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We introduce a quantum-inspired approximation algorithm for MaxCut based on low-depth Clif-
ford circuits. We start by showing that the solution unitaries found by the adaptive quantum
approximation optimization algorithm (ADAPT-QAOA) for the MaxCut problem on weighted fully
connected graphs are (almost) Clifford circuits. Motivated by this observation, we devise an ap-
proximation algorithm for MaxCut, ADAPT-Clifford, that searches through the Clifford manifold
by combining a minimal set of generating elements of the Clifford group. Our algorithm finds an
approximate solution of MaxCut on an N -vertex graph by building a depth O(N) Clifford circuit,
with worst-case runtime and space complexities O(N6) and O(N2), respectively. We implement
ADAPT-Clifford and characterize its performance on graphs with positive and signed weights. The
case of signed weights is illustrated with the paradigmatic Sherrington-Kirkpatrick model, for which
our algorithm finds solutions with ground-state mean energy density corresponding to ∼ 94% of
the Parisi value in the thermodynamic limit. The case of positive weights is investigated by com-
paring the cut found by ADAPT-Clifford with the cut found with the Goemans-Williamson (GW)
algorithm. For both sparse and dense instances we provide copious evidence that, up to hundreds
of nodes, ADAPT-Clifford finds cuts of lower energy than GW. Since good approximate solutions
to MaxCut can be efficiently found within the Clifford manifold, we hope our results will motivate
to rethink the approach so far used to search for quantum speedup in combinatorial optimization
problems.

I. INTRODUCTION

Quantum computation allows for information process-
ing capacities beyond those attainable in classical digital
computing, provided that fault-tolerant quantum com-
puters can be built in practice [1]. While the milestone
of break-even error correction of a single logical qubit has
been reached [2–4], the roadmap to scalable fault-tolerant
quantum processors extends into the long term. At the
same time, the level of noise in near-term quantum de-
vices with modest numbers of qubits precludes their use
as general-purpose machines [5, 6].

On the other hand, near-term quantum processors
have found a niche in the hybrid quantum-classical model
of computation with Variational Quantum Algorithms
(VQAs) [7–9]. These algorithms perform classical op-
timization of a problem-specific objective function that
is evaluated by measuring the output of a parametrized
quantum circuit. Through variational search over cir-
cuit parameters, a VQA thus seeks a solution circuit that
transforms a simple input state in the Hilbert space of
problem variables to a superposition of approximate so-
lutions, i.e., configurations that yield near-optimal val-
ues of the objective function. In attempts to deter-
mine whether they can lead to a speedup over classi-
cal algorithms for any useful task, VQAs have been ap-
plied to a variety of combinatorial optimization prob-
lems. Quantum approximate optimization algorithms
(QAOAs) [10, 11] have been in a constant tug of war
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with classical solvers, with initial indications of puta-
tive quantum speedups [12–15], followed by experimental
claims [16] and rebuttals [17], and then further propos-
als for possible quantum speedup [18]. A byproduct of
this large effort has been the definition and construc-
tion of quantum-inspired algorithms [19–24]. These are
“dequantized” classical versions of quantum or hybrid
quantum-classical algorithms that unveil and exploit pre-
viously unrecognized properties or structures in a prob-
lem, leading to solution strategies that outperform the
best known classical algorithm.

In this work, we introduce a quantum-inspired approx-
imation algorithm for the MaxCut problem. The algo-
rithm, which we dub ADAPT-Clifford, is motivated by
the observation that the solution circuits found by an
adaptive QAOA variant for MaxCut on weighted com-
plete graphs are (almost) Clifford circuits, a well-known
restricted class of quantum circuits that are easy to sim-
ulate classically [25–29]. ADAPT-Clifford builds an en-
tangled state with a number of unitary operations that
is equal to the number of nodes N , adding at every step
a known two-qubit gate to the circuit. The algorithm
is polynomial both in time and space, with worst case
runtime complexity O(N6) and space complexity O(N2).
We characterize the performance of the algorithm in sev-
eral families of graphs. For graph sizes up to N = 30
nodes we report the exact approximation ratios. For
larger problem sizes up to hundreds of nodes and de-
pending on graph family, we assess the performance by
either direct comparison with the solution found by the
best classical algorithm for MaxCut [30, 31], or by com-
paring with the known value of the mean energy density
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in the thermodynamic limit.
The rest of this manuscript is organized as follows.

In Sec. II we present a short summary of the Max-
Cut problem, quantum approximate optimization and
its adaptive variant, Clifford circuits, and introduce the
tools we use to characterize the structure of solution
circuits. In Sec. III we present the origin of the al-
gorithm by analyzing the structure of solution circuits
to MaxCut on weighted complete graphs obtained with
QAOA and ADAPT-QAOA. In Sec. IV we present the
ADAPT-Clifford algorithm, discuss its details, and ana-
lyze its runtime and space complexities in different types
of graphs. In Sec. V we present numerical results of
the algorithm performance on weighted complete graphs
with positive and signed weights, using the Sherrington-
Kirkpatrick model as a specific example of the latter.
In Sec. VI we explore the performance of the algorithm
beyond complete graphs, including weighted and un-
weighted K-regular graphs and Erdös-Rényi graphs. Fi-
nally in Sec. VII we conclude with a discussion of our
results in the context of near-term quantum optimiza-
tion algorithms and present an outlook of future work.

II. BACKGROUND AND METHODS

A. The MaxCut problem

Given a graph G = (V, E), where V is the vertex set
and E ⊆ V2 is the set of edges (E = V2 is a complete
graph), and edge weights ωi,j ∈ R for (i, j) ∈ E , the
MaxCut problem asks to partition V into two comple-
mentary subsets A,A ⊂ V, such that the total weight of
the edges between A and A is maximized. We use binary
variables zi ∈ {0, 1}, i ∈ V to help us identify each sub-
set, so that zi = 1 if vertex i ∈ A and zi = 0 if i ∈ A.
The maximal cut can then be formally expressed as the
assignment z′ that maximizes the cost function

C(z) =
∑

(i,j)∈E

ωi,jzi(1− zj), (1)

where z = z1...zN is a N -bit binary string and ωi,j = ωj,i

∀(i, j) ∈ E .
The MaxCut problem on general graphs is known

to be NP-hard [32][33]. However, MaxCut can be
solved in polynomial time in some special cases, such
as graphs without long odd cycles [34], weakly bipartite
graphs [35], planar graphs both weighted [36, 37] and un-
weighted [38, 39], 1-planar graphs [40], and graphs with
k crossings [41]. Finally, when all the edge weights are
negative, MaxCut becomes a equivalent to MinCut and
admits a polynomial time algorithm [42].

Beyond the special cases mentioned above and due to
the difficulty of solving the problem exactly, one often
aims instead to find approximation algorithms that yield
reasonably good solutions in polynomial time for all prob-
lem instances. That is, we search for an algorithm that

outputs an assignment z∗, such that the approximation
ratio

α(z∗) =
C(z∗)

max
z

[C(z)]
, (2)

equals some desired value, ideally as close to 1 as possi-
ble, on all instances of MaxCut. However, in some cases
the gap between approximate an optimal solutions can-
not be reduced arbitrarily in polynomial time [43], a phe-
nomenon known as hardness of approximation. For Max-
Cut on general graphs, the best known approximation al-
gorithm is that of Goemans and Williamson (GW) [30],
which has a performance guarantee (worst case) of α ≃
0.878 [30, 31, 44] [45]. Below we will present extensive
performance comparisons between ADAPT-Clifford and
the GW algorithm, in order to be as self contained as
possible we review the details of the GW algorithm in
App. A.
One might hope to achieve better approximation ratios

by focusing on specific families of graphs. For unweighted
graphs Ref. [46] showed that finding an algorithm yield-
ing an approximation ratio better than 16/17 is NP-hard.
Nearly optimal algorithms both for cubic graphs [47],
guaranteeing α = 0.9326, and for K-regular graphs of
large degree [48], are known. Another interesting exam-
ple is the case of dense graphs, i.e., graphs with O(N2)
edges. Polynomial time approximation schemes (PTAS)
are known for both unweighted [49, 50] and weighted [51]
graphs, although for the latter there is only an exis-
tence result. A PTAS guarantees an approximate solu-
tion whose cost is 1−ϵ away from the optimal. Although
these schemes have a provable polynomial runtime in N ,
it might not be polynomial in ϵ, see for example Ref. [50].
We will come back to this point in Sec. VII.
In quantum approximate optimization, the objective

function of a combinatorial optimization problem defined
on binary variables zi, such as MaxCut, is expressed as
an Ising Hamiltonian through the mapping σi = 2zi − 1,
with connectivity dictated by the graph G [52]. That
is, the entries ωi,j of the adjacency matrix reflect the
coupling between the i-th and j-th spin. In this setting
the optimum z′ is encoded as the ground state of the Ising
Hamiltonian. The Ising Hamiltonian is then promoted
to a Hamiltonian operator via the identification σi →
Zi, with Zi a Pauli-z operator acting on the qubit that
corresponds to the i-th spin. For the MaxCut problem,
the corresponding Hamiltonian is

HC =
1

2

∑

i<j

ωi,jZiZj . (3)

In writing Eq. (3) we have dropped a constant factor
equal to

∑
i<j

ωi,j

2 and added a minus sign to turn the

maximization problem defined by Eq. (1) into a mini-
mization one.
In analogy with classical approximation algorithms,

quantum approximate optimization yields approximate
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solutions in the form of a state |ϕ⟩, whose energy expec-
tation is as close as possible to the ground-state energy
of the Ising Hamiltonian. Thus, the approximation ratio,
Eq. (2), takes the form

α =
⟨ϕ|HC|ϕ⟩
EC

min

, (4)

where EC
min is the smallest eigenvalue of HC. To achieve

advantageous performance, a quantum algorithm must
produce an approximate solution with a desired α faster
than any classical algorithm.

B. The quantum approximate optimization
algorithm and its adaptive variant

The Quauntum Approximated Optimization Algo-
rithm (QAOA) is a type of variational algorithm [8] that
aims to solve combinatorial optimization problems [10].
It is defined by a parametrized quantum circuit with a
periodic structure. Each layer of the circuit is given by a
product of two unitaries, time evolution under HC, fol-
lowed by time evolution under a mixer Hamiltonian

HM =

N∑

j=1

Xj , (5)

where Xj is a Pauli-x on the j-th qubit. For p layers
QAOA prepares the state

|ψ(γ,β)⟩p =

[
p∏

l=1

e−iβlHMe−iγlHC

]
H⊗N |0⟩⊗N , (6)

where γ = γ1, ..., γp, β = β1, ..., βp, and H is the
Hadamard gate. In order to find approximate solutions
the set of 2p parameters is optimized so as to minimize
⟨ψ(γ,β)|HC|ψ(γ,β)⟩p. After executing the circuit with
optimized parameters a measurement in the computa-
tional basis returns a candidate solution in the form of
a bit string z∗. Ideally, one would sample with high
probability a good approximate solution. We will de-
note the optimal parameters found by numerical exper-
iments as (γ∗,β∗), and the associated solution unitary
U(γ∗,β∗) =

∏p
l=1 e

−iβ∗
l HMe−iγ∗

l HC .
Not much is known regarding performance guaran-

tees and hardness of approximation for QAOA. The case
of constant p has so far been the main focus, as it is
the regime of interest for current quantum devices [5].
Ref. [53] gives evidence for a possible quantum advantage
for MaxCut on 3-regular graphs with shallow QAOA. At
the same time, it is known that constant p QAOA is
bounded away from optimality in sparse graphs [54–56],
as well as in some dense problems where the overlap gap
property [57] is known to exist [58]. These results were
recently extended to the case of p ∼ log(N) [59]. How-
ever these results do not apply directly to the case of

p ∼ poly(N). As a consequence there are no conclusive
results on the runtime required for p ∼ poly(N) QAOA to
reach a given approximation ratio, with only loose lower
bounds appearing recently [60]. Most studies of QAOA
so far have been numerical experiments, meaning that
indications of a putative advantage [12][61], have been
inconclusive due to the small problem sizes accessible to
either quantum implementations or classical simulation.
To alleviate some of the roadblocks explored above,

variants to the original QAOA ansatz have been devel-
oped, see Ref. [62] for a review. Of interest to us here is
the ADAPT [63] variant, which was proposed as a way
to find ansätze which are tailored to the specifics of the
problem under consideration. ADAPT-QAOA is an iter-
ative variational algorithm which replaces the fixed mixer
Hamiltonian in Eq. (6), by a suitably chosen one, Al, at
each layer l ≤ p. Thus, p-layer ADAPT-QAOA prepares
the state

|ψ(γ, β)⟩ADAPT
p =

[
p∏

l=1

e−iβlAle−iγlHC

]
H⊗N |0⟩⊗N . (7)

The l-th mixer Hamiltonian is chosen as the one which
maximizes the energy gradient, that is,

Al = max
As∈POP

[
−i⟨ψl−1|eiγlHC [HC, Âs]e

−iγlHC |ψl−1⟩
]
,

(8)
where the new variational parameter γl is set to a prede-
fined small positive value γ0 ∼ 0 [63], and POP is an oper-
ator pool. The choice of pool is not unique, with different
pools being advantageous in different situations [64, 65].
Below we restrict ourselves to the pool

POP ={
∑

i

Xi,
∑

i

Yi} ∪ {Xj , Yj}j=1,...,N

∪ {XjXk, YjYk, YjZk, ZjYk}j,k=1,...,N,j ̸=k,

(9)

which is sufficient for our purposes.
In contrast to QAOA, ADAPT-QAOA grows the cir-

cuit layer by layer, until the desired number p. As such,
we begin with a single layer, find the corresponding mixer
according to Eq. (8), then optimize to find the best pa-
rameters. We then add a second layer, find the corre-
sponding mixer according to Eq. (8), initialize the new
pair of parameters to zero [66], the rest of the param-
eters to the best values already found, and optimize
all of them. This procedure is repeated until p layers
are added. For a fair comparison between QAOA and
ADAPT-QAOA in our numerical simulations we con-
struct the QAOA solution circuit following the same it-
erative strategy, but with a fixed mixer.

C. Clifford circuits and their efficient simulation

In this subsection we review some concepts of the stabi-
lizer formalism which will be used later in the manuscript.
For a general presentation see Ref. [1].
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The single qubit Pauli group is given by the operators
{I, X, Y, Z} together with multiplicative factors ±1,±i.
The N qubit Pauli group P̃N is given by all the N -tensor
products of these operators together with multiplicative
factors. Given a pure state on N qubits |ψ⟩, we say

P̃i ∈ P̃N stabilizes |ψ⟩ if the state is an eigenvector of P̃i

with eigenvalue +1: P̃i|ψ⟩ = |ψ⟩. A n-qubit pure state is
a stabilizer state if it can be completely specified, up to
a global phase, by its N stabilizers.

Quantum circuits which map stabilizer states to sta-
bilizer states define a large class of nontrivial quantum
circuits —stabilizer circuits— which can be simulated in
polynomial time on a classical computer [28, 29]. This
is the content of the celebrated Gottesman-Knill the-
orem [26, 27]. These quantum circuits can be com-
pletely written in terms of controlled-NOT, Hadamard,
and phase gates, and single qubit measurements. Im-
portantly, the efficient classical simulability does not im-
ply these circuits are not interesting. On the contrary,
they have extensive applications in quantum information
science, for instance encoding and decoding in quantum
error correction [25, 27, 67, 68], dense quantum cod-
ing [69], quantum teleportation [70], quantum simula-
tion [71, 72], proof of principle of quantum advantage
with nonlocal games [73, 74], as well as in quantum many-
body physics [75–79].

In absence of measurements, stabilizer circuits are re-
ferred to as Clifford circuits or Clifford unitaries. They
form a group C, defined as the unitaries which normal-
ize the Pauli group, that is, the unitaries which map
Pauli operators to Pauli operators. Following from the
Gottesman-Knill theorem, this group has three genera-
tors, the controlled-NOT, Hadamard, and phase gates.
Naturally the Pauli operators are elements of the group,
as they are generated by Hadamard and phase.

Both the QAOA and ADAPT-QAOA ansätze are de-
fined as products of unitaries generated by Pauli strings.
When are unitary transformations generated by Pauli
strings Clifford unitaries? To answer this question, take
P̃i, P̃j ∈ P̃, two distinct Pauli strings that either com-

mute or anticommute by definition. If W (θ) = e−iθP̃j ,

then W †P̃iW = P̃i if [P̃i, P̃j ] = 0, and W †P̃iW = iP̃iP̃j

if {P̃i, P̃j} = 0 and θ = ±mπ
4 with m ∈ N. We thus see

that when a quantum circuit is composed of products of
unitaries generated by Pauli strings that do not neces-
sarily commute, it is a Clifford circuit if an only if the
parameters of these transformations are integer multiples
of ±π/4. Therefore, if QAOA solution circuits U(γ∗,β∗)
are to be Clifford, then the circuit parameters γ∗ and β∗

must be integer multiples of ±π/4.

D. Characterizing the structure of solution
unitaries

Here we introduce the tools we use in the next section
to characterize the structure of QAOA solution circuits

U(γ∗,β∗). Consider the Hilbert space H of N qubits
with dimension d = 2N , and define the N -qubit Pauli
basis as PN = P̃N/⟨±iI⟩, the quotient group containing,
D = 4N − 1, Pauli strings with all multiplicative factors
equal to +1. Furthermore any pair of Pauli strings obey
Tr[PiPj ] = dδij . Therefore, PN defines a basis for all
Hermitian operators in H.
Consider some Hermitian operator O acting onH. If O

evolves under some unitary transformation V , we write

O′ = V †OV =

D∑

j=1

f [Pj ;O
′]Pj , (10)

with Pj ∈ PN . Noticing that
∑

j |f [Pj ;O
′]|2 = Tr[O′2] =

Tr[O2], we define

pj(O;V ) =
1

Tr[O2]
|f [Pj ;O

′]|2. (11)

It is easy to see that
∑

j pj = 1. Eq. (11) thus denotes

the probability of finding O′ to be the j-th Pauli string
Pj . In the case of O = Pl, the normalization factor in
Eq. (11) is

∑
j |f [Pj ;O

′]|2 = d.
We analyze the transformation V as an “input-output”

channel, with O the input and O′ the output, and are in-
terested in characterizing the locality, in the Pauli basis,
of the output. This can be inferred from the the local-
ization properties of pj(O;V ), which we investigate with
the Second Renyi entropy, see Ref. [80] and Sec. 2.7 of
Ref. [81], [82]

S (O;V ) = − log




4N∑

j=0

|f [Pj ;O
′]|4

d2


 . (12)

The Pl ∈ PN can be ordered by their “weight”, i.e., the
number of nonidentity elements in the Pauli string. This
ordering allows us to systematically study the Clifford
character of the transformation V on Pauli strings. Nat-
urally, the first step will be to check it for strings of weight
one, which is done by setting O = Yn, where Yn denotes a
Pauli operator with a Pauli-y on the n-th qubit position
and identity everywhere else. In particular we denote
S (Yn;V ) = Sn (V ). Since we can place the initial Pauli-
y at any of the N positions representing the nodes of the
graph, we consider the node-averaged Renyi entropy of
the operator distribution

S (V ) =
1

N

N∑

n=1

Sn(V ), (13)

as our figure of merit. Since Clifford unitaries map Pauli
strings to Pauli strings, then S (O;V ) = 0 for all O ∈
PN . Since we are only checking the behavior of V as
a “channel” for Pauli strings localized on one qubit, a
vanishing S is necessary (but not sufficient) for V to be
Clifford. We thus use S as a witness of Cliffordness.
We supplement this witness with an examination of the

optimal parameters (γ∗,β∗). Observation of γ∗,β∗ =



5

2 4 6 8 10
number of layers p

0.2

0.4

0.6

0.8

1.0
A

pp
ro

xi
m

at
io

n
ra

ti
o (a)

ADAPT-QAOA U[0, 1]

ADAPT-QAOA Exp(1)

ADAPT-QAOA U[−1, 1]

ADAPT-QAOA N (0, 1)

2 4 6 8 10
number of layers p

0

1

2

3

4

5

E
[ S̄
]

(b)

QAOA U[0, 1]

QAOA Exp(1)

QAOA U[−1, 1]

QAOA N (0, 1)

2 4 6 8 10
Layer index l ≤ p

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

P
ar

am
et

er
s

U[0, 1]

(c)

ADAPT-QAOA solution p = 10

Cost layer

Mixer layer

−π/4

2 4 6 8 10
Layer index l ≤ p

−0.5

0.0

0.5

1.0
P

ar
am

et
er

s
N (0, 1)

(d)

ADAPT-QAOA solution p = 10

Cost layer

Mixer layer

−π/4

FIG. 1. QAOA and ADAPT-QAOA results for MaxCut on
weighted complete graphs with N = 6. (a) Instance average
of α for QAOA (purple) and ADAPT-QAOA (green). (b)
Instance average of S in Eq. 13 of solution circuits with p
layers fore QAOA (purple) and ADAPT-QAOA (green). For
both (a) and (b) the distributions of the weights used are
indicated in the figure. (c,d) Examples of the parameters γ∗

(cost, solid line) and β∗ (mixer, dashed line) of the solution
unitary U(γ∗,β∗) for an instance with weights drawn from
U[0, 1] (c) and N (0, 1) (d).

±mπ
4 with m ∈ N, then provides the sufficient condition

for V to be Clifford. This observation is made quantita-
tive via the distance of the vector of parameters v to the
discrete set of interest. We define this distance as

D(v) =
∑

vi∈v

min
l∈Z

[|vi − lπ4 |]
π/8

, (14)

where the normalization ensures that each term in the
sum is bounded to the interval [0, 1], thus we have
0 ≤ D(v) ≤ |v|. Then the instance averaged distances
E[D(γ∗)] → 0 and E[D(β∗)] → 0 will inform us of solu-
tion circuits which are close to Clifford.

III. ORIGIN OF THE ADAPT-CLIFFORD
ALGORITHM

To understand the origin of the ADAPT-Clifford algo-
rithm, it is instructive to examine the solution circuits
obtained with QAOA and ADAPT-QAOA for MaxCut
on small weighted complete graphs. We implemented
both variational algorithms in the extensible Julia frame-
work Yao.jl [83] and use the COBYLA optimizer. The
analysis of the operator distribution in the Pauil basis
was implemented using QuantumOptics.jl [84].

We consider first the case of graphs with positive
weights with ωi,j from either U[0, 1], where by U[a, b]
we denote the uniform distribution in the interval [a, b],
or Exp(1), the exponential distribution with mean 1. In
Fig. 1a we show the mean approximation ratios for 50
problem instances with N = 6 for circuits up to p = 10
layers. Similar to the observation in Ref. [63], ADAPT-
QAOA (green diamonds and circles in Fig. 1a) finds a
solution arbitrarily close to the exact solution at suffi-
ciently high but finite p, away from the p → ∞ limit
where QAOA is guaranteed to reach the exact solution.
In Fig. 1b we show the expectation value over instances of
S, E[S]. The ADAPT-QAOA solution circuits that lead
to α → 1 in Fig. 1a display E[S] → 0, indicating they
might be Clifford circuits. In contrast, the QAOA solu-
tion unitaries show E[S] > 0 with a tendency towards the
typical value, log(4−N ), with increasing depth, in agree-
ment with previous works using other indicators [85, 86].

To verify the Cliffordness of the ADAPT-QAOA so-
lution circuits we examine the optimized parameters,
(γ∗,β∗), at p = 10. An example is shown in Fig. 1c where
dashed and solid lines correspond to γ∗ and β∗, respec-
tively. We observe γ∗ → 0 and β∗ → −π/4 in all layers,
and the mixer Hamiltonians selected by the adaptive step
are almost always YlZm for some pair of qubits (l,m).
Furthermore the distances of the optimal parameters for
p = 10 to ±sπ4 with s ∈ N averaged over all instances
with α→ 1 (ωi,j ∈ U[0, 1]), are E[D(γ∗)] = 0.522± 0.270
and E[D(β∗)] = 0.247 ± 0.322, indicating the optimized
parameters are closed, on average, to the Clifford values.
This is to be contrasted with E[D(γ∗)] = 3.53± 0.94 and
E[D(β∗)] = 3.41 ± 0.62 for the optimized parameters of
the QAOA solution circuits with p = 10. Finally, we
extensively checked that the properties of the ADAPT-
QAOA solution unitary discussed here do not change as
long as the edge weights are all positive.

Next we consider the case of signed weights with ωi,j

sampled either from U[−1, 1] or N (0, 1), the normal dis-
tribution with mean 0 and variance 1. In Fig. 1a we com-
pare the averaged approximation ratio of the ADAPT-
QAOA solutions with that of the QAOA solutions for the
same problem instances. Similar to the case of strictly
positive weights, ADAPT-QAOA solutions get arbitrar-
ily close to the exact solution when enough layers are
considered. As seen in Fig. 1b E[S] ̸= 0 for the ADAPT-
QAOA solution (green crosses and squares). Although
the circuits found are therefore not Clifford, E[S] ∼ 1 at
p = 10 for the small problem size under study, in contrast
to QAOA solution circuits (purple crosses and hexagons),
for which E[S] tends towards the typical value.

The small value of E[S] for the ADAPT-QAOA solu-
tions raises the question: how far is this solution from
the Clifford manifold? To answer this, in Fig. 1d we
show the optimized parameters (γ∗,β∗) found for one of
the problem instances solved. The β∗'s are either 0 or
−π/4, indicating the mixer unitaries are Clifford, with
mixer Hamiltonians almost always YlZm for some pair
of qubits (l,m), and most of the γ∗'s are zero with only
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few, ∼ 2, being nonzero. Furthermore, the distances of
the optimized parameters for p = 10 to ±sπ4 with s ∈ N
averaged over all instances with α → 1 (ωi,j ∈ N (0, 1)),
are E[D(γ∗)] = 1.51 ± 0.72 and E[D(β∗)] = 0.83 ± 0.96,
indicating that, on average, the solution circuits are fur-
ther away from the Clifford manifold than in the case
of ωi,j > 0. This is to be contrasted with E[D(γ∗)] =
2.77 ± 0.78 and E[D(β∗)] = 2.75 ± 0.64 for the optimal
parameters of the QAOA solution circuits with p = 10.
Therefore, the overall structure of the mixer unitaries of
the ADAPT-QAOA U(γ∗,β∗) found for positive ωi,j is
still there when ωi,j are signed, complemented with a
nontrivial non-Clifford action of a few of the cost layers.
We have checked that this structure is common to all
ADAPT-QAOA solutions reaching α→ 1.

We summarize the observations of this section:

• The mixer part of all layers is Clifford with param-
eters either 0 or −π/4. The mixer Hamiltonian at
a given step is of the form YlZm for some pair of
qubits (l,m).

• The cost part of most layers acts trivially with pa-
rameters equal to 0.

• Only N steps are required to find an approximated
solution. Consequently, only N mixer layers of the
form described in the first point are needed.

IV. ADAPT-CLIFFORD APPROXIMATION
ALGORITHM FOR MAXCUT

A bit string z∗ is a good approximate solution to Max-
Cut if α(z∗) is as close to 1 as possible. Thus, finding
good approximate solutions to this problem using only
Clifford circuits means to prepare a stabilizer state |Ψ⟩
whose energy expectation satisfies |⟨Ψ|HC|Ψ⟩−EC

min| ≤ ϵ,
with ϵ a small positive constant ideally equal to 0. A
measurement in the computational basis then returns z∗

with the desired value of α.
Consider the bit string z′ which maximizes the cost

in Eq. (1). A stabilizer state satisfying the conditions
discussed above is

|Ψ′⟩ = 1√
2

(
|z′⟩ −

∣∣z′
〉)
, (15)

where z′ is the complement of z′, and we have chosen
the state to be antisymetric under the Ising symmetry
[HC, X

⊗N ] = 0, of the cost Hamiltonian. The state |Ψ′⟩
is completely determined by its N stabilizers. One of
them is −X1X2X3...XN , while the remaining N −1 ones
are of ZZ type and their signs encode the maximal cut of
the graph. In this setting, an approximation algorithm
based on Clifford circuits must be able to determine an
assignment of the signs of the ZZ stabilizers leading to
either z′ or a z∗ with α(z∗) as close to one as possible.

A. Details of the algorithm

We design ADAPT-Clifford so as to exploit the obser-
vations summarized at the end of Sec. III in preparing
a stabilizer state |Ψ⟩ satisfying the properties described
above. In particular, ADAPT-Clifford prepares the sta-
bilizer state

|Ψ⟩ =
[
N−1∏

r=2

ei
π
4 Z

a(r)Yb(r)

]
ei

π
4 Z

b(1)
Y
a(1)ZkH

⊗N |0⟩⊗N ,

(16)
where k is the position of a qubit chosen arbitrarily, a(r) ∈
a(r) and b(r) ∈ b(r) are indices denoting the positions of
“active” and “inactive” qubits, respectively, and a(r) and
b(r) are vectors storing the positions of all the active and
inactive qubits at step r. We call a qubit active if a Pauli
gate has been applied to it, otherwise it is inactive.
ADAPT-Clifford prepares |Ψ⟩ starting from the k-th

qubit and growing this entangled state qubit by qubit, in
such a way that at step r the state is a product of two
parts: an entangled state of all the |a(r)| active qubits
and all the |b(r)| inactive qubits in the product state

|+⟩⊗|b(r)|. To specify the pair (a(r), b(r)) of qubit indices
at each step, we use a “gradient” criterion similar to that
of ADAPT-QAOA. Specifically, at step r > 2 we compute

g
(r)

a(r−1),b(r−1) = −i⟨[HC, Za(r−1)Yb(r−1) ]⟩r−1

= −
∑

l

ωl,b(r−1)⟨ZlXb(r−1)Za(r−1)⟩r−1, (17)

where ⟨.⟩r−1 = ⟨ψr−1|.|ψr−1⟩ is taken on the state at step
r− 1. Then, we choose the pair of qubits (a(r−1), b(r−1))

that maximizes g
(r)

a(r−1),b(r−1) . The case of r = 1 is spe-

cial, and we discuss it below alongside the steps of the
algorithm.

ADAPT-Clifford returns a candidate maximal cut z∗

of a graph G after completing the following N steps:

0. At step r = 0 we begin by selecting a position k
and preparing the product state

|ψ0⟩ = ZkH
⊗N |0⟩⊗N . (18)

At this point the active and inactive qubits are
a(0) = {k} and b(0) = {1, .., N}\{k}.

1. At step r = 1, given that a(0) = k we can es-
timate the largest gradient analytically. In fact,

max
b(0)

[g
(1)

k,b(0)
] = max

b(0)
[ωk,b(0) ], thus the pair we are

looking for is the edge (k, j) of G with

j = argmax
b(0)

[ωk,b(0) ]. (19)

After applying the gate ei
π
4 YkZj , the state is

|ψ1⟩ = ei
π
4 ZjYkZkH

⊗N |0⟩⊗N . (20)

The vectors of active and inactive qubits are up-
dated to a(1) = {k, j} and b(1) = {1, .., N}\{k, j},
respectively.
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2. For r = 2, ..., N − 1, we find the pair of qubits
(l̃, b(r−1)), with l̃ ∈ {k, j}, which maximizes

g
(r)

l̃,b(r−1)
, apply the gate ei

π
4 Zl̃Yb(r−1) , and update

the vectors of active and inactive qubits. In the
case of more than one pair (l̃, b(r−1)) leading to the

same largest value of g
(r)

a(r−1),b(r−1) we break the tie

arbitrarily.

3. After all N steps are completed, we perform a
measurement in the computational basis. From
the output bit string, zout, we readout the ap-
proximate maximal cut of the graph as (A,A)
with A = {zi ∈ zout|zi = 0, i = 1, .., N} and
A = {zi ∈ zout|zi = 1, i = 1, .., N}.

While it may seem that restricting the search to pairs of
the form (l̃, b(r−1)) in step 2 may lead to missing the true
largest gradient, in App. B we show that this is not the
case. Furthermore, this restriction has a simple interpre-
tation. After step r = 1, we have effectively selected the
edge (k, j) as a reference with respect to which we are
going to partition the graph. Nodes k and j are thus
representatives of the disjoint subsets of the cut. Thus,
from that step onward, we can pick a(r−1) ∈ {k, j} with-
out loss of generality in order to decide which qubit to
move into the active set, i.e., to include in the entangled
state.

Some further comments are in order: (i) Given the
type of two-qubit gate we are considering, the form of the
initial product state |ψ0⟩ is chosen as to guarantee that

max
b(0)

[g
(1)

k,b(0)
] will be positive. (ii) For r > 1, and indepen-

dently of the graph connectivity, not all the terms in the
sum in Eq. (17) are nonzero; in fact, the expectation

values in g
(r)

a(r−1),b(r−1) become ⟨ZlXb(r−1)Za(r−1)⟩r−1 =

⟨ZlZa(r−1)⟩r−1 and are nonzero only for those values of l

for which either ±ZlZ
(r−1)
a is a stabilizer of |ψr−1⟩. (iii)

The relevant two-qubit gate can be written in terms of
Clifford gates as

ei
π
4 YlZm = SlHmCNOTl,mR

(l)
x (−π/2)CNOTl,mS†lHm,

(21)
where the Sl, Hl, are the phase and Hadamard gates
acting on the l-th qubit, CNOTl,m is the controlled
NOT gate, with qubit l and qubit m as control and
target qubits, respectively. Furthermore one can write

R
(l)
x (−π/2) = HY Z

l Zl with HY Z
l a variant of the

Hadamard gate which swaps the y- and z-axes. For the
interested reader, we work through the operations of our
algorithm for two small examples in App. C.

1. A stabilizer perspective on the algorithm

We can gain further understanding of the inner work-
ings of the algorithm by looking at the way the stabilizers
of the state change from step r = 0 to step r = N − 1.

At step r = 0, the product state |ψ0⟩ has N − 1 stabi-
lizers equal to Xl, l = 1, .., N , l ̸= k and the remain-
ing stabilizer equal to −Xk. At step r = 1 the action
of the gate between qubits (k, j), with j found as de-
scribed previously, increases the weight of the −X sta-
bilizer by one and changes one of the +X stabilizers by
a ZZ stabilizer. The state |ψ1⟩ is hence stabilized by
−I1..XkIk+1...Ij−1Xj ..IN and −I1..ZkIk+1...Ij−1Zj ..IN
while the remaining N − 2 are still Xl with l ̸= k, j.
This process continues until r = N−1; with every new

gate the weight of the −X stabilizer increases by one and
one of the +X stabilizers gets replaced by a ZZ stabilizer.
In this sense the goal of the algorithm is to correctly
assign the signs of the ZZ stabilizers. After allN−1 steps
are completed, the state |ψN−1⟩ has one stabilizer equal
to −X1X2X3...XN and the remaining N − 1 stabilizers
are ZZ with signs that were determined in the previous
steps. If this sign assignment is done correctly, it encodes
the approximate maximal cut produced by the algorithm.
One can read it out directly by setting the value of any
spin to either +1 or −1 arbitrarily and use the measured
signs of the ZZ stabilizers to fix the values of the spins
at the other N − 1 positions relative to the first one.

B. Runtime and space complexities

Since the evaluation of the gradient requires the com-
putation of a large number of expectation values, this
part of the algorithm incurs the leading runtime cost.
At step r > 1 and before applying the two-qubit gate,

there are r−1 active qubits and N−r+1 inactive qubits.
In order to decide on which pair of qubits we act the
gate, we compute Eq. (17) for all pairs (l̃, b(r−1)) where

l̃ ∈ {k, j} and b(r−1) ∈ b(r−1). There are 2(N − r + 1)
of those pairs. For a given pair the sum in Eq. (17) is

∀l such that (l, l̃) ∈ E . However only when l ∈ a(r−1) is

the expectation value ⟨ZlX
(r−1)
b Zl̃⟩r−1 nonzero. Hence,

at step r, there are at most r − 1 nonzero terms in the
sum and thus at most a number of expectation values δ =
min(r−1,K), with K the maximum degree of the graph,

has to be computed per pair (l̃, b(r−1)). For bounded-
degree graphs, such as K-regular graphs, δ = O(K) at
most, whereas for dense graphs with K = O(N), δ =
O(N).

For a fixed initial position k, the algorithm executes
N − 1 steps before reaching a candidate solution. The
total number of expectation values to be computed is

therefore
∑N−1

r=2 2(N − r + 1)δ, so we have

2K

N−1∑

r=2

(N − r + 1) = K(N2 −N + 2),

or

2

N−1∑

r=2

(N − r + 1)(r − 1) =
2

3
(N3 − 7N + 6),
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for bounded-degree and dense graphs, respectively. Since
the expectation value of a Pauli string on a stabi-
lizer state can be computed in O(N2) time [28] (worst
case) [87], the run time complexity of the algorithm is
O(N4) for bounded degree graphs and O(N5) for dense
graphs.

Since in general the initial position k leading to the
best approximate solution is not known, we propose and
explore two complementary approaches. In the first ap-
proach, we choose the initial position at random. This
algorithm, to which we refer as randomized ADAPT-
Clifford, leads to run time complexities of O(N4) and
O(N5) for bounded-degree and dense graphs, respec-
tively, as described above. Second, we introduce a
deterministic version —deterministic ADAPT-Clifford—
where the best initial position k∗ is determined by ex-
haustive search. That is, we run ADAPT-Clifford N
times, each with a different initial position k, and re-
turn the cut of minimal energy found. The runtime
complexity of this deterministic approach is thus O(N5)
and O(N6) for bounded-degree and dense graphs, respec-
tively. Naturally, the deterministic approach is guaran-
teed to return solutions of equal or smaller energy ex-
pectation that the randomized approach, at the cost of a
more limiting runtime. Whether there exist graph fami-
lies for which any initial position is as good as any other
is a question for future work. Finally, it is easy to see
that for both randomized and deterministic approaches
the space complexity of the algorithm is O(N2), corre-
sponding to the memory required to store the Tableau.

V. ALGORITHM PERFORMANCE ON
WEIGHTED COMPLETE GRAPHS

We have implemented the ADAPT-Clifford algorithm
using the fast stabilizer circuit simulator Stim [29]. Our
implementation is available at [88]. Although we have
chosen this simulator to implement our algorithm, any
stabilizer circuit simulator which supports interactivity,
that is, where expectation values of Pauli strings can be
computed and the circuit modified according to the re-
sults, could be used to implement the algorithm.

We follow the presentation of Sec. III and discuss
separately our algorithm's performance for MaxCut on
weighted complete graphs with positive and signed
weights. For the latter case, we will focus on the
Sherrington-Kirkpatrick model.

A. The case of positive weights

The results of Sec. III indicate that the precise choice
of positive weight distribution may be immaterial. We
have verified numerically that this is indeed the case for
a few different weight distributions. In this subsection,
we focus the discussion to ωi,j sampled from U[0, 1] and
leave an exhaustive investigation for future work.
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FIG. 2. Performance of randomized ADAPT-Clifford on
weighted complete graphs. (a) Normalized energy found by
randomized ADAPT-Clifford (green circles) and GW (light
grey circles) averaged over 100 instances. (b) Instance aver-
aged minimum energy difference between the solution found
with randomized ADAPT-Clifford and GW as a function of
problem size. Notice that randomized ADAPT-Clifford is al-
most always superior to GW. The magenta dotted line indi-
cates a mean energy difference of zero. We have omitted the
error bars for the sake of clarity.

We begin studying the performance of the random-
ized approach. We draw a parallel between the random
initialization of ADAPT-Clifford and the rounding step
of GW, and thus assess the performance of the random-
ized ADAPT-Clifford by direct comparison with GW. We
solved 100 different problem instances for graph sizes up
to N = 1000 with both algorithms. In Fig. 2a we show
the normalized mean minimum energy, E[Emin]/N , of
the solutions obtained with randomized ADAPT-Clifford
(green circles) and the ones obtained with GW (light grey
circles). Notice that our randomized ADAPT-Clifford
almost always produces a solution of lower energy ex-
pectation than GW. These observations can be further
verified with the mean difference of the minimum energy
found, E[ECliff

min −EGW
min ], which we show in Fig. 2b. Since

our randomized ADAPT-Clifford consistently beats GW,
we expect it to have a performance guarantee for typical
instances of positively weighted complete graphs above
that of GW for the general problem. We discuss the
methodology used to estimate it in App. D. We find
αr ≈ 0.8986 a value which confirms our intuition and
sets a lower bound for the expected performance of the
deterministic ADAPT-Clifford.

We now focus on the deterministic approach. First, we
benchmark this algorithm for instances with size up to
N = 30 for which the exact solution can be found ex-
haustively. Fig. 3a shows the exact approximation ratios
α, obtained for 100 problem instances. For these small
problems, our algorithm performs, on average, above
α = 0.997, with the value of the minimum α increasing
as N → 30. We notice that the number of instances for
which our algorithm finds the exact ground state slightly
decreases with the problem size. The success rate, de-
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FIG. 3. (a) Approximation rations α (empty circles) and
mean approximation ratios (orange full circles) of solutions
to MaxCut on 100 weighted complete graphs per graph size
found with deterministic ADAPT-Clifford. (b) Success rate
on the 100 problem instances per graph size considered in (a).
(c) Instance-averaged minimum energy over 60 problems up
to graphs with 200 nodes, both whit our algorithm (orange
solid line), with Goemans-Williamson algorithm (light grey
dashed line), and Goemans-Williamson with I = 105 (black
dashed line). The inset shows the mean difference in the min-
imum energies found by our algorithm and the GW algorithm
as a function of the problem size and for different values of I.
The magenta dotted line indicates a mean energy difference
of zero. In the inset we have omitted the error bars for the
sake of clarity.

fined as the number of times the algorithm finds a cut
with energy ECliff

min − EC
min < 10−10, is shown in Fig. 3b

as a function of the problem size. We observe a success
rate ∼ 80% for N = 30.

For problem sizes beyond N = 30, when we cannot
access the exact value of the ground state energy, we re-
sort to a direct comparison with the GW algorithm. We
find that the cuts obtained with deterministic ADAPT-
Clifford are of superior quality to those found with the
standard GW algorithm. To obtain a comparison, we
thus systematically increase the number of times I the
rounding step is performed in GW and return the best
cut found —see App. A for details. The standard GW

algorithm thus corresponds to I = 1. In Fig. 3c we show
the normalized mean energies E[Emin]/N for 60 problem
instances up to a problem size of N = 200 produced
by our algorithm (orange circles), standard GW (light
grey circles), and GW with I = 105 (black circles). No-
tice that our algorithm produces cuts which are always,
not merely on average, better than those produced with
standard GW, and only when we reach I = 105 does the
GW algorithm begin to produce a cut whose quality is,
on average, superior to that of the cut produced by our
algorithm.

To further verify this observation, the inset of Fig. 3c
shows the mean energy difference, E[ECliff

min − EGW
min ], be-

tween the solution found with our algorithm and the one
found with GW, with the magenta dotted line indicat-
ing E[ECliff

min − EGW
min ] = 0, that is, equal quality cuts on

average. It is seen that ADAPT-Clifford performs in-
creasingly better than GW with fixed I as problem size
is increased. To quantify the approximation quality of
ADAPT-Clifford, we estimate the average approximation
ratio of the deterministic ADAPT-Clifford on this family
of graphs to be α = 0.9686 – see App. D for details.
While Fig. 3c shows that I = 105 rounding steps

are needed for the GW algorithm to match the approxi-
mation quality of the deterministic ADAPT-Clifford for
problem sizes up to N = 200, the data in the inset im-
ply that I may in fact need to scale with N for the GW
algorithm to compete with ADAPT-Clifford. Therefore,
although the expected runtime of standard GW O(N3.5),
see [30, 89] and references therein, compared toO(N6) for
ADAPT-Clifford on complete graphs, our benchmarks
are inconclusive as to which of the two algorithms is
faster.

B. Signed weights: the Sherrington-Kirkpatrick
model

The Sherrington-Kirkpatrick (SK) model [90] has
played a fundamental role in the advancement of the un-
derstanding of the physics of spin glasses and disordered
systems [91–94]. It describesN classical spins with all-to-
all couplings of both ferromagnetic and antiferromagnetic
character. The Hamiltonian is given by

Hsk =
1√
N

∑

i<j

ωi,jσiσj , (22)

where σi ∈ {−1, 1} is a classical spin and the couplings
ωi,j are sampled from a distribution with zero mean
and unit variance, for instance the normal distribution
N (0, 1). A milestone result by Parisi [95, 96] gave an
explicit expression for the ground state energy density of
this model in the thermodynamic limit, which we refer
to as the Parisi value,

lim
N→∞

E
[
Esk

min

N

]
= Π∗ = −0.763166..., (23)
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FIG. 4. (a) Approximation rations α (empty circles) and
mean approximation ratios (red full circles) of deterministic
ADAPT-Clifford for 100 different disorder realizations of the
SK model per system size. (b) Success rate on the 100 prob-
lem instances per graph size considered in (a). (c) Ground-
state energy density for each of the 100 problem instances
(empty circles) per problem size up to N = 200, and their
mean (full circles). The dashed-dotted line show the best lin-
ear fit and the red star the respective mean energy density
in the thermodynamic limit. The inset shows the average
ground state energy density up to N = 1000 as obtained with
randomized ADAPT-Clifford, with its corresponding linear
fit (see main text) and the value in the thermodynamic limit
(green star). The grey dotted line shows the mean energy
density obtained with semidefinite programing and the black
star shows the Parisi value Π∗.

where the expectation value is over realizations of the
random couplings, and Esk

min refers to the ground state
energy of Hamiltonian in Eq. (22). The most accurate
numerical value of Eq. (23) to date was computed in
Ref. [97]. The limit in the LHS of Eq. (23) has been
formally shown to both exist and be equal to the Parisi
value [98, 99].

Recently the SK model has been used as a benchmark
in the study of quantum approximate optimization al-
gorithms [15, 100, 101]. Motivated by these works, we
focus our attention on this model to characterize the
performance of our algorithm on complete graphs with

signed weights. A word of caution: The ADAPT-QAOA
solution circuits for the signed case, including small in-
stances of the SK model, are not completely Clifford, see
Fig. 1b,d and Sec. III. As such, we do not expect our al-
gorithm to match the solution quality of the best classical
algorithm due to Montanari [102, 103], which produces a
σ∗ with energy below (1− ϵ) times the lowest energy for
typical instances, with ϵ a small positive constant [104].
Nevertheless, we are interested in seeing how close the
σ∗'s produced by our algorithm get to the Parisi value,
both for the randomized and deterministic variants of
ADAPT-Clifford.

In order to utilize ADAPT-Clifford we promote the
classical spin in Eq. (22) to σi → Zi and use the resulting
Hamiltonian as our cost. Following the presentation of
the previous subsection, we discuss first the performance
of the randomized ADAPT-Clifford. The green circles in
the inset of Fig. 4c show E

[
Emin

N

]
for this algorithm with

problem sizes up to N = 1000. To obtain its value in the
thermodynamic limit we fit the data for N ∈ [40, 1000]
to a model of the form qN−2/3+ΠCliff

ri [105] where ΠCliff
ri

corresponds to the mean energy density in the thermo-
dynamic limit obtained with the randomized ADAPT-
Clifford. We find ΠCliff

ri ≈ −0.682 which corresponds to
∼ 89% of the Parisi value (black star in inset of Fig. 4c).
This value is below what is obtained with convex relax-
ation methods, for instance semidefinite programming,
which is known to give E

[
Emin

N

]
= − 2

π + o(1) ≈ −0.6366
with o(1) a number which vanishes for N → ∞ [106, 107].
For comparison we display E

[
Emin

N

]
= − 2

π as the hori-
zontal dotted line both in the inset and in Fig. 4c.

Let us now consider the deterministic ADAPT-
Clifford. For small problems N ∈ [10, 30] we computed
the exact approximation ratios α over 100 problem in-
stances, and show them as empty circles in Fig. 4a. No-
tably we do not observe α < 0.94 for any instance, and
the average over instances is always above α > 0.997.
To complement this observation we compute the success
rate, defined as the number of instances for which the
difference ESK

min − ECliff
min < 10−10. These are shown in

Fig. 4b with the smallest one being ∼ 82% at N = 30.

To fully explore the performance of the determinis-
tic ADAPT-Clifford algorithm, we solve 100 instances
for problems up to N = 200. The normalized energies
ECliff

min /N are shown as empty circles in Fig. 4c for all
the instances considered, the red full circles show the re-
spective E[ECliff

min ]/N and the error bars correspond to the
standard deviation of the normalized energies. To assess
the quality of the solutions found we consider the data
in the interval N ∈ [40, 200] and fit it to a model of the
form qN−2/3 +ΠCliff with ΠCliff the estimated mean en-
ergy density in the thermodynamic limit of the solutions
found by our algorithm. In particular for N = 200 we

find E
[
ECliff

min

N

]
≈ −0.727... and from the linear fit we find

ΠCliff ≈ −0.7409..., shown by a red star in Fig. 4c. These
values correspond to ∼ 94% and ∼ 97% of the Parisi
value, respectively (the latter is shown with a black star
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FIG. 5. Performance of randomized ADAPT-Clifford vs GW. (a-d) Normalized instance-averaged minimum energy found
with randomized ADAPT-Clifford (colorful markers and solid lines) and standard GW (light grey markers and dashed lines).
The different graph types studied are: (a) unweighted 3-regular graphs, (b) weighted 3-regular graphs, (c) weighted 8-regular
graphs, (d) unweighted Erdös-Rényi graphs with edge probability 1/2. For the weighted case we take ωi,j in U[0, 1]. (e-h)
Instance-averaged minimum energy differences between the solutions found with ADAPT-Clifford and standard GW for (e)
unweighted 3-regular (circles), (f) weighted 3-regular (diamonds), (g) weighted 8-regular (squares), and (h) Erdos-Renyi with
edge probability 1/2 (exes). The magenta dotted line indicates equal energy of the solutions found on average. We have omitted
the error bars to avoid saturating the figure. All averages were computed over 100 randomly generated instances.

in Fig. 4c). These values are below what is obtained
with convex relaxation methods (horizontal dotted line
in Fig. 4c). Notably, the value reached by our algorithm
for N = 200 is already better than what can be obtained
with zero-temperature simulated annealing which gives
E
[
Emin

N

]
∼ −0.71 (as quoted in Ref. [100]), and ΠCliff is

comparable to what is achievable with simulated anneal-
ing on large problem instances.

VI. ALGORITHM PERFORMANCE ON OTHER
FAMILIES OF GRAPHS

In this section, we characterize the performance of
ADAPT-Clifford in both its variants for the MaxCut
problem on K-regular graphs (unweighetd and weighted)
and unweighted Erdos-Renyi graphs with various edge
probabilities. For the randomized ADAPT-Clifford, we
directly compare the quality of the cuts found with stan-
dard GW, while for determinisitic ADAPT-Clifford we
discuss the exact approximation ratios for small problems
and compare against GW with variable I, the number of
time the rounding step is performed.

A. Performance on K-regular graphs

We consider 3-regular and 8-regular graphs, un-
weighted and weighted. In all cases edge weights are

sampled from U[0, 1].
In Fig. 5a-c we show the normalized instance-averaged

minimum energy of the solutions found with random-
ized ADAPT-Clifford and standard GW. For large (N >
200) unweighted 3-regular graphs, GW finds better so-
lutions, on average, than randomized ADAPT-Clifford
—see Fig. 5e. The situation is markedly reversed with
the inclusion of nontrivial edge weights, with random-
ized ADAPT-Clifford outperforming standard GW (see
Fig. 5b), and the performance margin widens with in-
creased connectivity, see Fig. 5c. These observations are
verified with the averaged minimum energy differences
shown in Fig. 5f,g for weighted 3- and 8-regular graphs,
respectively. Thus, GW performs better than ran-
domized ADAPT-Clifford only for unweighted 3-regular
graphs, while the comparative performance of our algo-
rithm consistently improves with both the inclusion of
edge weights and higher connectivity.
We now move to the performance of deterministic

ADAPT-Clifford. In Fig. 6a we show the mean approxi-
mation ratios over 100 problem instances for each of these
types of graphs. For the unweighted 3-regular graphs we
consider problem sizes N ∈ [10, 28] and for the weighted
problems we consider problem sizes N ∈ [12, 28]. We
have omitted the error bars from the figure for the sake of
clarity. Deterministic ADAPT-Clifford shows the poor-
est performance for unweighted 3-regular graphs, circles
in Fig. 6a, with a decreasing mean α as N increases.
Interestingly the comparative performance of ADAPT-
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FIG. 6. (a) Instance averaged approximation ratios up to
N = 28 for 100 different instances of: unweighted 3-regular
graphs (circles), weighted 3- (diamonds) and 8-regular graphs
(squares) with ωi,j ∈ U[0, 1], and Erdös-Rényi graphs with
edge probability 1/2 (exes). We have omitted the error bars
for clarity. (b) Success rate for each of the problem sizes and
graph types considered in (a).

Clifford improves upon inclusion of edge weights, dia-
monds in Fig. 6a, with a mean α above 0.995 for all
problem sizes considered. Further improved performance
is observed with higher edge connectivity, as evidence
by the mean approximation ratio for weighted 8-regular
graphs (squares in Fig. 6a). In Fig. 6b we show the
success rate of the algorithm, i.e., the number of times
ADAPT-Clifford found the maximal cut. The 3-regular
graphs (unweighted and weighted) show a success rate
which consistently decay with problem size. On the con-
trary for weighted 8-regular graphs our algorithm shows
a success rate above 90% up to N = 28.
For larger problem sizes, we compare the solution qual-

ity of deterministic ADAPT-Clifford with that of GW
with variable I (I = 1 is the standard GW algorithm).
Fig. 7a,b,c shows the normalized mean minimum en-
ergy E[Emin]/N for the K-regular graphs studied. No-
tably, deterministic ADAPT-Clifford produces solutions
of lower energy than GW for all three graph ensembles
under consideration, compare the colorful markers with
the light grey markers in Fig. 7a,b,c. For the unweighted
3-regular graphs, Fig. 7a, already at I = 10 GW con-
sistently finds a cut of lower energy than deterministic
ADAPT-Clifford, signaling at a reduced performance of
the latter method compared to the case of weighted com-
plete graphs. This observation can be further verified

with the mean difference of the minimum energy found,
E[ECliff

min − EGW
min ], shown in Fig. 7e.

Similarly to its randomized counterpart, deterministic
ADAPT-Clifford performs more competitively when edge
weights are included. In Fig. 7b we show the E[Emin]/N
obtained with our algorithm (red diamonds), GW (light
grey diamonds), and GWwith I = 103 (black diamonds),
for the weighted 3-regular graphs. Further inspection
of the corresponding E[ECliff

min − EGW
min ], shown in Fig. 7f,

shows that at least I = 102 are necessary for the GW
solution to be, on average, superior to that found by our
algorithm. The performance margin widens as we move
to regular graphs with higher connectivity. Fig. 7c shows
E[Emin]/N obtained with deterministic ADAPT-Clifford
(orange squares), standard GW (light grey squares), and
GW with I = 103 (black squares), for weighted 8-
regular graphs. After inspecting the E[ECliff

min − EGW
min ]

in Fig. 7g we observe that I = 104 is necessary for
the GW solution to be consistently better than the de-
terministic ADAPT-Clifford solution. Thus, for sparse
graphs the performance of both randomized and deter-
ministic ADAPT-Clifford improves with the inclusion of
edge weights and/or higher node connectivity.

B. Performance on unweighted Erdös-Rényi graphs

We now wish to characterize the performance of
ADAPT-Clifford for MaxCut on dense graphs with vari-
able density. For this task we will focus on unweighted
Erdös-Rényi graphs.
First, we fixed the edge probability to 1/2 and study

the performance with respect to the problem size. In
Fig. 5e we show the instance averaged minimum energy
of solutions obtained with randomized ADAPT-Clifford
(green) and standard GW (light grey). For graphs up to
N = 1000. The randomized version of our algorithm pro-
duces better solutions, on average, than GW, an obser-
vation that is verified by the instance-averaged minimum
energy differences shown in Fig. 5h.
Next, we analyze the performance of the deterministic

ADAPT-Clifford on small problems N ≤ 28. Fig. 6a,b
show mean approximation ratios (exes), which is above
α ∼ 0.997, and success rates, respectively. Notably, de-
terministic ADAPT-Clifford shows a higher success rate
for this family of graphs, finding the maximal cut on all
instances considered for the sizes N = 10, 12 (whereas it
only achieves the same for the 19 nonisomorphic 3-regular
graphs at N = 10). For larger problems, in Fig. 7d we
compare the normalized instance-averaged minimum en-
ergy found by our algorithm (orange solid line), stan-
dard GW (light grey dashed line), and GW with I = 103

(black dashed line). Our algorithm (orange) finds a so-
lution of lower energy, on average, than that found with
GW (light grey). We explore the extent of this advan-
tage by inspecting the mean difference of the minimum
energy found, E[ECliff

min − EGW
min ], as a function of N and

with I as a control parameter. The results are shown in
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FIG. 7. (a-d) Normalized instance-averaged minimum energy found over 100 instances for problem sizes up to N = 100 and
different graph types obtained with deterministic ADAPT-Clifford (colorful markers and solid lines), with standard GW (light
grey markers and dashed lines), and GW with I = 103 (dark grey markers and dashed lines). The different graph types studied
are: (a) unweighted 3-regular graphs, (b) weighted 3-regular graphs, (c) weighted 8-regular graphs, (d) unweighted Erdös-Rényi
graphs with edge probability 1/2. For the weighted case we always take ωi,j in U[0, 1]. (e-h) Instance averaged minimum
energy differences between the solutions found with our algorithm and the solution found with GW with different values of I.
For the graph types: (e) unweighted 3-regular (circles), (f) weighted 3-regular (diamonds), (g) weighted 8-regular (squares),
and (h) Erdos-Renyi with edge probability 1/2 (exes). As a reference the the magenta dotted line indicates equal energy of the
solutions found on average. We have omitted the error bars to avoid saturating the figure.

Fig. 7h. It is seen that only at I = 104 the GW solu-
tions are consistently of lower energy than those found
by deterministic ADAPT-Clifford.

Now we turn our attention to benchmarking both
the randomized and deterministic ADAPT-Clifford on
Erdös-Rényi graphs with varying edge inclusion proba-
bility. We focus on problems with N = 120 and con-
sider edge probabilities in [0.1, 0.9]. We solve 100 prob-
lem instances of MaxCut per edge inclusion probability.
In Fig. 8a we show the normalized mean energies found
with the randomized ADAPT-Clifford (green) and with
standard GW (light grey). Our randomized algorithm
returns, on average, a cut of better quality than GW
(see also instance-averaged minimum energy differences
in Fig. 8b). The normalized mean energies of the solu-
tions found with deterministic ADAPT-Clifford (orange)
are shown in Fig. 8c, alongside those for standard GW
(light grey), and GW with I = 104 (black). With the ex-
ception of edge probabilities smaller than 0.15 and larger
than 0.85, the solutions found by our algorithm are al-
ways, not merely on average, better than the ones found
with GW, with the largest advantage observed for edge
probabilities around 1/2. Only at I ∼ 104 does GW
produce solutions on average comparable to those found
by ADAPT-Clifford. This is seen more clearly in the

instance-averaged energy difference of the solutions found
E[ECliff

min − EGW
min ], shown in Fig. 8b. Only at I = 104 we

find E[ECliff
min − EGW

min ] ∈ (0, 0.5] for all edge probabilities,
indicating our algorithm no longer offers an advantage
over GW.
The results discussed here suggest that ADAPT-

Clifford offers an advantage over GW on the quality of
the cut found for dense graphs, with the largest gap for
graphs with density ∼ 1/2.

VII. DISCUSSION AND OUTLOOK

We introduce ADAPT-Clifford, a quantum inspired
classical approximation algorithm for MaxCut. For each
problem instance, ADAPT-Clifford builds a low-depth
Clifford circuit to prepare a stabilizer state that en-
codes an approximate solution. The algorithm was in-
spired by observation of the (almost) Clifford character
of the ADAPT-QAOA solution circuits for MaxCut on
weighted fully connected graphs. We introduce a ran-
domized and a deterministic variant of this algorithm.
Their respective runtime complexities are O(N4) and
O(N5) for sparse graphs, and O(N5) and O(N6) for
dense graphs, and in all cases the space complexity is
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FIG. 8. (a) Normalized instance-averaged minimum energy of
the solutions found with randomized ADAPT-Clifford (green)
and GW (light grey). (b) Instance averaged minimum energy
differences between the solutions found with our algorithm
and the solution found with GW. (c) Normalized instance
averaged minimum energy of the solutions found with the
deterministic ADAPT-Clifford (orange), standard GW (light
grey), and GW with I = 104 (black), as a function of the edge
probability which we take in [0.1, 0.9]. (d) Instance averaged
minimum energy differences between the solutions found with
our algorithm and the solution found with GW with different
values of I, as a function of edge probability. The magenta
dotted line indicates mean energy difference of zero. The
averages are taken over 100 different problem instances and
for N = 120.

O(N2). Naturally, the deterministic variant always out-
performs the randomized variant, albeit at the cost of an
increased runtime.

We have studied the performance of ADAPT-Clifford
on MaxCut for various families of graphs, both dense and
sparse, and both unweighted and weighted. On weighted
complete graphs with positive weights, ADAPT-Clifford
finds very high quality cuts, reaching the absolute max-
imum in the majority of small instances. Moreover, the
algorithm is scalable, allowing us to easily find solutions
for instances with up to 1000 nodes. ADAPT-Clifford
also performs well for signed weights, finding good ap-
proximations to the ground state of the SK model with
an energy that extrapolates to 97% of the Parisi value
in the thermodynamic limit. To investigate performance
as a function of density, we applied ADAPT-Clifford to
MaxCut on unweighted Erdös-Rény graphs with variable
edge inclusion probability. We again find that ADAPT-
Clifford finds the absolute maximum cut for the majority
of small instances and easily scales to hundreds of nodes.

Finally, we study the performance of ADAPT-Clifford for
sparse graphs. Even though these graphs are far from
the context that gave rise to the algorithm, we find that
ADAPT-Clifford still performs well, producing the ab-
solute maximum cut with high probability for small in-
stances and easily scaling to 1000 nodes. Only for the
case of 3-regular graphs, the sparsest category of graphs
we studied, we observe a noticeable deterioration in so-
lution quality with increasing size. Counter-intuitively,
performance improves somewhat with the inclusion of
edge weights.

To assess the performance of ADAPT-Clifford for large
problem instances whose exact solution is intractable, we
compare its performance with the GW algorithm, which
represents the state of the art in approximate solution of
MaxCut. For all graph families studied, ADAPT-Clifford
outperforms the standard GW algorithm in the quality of
the cut found. Only for very sparse unweighted graphs,
such as 3-regular graphs, the performance of the GW al-
gorithm becomes comparable to that of ADAPT-Clifford,
but even in this case the inclusion of edge weights favors
the latter. Finally, ADAPT-Clifford solves problems to
which the GW algorithm is not directly applicable, as
exemplified by our results on the SK model.

The Clifford or near Clifford character of the ADAPT-
QAOA solution circuits is a key observation which was
missed in previous work [108]. This observation, as laid
out in Sec. III, allowed us to devise a quantum-inspired,
polynomial-time approximartion algorithm for MaxCut.
While it is known that MaxCut on dense graphs admits
Polynomial Time Approximation Schemes (PTAS), lead-
ing to approximated solutions which are 1− ϵ away from
the optimum in time polynomial in N [50, 51], the scaling
of the runtime as a function of ϵ may render these algo-
rithms impractical. In contrast, in this work we showed
empirically that ADAPT-Clifford performs better than
an algorithm that offers a guaranteed approximation ra-
tio.

We hope the results reported here will help delimit the
subset of graphs where a quantum speedup could be ex-
pected and thus where the current efforts should focus,
in similar spirit to previous results obtained with a dif-
ferent subuniversal family of gates [109]. While our work
indicates that ADAPT-Clifford has a guaranteed approx-
imation ratio, we do not yet have a proof. Whether it
is possible to improve the runtime without compromis-
ing the solution quality is also an open problem. Our
algorithm showed the poorest performance on fully con-
nected graphs with signed weights. This was anticipated
in Sec. III since the ADAPT-QAOA solution circuits are
not fully Clifford. However, they are near -Clifford, mo-
tivating then a resource-centered design of variational
ansätze, with a Clifford mixer part constructed following
a scheme like the one introduced in this work, similar in
spirit to the optimal mixers restricted to subspaces [110],
and a cost part with few variational parameters adding
just the right amount of nonCliffordness necessary to ap-
proximate the problem up to a desired ratio. Further-
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more our algorithm could aid in reducing the cost of
parameter optimization in QAOA when used to warm-
start [111] it. Finally, our Clifford algorithm was tai-
lored to solve the MaxCut problem. It remains an open
question to what extent other combinatorial optimization
problems admit Clifford approximation algorithms with
practical polynomial runtimes.
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Appendix A: The Goemans-Williamson algorithm

Suppose we are interested in solving the MaxCut prob-
lem for some given graph G = (V, E) of N nodes and
edge weights ωi,j using the Goemans-Williamson algo-
rithm [30, 31]. To do so one proceeds as follows:

1. Relax the binary character of the variables in the
optimization problem defined by the cost function
in Eq. (1), that is, replace the zi ∈ {0, 1} with unit
vectors yi ∈ RN and the product zizj with the inner
product yTi yj with T the transpose. The new cost
function

∑
i,j<i ωi,j(1− yTi yj) with the constraints

yTi yi = 1, Ỹ = [yTi yj ] is positive semidefinite, de-
fines a semidefinite program.

2. Solve the semidefinite program using a polynomial
time algorithm, and find an optimal solution Ỹ ∗ for
the relaxed problem.

3. Rounding. Choose a random vector r ∈ RN from
a Gaussian distribution and for all i define hi =
sgn(rT y∗i ), where sgn(x) is the sign function. This
assignment defines a partition of the nodes in two
disjoint sets A = {i|hi = 1} and A = {i|hi = −1}.

4. return the cut (A,A).

In this form the algorithm only performs the rounding,
step (3), a single time based on a single random vector
r. As such, a simple improvement consists on repeating

this step I times for different random vectors and then
returning the cut of largest cost among all the cuts found.
We have used this approach in comparing our algorithm
with GW.

All the results for the GW algorithm reported in this
manuscript have been obtained using a freely available
Julia implementation [112].

Appendix B: Validity of the search through a
restricted set of pairs

In step (2) of ADAPT-Clifford in Sec. IV, we restricted

our search to pairs of the form (l̃, b(r−1)) with l̃ ∈ {k, j}
and (k, j) is the edge where the first two-qubit gate was
applied, and b(r−1) ∈ b(r−1). In this appendix we show
than in doing so we do not miss the value of the largest
gradient.

At step r > 1 the gradient is of the form

g
(r)

a(r−1),b(r−1) = −
∑

l

ωl,b(r−1)⟨ZlXb(r−1)Za(r−1)⟩r−1

= −
∑

l

ωl,b(r−1)⟨ZlZa(r−1)⟩r−1, (B1)

where we have used the fact that Xb(r−1) |ψr−1⟩ = |ψr−1⟩
since b(r−1) is inactive. The maximum of Eq. (B1) hap-
pens at the pair (a(r−1), b(r−1)) such that the number of
l's, with l ∈ a(r−1), for which −ZlZa(r−1) |ψr−1⟩ = |ψr−1⟩
is the largest.

Now consider the situation of interest where we search
for the pair to apply the gate among those of the form
(l̃, b(r−1)), and suppose we know that the maximum of

Eq. (B1) occurs at the pair (ã, b̃) with ã ∈ a(r−1) and

b̃ ∈ b(r−1). Then

g
(r)

ã,b̃
=

∑

l

ωl,b̃⟨−ZlZã⟩r−1

=
∑

l

ωl,b̃⟨−ZlZl̃Zl̃Zã⟩r−1, (B2)

where we introduced an identity Il̃ = Zl̃Zl̃.

Since ã is active and −ZkZj |ψr−1⟩ = |ψr−1⟩ we can al-

ways pick the value of l̃ ∈ {k, j} such that ZãZl̃|ψr−1⟩ =
|ψr−1⟩. Thus, we can extend Eq. (B2) to the following
chain of equalities

g
(r)

ã,b̃
=

∑

l

ωl,b̃⟨−ZlZl̃Zl̃Zã⟩r−1

=
∑

l

ωl,b̃⟨−ZlZl̃⟩r−1 = g
(r)

l̃,b̃
. (B3)

We see then that the largest gradient does live within the
restricted set of pairs of the form (l̃, b(r−1)).
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Appendix C: Some explicit examples of
ADAPT-Clifford solving MaxCut

In this appendix, we go over the full analytical cal-
culation of the steps involved in solving MaxCut using
the algorithm introduced in Sec. IV for two small graphs
with N = 4, 5 nodes. In order to keep the expressions
clean we have decided to focus on the case of unweighted
graphs.
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FIG. 9. (a,d) Example graphs with N = 5 and N = 4 nodes,
respectively. (b,e) Partitioned graphs according to the cuts
produced by our algorithm, different colors denote the nodes
in each of the disjoint subsets. (c,f) Approximation ratios of
the states produced by our algorithm in the search process
for the maximal cut of the graphs shown in (a) and (d). In
both cases the algorithm reaches approximation ratio of 1,
indicating a maximal cut has been found.

1. An example with N = 5 nodes

Consider the unweighted graph with five nodes shown
in Fig. 9a. Its adjacency matrix is given by

[ωi,j ] =




0 1 0 0 1
1 0 1 1 0
0 1 0 1 1
0 1 1 0 1
1 0 1 1 0


 . (C1)

We will solve MaxCut on this graph using our algorithm.
We begin by flipping the state of the qubit at k = 2, thus
we have

|ψ0⟩ = |+−+++⟩, (C2)

where |+⟩ = H|0⟩ and |−⟩ = ZH|0⟩ are the eigenstates of
the Pauli-x operator corresponding to eigenvalues +1 and
−1, respectively. At this point we have to initialize the
records of active and innactive qubits, which we identify
by their respective indices. The active qubits are [2] and
the inactive qubits are [1, 3, 4, 5].

Given our choice of initial position, we have that g
(1)
1,2 =

g
(1)
2,3 = g

(1)
2,4 = 1 and are the largest “gradients”. We break

this tie arbitrarily and chose the pair of qubits (2, 4).
Then

|ψ1⟩ = ei
π
4 Y2Z4 |ψ0⟩ =

1√
2
[|+−+++⟩ − |+++−+⟩] ,

(C3)
and the records of the active and inactive qubits are up-
dated to be [2, 4] and [1, 3, 5], respectively. The second
set of gradients is given by
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g
(2)
1,2 = −

∑

l=2,5

⟨ZlX1Z2⟩ = −⟨X1⟩ − ⟨Z5X1Z2⟩ = −1 + 0 = −1, (C4a)

g
(2)
3,2 = −

∑

l=2,4,5

⟨ZlX3Z2⟩ = −⟨X3⟩ − ⟨Z4X3Z2⟩ − ⟨Z5X3Z2⟩ = −1 + 1 + 0 = 0, (C4b)

g
(2)
5,2 = −

∑

l=1,3,4

⟨ZlX5Z2⟩ = −⟨Z1X5Z2⟩ − ⟨Z3X5Z2⟩ − ⟨Z4X5Z2⟩ = 0 + 0 + 1 = 1, (C4c)

g
(2)
1,4 = −

∑

l=2,5

⟨ZlX1Z4⟩ = −⟨Z2X1Z4⟩ − ⟨Z5X1Z4⟩ = 1 + 0 = 1, (C4d)

g
(2)
3,4 = −

∑

l=2,4,5

⟨ZlX3Z4⟩ = −⟨Z2X3Z4⟩ − ⟨X3⟩ − ⟨Z5X3Z4⟩ = 1− 1 + 0 = 0, (C4e)

g
(2)
5,4 = −

∑

l=1,3,4

⟩ZlX5Z4⟩ = −⟨Z1X5Z4⟩ − ⟨Z3X5Z4⟩ − ⟨X5⟩ = −1, (C4f)

the largest gradients are g
(2)
5,2 and g

(2)
1,4. Since they are

equal, we break the tie arbitrarily and chose the pair of
qubits (1, 4). Thus the state at step r = 2 is given by

|ψ2⟩ = ei
π
4 Y1Z4 |ψ1⟩ =

1

2
[|+−+++⟩+ | − −+−+⟩

− |+++−+⟩ − | −++++⟩] . (C5)

After the application of the gate we update the records
of active and inactive qubits, which now are [1, 2, 4] and
[3, 5], respectively. The third set of gradients is given by

g
(3)
3,1 = −

∑

l=2,4,5

⟨ZlX3Z1⟩ = −⟨Z2X3Z1⟩ − ⟨Z4X3Z1⟩ − ⟨Z5X3Z1⟩ = 1− 1 + 0 = 0, (C6a)

g
(3)
5,1 = −

∑

l=1,3,4

⟨ZlX5Z1⟩ = −⟨X5⟨−⟨Z3X5Z1⟩ − ⟨Z4X5Z1⟩ = −1 + 0− 1 = −2, (C6b)

g
(3)
3,2 = −

∑

l=2,4,5

⟨ZlX3Z2⟩ = −⟨X3⟩ − ⟨Z4X3Z2⟩ − ⟨Z5X3Z2⟩ = −1 + 1 + 0 = 0, (C6c)

g
(3)
5,2 = −

∑

l=1,3,4

⟨ZlX5Z2⟩ = −⟨Z1X5Z2⟩ − ⟨Z3X5Z2⟩ − ⟨Z4X5Z2⟩ = 1 + 0 + 1 = 2, (C6d)

g
(3)
3,4 = −

∑

l=2,4,5

⟨ZlX3Z4⟩ = −⟨Z2X3Z4⟩ − ⟨X3⟩ − ⟨Z5X3Z4⟩ = 1− 1 + 0 = 0, (C6e)

g
(3)
5,4 = −

∑

l=1,3,4

⟨ZlX5Z4
⟩ = −⟨Z1X5Z4⟩ − ⟨Z3X5Z4⟩ − ⟨X5⟩ = −1 + 0− 1 = −2. (C6f)

The largest gradient is g
(3)
5,2 = 2, the gate is applied at

the pair of qubits (2, 5), where 2 is an active qubit and 5

is inactive. The state at step r = 3 is given by

|ψ3⟩ = ei
π
4 Z2Y5 |ψ2⟩ =

1

2
√
2
[|+−+++⟩+ |++++−⟩+ | − −+−+⟩+ | −++−−⟩

−|+++−+⟩ − |+−+−−⟩ − | −++++⟩ − | − −++−⟩] , (C7)
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with the records of active and inactive qubits updated to
[1, 2, 4, 5] and [3], respectively. From this state we can

compute the set of gradients of step r = 4. They are
given by

g
(4)
1,3 = −

∑

l=2,4,5

⟨ZlX3Z1⟩ = −⟨Z2X3Z1⟩ − ⟨Z4X3Z1⟩ − ⟨Z5X3Z1⟩ = 1− 1 + 1 = 1, (C8a)

g
(4)
2,3 = −

∑

l=2,4,5

⟨ZlX3Z2⟩ = −⟨X3⟩ − ⟨Z4X3Z2⟩ − ⟨Z5X3Z2⟩ = −1 + 1− 1 = −1, (C8b)

g
(4)
4,3 = −

∑

l=2,4,5

⟨ZlX3Z4⟩ = −⟨Z2X3Z4⟩ − ⟨X3⟩ − ⟨Z5X3Z4⟩ = +1− 1 + 1 = 1, (C8c)

g
(4)
5,3 = −

∑

l=2,4,5

⟨ZlX3Z5⟩ = −⟨Z2X3Z5⟩ − ⟨Z4X3Z5⟩ − ⟨X3⟩ = −1 + 1− 1 = −1. (C8d)

There are two largest gradients, g
(4)
1,3 = g

(4)
4,3 = 1. We

break the tie arbitrarily and take the pair of qubits (3, 4).

Thus the state at step r = 4 is given by

|ψ4⟩ = ei
π
4 Y3Z4 |ψ3⟩ =

1

4
[|+−+++⟩+ |+−−−+⟩+ |++++−⟩+ |++−−−⟩+ | − −+−+⟩

+ | − − −++⟩+ | −++−−⟩+ | −+−+−⟩ − |+++−+⟩ − |++−++⟩ − |+−+−−⟩
−|+−−+−⟩ − | −++++⟩ − | −+−−+⟩ − | − −++−⟩ − | − −−−−⟩] . (C9)

To extract the cut found by our algorithm we should
write |ψ4⟩ in the computational basis. In order to do this
we use its stabilizers, which are

−XXXXX, −ZIIIZ, +IZIIZ, −IIZIZ, −IIIZZ,

which correspond to the state

|ψ4⟩ =
1√
2
(|10110⟩ − |01001⟩) , (C10)

in the computational basis. This state upon a mea-
surement in this basis returns the cut (A,A) =
([1, 3, 4], [2, 5]), which is a maximal cut of the graph un-
der consideration. We illustrate this partitioning of the
graph by coloring the nodes in A red and those in A blue,
and show the resulting partitioned graph in Fig. 9b. Ad-
ditionally in Fig. 9c we show the approximation ratio of
the states |ψr⟩ computed in this section, notice that at
r = 4 we have approximation ratio equal to 1, indicating

the algorithm found a state compose of strings encoding
maximal cuts.

2. An example with N = 4 nodes

We consider now the graph with N = 4 nodes shown
in Fig. 9d. Its adjacency matrix is given by

[ωi,j ] =



0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0


 . (C11)

Let us start the algorithm wiht the state |ψ0⟩ = |+−++⟩.
For this state there are two largest gradients at step r = 1

given by g
(1)
2,3 = g

(1)
2,1 = 1. We break the tie arbitrarily and

pick the pair of qubits (2, 3). Thus the state at step r = 1
is given by

|ψ1⟩ = ei
π
4 Y2Z3 |ψ0⟩ =

1√
2
[|+−++⟩ − |++−+⟩] .

(C12)
Now, the gradients at step r = 2 are given by
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g
(2)
1,2 = −

∑

l=2,3

⟨ZlX1Z2⟩ = −⟨X1⟩ − ⟨Z3X1Z2⟩ = −1 + 1 = 0, (C13a)

g
(2)
1,3 = −

∑

l=2,3

⟨ZlX1Z3⟩ = −⟨Z2X1Z3⟩ − ⟨X1⟩ = 1− 1 = 0, (C13b)

g
(2)
4,2 = −⟨Z3X4Z2⟩ = 1, (C13c)

g
(2)
4,3 = −⟨X4⟩ = −1. (C13d)

Thus the largest gradient is g
(2)
4,2 = 1. We apply the next

gate to the pair (2, 4) leading to a state at step r = 2 of
the form

|ψ2⟩ = ei
π
4 Z2Y4 |ψ1⟩ =

1

2
[|+−++⟩+ |+++−⟩

−|++−+⟩ − |+−−−⟩] . (C14)

For the next step we find all three gradients g
(3)
1,2 = g

(3)
1,3 =

g
(3)
1,4 = 0, thus no gate needs to be added in this last step.
We verify this by looking at the approximation ratio of
the states produced by the algorithm, shown in Fig. 9f,
we observe that only after two steps the algorithm reaches
approximation ratio of 1, indicating a maximal cut has
been found. In order to extract this cut we write |ψ2⟩ in
the computational basis as

|ψ2⟩ =
1

2
[|0010⟩+ |1101⟩ − |1010⟩ − |0101⟩] , (C15)

notice that the algorithm prepares a state which en-
codes two distinct maximal cuts for the graph under
consideration. One of the form (A,A) = ([1, 2, 4], [3])
which we illustrate in Fig. 9e, and one of the form
(A,A) = ([1, 3], [2, 4]).

Appendix D: Estimation of the mean approximation
ratios for the case of positive weights

In this appendix we present the method used to es-
timate α and αr reported in Sec. VA. Recall that our
algorithm solves the problem N times, each time start-
ing from a different position k ∈ [1, N ]. As such, for the
same problem we might have up to N different α's.
We begin by fixing a threshold value αtr for a given

graph ensemble. For N ∈ [10, 30], we count how many
initial positions k, Num(N ;αtr), lead to a solution with
α > αtr. We repeat this process for all problem instances
considered and obtain E[Num(N ;αtr)]. At this point,
we perform a linear fit to the data (N,E[Num(N ;αtr)])
and obtain the slope M = M(αtr). We then vary the
threshold αtr ∈ [0.88, 1] and repeat the above procedure.
Once all the data (αtr,M(αtr)) has been obtained we
identify α = αtr|M(αtr)=0, the last threshold value be-
fore the slope becomes negative. The largest approxi-
mation ratio we can guarantee is thus the one for which
no initial position k ≤ N leads to α = αtr. To account
for fluctuations among instances, the linear fit is done
to the data (N,E[Num(N ;αtr)]− σ[Num(N ;αtr)]), with
σ[Num(N ;αtr)]) one standard deviation. As reported
in the main text, this procedure leads to α = 0.9686
for the case of positive-weighted complete graphs with
N ∈ [10, 30] and 100 instances per N .
For the case of randomly chosen initial condition we

identify αr = αtr|M(αtr)=0.5, that is, the threshold for
which at least half of the possible initial conditions will
lead to, on average, an approximation ratio equal to the
threshold. As reported in the main text, this procedure
leads to αr = 0.8986.
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G. Parisi, F. Ricci-Tersenghi, G. Sicuro,
and F. Zamponi, Spin Glass Theory and
Far Beyond (WORLD SCIENTIFIC, 2023)
https://www.worldscientific.com/doi/pdf/10.1142/13341.

[95] G. Parisi, Infinite number of order parameters for spin-
glasses, Phys. Rev. Lett. 43, 1754 (1979).

[96] M. Mezard, G. Parisi, and M. Virasoro, Spin Glass
Theory and Beyond (WORLD SCIENTIFIC, 1986)
https://www.worldscientific.com/doi/pdf/10.1142/0271.

[97] M. J. Schmidt, Replica symmetry breaking at low tem-
peratures, Ph.D. thesis, Universität Würzburg (2008).

[98] F. Guerra, Broken replica symmetry bounds in the mean
field spin glass model, Communications in mathematical
physics 233, 1 (2003).

[99] M. Talagrand, The parisi formula, Annals of mathemat-
ics , 221 (2006).

[100] E. Farhi, J. Goldstone, S. Gutmann, and L. Zhou,
The Quantum Approximate Optimization Algorithm
and the Sherrington-Kirkpatrick Model at Infinite Size,
Quantum 6, 759 (2022).

[101] M. Dupont and B. Sundar, Quantum relax-and-
round algorithm for combinatorial optimization, arXiv
preprint arXiv:2307.05821 (2023).

[102] A. Montanari, Optimization of the sherrington-
kirkpatrick hamiltonian, in 2019 IEEE 60th An-
nual Symposium on Foundations of Computer Science
(FOCS) (2019) pp. 1417–1433.

[103] A. El Alaoui, A. Montanari, and M. Sellke, Optimiza-
tion of mean-field spin glasses, The Annals of Probabil-
ity 49, 2922 (2021).

[104] The run time of this algorithm is c(ϵ)O(N2) with c(ϵ)
an inverse polynomial of ϵ.

[105] We point out that formal proof of the scaling E
[
Esk

min
N

]
∼

N−2/3 only exists above the critical temperature, but it
is believed that it holds for the whole spin glass phase.
Thus assumption is supported with extensive numerical
results, see for instance Ref. [118, 119] and references
therein. This is why we feel confident in its use in our
model to fit the data.

[106] M. Aizenman, J. L. Lebowitz, and D. Ruelle, Some rig-
orous results on the sherrington-kirkpatrick spin glass
model, Communications in mathematical physics 112,
3 (1987).

[107] A. Montanari and S. Sen, Semidefinite programs on
sparse random graphs and their application to commu-
nity detection, in Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing (2016) pp.
814–827.

[108] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D.
Lukin, Quantum approximate optimization algorithm:
Performance, mechanism, and implementation on near-
term devices, Phys. Rev. X 10, 021067 (2020).

[109] G. Weitz, L. Pira, C. Ferrie, and J. Combes, Sub-
universal variational circuits for combinatorial optimiza-
tion problems, arXiv preprint arXiv:2308.14981 (2023).

[110] F. G. Fuchs, Optimal mixers restricted to sub-
spaces and the stabilizer formalism, arXiv preprint
arXiv:2306.17083 (2023).
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