qubit readout. For instance the
error-correction cycles with the GKP code use phase-
space motions of the cavity amplitude which are quasi-
longitudinal [39, 40], it is interesting to explore to what
extent this error correction schemes might see an im-
provement using the protocol presented in this work.
Furthermore, the longitudinal phase-space motion could
also be useful in implementing cavity-assisted two-qubits
gates that rely on the geometric phase of the cavity
field [41].
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Garćıa-Ripoll, N. Roch, and O. Buisson, Fast high-
fidelity quantum nondemolition qubit readout via a
nonperturbative cross-Kerr coupling, Phys. Rev. X 10,
011045 (2020).
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de Bruxelles, October 28 to November 4, 1991, Lecture
Notes in Physics Monographs (Springer Berlin Heidel-
berg, 2009).

[30] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, 2007).

[31] C. C. Bultink, B. Tarasinski, N. Haandbæk, S. Po-
letto, N. Haider, D. J. Michalak, A. Bruno, and
L. DiCarlo, General method for extracting the quan-
tum efficiency of dispersive qubit readout in cir-
cuit QED, Appl. Phys. Lett. 112, 092601 (2018),
https://doi.org/10.1063/1.5015954.

[32] C. Gardiner and P. Zoller, Quantum Noise: A Handbook
of Markovian and Non-Markovian Quantum Stochastic
Methods with Applications to Quantum Optics, Springer
series in synergetics (Springer, 2000).

[33] J. Gambetta, W. A. Braff, A. Wallraff, S. M. Girvin,
and R. J. Schoelkopf, Protocols for optimal readout of
qubits using a continuous quantum nondemolition mea-
surement, Phys. Rev. A 76, 012325 (2007).

[34] Following Ref. [24] under a longitudinal interaction the

cavity amplitude evolves as αg,e(t) = ∓ g̃z
κ

(
1− e−κt/2

)
,

thus we can readily integrate Eq. (9) and obtain SNR2 =

8
g̃2z
κ2

(
κτ − 3 + 4e−κτ/2 − e−κτ

)
.

[35] S. Richer and D. DiVincenzo, Circuit design implement-
ing longitudinal coupling: a scalable scheme for super-
conducting qubits, Phys. Rev. B 93, 134501 (2016).

[36] P.-M. Billangeon, J. S. Tsai, and Y. Nakamura, Circuit-
QED-based scalable architectures for quantum informa-
tion processing with superconducting qubits, Phys. Rev.
B 91, 094517 (2015).

[37] E. Magesan, J. M. Gambetta, A. D. Córcoles, and
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Appendix A: Mean photon number and
signal-to-noise ratio for arm-and-release readout

In this appendix we present the expressions for the
time dependence of the mean photon number and the
signal-to-noise ratio for the arm-and-release scheme, as
well as for standard dispersive when we take the limit
αarm → 0. The mean photon number is computed from
Eq. (7) as n̄(t) = |α(t)|2, and we obtain

n̄A&R(t) =
ε21

χ2 + κ2
(1− e−κ2 t) + α2

arme
−κt

+
ε1

χ2 + κ2

[
2αarm

[
χ sin

(χ
2
t
)

+ κ cos
(χ

2
t
)
− κe−κ2 t

]
− 2ε1 cos

(χ
2
t
)]
e−κt/2

(A1)

The signal-to-noise ratio is computed directly from
Eq. (9). We find

https://doi.org/10.1103/PRXQuantum.4.020312
https://doi.org/10.1103/PRXQuantum.4.020312
https://arxiv.org/abs/2212.05097
https://arxiv.org/abs/2212.05097
https://doi.org/10.1103/PhysRevLett.94.123602
https://doi.org/10.1103/PhysRevLett.94.123602
https://doi.org/10.1103/PhysRevLett.115.203601
https://doi.org/10.1103/PhysRevLett.115.203601
https://doi.org/10.1103/PhysRevApplied.7.054025
https://doi.org/10.1103/PhysRevApplied.7.054025
https://doi.org/10.1103/PhysRevLett.120.227702
https://doi.org/10.1103/PhysRevLett.120.227702
https://doi.org/10.1103/PhysRevLett.122.080502
https://doi.org/10.1103/PhysRevLett.122.080503
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1063/1.5015954
https://arxiv.org/abs/https://doi.org/10.1063/1.5015954
https://doi.org/10.1103/PhysRevA.76.012325
https://doi.org/10.1103/PhysRevB.93.134501
https://doi.org/10.1103/PhysRevB.91.094517
https://doi.org/10.1103/PhysRevB.91.094517
https://doi.org/10.1103/PhysRevLett.114.200501
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1038/s41567-022-01776-9
https://doi.org/10.1038/s41567-022-01776-9
https://arxiv.org/abs/2211.09116
https://doi.org/10.1103/PhysRevLett.117.250502


12

SNR2
A&R

8κ
=

ε21χ
2

(κ2 + χ2)2
τ − 4ε21χ

2

(χ2 + κ2)3

[
κ−

(
κ cos

(χ
2
τ
)
− χ sin

(χ
2
τ
))

e−
κ
2 τ
]

+
ε21χ

2

(χ2 + κ2)3
[
χ2 + 2κ2 −

(
χ2 + κ2 + κ2 cos(χτ)− χκ sin(χτ)

)
e−κτ

]
− 4ε21κχ

(χ2 + κ2)3

[
χ−

(
cos
(χ

2
τ
)

+ κ sin
(κ

2
τ
))

e−
κ
2 τ
]

+
ε21κχ

(χ2 + κ2)3
[
χ− (χ cos(χτ) + κ sin(χτ))e−κτ

]
+

ε21κ

2(χ2 + κ2)3
[
χ2 − (χ2 + κ2 − κ2 cos(χτ) + κχ sin(χτ))e−κτ

]
+

4αarmε1χ

(χ2 + κ2)2

[
χ−

(
χ cos

(χ
2
τ
)

+ κ sin
(χ

2
τ
))

e−
κ
2 τ
]
− αarmε1χ

(χ2 + κ2)2
[
χ− (χ cos(χτ) + κ sin(χτ)) e−κτ

]
+

α2
arm

2κ(χ2 + κ2)2
[
χ2 −

(
χ2 + κ2 − κ2 cos(χτ) + κχ sin(χτ)

)
e−κτ

]
− αarmε1

(χ2 + κ2)2
[
χ2 −

(
χ2 + κ2 − κ2 cos(χτ) + κχ sin(χτ)

)
e−κτ

]
(A2)

Appendix B: Explicit form of the drive amplitude
for arm-and-longitudinal readout

As mentioned in Sec. IV, our starting point is the equa-
tion of motion for the intracavity field amplitude with a
resonant drive, ω1 = ωr, given by

α̇g,e = −(∓iχ/2 + κ/2)αg,e + iε1(t)/2, (B1)

and its formal solution,

αe(t) =α(0)e−(iχ2 +κ
2 )t

+
i

2

∫ t

0

e−(iχ2 +κ
2 )(t−t′)ε(t′)dt′,

(B2)

with αg(t) = αe(t;χ → −χ). Furthermore, given that
our initial condition is Re[α(0)] = 0 and Im[α(0)] = αarm

with αarm a positive real number, we achieve our goal of
making the trajectories separate along the X-quadrature
if the condition Im[αg,e(t)] = αarm is satisfied for all times

t ≥ 0. This immediately implies d
dt Im[α(t)] = 0, and

after plugging this into Eq. (B1) we obtain

ε1(t) = χRe[α(t)] + κIm[α(t)], (B3)

where we dropped the sign dependence on χ, as this will
not affect the final answer which is qubit-state indepen-
dent.

At this point, we split Eq. (B2) into its real and imag-
inary parts, and plug them into Eq. (B3) to obtain

ε1(t) = 2αarmK(t, 0) +

t∫
0

dτK(t, τ)ε1(τ), (B4)

where the kernel reads

K(t, τ) =
1

2

[
χ sin

(χ
2

(t− τ)
)

+ κ cos
(χ

2
(t− τ)

)]
× e−κ2 (t−τ),

(B5)

The expression in Eq. (B4) is a Volterra integral equation
of the second kind (see chapter 16 of Ref. [42]). Impor-
tantly, this kernel is separable, meaning that it can be
written as

K(t, τ) =

L∑
l=1

Gl(t)Wl(τ), (B6)

for some integer L and some functions {Gl} and {Wl}.
This fact is a sufficient condition for the integral equation
to have a unique solution (see chapter 16 of Ref.[42]).
This solution reads

ε1(t) =
αarmχ

2

κ

(
1− e−κ2 t

)
+ αarmκ, (B7)

given in Eq. (13) in the main text.

Appendix C: Numerical determination of χ for the
full-cosine transmon model

With the approximations introduced in Sec. II, the dis-
persive interaction takes the usual form ≈ χσ̂+σ̂−â†â,
where the dispersive shift χ is independent of the photon
number. Here for a multilevel system, using perturbation
theory to approximately diagonalize the system Hamil-
tonian gives

Û†Ĥ0Û ≈ ω̃râ†â+
∑
i

ε̃i |i〉 〈i|+
∑
i,n

nχi,n |i, n〉 〈i, n| ,

(C1)
where ω̃r is the Lamb-shifted cavity frequency and the
dispersive interaction χi,n depends now on the cavity
Fock number n [4]. Here, {ε̃i} and {|i〉} with i =
g, e, f, . . . correspond respectively to the Lamb-shifted
energies and the eigenstates of the transmon Hamilto-
nian 4EC n̂tr − EJ cos(ϕ̂tr). The actual eigenstates of

Ĥ0, labeled
∣∣i, n〉 = Û |i, n〉 have associated eigenvalues
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εi,n ≈ (ω̃r+χi,n)n+ ε̃i according to Eq. (C1). We can de-
fine energy branches for each of the transmon states, see
Ref. [20]. The branch associated with the transmon being
in the ground (excited) state corresponds approximately
to cavity energies (ω̃r + χg(e),n)n. Choosing an optimal
drive frequency for readout with a target Fock number
ntar corresponds to using ω1 = ω̃r + (χg,ntar + χe,ntar)/2,
exactly in between the two branches at that Fock num-
ber. The full dispersive shift at ntar is given by χntar ≡

χe,ntar
− χg,ntar

. In the modulation of the drive ampli-
tude, Eq. (13), instead of χ we use χntar

with a chosen
ntar. Our protocol works perfectly well as long as χn does
not change dramatically from the initial n ∼ n̄ = |αarm|2
mean photon number to the steady-state n ∼ n̄s = nmax

maximum mean photon number. In particular, the dy-
namics should not lead to photon numbers so large that
transitions to higher transmon energy levels (i = f, . . . )
are induced [18–22].
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