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We provide a systematic method for constructing effective dispersive Lindblad master equations to describe
weakly-anharmonic superconducting circuits coupled by a generic dissipationless nonreciprocal linear system,
with effective coupling parameters and decay rates written in terms of the immittance parameters characterizing
the coupler. This article extends the foundational work of Solgun et al. [1] for linear reciprocal couplers de-
scribed by an impedance response. Here, we expand the existing toolbox to incorporate nonreciprocal elements,
account for direct stray coupling between immittance ports, circumvent potential singularities, and include dissi-
pative interactions arising from interaction with a common bath. We illustrate the use of our results with a circuit
of weakly-anharmonic Josephson junctions coupled to a multiport nonreciprocal environment and a dissipative
port. The results obtained here can be used for the design of complex superconducting quantum processors with
non-trivial routing of quantum information, as well as analog quantum simulators of condensed matter systems.

I. INTRODUCTION

Superconducting circuits [2] have become one of the most
prolific platforms for the design and operation of small-
scale quantum processors and quantum simulators, with ba-
sic quantum algorithms and error correction protocols al-
ready being implemented [3–8]. Based on Josephson junc-
tions (JJs) [9], nonlinear elements with negligible dissipa-
tion at cryogenic temperatures, superconducting circuits show
macroscopic quantum coherence and are useful platforms for
the engineering of light-matter interaction giving rise to the
field of circuit quantum electrodynamics (cQED) [10].

In typical cQED setups, transmons are used as qubits due
their simplicity and reduced sensitivity to charge noise, a fea-
ture that is linked to their low anharmonicity [11]. These
qubits are integrated in circuits with lumped or distributed ele-
ment couplers, readout resonators and control lines [12]. With
these various components operated in the dispersive regime,
it is possible to obtain effective models where the qubits are
dressed by their electromagnetic environment [13]. To ad-
dress the growing complexity of quantum processors, sys-
tematic approaches have been developed to characterize the
effective low-energy quantum Hamiltonian of the qubits, ac-
counting for the multimode nature of the distributed circuit
elements, while remaining agnostic on the specific circuit de-
sign [1, 14–17]. These methods rely on the classical proper-
ties of the linearized microwave structure in which the qubits
are embedded. This includes knowledge of the immittance
response of the microwave circuit, encompassing both admit-
tance [14] and impedance [1, 15, 16] responses, or the com-
putation of eigenmodes and their corresponding fields through
3D electromagnetic simulations [17]. The non-linearity aris-
ing from the qubits is subsequently introduced, with its effects
being systematically computed at any desired level of preci-
sion, provided it remains weak.

Although general, these methods are not tailored to de-
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scribing nonreciprocal elements which are characterized by
nonsymmetric immittance response [18], and the need for in-
situ physical or synthetic magnetic fields to break-time rever-
sal symmetry. Nonreciprocal components, such as circulators
and isolators, are essential for routing signals in and out of
quantum processors. They also find application in the simula-
tion of photonic lattices with broken time-reversal symmetry
[19, 20], enabling the exploration of topological phases with
superconducting circuits [21].

In this article, we provide a systematic tool to engi-
neer nonreciprocal Lindbladian in cQED platforms based on
Schrieffer-Wolff (SW) transformations (dispersive regime) of
general nondissipative linear couplers described by an immit-
tance matrix. This work thus constitutes a generalization of
the analysis conducted by Solgun et al. [1] to nonrecipro-
cal circuit element. Here, the qubit’s electromagnetic envi-
ronment is described not only by their impedance response
but, when applicable, by an admittance response, removing
singularities appearing in the characterization of some lin-
ear systems. Moreover, due to the mixed couplings between
phase-space variables (i.e., flux-charge coupling), appearing
in the description of nonreciprocal elements, a generalized
symplectic Schrieffer-Wolff transformation is used. In addi-
tion to this transformation, another perturbation theory is em-
ployed to eliminate the dissipative ports (i.e., the input-output
lines used to address and measure the qubits) within the Born-
Markov and partial secular approximations. This allows us to
deduce not only the local decay rates, commonly known as
Purcell rates, as discussed in Ref. [1], but also the correlated
decay rates resulting from the interaction of the qubit modes
with a common bath. The general method we use, which is
based on the exact fraction expansion of immittance responses
(a.k.a. black-box modeling [14–16, 18]), is applicable to elec-
tromagnetic environments containing an infinite number of
modes and does not suffer from divergence issues [22–25].

This article is structured as follows. In Sec. II, we present
our main results, which includes an overview of the derivation
of the qubits’s Hamiltonian and decay rates, while deferring
the technical details to the Appendices. This allows us to for-
mulate the master equation for the qubits in its Lindblad form
in terms of the circuit’s immittance parameters. It is worth em-
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phasizing that our results subsume and extend those derived
in Ref. [1], and are capable of describing a broader range of
circuits, including nonreciprocal elements, direct stray cou-
plings both capacitive and inductive, and correlated decay. In
Sec. III, we consider a simple case involving a nonrecipro-
cal 3-port scattering device, showing how our results can be
used to achieve unidirectional signal transmission. Finally, in
Sec. IV we give an insight into potential applications that can
benefit from our work, and we discuss possible directions for
future works.

II. EFFECTIVE LINDBLAD MASTER EQUATION

In this section we present our main result and provide a
sketch for their derivation, with full details found in the Ap-
pendices. Fig. 1 (a) schematically illustrates our conceptual
framework: qubits (green and blue) are interacting via an ar-
bitrary linear and lossless electromagnetic environment which
can contain nonreciprocal elements, and coupled to drive and
dissipative ports (orange and brown). The electromagnetic
environment is described by its multiports impedance Z(ω)
or admittance Y(ω). Moreover, following Solgun et al. [1],
‘qubit ports’ are defined between the terminals of nonlin-
ear dipole elements described by their flux degree of free-
dom (such as Josephson junctions), which we decompose into
its linear part (represented schematically by the bare induc-
tance L̃Ji

) and a purely non-linear contribution Unl(ϕi) (rep-
resented by the spider symbol). The ‘drive ports’ are defined
as the terminals at the ends of transmission lines carrying the
signals to the chip. We note that, with the definition of ports
we use here, the response matrices Z(ω) and Y(ω) do not in-
clude the linear part of the dipole potential, inline with the
method of Refs. [1, 15, 16]. This approach contrasts to the
one used in, e.g., Refs. [14, 17].

In general, any lossless causal immittance has a canonical
lumped representation known as its Cauer circuit which syn-
thesizes its response [18], see Appendix A. Thus, in the circuit
of Fig. 1 we substitute Z (or Y) by its Cauer circuit composed
of capacitors, inductors, and gyrators coupled to the external
ports by ideal transformers (see Fig. 5 of Appendix A). As
shown in Appendix C, using the methods of canonical circuit
quantization of Refs. [26, 27], we construct the exact classical
Lagrangian of the circuit. From this Lagrangian, we obtain the
full classical system-bath Hamiltonian which we decompose
in the standard way as

H = HS +HI +HB +HD(t). (1)

In this expression, HS is the Hamiltonian of the junctions and
inner modes of the circuit (i.e. resonators and gyrators cou-
pled to the qubit modes), HI the interaction Hamiltonian of
the coupling between qubit and inner modes with the dissipa-
tive ports, and HB the bath Hamiltonian corresponding to the
dissipative ports. Finally, HD(t) accounts for classical exter-
nal voltage sources at the drive ports.

Having obtained a general classical representation of the
circuit, we now assume the circuit’s inner modes to be disper-
sively coupled to the qubit modes, see Fig. 1 (b). As usual,

FIG. 1. (a) Paradigm of the article: A circuit containing nonlinear
elements divided in their linear and nonlinear parts, and transmission
lines modeled as classical voltage drive ports coupled by a general
(nonreciprocal) linear system described by an immittance frequency-
dependent matrix, i.e., Z(ω) or Y(ω). After dispersive elimination
of the black-box inner modes an effective Lindblad master equation
including effective couplings Jij = |Jij |eiθij with nontrivial phases
θij , correlated decay rates γij and drive amplitudes ϵid is obtained
for the qubit modes. (b) Schematic illustration of the qubit modes
(green) and electromagnetic environment modes (black).

we first approximately diagonalize the linear sector of the cir-
cuit, and then add the qubit nonlinearity. The presence of gy-
rators, which are the minimal lumped element circuits needed
to synthesize a nonreciprocal response, introduces nondynam-
ical modes in the circuit description [26]. Following Ref. [27],
we eliminate these nondynamical modes with a symplectic
transformation mixing the flux-charge variables of the inner
modes, see Appendix C for details. Following this elimina-
tion, we move to the dispersive frame by applying a second
symplectic perturbation theory akin to the Schrieffer-Wolff
transformation in quantum mechanics, see Appendix B for de-
tails. This transformation dresses the qubit and inner modes
while preserving the symplectic structure of the Hamiltonian.
In contrast to the standard SW transformation approach used,
e.g., in Ref. [1], the transformation used here preserves the
symplectic structure of the Hamiltonian even with flux-charge
couplings present in the description of gyrators.

The next step is to add back the qubit’s nonlinearity.
This approach can be applied to different types of low-
anharmonicity qubits and here we focus on the transmon by
keeping the first nonlinear term of the Josephson junction’s
cosine potential. After quantizing the modes and applying a
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rotating-wave approximation, we obtain in this way an effec-
tive master equation for the qubit modes and their dispersive
couplings to inner circuit modes taking the familiar Lindblad
form

˙̂ρ = −i[Ĥq + Ĥχ + Ĥv(t), ρ̂] + Lγ ρ̂. (2)

In this expression, Ĥq is the qubit Hamiltonian

Ĥq =
∑
i

ωib̂
†
i b̂i +

δi
2
b̂†i b̂i(b̂

†
i b̂i − 1) +

∑
i ̸=j

Jij b̂ib̂
†
j , (3)

where b̂i is the anhilation operator for the dressed qubit mode
i. The first two terms of Ĥq correspond to the free dressed
qubit Hamiltonian, and the last term to qubit-qubit coupling
mediated by the circuit. As in Solgun et al. [1], the parameters
entering Eq. (3) can be expressed in terms of the impedance
of the full circuit. Generalizing those results, here expressions
for these parameters are obtained also in terms of the circuit
admittance. Crucially, this allows us to avoid singularities ap-
pearing in the characterization of some linear circuits (see Ap-
pendix A for details). Moreover, our description can account
for the presence of nonreciprocal elements. To simplify the
presentation, the expressions for the parameters entering Ĥq

are provided below for the special case where there is no di-
rect coupling (capacitive, inductive or nonreciprocal) between
the qubit ports (see Appendix C for details of the derivation,
including the case with direct coupling).

First, to second order in perturbation theory, the qubit fre-
quencies in Eq. (3) are

ωi = ωi + Im{Iac
ii(ωi)}/2, (4)

where the last term accounts for the Lamb shift introduced by
the inner modes with I = Y,Z. The ac part of the response
is defined as Iac = I − Idc, while the dc part Idc is the sum of
poles at zero and infinity, i.e., Ydc = iωCY + L−1

Y /iω + E∞,
where CY (LY ) is the capacitive (inductive) matrix extracted
from the admittance, and E∞ = (Ydc − (Ydc)T )/2 = Ydc,NR

is the nonreciprocal part of Ydc corresponding to direct nonre-
ciprocal coupling between the ports. We emphasize that the dc
part of the impedance contains only the capacitive response,
Zdc = C−1

Z /iω, as we consider ports shunted by capacitors,
see Appendix A for details. In the expression for ωi, the fre-
quencies ωi take the form

ωi = ω̃Ji

√
1 + ζi

(
1− ECi/ω̃Ji

(1 + ζi)3/2 − ECi
/ω̃Ji

)
, (5)

where ω̃Ji
= 1/(L̃Ji

CJi
)1/2 is the plasma frequency of the

junction i, with L̃Ji
= ϕ20/EJi

the bare junction induc-
tance, and CJi

its total shunt capacitance. The frequency ωi

has two types of corrections over the bare qubit frequency.
First, the presence of the charging energy (bare anharmonic-
ity) ECi = e2/2CJi . Second, and in contrast with the sim-
ilar expression from Ref. [1], the presence of ζi = L̃Ji

/Lsi

which accounts for a possible effective shunting inductance

Lsi = [lims→0 sYii(s)]
−1 [28]. Importantly, a correction of

this form can only be systematically obtained from the ad-
mittance response. When working with the impedance repre-
sentation, such an inductive correction could in principle be
obtained from lims→∞(Z(s)/s). Nonetheless, as we show
in Appendix A, for realistic circuits in which the ports are
shunted by capacitances (e.g. transmons), lims→∞ Z(s) = 0
and the correction vanishes. In short, an inductive energy cor-
rection cannot be systematically obtained from the impedance
representation. However, in order to use the impedance repre-
sentation with a shunting inductance, the latter must be taken
out of the response and be directly added to the bare junction
inductance as part of the dipole self-inductance.

Moving on to the second term of Eq. (3), the qubit anhar-
monicity takes the form δi = −ECi(ωJi

/ωi)
2 [1]. To second

order in perturbation theory, the qubit-qubit coupling Jij in
the last term of Eq. (3) is

Jij =
i

4

√
ωiωj

CJi
CJj

[
Yij(ωi)

ωi
+

Yij(ωj)

ωj

]
, (6)

Jij =
i

4

√
ωiωj

LJi
LJj

[
Zij(ωi)

ωi
+

Zij(ωj)

ωj

]
, (7)

where LJi
= 1/CJi

ω2
i is the dressed junction inductance. In

these expressions, the admittance and impedance account for
both the reciprocal (symmetric) and nonreciprocal (antisym-
metric) response, Y = YR + YNR and Z = ZR + ZNR.

Crucially, the Jij coupling has a nontrivial phase result-
ing from the interplay of the reciprocal and nonreciprocal re-
sponses. Indeed, writing Jij = |Jij |eiθij , the phase is deter-
mined by the expression

tan θij = −
ωjY

NR
ij (ωi) + ωiY

NR
ij (ωj)

Im
{
ωjYR

ij(ωi) + ωjYR
ij(ωi)

} , (8)

with a identical expression for the impedance response ob-
tained by substituting Y(ω) → Z(ω). In general, effective
quantum models breaking time-reversal symmetry require a
nontrivial phase in the hopping between sites [19]. Here, we
find that this nontrivial phase can be manipulated by adjusting
the ratio between reciprocal and nonreciprocal microwave re-
sponse between qubit ports at the qubit frequencies. We note
that the expressions Eqs. (6) to (8) can lead to different inter-
action amplitudes |Jij | and hopping phases θij when obtained
from the admittance or the impedance responses. This dif-
ference between the two approaches arises from our perturba-
tive derivation, which leads to different final effective frames.
Crucially, in the dispersive regime, where these expressions
remain valid, any discrepancies between them are negligible.

The second term of the Hamiltonian appearing in Eq. (2)
describes the cross-kerr interactions between the qubit modes
and the inner circuit modes

Ĥχ =
∑
i,µ

χiµb̂
†
i b̂iâ

†
µâµ, (9)

where âµ is the annihilation operator for the dressed inner
circuit mode µ. To second order in perturbation theory and
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sixth-order in the nonlinear terms of the junctions potential,
the cross-Kerr coefficients are (see Appendix E)

χiµ = 2δi

(
1−

2E
(i)
C

ωi

)(
ωµ

ω2
µ − ω2

i

)2

((gqQiµ )2 + (gqΠiµ )2),

(10)

χiµ = 2δi

(
1−

2E
(i)
C

ωi

)(
ωµ

ω2
µ − ω2

i

)2

((gϕΠiµ )2 + (gϕQiµ )2),

(11)

for the admittance and the impedance, respectively. In these
equations, ωµ is the frequency of mode µ obtained from the
ac-poles of the response. The coefficients gqQiµ (gϕΠiµ ) and
gqΠiµ (gϕQiµ ) are the bare charge-charge (flux-flux) and charge-
flux (flux-charge) couplings between qubit mode i and circuit
mode µ and are proportional to the residue of the admittance
(impedance) at the frequency ωµ. Detailed expressions for
these couplings can be found in Eqs. (E28) and (E29) of Ap-
pendix E. Notably, the presence of non-reciprocity in the cir-
cuit, captured by these charge-flux interactions, modifies the
dispersive shifts.

The Hamiltonian Ĥv(t) describes coupling of the qubits to
external drive ports and it is given by

Ĥv(t) =

n∑
i=1

nD∑
d=1

εid(t)b̂i + ε⋆id(t)b̂
†
i , (12)

where n and nD are respectively the number of qubit and drive
ports. Focusing on the situation where there is no direct cou-
pling between drive ports and assuming a single tone voltage
drive Vd(t) = vd sin(ωdt) at each drive port d, the drive am-
plitudes take the form

εid(t) =
vd
∣∣Ydrive

dd (ωd)
∣∣−1√

2ωiCJiZ0

[(
Yac
id(ωi) + Ydc,NR

id (ωd)
)

× sin(ωdt− ϕ) −iYdc,R
id (ωd) cos(ωdt− ϕ)

]
, (13)

when expressed using the admittance case, and

εid(t) =−
vdi
∣∣Zdrive

dd (ωd)
∣∣−1√

2ωiLJi

cos(ωdt− ϕ′)

×
[
Zac
id(ωi) +

ωd

ωi
Zdc
id(ωd)

]
.

(14)

expressed using the impedance. In these expressions, ϕ =
arctan[Z0 ImYdc

dd(ωd)] and ϕ′ = − arctan[Z0/ ImZdc
dd(ωd)]

are the phase shift introduced by the external transmission
line Z0 at drive port d. Moreover, the reciprocal and non-
reciprocal components of the dc response take into account
possible direct couplings between qubit and drive ports. Ad-
ditionally, Ydrive and Zdrive denote, respectively, the external
admittance and impedance filtered by the capacitances and
inductances at drive ports. They are obtained by adding the
lower nD×nD block of the dc immittance response Ydc

D (Zdc
D)

to the characteristic value of the admittance (impedance) of
the external transmission lines located at each drive ports,
Ydrive(ω) = Z−1

0 + Ydc
D(ω) and Zdrive(ω) = Z0 + Zdc

D(ω). For
the sake of simplicity and without loss of generality, we will
consider all the external transmission lines to have the same
characteristic impedance Z0, that is Z0 = Z01nD

. More gen-
eral expressions accounting for arbitrary voltage pulse shapes
as well as direct capacitive and inductive couplings between
drive ports can be found in Appendix C.

The external ports also open decay channels for the qubit,
something which we model as baths of harmonic oscilla-
tors following the Caldeira-Leggett approach [29]. Going to
the dispersive frame as above, we obtain an effective qubits-
baths interaction, which in addition to the usual flux-flux
and charge-charge couplings include a nonreciprocal flux-
charge interaction responsible for breaking time-reversal sym-
metry. Using the Born-Markov and partial secular approxi-
mations, which allows us to account for possible qubits quasi-
degeneracies (see Appendix F), we then trace out the baths to
obtain the correlated decay rates of the qubits. As above, these
rates are expressed in terms of the admittance and impedance
responses yielding the expressions

γij =
1√

CJi
CJj

nD∑
d,d′=1

Re
{
Ydrive−1

dd′ (ωij)
}
Yid(ωi)Y

⋆
jd′(ωj),

(15)
and

γij =
1√

LJi
LJj

nD∑
d,d′=1

Re
{
Zdrive−1

dd′ (ωij)
}
Zid(ωi)Z

⋆
jd′(ωj),

(16)
where ωij = (ωi + ωj)/2 is the average frequency. Notably,
the Purcell decay rates of qubit i due to its coupling to the
drive ports can be determined from the diagonal elements of
the matrix γij . In the absence of direct stray coupling between
drive ports, these rates are given by

γiκ =
1

CJi

nD∑
d=1

Re
{
Ydrive−1

dd (ωi)
}
|Yid(ωi)|2, (17)

γiκ =
1

LJi

nD∑
d=1

Re
{
Zdrive−1

dd (ωi)
}
|Zid(ωi)|2, (18)

where |Iid(ωi)|2 =
∣∣IRid(ωi)

∣∣2 +
∣∣INR
id (ωi)

∣∣2 with I = Z, Y.
Here, we have omitted the coherent contribution from the
baths which in the dispersive and weak direct coupling regime
only leads to a small renormalization of the qubits’ Hamilto-
nian Ĥq . Notably, as shown in Ref. [30], this coherent contri-
bution is exactly cancelled in our regime of interest by second-
order terms in the system-bath couplings that enters in the
Caldeira-Leggett Hamiltonian (see Appendix F).

Combining these expressions, we finally have the last term
of Lγ ρ̂ of the master equation of Eq. (2) which takes the form

Lγ ρ̂ =
∑
ij

γijD(b̂i, b̂j)ρ̂. (19)
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FIG. 2. (a) 3-port nonreciprocal linear coupler connecting (i) 3
Josephson junctions, or (ii) 2 Josephson junctions and an ohmic dis-
sipative element (a resistor). (b) A π-capacitive filter. (c) One-pole
represention of a transmission line filter.

In this expression, D(b̂i, b̂j)ρ̂ = b̂j ρ̂b̂
†
i − 1

2{b̂
†
i b̂j , ρ̂} and the

sum is on qubits i and j such that |ωi − ωj | ≲ min(γiκ, γjκ).
In summary, we have shown how the master equation of a

nonreciprocal circuit in the dispersive regime is determined
by the total linear response exhibited by the microwave struc-
ture connecting the qubits and the drive ports. That is ˙̂ρ = Lρ̂
where the Lindblad superoperator is a function of the circuit’s
admittance or impedance. For completeness, the cases with
direct capacitive, inductive, and nonreciprocal coupling be-
tween the qubit ports can be found in Appendix C for both
admittance and impedance responses.

III. EXAMPLE OF APPLICATION

We now illustrate how the results of the previous section
can be used with a simple example: three Josephson junctions
coupled via filters to a nonreciprocal scattering element, see
Fig. 2 (a). As an illustration of the method, we take the scat-
tering matrix of the nonreciprocal circuit element to be

S(ϕ) =
1

3

 r(ϕ) t(ϕ)− c(ϕ) t(ϕ) + c(ϕ)
t(ϕ) + c(ϕ) r(ϕ) t(ϕ)− c(ϕ)
t(ϕ)− c(ϕ) t(ϕ) + c(ϕ) r(ϕ)

, (20)

with r(ϕ) = 1 + 2 cos(ϕ), t(ϕ) = 1 − cos(ϕ) and c(ϕ) =√
3 sin(ϕ). Geometrically, this scattering matrix is a rotation

around the symmetric axis n = (1, 1, 1)/
√
3 and, for ϕ =

2π/3, it corresponds to an ideal circulator.
Focusing first on the case where the filter is a simple π-

capacitive filter, see Fig. 2 (b), we obtain the admittance and
impedance response of the circuit in Appendix G 4. Equipped

0 1
3

2
3

1
t/T

0

1
2

1

P
j
=
|〈 0|

b̂ j
|ψ

(t
)〉 |2

P1 P2 P3

FIG. 3. Dynamics of the circuit in Fig. 2 (a,i) with the capacitive
filter of Fig. 2 (b) for ϕ = π/3 and the initial state |ψ(0)⟩ = |1000⟩
(i.e. one photon excitation in one of the qubit modes). The circuit
parameters are CJ = 100.0 nF, Cc = 0.1CJ , Cg = 1.5CJ , R =
50.0 Ω, EJ/2π = 3.62 GHz, δi ≃ 0.05ω and ωy(π/3)/2π ≃ 11.5
GHz. Solid (dashed) lines were obtained from the exact (effective)
Hamiltonian of the circuit. The approximate period (exact in the
linear case) T = 2π/

√
3J(ϕ).

with these responses, we use Eq. (8) to directly obtain the hop-
ping phase θij between qubit modes in the circuit’s effective
quantum Hamiltonian. We find

tan θij(ϕ) = −
√
3ω/ωy(ϕ), (21)

where ω = ω̃J + δ, with ω̃J = 1/

√
LJ C̃J the junction’s

plasma frequency, δ = −EC/(1−EC/ω̃J) the anharmonicity
and EC the charging energy which we take to be equal for all
three junctions. Moreover, ωy(ϕ) = tan(ϕ/2)/[R(Cc + Cg)]
is the ac pole of the admittance response, with R the char-
acteristic impedance of the nonreciprocal scattering element.
As noted in Ref. [19], chiral dynamics with complete popula-
tion transfer is obtained for θij(ϕ) = π/6, which leads to the
condition

ω = ωy(ϕ)/3, (22)

valid for all values of ϕ ̸= 0, π. Therefore, we conclude that
for the circuit of Fig. 2 (a) with the filter of Fig. 2 (b), chiral
dynamics can in principle be obtained with any value of ϕ,
something which only requires a suitable adjustment of the
qubits frequencies.

As an illustration of this chiral dynamics, starting with one
excitation in the first qubit and all other modes in the vacuum,
we plot in Fig. 3 (c) the evolution of the qubit population
Pj=1,2,3(t) = |⟨0|b̂j=1,2,3|ψ(t)⟩|2 for ϕ = π/3. There, we
compare the evolution obtained from the exact Hamiltonian of
the circuit obtained after the elimination of the nondynamical
modes (full lines, see Appendix D), with the expectation val-
ues obtained using the effective Hamiltonian of the qubit sec-
tor constructed using the formulas from the preceding section
(dashed lines). The agreement between the two approaches is
excellent and shows the expected circulation dynamics.

Other filters can be used instead of the capacitive filter
of Fig. 2 (b). For example, for the LC-resonator filter de-
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FIG. 4. Isolator-like behavior is realized through adequate tuning of
circuit parameters. (a) One excitation in mode b̂1 and mode b̂2 in
vacuum at t = 0. The population is transferred to mode b̂2, and then
lost to the resistive port. (b) Reversed situation with qubit 2 hav-
ing the excitation at t = 0. Because of chirality, qubit 1 remains
underpopulated (less than 1%) while qubit 2 decays. The dashed
lines are obtained from the master equation Eq. (23) (dashed lines).
Those results are compared to the exact dynamics obtained from
classical Kirchhoff equations (solid lines). The circuit parameters
are Cc = 0.01CJ , CD = Cg = 0.01Cc, ϕ = π/3, Z0 = 3R,
ω = 10ωy(π/3), δ = −0.05ω, TD = 20RCJ .

picted in Fig. 2 (c), the condition for attaining chiral dy-
namics with complete population transfer becomes approxi-
mately ωi(ωi/ωr)

2(1− C2
c /CrCg) ≃ ωy(ϕ)/3, where ωr =

1/
√
(Cc + Cr)Lr. For more complex circuits lacking ana-

lytical solutions, numerical optimization methods over qubit
frequencies and circuit design parameters can be used to ob-
tain the desired effective Hamiltonian.

As an additional example, we now consider the circuit of
Fig. 2 where we replace the Josephson junction of port 3 by a
resistor of impedanceZ0, see panel (a,ii). Following the above
approach, the circuit parameters can be optimized to obtain
partial excitation transfer between the ports. Indeed, in the
absence of a drive, Ĥv = 0, the master equation Eq. (2) leads
to the following equations of motion for the qubit operators b̂i

db̂1
dt

= −i
(
ω + δb̂†1b̂1 − i

γ11
2

)
b̂1 −

(
iJ21 +

γ12
2

)
b̂2,

db̂2
dt

= −i
(
ω + δb̂†2b̂2 − i

γ22
2

)
b̂2 −

(
iJ12 +

γ21
2

)
b̂1.

(23)

By imposing iJ21 + γ12/2 = 0, the qubit at port 1 can be
isolated from qubit at port 2 [31]. Using Eqs. (15) and (16),
we have that this condition is equivalent to

Y21(ω) =
Z0

1 + ω2C
2

DZ
2
0

Y13(ω)Y
⋆
23(ω), (24)

when expressed in terms of the admittance response, with an
analogous expression for the impedance response. Isolation
is possible only if 0 ≤ Y21(ω)/Y13(ω)Y

⋆
23(ω) ≤ 1/ωCD,

where CD = CD + CcCg/(Cc + Cg) and CD corresponds

to the shunting capacitance of the dissipative port. For the
π-capacitive filter, this leads to the following constraints

ω ≫ ωy(ϕ) =
tan ϕ

2

R(Cc + Cg)
,

√
3

ωy(ϕ)Cc
=

Z0

1 + ω2C
2

DZ
2
0

.

(25)

The first condition results from the filter’s high-pass behavior,
while the second represents an impedance matching condi-
tion for the dissipative port of impedance Z0, and admits a
solution only when Cc/CD ≥ 2

√
3ω/ωy(ϕ). This inequality

is satisfied when Cc ≫ CD, Cg . In that case, the matched
load should be chosen such as Z0 ≃

√
3R/ tanϕ/2. For

ϕ = 2π/3, we recover the usual impedance matching condi-
tion Z0 = R of an ideal circulator. Importantly, isolation can
also be obtained for ϕ ̸= 2π/3 provided a suitable adjustment
of the impedance matching condition is made. Fig. 4 shows
the evolution of the initial 1-excitation state in (a) qubit 1 or
(b) qubit 2 for ϕ = π/3. Panel (a) shows the expected pop-
ulation transfer from qubit 1 to qubit 2, while panel (b) illus-
trates the chirality of the evolution with the excitation in qubit
2 not reaching qubit 1 but instead being lost to the environ-
ment. These results are obtained from integration of the mas-
ter equation Eq. (23) using expressions Eqs. (6) and (15) for
Jij and γij , respectively (dashed lines). On the same figure,
the full lines are obtained by solving numerically the corre-
sponding classical Kirchhoff equations, yielding an excellent
agreement.

The three-port network that we have considered here is
the smallest one which can non-trivially demonstrate the use
of the results of the previous section. Naturally, extending
the application of the above results to an N -port network is
straightforward. The underlying principles remain the same
[32], allowing for the application of our formulas to more
complex and larger multi-port systems. Crucially, our results
show that a nonreciprocal element with a scattering matrix
representing a symmetric rotation between its ports Eq. (20) is
sufficient to reproduce all dynamics achievable with an ideal
circulator, provided a suitable adjustments of the circuit pa-
rameters is made. The design of on-chip circulators could in
principle be relaxed to engineer this family of scattering ele-
ments. We provide further examples with simple circuits in
Appendix G.

IV. SUMMARY AND OUTLOOK

We have shown that the knowledge of the classical im-
mittance response together with qubit design parameters
(e.g. Josephson’s energies) is sufficient to fully characterize
the dispersive master equation for transmons qubits even in
the presence of nonreciprocal elements. While we have fo-
cused on transmon qubits, our results can readily be extended
to any weakly anharmonic qubit operating in a single well po-
tential, e.g., building upon the results of Ref. [33]. Naturally,
it can also account for the presence of higher harmonics of
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the Josephson potential [34]. Moreover, having obtained ex-
pressions for both impedance and admittance responses offers
two significant advantages. First, it enables the description
of a wide range of circuits, effectively eliminating some sin-
gularities that may arise during the characterization of linear
systems (examples are provided in Appendix A). Second, this
dual approach allows us to use our results for qubits that are
dual to the transmons, i.e, for which the charge degree of free-
dom is a good quantum number. Prominent examples of such
qubits include phase slip junctions [35–37].

Expanding beyond weakly anharmonic qubits, the formal-
ism presented here could potentially be adapted to induc-
tively shunted qubits, such as the Fluxonium qubit, follow-
ing Ref. [38]. In that case, the normal modes of the electro-
magnetic environment can be extracted from the poles of the
impedance response, while the Josephson junction is treated
separately outside the response, as we have done in this work.
However, because a truncated Taylor expansion of the Joseph-
son energy is not longer a good approximation to the potential,
one should then consider the full cosine operator, whose ma-
trix elements in the normal mode basis can be obtained from
the zero-point fluctuations of the junction phase [38]. Cru-
cially, these zero-point fluctuations can be directly computed
from the immittance response, akin to the approach detailed
in Ref. [14].

More generally, we expect that our work will facilitate
the exploration of nonreciprocal models in circuit and cav-
ity QED platforms [20, 21, 39]. It can, for example, be used
to systematically explore novel designs for on-chip nonre-
ciprocal elements, building upon the principles established
in Ref. [19]. Moreover, apart from the dispersive shifts, the
parameters of the master equation are determined by the im-
mittance response assessed at the frequencies of the qubits.
Hence, only finite-element simulations around this range of
frequencies are needed making this approach efficient with
respect to energy-participation ratio-based methods [17].

More broadly, our work bridges the gap between electrical
engineering via immittance design and quantum simulation
of nonreciprocal and topological models. This connection re-
lies on the mapping between the phase of the tunneling rate
and immittance parameters provided by Eq. (8), highlighting
that different nonreciprocal immittance designs yield distinct
topological models [40]. Finally, further work include extend-
ing the treatment of nonlinearities to higher-order corrections,
incorporating weakly nonlinear elements within the nonrecip-
rocal response, and investigating tunable couplers in the spirit
of Ref. [41]. Furthermore, there will be a need for additional
work to extend the systematic construction of effective models
using the immittance-based paradigm to be applicable to the
waveguide QED context, where the black-box structure would
encompass a continuous spectrum.
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Appendix A: Immittance response formulas, electromagnetic
duality and singular cases

In this section, we first provide a review of canonical im-
mittance matrix decompositions for lossless circuits. We then
discuss the electromagnetic duality between impedance and
admittance responses, and analyze singular cases in both ap-
proaches. For more details on linear response synthesis, the
reader is referred to Ref. [18]. Linear systems can generically
be characterized by a scattering matrix in Laplace space S(s)
and, in most cases by an impedance Z = R(1− S)−1(1+ S)
matrix, an admittance Y = (1/R)(1 − S)(1 + S)−1 matrix,
or both provided that the involved matrix inverses exist. Here,
R is a characteristic parameter in resistance units. These im-
mittance responses can be decomposed into their multipole
expansions

Z(s) =
A0

s
+ A∞s+ B∞ +

∑
β

Aβs+ Bβ

ω2
β + s2

,

Y(s) =
D0

s
+ D∞s+ E∞ +

∑
β

Dβs+ Eβ

ω2
β + s2

.

(A1)

where Aα and Dα with α ∈ {0,∞, β} are N × N real sym-
metric matrices withN the number of ports. Similarly, Bζ and
Eζ with ζ ∈ {∞, β} are N ×N real antisymmetric matrices.
These matrices are defined from the residues of the impedance
(admittance). Explicitly, we have

A0 = Res(Z(0)),
Aβ = 2Re{Res(Z(ωβ))},
Bβ = −2ωβ Im{Res(Z(ωβ))},

A∞ = lim
ω→∞

∂Z(ω)/∂ω = lim
ω→∞

Z(ω)

iω
,

B∞ = lim
ω→∞

(Z(ω)− iωA∞),

(A2)

where the residue is given by Res(Z(ω0)) = lims→iω0(s −
iω0)Z(s), and Z(ω) ≡ lims→iω Z(s). The same expressions
hold for Dα and Eζ exchanging Z with Y. The synthesis of
these responses can be done using their canonical Cauer cir-
cuit, see Fig. 5 (a). We now turn to important facts on how
this synthesis is done.

First, we note that the expansions in Eq. (A1) are in
general valid for any lossless causal linear response [18].
However, we will consider all of the ports to be capaci-
tively shunted, a physically realistic assumption also taken in
Ref. [1]. Hence, from the definition of the impedance matrix
Zij(s) = vi(s)/ij(s)|ik=0 = vci (s)/ij(s)|ik=0 with vi(s) the
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FIG. 5. (a): Multiport canonical Cauer circuit for impedance (left) and admittance (right) responses. In this representation, U, V, R, and N
correspond respectively to the multiport Belevitch transformer that connects the capacitive, inductive, reciprocal, and nonreciprocal stages to
the rest of the circuit [18]. Additionally, E∞ represents the dc nonreciprocal response. The presence of a non-singular capacitive stage in the
admittance picture, reflecting the shunting capacitances of the ports, implies that there is neither an inductive stage V nor dc nonreciprocal
response in the impedance decomposition. (b): Electromagnetic duality between the impedance and admittance pictures, which is broken in
the presence of Josephson junctions in the port terminals. However, full duality is recovered when connecting admittance ‘qubit’ ports to a
phase-slip flux qubit described by its loop charge degree of freedom [35–37] in series with a linear inductor, which is the dual circuit of a
capacitive shunted JJ, as well as a current source-admittance representation of the drive ports.
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voltage at port i, ij(s) the current at port j, and vci = ici/sCi

the voltage of the capacitor shunting port i, it follows di-
rectly that lims→∞ Zij(s) = 0. As such, the impedance re-
sponses we will be considering have no poles at infinity and
A∞ = B∞ = 0. Moreover, we define the reciprocal (nonre-
ciprocal) poles with frequencies ωrγ (ωgµ ) where 1 ≤ γ ≤ m
(1 ≤ µ ≤ l), as those with zero (nonzero) imaginary part in
their residue, see Eq. (A2). Doing so, the expansions of Z and
Y read

Z(s) =
A0

s
+

m∑
γ=1

Aγs

ω2
rγ + s2

+

l∑
µ=1

Aµs+ Bµ

ω2
gµ + s2

,

Y(s) =
D0

s
+ D∞s+ E∞

+

m∑
γ=1

Dγs

ω2
rγ + s2

+

l∑
µ=1

Dµs+ Eµ

ω2
gµ + s2

.

(A3)

The Cauer decomposition of these responses rests on two key
facts. First, with an appropriate choice of reactive elements,
the circuit poles will be at the same frequencies as the re-
sponse poles. Importantly, the minimal number of reactive el-
ements necessary is directly given by the rank of the response
residues. Second, the residue matrices Aα and Bζ (Dα and
Eζ) encode the topology of the circuit. This topology is real-
ized in the circuit with the use of ideal transformer matrices
(U,V,R,N in Fig. 5 (a)) and gyrators [18]. An ideal trans-
former matrix Tb×a is a constrain between its a primary and
b secondary ports voltages (va, vb) and currents (ia, ib), such
that va = TTvb and ib = −Tia. An ideal gyrator is a 2-port
nonreciprocal constrain relating its left and right ports volt-
ages (vl, vr) and currents (il, ir), such that(

vl
vr

)
= R

(
0 −1
1 0

)(
il
ir

)
, (A4)

whereR is the gyration resistance of the gyrator. In the nonde-
generate case, the rank of each residue at the frequencies ωrγ

and ωgµ is one. We elucidate the process of obtaining explicit
expressions for the transformer matrices, gyration ratios, and
the reactive element parameters in the subsequent paragraphs.

We focus first on the impedance response synthesis, see
Fig. 5 (a). The transformer matrix U is obtained from the or-
thogonal decomposition of A0 = UTC

−1
U. The capacitances

of the purely capacitive stage are given by the inverse of the
eigenvalues of A0 (the entries of the diagonal matrix C). The
transformer matrix R is given by RT =

(
r1, . . . , rm

)
, where

the transformer ratios rγ are (N×1) column vectors coupling
the external ports with the inner mode resonators of frequency
ωrγ = 1/

√
CrγLrγ . Such ratios are the electrical engineer’s

equivalent [42] to the energy-participation ratios and signs
used in Ref. [17]. These transformer ratios are obtained from
the residue matrices Aγ = rγr

T
γ /Crγ . As there is a degree of

freedom in the choice of Crγ , following the standard conven-
tion we set Crγ = 1 and Lrγ = 1/ω2

rγ . Therefore, the trans-
former ratios are directly given by the normalized eigenvector
with nonzero eigenvalue ( λγ , λγ) of Aγ as rγ =

√
λγλγ ,

and hence have units of [C]−1/2. The transformer matrix N

is given by NT =
(
nL
1 ,n

R
1 , . . . ,n

L
l ,n

R
l

)
, where the trans-

former ratios nL,R
µ are (N × 1) column vectors coupling the

external ports with the left and right branches of the gyrators,
with gyration ratio Rµ capacitively shunted at each branch
with Cgµ , synthetizing the nonreciprocal resonators of fre-
quency ωgµ = 1/RµCgµ . These transformer ratios are ob-
tained from both Aµ = (nL

µ(n
L
µ)

T + nT
µ (n

R
µ )

T )/Cgµ and
Bµ = Rµω

2
gµ(n

R
µ (n

L
µ)

T − nT
µ (n

R
µ )

T ). As before, following
standard convention we set Cgµ = 1 and Rµ = 1/ωgµ . One
can show that in the nondegenerate case, the transformer ra-

tios can be given by nL,R
µ =

√
λL,R
µ λL,R

µ , where λL,R
µ and

λL,R
µ are the normalized eigenvectors with nonzero eigenvalue

of Aµ. In summary, we have

A0 = UTC
−1

U,

Aγ = rγr
T
γ ,

Aµ = nL
µ(n

L
µ)

T + nR
µ (n

R
µ )

T ,

Bµ = ωgµ(n
R
µ (n

L
µ)

T − nL
µ(n

R
µ )

T ),

RT =
(
r1, . . . , rm

)
,

NT =
(
nL
1 ,n

R
1 , . . . ,n

L
l ,n

R
l

)
.

(A5)

For the admittance [see right panel of Fig. 5 (a)], the syn-
thesis procedure is very similar and we directly provide the
summary

D∞ = VCVT ,

D0 = UL
−1

UT ,

Dγ = rγr
T
γ ,

Dµ = nL
µ(n

L
µ)

T + nR
µ (n

R
µ )

T ,

Eµ = ωgµ(n
L
µ(n

R
µ )

T − nR
µ (n

L
µ)

T ),

E∞ = N∞YG
∞NT

∞,

R =
(
r1, . . . , rm

)
,

N =
(
nL
1 ,n

R
1 , . . . ,n

L
l ,n

R
l

)
.

(A6)

Here, we have used the convention Lrγ = Lgµ = 1, Crγ =

1/ω2
rγ and Rµ = ωgµ . The capacitive stage is synthetized

analogously as in the impedance case. The inductive stage is
synthesized with the orthogonal transformer matrix U, and the
inductors given by the inverse of the eigenvalues of D0 (i.e.,
the diagonal entries of L). Similarly, the transformer ratios are

given by rγ =
√
λγλγ (nL,R

µ =

√
λL,R
µ λL,R

µ ), where λγ

(λL,R
µ ) are the normalized eigenvectors with nonzero eigen-

value of Dγ (Dµ), and have dimension [L]−1/2. The nonrecip-
rocal stage E∞ can be formally synthetized with a transformer
matrix N∞ and a set of ideal gyrators represented by the block
matrix YG

∞. However, as we do not need this synthesis for any
of our results, we do not give explicit expressions for it here.

We stress that the transformer (gyration) ratios and reac-
tive elements for a given admittance and impedance synthesis
when one is the inverse of the other are different. We have
chosen the same notation for both to make the duality appar-
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FIG. 6. Generic two port circuit coupled through an admittance
or impedance response plus direct inductive coupling. For such
circuits unconstrained Hamiltonian dynamics can be systematically
constructed from the admittance, but not the impedance, response.

ent. However, in general the inverse of the impedance (ad-
mittance) is not its dual. We now make this statement more
precise. In the context of circuit theory, electromagnetic dual-
ity refers to the invariance of the equations of motion for volt-
ages (v) and currents (i) under the transformation v → z0i
and i → v/z0, where z0 depends on the units chosen for volt-
age and currents. In particular, two immittance responses Z(s)
and Yd(s) are dual if the equations of motion for voltages (v)
and currents (i) at the ports are invariant under the transfor-
mation Z(s) → Yd(s), v → z0i and i → v/z0. It follows that
Yd(s) = Z(s)/z20 , where the Cauer representation of Yd(s) is
obtained from the Cauer representation of Z(s), by changing
capacitors to inductors (and viceversa), transposing the trans-
former matrices, and using the LC-oscillators (gyrators) ad-
mittance instead of impedance representations.

For Josephson junction-based circuits, the shunting capac-
itances accompanying these JJs introduce an asymmetry in
the poles between the impedance and admittance approaches,
see Eq. (A3), breaking therefore electromagnetic duality be-
tween the two approaches. This leads to the possibility of
encountering distinct singular cases for the admittance and
impedance representations when constructing their respective
Lagrangian. We proceed to show that this is indeed the case.
Let us focus first on the singular cases of circuits in which
the external ports are shunted by dipoles described by their
flux degree of freedom. In this context, the kinetic matrix
of the Lagrangian derived from the Cauer representation of
the impedance (admittance) will be singular if A0 (D∞) is
singular. Specifically, circuits featuring direct inductive cou-
pling (as depicted in Fig. 6) between qubit ports render A0

singular. This can be proven using the current-voltage rela-
tion between the inductor ports, which implies that for dc cur-
rent the voltage drop across the inductor is zero and thus acts
as a short circuit between the ports equalling their voltages.
That is, lims→0 v1 = lims→0 v2 implies lims→0 Z1j(s) =
lims→0 v1/ij |ik=0 = lims→0 v2/ij |ik=0 = lims→0 Z2j(s)
for all j. In other words A0 = lims→0 sZ(s) has two linearly
dependent rows and is singular. Notice that this statement is
true even in the presence of a parallel (shunting) capacitor to
the Lc. By the same token, if there is a shunting inductance
on port i, then lims→0 vi = 0 implying that (A0)ij = 0 for

all j and A0 is singular. However, this last case can be reme-
died by extracting the shunting inductance out of the response
and dressing the bare inductance of the dipole with it. In con-
trast, within the admittance framework, D∞ will always be
full rank due to the shunting capacitances at the ports, hence
the derived Lagrangian is not singular and derivation of the
corresponding Hamiltonian and subsequent quantization, can
always be done.

Finally, we note that thanks to electromagnetic duality,
our results extend to weakly anharmonic qubits described by
their (loop) charge degree of freedom such as phase-slip flux
qubit [35–37, 43]. This is so because the dual circuit of an
impedance shunted by Josephson junctions in parallel with
capacitors, corresponds to its dual admittance with the ports
shunted by phase-slips in series with inductors, see Fig. 5
(b). Therefore, the formulas found in this work for qubits de-
scribed by their flux-degree of freedom can be easily adapted
to the case where the qubits are described by their loop charge-
degree of freedom. Singular cases for loop charge-based cir-
cuits are dual to the ones presented above.

Appendix B: Symplectic Schrieffer-Wolff transformation

Here, we develope a form of Symplectic perturbation the-
ory in classical phase-space analogous to the standard quan-
tum Schrieffer-Wolff perturbation theory [44]. Consider a
Hamiltonian H defined by the quadratic form H as

H =
1

2
XTHX, (B1)

where X is the vector of generalized phase-space coordinates.
Without loss of generality we divide it in two sectors A and
B such that XT = (xT

A,p
T
A,x

T
B ,p

T
B) where position and mo-

menta obey the standard Poisson bracket {xa,pb} = δa,b.
With this division, the quadratic form H in block form reads

H =

(
HA HAB

HT
AB HB

)
. (B2)

Consequently its symplectic form J also is in block form

J =

(
JA 0
0 JB

)
, (B3)

with

JA =

(
0 1n

−1n 0

)
, JB =

(
0 1m

−1m 0

)
, (B4)

where n (m) correspond to the number of conjugate pair vari-
ables in A (B). The equations of motion of the system read
Ẋ = JHX [45]. We are seeking a symplectic transformation
S that block-diagonalizes H,

(ST )−1HS−1 ≡ H̃ =

(
H̃A 0

0 H̃B

)
, (B5)
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with X̃ = SX the transformed coordinates, such that the
Hamiltonian now reads

H =
1

2
XTHX =

1

2
X̃T H̃X̃. (B6)

This symplectic transformation must satisfy SJST = J and for
any symmetric matrix A it must hold that S = exp(AJ) is a
symplectic transformation [45]. Thus, any symmetric matrix
A is a generator of symplectic transformations, and we are
interested in the generator A such that Eq. (B5) is satisfied.

Because (ST )−1HS−1 = exp(JA)H exp(−AJ), we cannot
use the well known BCH expansion of exp(B)H exp(−B) to
directly evaluate the transformation. Instead, we use the gen-
eral expansion

exp{D}H exp{B} =

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
Dn−kHBk. (B7)

Substituting with JA = D and −AJ = B we have

H̃ =

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
(−1)k(JA)n−kH(AJ)k. (B8)

Further, we define the transpose anticommutator of two matri-
ces {D,B}T ≡ DB+BTDT . With this notation, we can show
that

{D, . . . {D,︸ ︷︷ ︸
n times

B}T , . . . }T =

n∑
k=0

(
n

k

)
(D)n−kB(DT )k

≡{D,B}(n)T ,

(B9)

which can be easily proved by induction. As (JA)T = −AJ,
it follows that

H̃ =

∞∑
n=0

1

n!
{JA,H}(n)T . (B10)

Now, we write the off-diagonal block of H coupling the
two sectors as HAB ≡ λHAB with λ the customary pertur-
bation parameter. Additionally, we express the block diagonal
quadratic forms as HA = H

(0)
A + λH′

A where H
(0)
A and λH′

A
correspond to its diagonal and nondiagonal entries within that
sector, respectively. With similar expressions for the sectorB,
we have that

H =

(
H

(0)
A + λH′

A 0

0 H′
B + λH

(1)
B

)
+ λ

(
0 HAB

HT
AB 0

)
≡ H(0) + λH′

D + λHND.

(B11)

As is customary, we also expand A as a power series in λ

A =

∞∑
n=1

λnA(n). (B12)

Substituting Eqs. (B11) and (B12) in Eq. (B10) while also
imposing condition Eq. (B5) we obtain the set of equations
for the generator A order by order

{JA(1),H(0)}T = −HND, (B13a)

{JA(2),H(0)}T = −{JA(1),H′
D}T , (B13b)

and so on. These expressions are analogous to the ones ob-
tain for the standard quantum Schrieffer-Wolff transforma-
tion [46]. Using these results, we find that the transformed
quadratic form of the Hamiltonian up to third order in λ reads

H̃ =H(0) + λH′
D +

λ2

2
{JA(1),HND}T

+ λ3
[
{JA(2),HND}T +

1

2
{JA(1),H′

D}(2)T

]
.

(B14)

Thus, up to second order in λ only the first order generator is
needed. From Eq. (B13b), we have that A(2) = 0 (A(2) ̸= 0)
if H′

D = 0 (H′
D ̸= 0), and therefore taking into account only

the first order generator the expansion of H̃ will be accurate
up to fourth (third) order in λ.

To solve Eq. (B13a) and find A(1) note that its diagonal
(even) sector will be zero and only its nondiagonal (odd) block
sector will be nonzero, and therefore we let

A(1) =

(
0 A

(1)
AB

(A
(1)
AB)

T 0

)
, (B15a)

A
(1)
AB =

(
A
(1)
xaxb A

(1)
xapb

A
(1)
paxb A

(1)
papb

)
. (B15b)

We also write

HAB =

(
Kxaxb

Kxapb

Kpaxb
Kpapb

)
, (B16a)

H
(0)
A = diag(wa

x1, . . . , w
a
xn, w

a
p1, . . . , w

a
pn), (B16b)

where we have chosen the dimension of all the entries to be of
frequency for reasons that will become apparent below. Sub-
stituting Eqs. (B4), (B15) and (B16a) in Eq. (B13a) and set-
ting the perturbation parameter λ = 1 we find after some al-
gebraic manipulations

(A(1)
xaxb

)α,β = Θ−1
α,β(w

a
pαK

α,β
xapb

− wb
pβK

α,β
paxb

), (B17a)

(A(1)
xapb

)α,β = Θ−1
α,β(−w

a
pαK

α,β
xaxb

− wb
xβK

α,β
papb

), (B17b)

(A(1)
paxb

)α,β = Θ−1
α,β(w

a
xαK

α,β
papb

+ wb
pβK

α,β
xaxb

), (B17c)

(A(1)
papb

)α,β = Θ−1
α,β(−w

a
xαK

α,β
paxb

+ wb
xβK

α,β
xapb

). (B17d)

Here, Θα,β ≡ wa
xαw

a
pα − wb

xβw
b
pβ = w2

α − ω2
β with wα

(ωβ) the oscillation frequency associated to the conjugate pair
xα,pα (xβ ,pβ) when only H(0) is considered. As usual, we
call these frequencies the ‘bare’ frequencies of the problem.
Kα,β
xaxb

is the α, β entry of Kxaxb
. The above expressions for

the first order generator of the transformations gives us the
perturbative criteria

k

∆ab
≪ 1, (B18)
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where k is the largest entry of the matrix H − H(0) and ∆ab

is the smallest frequency gap |wa
α − wb

β | between the bare
oscillators in subsectors A,B. Continuing with the general

derivation, we substitute Eq. (B17) in Eq. (B11) and, after
some algebra, we obtain the corrections up to O(k3/∆2

ab) of
the quadratic forms of both subsectors A,B

(H̃A
xx)α,α′ =

1

2

m∑
β=1

{(
wpβ

Kα,β
xaxb

Kα′,β
xaxb

+ wxβ
Kα,β
xapb

Kα′,β
xapb

)[ 1

Θα,β
+

1

Θα′,β

]

+
wxα

Θα,β

(
Kα,β
papb

Kα′,β
xaxb

− Kα,β
paxb

Kα′,β
xapb

)
+
wxα′

Θα′,β

(
Kα′,β
papb

Kα,β
xaxb

− Kα′,β
paxb

Kα,β
xapb

)}
,

(B19a)

(H̃A
xp)α,α′ =

1

2

m∑
β=1

{(
wpβ

Kα,β
xaxb

Kα′,β
paxb

+ wxβ
Kα,β
xapb

Kα′,β
papb

)[ 1

Θα,β
+

1

Θα′,β

]

+
wxα

Θα,β

(
Kα,β
papb

Kα′,β
paxb

− Kα,β
paxb

Kα′,β
papb

)
+

wqα′

Θα′,β

(
Kα′,β
xaxb

Kα,β
xapb

− Kα′,β
xapb

Kα,β
xaxb

)}
,

(B19b)

((H̃A
pp)α,α′ =

1

2

m∑
β=1

{(
wpβ

Kα,β
paxb

Kα′,β
paxb

+ wxβ
Kα,β
papb

Kα′,β
papb

)[ 1

Θα,β
+

1

Θα′,β

]

+
wpα

Θα,β

(
Kα,β
xaxb

Kα′,β
papb

− Kα,β
xapb

Kα′,β
paxb

)
+

wpα′

Θα′,β

(
Kα′,β
xaxb

Kα,β
papb

− Kα′,β
xapb

Kα,β
paxb

)}
.

(B19c)

To obtain the corrections to H̃B , we simply exchange α with
β, m with n and use KT in the above formulas. For H̃A

xp, the
diagonal entries corrections α = α′ are equal to zero.

As a simple example take three LC oscillators. Two of the
oscillators are nonreciprocally coupled to the third oscillator
via gyrators. Moreover, all three oscillators are capacitively
coupled. Writing the Lagrangian using the flux variable on the
inductances of the oscillators one readily obtains the Hamil-
tonian

H =
∑
i

[
qAi

2

2Ci
+
ϕAi

2

2Li

]
+
qB1

2

2C3
+
ϕB1

2

2L3

+
∑
i

[
qAi q

B
1

Ck

]
+
qA1 q

A
2

Ck

+
∑
i

kg(ϕ
A
i q

B
1 − qAi ϕ

B
1 ),

(B20a)

where i ∈ {1, 2}. The phase space variables respect the
Poisson brackets {ϕai , qbj} = δijδab, and thus we identify
ϕ → x, q → p. The form of the parameters Ci, Li, Ck, kg
can be easily obtained following the usual approach [47].

Setting X = (ϕA1 , ϕ
A
2 , q

A
1 , q

A
2 , ϕ

B
1 , q

B
1 ), and rescaling ϕi →

ϕi/
√
zi, qi → qi

√
zi with zi =

√
Li/Ci the quadratic and

symplectic forms read

H =

(
HA HAB

HT
AB HB

)
, J =

(
JA 0
0 JB

)
, (B21a)

with

HA =


ωA
1 0 0 0
0 ωA

2 0 0
0 0 ωA

1 kq
0 0 kq ωA

2

, HB = ωB
1 12,

HAB =


0 k1,1ϕaqb

0 k2,1ϕaqb

−k1,1qaϕb
k1,1qaqb

−k2,1qaϕb
k2,1qaqb

,

JA =

(
0 12

−12 0

)
, JB =

(
0 1
−1 0

)
.

(B21b)

Where ωA
i = 1/

√
LiCi, ωB

1 = 1
√
L3C3, kq = 1/

√
z1z2Ck,

ki,1qaqb
= 1/

√
ziz3Ck, ki,1ϕaqb

=
√
zi/z3kg , and ki,1qaϕb

=√
z3/zikg .

Using these expressions, we can now get the perturbative
corrections from Eq. (B19) to find the effective quadratic form
of sector A

(H̃A
ϕϕ)i,j =

1

2
ωB
1 k

i,1
ϕaqb

kj,1ϕaqb

[
1

Θi,1
+

1

Θj,1

]
− ωA

i

2Θi,1
ki,1qaϕb

kj,1ϕaqb
−

ωA
j

2Θj,1
kj,1qaϕb

ki,1ϕaqb
,

(B22a)
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(H̃A
ϕq)i,j =

1

2
ωB
1 k

i,1
ϕaqb

kj,1qaqb

[
1

Θi,1
+

1

Θj,1

]
+

ωA
i

2Θi,1

(
ki,1qaqb

kj,1qaϕb
− ki,1qaϕb

kj,1qaqb

)
,

(B22b)

(H̃A
qq)i,j =

ωB
1

2

(
ki,1qaϕb

kj,1qaϕb
+ ki,1qaqb

kj,1qaqb

)[ 1

Θi,1
+

1

Θj,1

]
− ωA

i

2Θi,1
ki,1ϕaqb

kj,1qaϕb
−

ωA
j

Θj,1
kj,1ϕaqb

ki,1qaϕb

+ kq(1− δi,j),

(B22c)

where Θi,1 = ((ωA
i )

2 − (ωB
1 )2). For these expressions to be

accurate, the perturbative criteria

max(ki,1qaϕb
, ki,1qaqb

, ki,1ϕaqb
, kq)

min(|ωA
i − ωB

1 |)
≪ 1 (B23)

must be satisfied.
For the sake of completeness, let us briefly comment on

the connection of this approach to the standard quantum SW
method used in [1]. There, due to the presence of just recipro-
cal (capacitive) connection, only flux-flux coupling terms had
to be considered. Explicitly, after arranging the phase-space
coordinates as XT = (ΦT

a ,Φ
T
b ,q

T
a ,q

T
b ), the quadratic form

has the structure

H =


ΩA Kϕϕ 0 0
KT
ϕϕ ΩB 0 0
0 0 ΩA 0
0 0 0 ΩB

, (B24)

with ΩA (ΩB) the normal modes frequencies of the sector
A (B). With the rescaling ϕi → ϕi/

√
wi, qi → qi

√
wi the

quadratic form is

H =


Ω2

A Mϕϕ 0 0
MT

ϕϕ Ω2
B 0 0

0 0 1 0
0 0 0 1

, (B25)

It follows that S will be both symplectic and orthogonal, and
Eq. (B19) reduces to

(H̃A
ϕϕ)α,α′ =

1

2

m∑
β=1

Mα,β
ϕϕ Mα′,β

ϕϕ

[
1

Θα,β
+

1

Θα′,β

]
, (B26)

which is the same as (B.15) in [46]. Yet, in scenarios involv-
ing both flux-flux and charge-charge couplings, or flux-charge
couplings, as shown here, Eq. (B19) deviates from conven-
tional SW formulas.

Appendix C: Derivation of main results including direct
capacitive, inductive and nonreciprocal couplings

In this appendix, we obtain the effective Lindbladians and
Hamiltonians for the general case with direct electrostatic and

inductive coupling between the ports. In the closed system,
we introduce two different approaches to include the direct
capacitive (electrostatic) and inductive (magnetostatic) cou-
pling. First, for the admittance (impedance) representation,
in Appendix C 1 (Appendix C 3), we apply a numerical di-
agonalization of both the kinetic and inductive matrices of
the junctions sector and then decouple qubit modes from in-
ner modes using SW perturbation theory. Second, in Ap-
pendix C 2 (Appendix C 4) we obtain analogous coupling for-
mulas by treating the direct couplings as a perturbation. The
main advantage of the first method is that strong direct electro-
static and/or magnetostatic coupling can be accounted for ex-
actly, but at the cost of dressing the modes, something which
can potentially obscure the nonreciprocal coupling between
the external ports.

Subsequently, our focus shifts towards the derivation of the
perturbative dissipative contribution of the drive ports by de-
riving closed admittance and impedance formulas for the cor-
related decay rates in Appendix C 5 and Appendix C 6, re-
spectively. Finally, we compute the drive amplitudes and clas-
sical crosstalks for the admittance (impedance) representation
in Appendix C 7 (Appendix C 8). To help the reader navigate
this appendix, Table I summarizes some of the important def-
initions and the notation that is used.

1. Admittance coupling formulas with numerical
diagonalization of direct coupling

We start by deriving the effective Hamiltonian from the ad-
mittance response. Here, and up to Appendix C 5, we will not
consider the drive ports. Using the Cauer circuit representa-
tion of the admittance, explained in details in Appendix A, we
obtain the system of equations

−iJ = OC iC + OLiL + RJ iR + NJ iG + N∞iG∞ , (C1a)

vC = OT
CvJ , (C1b)

vL = OT
LvJ , (C1c)

vR = RT
J vJ , (C1d)

vG = NT
J vJ , (C1e)

vG∞ = NT
∞vJ , (C1f)

where vx, ix with x = j, r, c, l correspond to the voltage and
current vectors of the junctions, reciprocal resonators, capac-
itors and inductors respectively. The vectors vG, iG,vG∞ ,
iG∞ , correspond to the currents and voltages for the left-
right branches of each gyrator vG = (vLg1 , v

R
g1 , . . . , v

L
gl
, vRgl).

Moreover, OC , OL, N∞, RJ = (r1, . . . , rm), and NJ =
(nL

1 ,n
R
1 , . . . ,n

L
l ,n

R
l ) are the transformer matrices defined

in terms of the admittance response of the junctions sector,
see Eq. (A6). Here, we changed the notation of Appendix A
U → OL and V → OC for two reasons. First, to make more
apparent their orthogonality, and second, to stress the differ-
ence with the full orthogonal decomposition of D∞ = VCVT

(D0 = UL
−1

UT ) when the dissipative ports are included. This
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A−1
0 =

(
CJ CJD

CT
JD CD

)
D∞ =

(
CJ CJD

CT
JD CD

)

A∞ = 0 D0 =

(
L−1
J L−1

JD

(L−1
JD)T L−1

D

)

B∞ = 0 E∞ =

(
YG

J YG
JD

−(YG
JD)T YG

D

)
ZR(s) = Z(s)+Z(s)T

2
YR(s) = Y(s)+Y(s)T

2

ZNR(s) = Z(s)−Z(s)T

2
YNR(s) = Y(s)−Y(s)T

2

Zac(s) =
∑
β

Aβs+Bβ

ω2
β
+s2

Yac(s) =
∑
β

Dβs+Eβ
ω2
β
+s2

Zac,R(s) = Zac(s)+Zac(s)T

2
Yac,R(s) = Yac(s)+Yac(s)T

2

Zac,NR(s) = Zac(s)−Zac(s)T

2
Yac,NR(s) = Yac(s)−Yac(s)T

2

Zdc(s) = A0/s Ydc(s) = D0/s+ sD∞ + E∞

Zdrive(s) = Z0 + C−1
D /s Ydrive(s) = Z−1

0 + sCD + L−1
D /s

Aγ = 1
Crγ

rγr
T
γ Dγ = 1

Lrγ
rγr

T
γ

RT =

(
RT
J

RT
D

)
=

(
r1, . . . , rm

)
R =

(
RJ

RD

)
=

(
r1, . . . , rm

)
NT =

(
NT

J

NT
D

)
=

(
nL
1 , . . . ,n

R
l

)
N =

(
NJ

ND

)
=

(
nL
1 , . . . ,n

R
l

)
T =

(
TJ TD

)
, TJ =

(
RJ NJ

)
, TD =

(
RD ND

)
Aµ = 1

Cgµ
[nL

µ(n
L
µ)

T + nR
µ (n

R
µ )

T ]

Bµ = Rgµω
2
gµ [n

R
µ (n

L
µ)

T − nL
µ(n

R
µ )

T ]

Dµ = 1
Lgµ

[nL
µ(n

L
µ)

T + nR
µ (n

R
µ )

T ]

Eµ =
ω
g2µ

Rµ
[nL

µ(n
R
µ )

T − nR
µ (n

L
µ)

T ]

(L̃J)ij = δijL̃Ji , L̃Ji =
ϕ2
0

EJi

CJδ = diag CJ , L
−1
Jδ

= diag L−1
J

(Ω̃J)ij = δijω̃i, ω̃i = 1/

√
L̃JiCJi

TABLE I. Summary of definitions and notation.

will be important in Apps. C 5 to C 8. With an appropriate
choice of flux and charge coordinates, we obtain a Lagrangian
describing the dynamics of the circuit [27]. For junctions, ca-
pacitors, inductors and pure gyrators we use flux variables in
writing the Lagrangian. On the other hand, for the reciprocal
and nonreciprocal resonators we use charge variables. With

this choice, Eq. (C1) reads

−∂U(ΦJ)

∂ΦJ
=OC(CJΦ̈C) + OL(L

−1

J ΦL)

+ RJQ̇R + NJQ̇G + N∞YG
∞Φ̇G∞ ,

Φ̇C = OT
CΦ̇J ,

Φ̇L = OT
LΦ̇J ,

Q̈R + C−1
r Q = RT

J Φ̇J ,

Q̈G + ZgQ̇G = NT
J Φ̇J ,

Φ̇G∞ = NT
∞Φ̇J .

(C2)

In these expressions, CJ , L
−1

J , and Cr are diagonal matrices
with entries CJi

, LJi
, Crγ respectively. Moreover, YG

∞ is the
admittance matrix of the ideal gyrators, and Zg the impedance
matrix of those forming the nonreciprocal resonators

YG
∞ =

iσyR1

. . .
0

0 iσyRk

, (C3a)

Zg =

−iσy/R1

. . .
0

0 −iσy/Rl

 = −iΩgΣy, (C3b)

Σα =

σα . . .
0

0 σα

, (C3c)

Ωg =

ωg112

. . .
0

0 ωgl12

, (C3d)

where as above we have used Lgµ = 1 implying ωgµ = 1/Rµ,
and σα corresponds to the pauli matrix α = x, y, z. Substitut-
ing Eq. (A6) in Eq. (C2) and rearranging we obtain the set of
equations

−∂U(ΦJ)

∂ΦJ
= L−1

J ΦJ + CJΦ̈J + TJQ̇+ YG
J Φ̇J ,

Q̈R = RT
J Φ̇J − C−1

r QR,

Q̈G = NT
JΦJ − ZgQ̇G.

(C4)

These Euler-Lagrange equations can be obtained from the La-
grangian

L =
1

2
Φ̇T

JCJΦ̇J − 1

2
ΦT

J L
−1
J ΦJ − U(ΦJ)

+
1

2
Φ̇T

JY
G
J ΦJ + Φ̇T

JTJQ

+
1

2
Q̇T Q̇− 1

2
QTC−1

I Q+
1

2
Q̇TZeQ,

(C5)

with QT =
(
QT

R QT
G

)
the charges of the reciprocal and

nonreciprocal inner modes resonators respectively, TJ =
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(
RT
J NT

J

)T
the transformer matrix, and

CI =

(
Cr 0
0 0

)
,

Ze =

(
0 0
0 Zg

)
.

(C6)

Assuming that CJ is not singular, we immediately obtain the
classical Hamiltonian

H =
1

2
(qJ − 1

2
YG
J ΦJ − TJQ)TC−1

J (qJ − 1

2
YG
J ΦJ − TJQ)

+
1

2
ΦT

J L
−1
J ΦJ + U(ΦJ)

+
1

2
(Π− 1

2
ZeQ)T (Π− 1

2
ZeQ) +

1

2
QTC−1

I Q,

(C7)

where qJ , Π are the conjugate momenta of ΦJ , Q respec-
tively with Poisson brackets {ΦJ ,q

T
J } = 1n, {Q,ΠT } =

1m+2l, where n, m (l) are the number of qubit ports, and
reciprocal (nonreciprocal) resonator modes respectively, see
Eq. (A3).

Linearizing the junction potential, we write the linear part
of the Hamiltonian in Eq. (C7) asH = XTHX/2, with XT =
(ΦT

J ,q
T
J ,Q

T ,ΠT ) and the quadratic form

H =

(
HJ K
KT HI

)
, (C8a)

where

HJ =

(
L−1
J + L̃−1

J + (YG
J )

TC−1
J YG

J /4 YG
J C

−1
J /2

C−1
J (YG

J )
T /2 C−1

J

)
,

(C8b)

HI =

(
ZT
e Z/4 + CI +O(T2

J) Ze/2
ZT
e /2 1m+2l

)
, (C8c)

K =

(
O(T2

J) 0
−C−1

J TJ 0

)
. (C8d)

In these expressions, L̃J is the diagonal matrix with entries
LJi

= ϕ20/EJi
obtained from the linear part of U(ΦJ), with

ϕ0 = ℏ/2e the reduced flux quanta. We assume ||TJ || ∼
||YG

J || and ignore the second order terms in the coupling
O(T2

J), as they give rise to third and higher order corrections.
Furthermore, from now on, we also ignore the second order
terms in the inner modes sector as these would give fourth
and higher order corrections in the effective junction sector
Hamiltonian after the symplectic Schrieffer-Wolff block diag-
onalization, see Appendix B for details.

For clarity, we separate the nonreciprocal sector from the
reciprocal sector of the inner modes H = XTHX/2 with
XT = (ΦT

J ,q
T
J ,Q

T
R,Π

T
r ,Q

T
G,Π

T
g )

HI =

(
Hr 0
0 Hg

)
Hr =

(
Ω2

r 0
0 1m

)
,

Hg =

(
ZT
g Zg/4 Zg/2
ZT
g /2 12l

)
,

(C9)

and the coupling matrix to first order then becomes

K =

(
0 0 0 0

−C−1
J RJ 0 −C−1

J NJ 0

)
. (C10)

Since every gyrator imposes a constraint in phase-space, there
is only one dynamical pair of conjugate variables (instead of
two) per capacitor-gyrator-capacitor circuit. In other words,
we have redundant nondynamical variables in the above
Hamiltonian, see Ref. [27] for further details. In Appendix D
we exactly eliminate these nondynamical modes to obtain
a Hamiltonian which can be immediately quantized. Here,
we take an alternative approach and approximately eliminate
these nondynamical modes ignoring the second order terms in
the inner mode sector. To second order in perturbation theory,
both the exact and the approximate elimination give the same
result.

Continuing our derivation, we now proceed with the ap-
proximate elimination of the nondynamical modes with the
following symplectic transformation

SI =

(
Sr 0
0 Sg

)
,

Sr =

(
Ω

1/2
r 0

0 Ω
−1/2
r

)
,

Sg =

(
12l/2 −Σx

Σx/2 12l

)(
Ω

1/2
g 0

0 Ω
−1/2
g

)
.

(C11)

For convenience, we have rescaled the inner modes such that
every entry in the transformed quadratic form has dimensions
of frequency. By mixing charge and fluxes of the nonrecip-
rocal resonators, Sg diagonalizes the nonreciprocal sector and
decouples dynamical from nondynamical modes. Indeed, we
have that

(STg )
−1HgS

−1
g ≡ Hg =

(
Ωg 0
0 Ωg

)
, (C12a)

Ωg =

ωg1(12 + σz)/2
. . .

0

0 ωgl(12 + σz)/2

. (C12b)

The flux-flux and charge-charge subsectors of HJ are diago-
nalized with the additional symplectic transformation

SJ =

(
Ω

1/2

J OT
ΩC

1/2

J OT
C 0

0 Ω
−1/2

J OT
ΩC

−1/2

J OT
C

)
, (C13)

where OΩ is the orthogonal matrix that diagonalizes
C
−1/2

J OT
C(L

−1
J + L̃−1

J )OCC
−1/2

J , such that the dressed fre-
quencies of the junction sector due to the direct coupling be-
tween junction ports excluding the coupling from YG

J are

Ω
2

J = OT
ΩC

−1/2

J OT
C(L

−1
J + L̃−1

J )OCC
−1/2

J OΩ. (C14)

After this transformation, the quadratic form in the junction
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sector (STJ )
−1HjS

−1
J ≡ Hj reads

Hj =

(
ΩJ + ΩYG

J
Ω

−1/2

J Y
G

J Ω
1/2

J /2

Ω
1/2

J (Y
G

J )
TΩ

−1/2

J /2 ΩJ

)
,

Y
G

J ≡ OT
ΩC

−1/2

J OT
CY

G
J OCC

−1/2

J OΩ,

(C15)

with ΩYG
J
= Ω

−1/2

J (Y
G

J )
TY

G

J Ω
−1/2

J /4. Applying both trans-
formations

S =

(
SJ 0
0 SI

)
, (C16)

we get the quadratic form

(ST )−1HS−1 ≡ H =

Hj Kr Kg

K
T

r Hr 0

K
T

g 0 Hg

, (C17a)

where

Kr =

(
0 0

KqQ
r 0

)
,

Kg =

(
0 0

KqQ
g KqΠ

g

)
,

(C17b)

and

KqQ
r = −Ω

1/2

J RJΩ
−1/2
r ,

KqQ
g = −Ω

1/2

J NJΩ
−1/2
g ,

KqΠ
g = −Ω

1/2

J NJΣxΩ
−1/2
g ,

RJ = OT
ΩC

−1/2

J OT
CRJ ,

NJ = OT
ΩC

−1/2

J OT
CNJ .

(C17c)

To get the effective junction sector Hamiltonian up to second
order in the couplings we can now directly apply our formulas
Eq. (B19) derived in Appendix B. Doing so, we obtain the
effective quadratic form of the junction sector H̃J with entries

(H̃qq
J )ij = δijωi +

1

2

m∑
γ=1

ωrγ (K
qQ
r )i,γ(K

qQ
r )j,γ

[
1

Θi,γ
+

1

Θj,γ

]

+
1

2

2l∑
β=1

ωgβ

[
(KqQ

g )i,β(K
qQ
g )j,β + (KqΠ

g )i,β(K
qΠ
g )j,β

][ 1

Θi,β
+

1

Θj,β

]
,

(C18a)

(H̃ϕq
J )ij =

1

2

2l∑
β=1

ωi

Θi,β

[
(KqΠ

g )i,β(K
qQ
g )j,β − (KqQ

g )i,β(K
qΠ
g )j,β)

]
+

1

2

√
ωj

ωi
(Y

G

J )ij , (C18b)

(H̃ϕϕ
J )ij = δijωi + (ΩYG

J
)ij , (C18c)

where ωi are the diagonal entries of ΩJ , and Θi,γ = ω2
i −ω2

rγ ,
Θi,β = ω2

i − ω2
gβ

. Moreover, ωgβ is the βth diagonal entry of
Ωg , which for odd β is the nonreciprocal oscillator frequency
ωgβ = ωgµ with µ = (β + 1)/2 while ωgβ = 0 for even β.
From Eq. (C17) we have

(KqQ
r )i,γ =−

√
ωi/ωrγ (rγ)i, (C19a)

(KqQ
g )i,β =

{
−
√
ωi/ωgµ(n

L
µ)i, for odd β

−
√
ωi/ωgµ(n

R
µ )i, for even β

(C19b)

(KqΠ
g )i,β =

{
−
√
ωi/ωgµ(n

R
µ )i, for odd β

−
√
ωi/ωgµ(n

L
µ)i, for even β,

(C19c)

where rγ , nµ are the row vectors of R, N, and µ = (β +
1)/2 (µ = β/2) for odd (even) β. Substituting Eq. (C18) in

Eq. (C19) and rearranging the term we obtain

(H̃qq
J )ij = δijωi

+

√
ωiωj

2

m∑
γ=1

(rγ)i(rγ)j

[
1

Θi,γ
+

1

Θj,γ

]

+

√
ωiωj

2

l∑
µ=1

{
[(nL

µ)i(n
L
µ)j + (nR

µ )i(n
R
µ )j ]

×
[

1

Θi,µ
+

1

Θj,µ

]}
,

(C20a)

(H̃ϕq
J )ij =

1

2

√
ωj

ωi
(E∞)ij

+

√
ωiωj

2

l∑
µ=1

{
[(nL

µ)i(n
R
µ )j − (nR

µ )i(n
L
µ)j ]

× 1

ωgµ

[
1

ωi
− ωi

Θi,µ

]}
.

(C20b)
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Once again rearranging, and substituting in Eq. (C20) with
Eq. (A6) (remembering our choice of Lgµ = Lrγ = 1) we get

(H̃qq
J )ij = δijωi

+
i

2

√
ωiωj

[
Y
ac,R

ij (ωi)

ωi
+

Y
ac,R

ij (ωj)

ωj

]
,

(C21a)

(H̃ϕq
J )ij =

1

2

√
ωj

ωi
Y
NR

ij (ωi), (C21b)

with

Y(s) = OT
ΩC

−1/2

J OT
CY(s)OCC

−1/2

J OΩ, (C22a)

Y
ac,R

(s) =
∑
γ

Dγs

ω2
rγ + s2

+
∑
µ

Dµs

ω2
gµ + s2

, (C22b)

Y
NR

(s) = E∞ +
∑
µ

Eµ

ω2
gµ + s2

, (C22c)

Dγ(µ) = OT
ΩC

−1/2

J OT
CDγ(µ)OCC

−1/2

J OΩ, (C22d)

Eµ(∞) = OT
ΩC

−1/2

J OT
CEµ(∞)OCC

−1/2

J OΩ. (C22e)

Hence, the classical effective Hamiltonian for the junctions
sector will be

H̃J =
1

2

∑
i

(
ωi(ϕ̃

2
i + q̃2i )− Im

{
Y
ac,R

ij (ωi)
}
q̃2i

)
+
∑
i ̸=j

( (ΩYG
J
)ij

2
ϕ̃iϕ̃j +

(H̃qq
J )ij
2

q̃iq̃j

+ (H̃ϕq
J )ij ϕ̃iq̃j

)
+ Unl(ϕ̃, q̃).

(C23)

Where Unl(ϕ̃, q̃) stands for the nonlinear part of the junctions
potential, now a function of both flux and charges in this new
frame. These final frame coordinates are connected to the
original ones through the transformation

X̃ = SswSX. (C24)

How to obtain Ssw to any desired order is explained in Ap-
pendix B. Promoting the classical variables to quantum oper-
ators (ℏ = 1)

ϕ̃i = (b̂†i + b̂i)/
√
2, (C25a)

q̃i = i(b̂†i − b̂i)/
√
2, (C25b)

rearranging, and applying the rotating wave approximation
(RWA) we finally obtain the effective quantum Hamiltonian

ĤJ =
∑
i

(
ωi −

Im[Y
ac,R

ii (ωi)]

2

)
b̂†i b̂i

+
∑
i<j

(
Jij b̂ib̂

†
j + J∗

ij b̂
†
i b̂j

)
+ Unl(ϕ̃, q̃),

(C26)

with

Jij =
i

4

√
ωiωj

[
Y
Σ

ij(ωi)

ωi
+

Y
Σ

ij(ωj)

ωj

]

+
((Y

G

J )
TY

G

J )ij

8
√
ωiωj

,

(C27)

where Y
Σ
(s) = Y

ac,R
(s)+Y

NR
(s). When including the non-

linearities, the correction to the frequencies done in the main
text (Eq. (5)) will hold to first order if the nondiagonal ele-
ments of the OC (OL) transformations are in the same order
as the transformer ratios. If that is not the case, a fully numer-
ical treatment of the nonlinearities can be done in a systematic
manner, see Appendix E for details. Finally, in the case with
neither direct capacitive, inductive or nonreciprocal coupling
(OC = OL = OΩ = 1n, YG

J = 0) we obtain Eq. (6) of the
main text.

2. Fully perturbative admittance coupling formulas

We now proceed to derive the effective Hamiltonian for the
qubits sector, treating the direct coupling between qubit ports
as a perturbation. We let L−1

Jδ
(C−1

Jδ
) and L−1

Jχ
(C−1

Jχ
) respec-

tively be the diagonal and off-diagonal entries of L−1
J (C−1

J ).
We treat these off-diagonal terms as first order perturbations.
The derivation follows the same steps as above up to Eq. (C12)
and, as a result, the quadratic form of the junction sector reads

HJ =

(
L
−1

J + L−1
Jχ

YG
J C

−1
J /2

C−1
J (YG

J )
T /2 C−1

Jδ
+ C−1

Jχ

)
, (C28)

where

L
−1

J = L̃−1
J + L−1

Jδ
. (C29)

Hence, following Appendix B we will simply add the direct
couplings at the end of our perturbative treatment to obtain the
effective Hamiltonian for the junction sector. Now, instead of
transforming the junction sector with Eq. (C13) we simply
rescale it with

SJ =

(
G
1/2

J 0

0 G
−1/2

J

)
, (C30)

where GJ = (CJδ
/LJ)

1/2. Thus, we have for the rescaled
junction sector

HJ = ((SJ)
T )−1HJS

−1

J

=

(
ΩJ + ΩLχ + ΩYG

J
Kϕq/2

KT
ϕq/2 ΩJ + ΩCχ

)
,

(C31)

with ΩJ = (LJCJδ
)−1/2,

ΩLχ
= Ω

−1/2

J C
−1/2
Jδ

L−1
Jχ

C
−1/2
Jδ

Ω
−1/2

J ,

ΩCχ
= Ω

1/2

J C
1/2
Jδ

C−1
Jχ

C
1/2
Jδ

Ω
1/2

J ,

ΩYG
J
= Ω

−1/2

J (YG
J )

TYG
J Ω

−1/2

J /4,

(C32)
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and

Kϕq = G
−1/2

J YG
J C

−1
J G

1/2

J

= Ω
−1/2

J Y
G

J Ω
1/2

J + G
−1/2

J YG
J C

−1
Jχ

G
1/2

J ,
(C33)

where Y
G

J = C
−1/2
Jδ

YG
J C

−1/2
Jδ

.
The symplectic transformation S of Eq. (C16) here take

the same form except for the replacement SJ → SJ , and
Eq. (C17) are also the same under the mappings

ΩJ → (LJCJδ
)−1/2, (C34a)

R → (CJδ
)1/2C−1

J R = C
−1/2
Jδ

R+ C
−1/2
Jδ

C−1
Jχ

R, (C34b)

N → (CJδ
)1/2C−1

J N = C
−1/2
Jδ

N+ C
−1/2
Jδ

C−1
Jχ

N. (C34c)

Ignoring the second order coupling terms ∼ C−1
Jχ

R, C−1
Jχ

N,
YG
J CJχ which give rise to third order corrections and higher,

it follows that Eq. (C18c) and Eq. (C21) here take the form

(H̃qq
J )ij = δijωi + (ΩCχ)ij

+
i

2

√
ωiωj

[
Y
ac,R

ij (ωi)

ωi
+

Y
ac,R

ij (ωj)

ωj

]
,

(C35a)

(H̃ϕq
J )ij =

1

2

√
ωj

ωi
Y
NR

ij (ωi), (C35b)

(H̃ϕϕ
J )ij = δijωi + (ΩLχ)ij + (ΩYG

J
)ij , (C35c)

with Y
ac,R

(s),Y
NR

(s),Y
G

J defined as in Eq. (C22) and
Eq. (C15) with OC = OΩ = 1n.

Therefore, the effective quantum Hamiltonian for the junc-
tion sector after applying the rotating-wave approximation is

ĤJ =
∑
i

(
ωi −

1

2
Im
{
Y
ac

ii (ωi)
})

b̂†i b̂i

+
∑
i<j

(
Jij b̂ib̂

†
j + J∗

ij b̂
†
i b̂j

)
+ Unl(ϕ̃, q̃),

(C36a)

with

Jij =
i

4

√
ωiωj

[
Y
Σ

ij(ωi)

ωi
+

Y
Σ

ij(ωj)

ωj

]

+
1

2

[
(ΩCχ)ij + (ΩLχ)ij

]
+ (ΩYG

J
)ij/2,

(C36b)

and Y
Σ
(s) = Y

ac,R
(s) + Y

NR
(s), i.e. the rescaled admit-

tance response excluding the reciprocal dc part of the admit-
tance (D0, D∞). The frequencies in the second line are given
in Eq. (C32), where ΩCχ

(ΩLχ
) captures the correction from

direct capacitive (inductive) coupling, and ΩYG
J

is a second or-
der correction from the direct nonreciprocal coupling between
the ports. In Appendix E, we shift the frequencies entering
Eq. (C32), Eq. (C35) and Eq. (C36) to include the nonlineari-
ties up to first order in perturbation theory.

3. Impedance coupling formulas with numerical
diagonalization of direct coupling

We now derive the effective Hamiltonian from the Cauer
representation (see Fig. 5) of the impedance response. The
derivation is similar to the one above for the admittance with
some key differences that we highlight. From the transformers
constitutive equations we have

vJ = OT
CvC + RT

J vR + NT
J vG, (C37a)

iC = −OC iJ , (C37b)
iR = −RJ iJ , (C37c)
iG = −NJ iJ . (C37d)

We assume that CJ is of full rank, and thus OC is orthogo-
nal. Assigning flux variables for each junction and capacitive
branch we have that the equations of motion of the circuit are
derivable from the Lagrangian

L =
1

2
Φ̇TCΦ̇− U(ΦJ)−

1

2
ΦTM0Φ+

1

2
Φ̇TGΦ, (C38)

with ΦT = (ΦT
J ,Φ

T
I ), where ΦJ (ΦI ) correspond to the

fluxes in the external ports (inner mode resonators and gyra-
tors). The kinetic, inductive and nonreciprocal matrices read

C =

(
CJ −CJT

T
J

−TJCJ 1n + TJCJT
T
J

)
, (C39a)

M0 =

(
0 0
0 L−1

Re

)
, LRe

=

(
LR 0
0 0

)
, (C39b)

G =

(
0 0
0 Ye

)
, Ye =

(
0 0
0 Y

)
, (C39c)

where CJ = OT
CCJOC . Note that in Ref. [1] the orthogo-

nality of OC is also assumed, and the U used in Eq. (65) of
that reference corresponds to our OT

C . Moreover, LR is the
diagonal inductive matrix of the inner mode resonators Lrγ ,

TJ =
(
RT
J NT

J

)T
is the transformer matrix, see Eq. (A5)

and, Y is the admittance matrix of the gyrators

Y =

iσyωg1

. . .
0

0 iσyωgk

 = iΣyΩg, (C40a)

Σy ≡

σy . . .
0

0 σy

, Ωg ≡

ωg112

. . .
0

0 ωgl12

.
(C40b)

Linearizing the nonlinear potential, the Lagrangian reads

L =
1

2
Φ̇TCΦ̇− 1

2
ΦTMΦ+

1

2
Φ̇TGΦ+ Unl(ΦJ), (C41)

with

M =

(
L̃−1
J 0
0 Ω2

Re

)
, ΩRe

=

(
ΩR 0
0 02l

)
, (C42)
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where L̃J is the matrix of junction inductances Ljα = ϕ20/Ejα

obtained from the linear part of U(ΦJ), and ΩR is the diag-
onal matrix with the inner modes reciprocal resonators fre-
quencies. We focus here on the linear sector, and treat the
nonlinearities in Appendix E.

As discussed in the introduction of this appendix, we now
consider the numerical diagonalization approach to include
direct capacitive coupling. First, we dress the external modes
with the transformation Φco = PcoΦ, where

Pco =

(
C
1/2

J OC 0
0 1m+2l

)
, (C43)

after which the Lagrangian reads

L =
1

2
Φ̇T

coCcoΦ̇co −
1

2
ΦT

coMcoΦco +
1

2
Φ̇T

coGΦco, (C44)

with the transformed matrices

Cco =

(
1n −TT

co

−Tco 1m+2l + TcoT
T
co

)
, (C45a)

Mco =

(
Ω′2

J 0
0 Ω2

Re

)
, (C45b)

with Ω′2
J ≡ C

−1/2

J OCL
−1
J OT

CC
−1/2

J which is in general not

diagonal, and Tco = TJO
T
CC

1/2

J . Following Ref. [1] we
diagonalize the kinetic matrix Cco with the triangular point-
transformation

P∆ =

(
1n −TT

co

0 1m+2l

)
, (C46)

In this new frame, the capacitive matrix is transformed into the
identity Cco → 1n+m+2l, the gyration matrix remains invari-
ant Gco → G, and the inductive matrix encodes the coupling
between inner and weakly-dressed qubit modes

Mco →
(

Ω′2
J Ω′2

J T
T
co

TcoΩ
′2
J Ω2

Re
+ TcoΩ

′2
J T

T
co

)
. (C47a)

To obtain the normal modes of the qubit ports sector, we apply
the transformation Φ = PΩP∆PcoΦ, with

PΩ =

(
OΩ 0
0 1m+2l

)
, (C48)

where the orthogonal matrix OΩ diagonalizes the matrix
OΩΩ

′2
J O

T
Ω = Ω

2

J . OΩ can be easily found numerically.
The frequencies ΩJ correspond to the normal modes of the
capacitively coupled external (qubits) ports. In this frame,
G = G,C = 1, and the inductive matrix reads

M =

(
Ω

2

J Ω
2

JT
T

J

TJ Ω
2

J Ω2
Re

+ TJ Ω
2

JT
T

J

)
, (C49a)

with TJ = TJO
T
CC

1/2

J OT
Ω. As C = 1, we directly obtain the

classical Hamiltonian

H =
1

2

(
q− G

2
Φ

)T(
q− G

2
Φ

)
+

1

2
Φ

T
MΦ. (C50a)

It is useful to express this as H = 1
2X

THX with XT =

(Φj ,qj ,ΦI ,qI) and

H =

(
HJ K
KT HI

)
, (C51a)

HJ =

(
Ω

2

J 0
0 1n

)
, (C51b)

HI =

(
YT
e Y/4 + Ω2

Re
Ye/2

YT
e /2 1m+2l

)
, (C51c)

K =

(
Ω

2

JT
T

J 0
0 0

)
. (C51d)

As in the case of the admittance, we now approximately elimi-
nate the nondynamical modes ignoring the second order terms
in the inner mode sector, as these will not change the final ef-
fective Hamiltonian of the junctions up to O((k/∆)4). We
note that the exact elimination of the nondynamical modes
provides equivalent perturbative results, see Appendix D.

To proceed, we now perform the symplectic transforma-
tions

S =

(
SJ 0
0 SI

)
,

SJ =

(
Ω

1/2

J 0

0 Ω
−1/2

J

)
,

(C52)

where the submatrices are

SI =

(
Sr 0
0 Sg

)
,

Sr =

(
Ω

1/2
r 0

0 Ω
−1/2
r

)
,

Sg =

(
12l/2 Σx

−Σx/2 12l

)(
Ω

1/2
g 0

0 Ω
−1/2
g

)
.

(C53)

The resulting quadratic form is

H = (ST )−1HS−1 =

Hj Kr Kg

K
T

r Hr 0

K
T

g 0 Hg

, (C54)

with

Kr =

(
Kϕϕ
r 0
0 0

)
,

Kg =

(
Kϕϕ
g Kϕq

g

0 0

)
,

(C55a)

and

Kϕϕ
r = Ω

3/2

J R
T

JΩ
−1/2
r ,

Kϕϕ
g = Ω

3/2

J N
T

JΩ
−1/2
g ,

Kϕq
g = −Ω

3/2

J N
T

JΣxΩ
−1/2
g ,

RJ = RJO
T
CC

1/2

J OT
Ω,

NJ = NJO
T
CC

1/2

J OT
Ω.

(C55b)
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Here, Hj , Hr, Hg are

Hj =

(
ΩJ 0
0 ΩJ

)
, (C56a)

Hr =

(
Ωr 0
0 Ωr

)
, (C56b)

Hg =

(
Ωg 0
0 Ωg

)
, (C56c)

with Ωg the same as in Eq. (C12b).
On these expressions we perform the symplectic Schrieffer-

Wolff transformation using the formulas Eq. (B19), and in
analogous way as was done above for the admittance, we find
the entries of the effective classical quadratic form

(H̃ϕϕ
J )ij = δijωi

+
i

2

√
ωiωj

[
ωjZ

ac,R

ij (ωi) + ωiZ
ac,R

ij (ωj)

]
,

(C57a)

(H̃ϕq
J )ij =

1

2

√
ωiωjωiZ

NR

ij (ωj), (C57b)

(H̃qq
J )ij = δijωi, (C57c)

where

Z(s) = OΩC
1/2

J OCZ(s)O
T
CC

1/2

J OT
Ω, (C58a)

Z
ac,R

(s) =
∑
γ

Aγs

ω2
rγ + s2

+
∑
µ

Aµs

ω2
gµ + s2

, (C58b)

Z
NR

(s) =
∑
µ

Bµ

ω2
gµ + s2

, (C58c)

Aγ(µ) = OΩC
1/2

J OCAγ(µ)O
T
CC

1/2

J OT
Ω, (C58d)

Bµ = OΩC
1/2

J OCBµO
T
CC

1/2

J OT
Ω. (C58e)

Quantizing and rearranging as was done with the admittance-
based expressions, we obtain the effective quantum Hamilto-
nian for the junction sector

ĤJ =
∑
i

ωi

(
1− ωi

2
Im[Z

ac

ii (ωi)]

)
b̂†i b̂i

+
∑
i<j

(
Jij b̂ib̂

†
j + J∗

ij b̂
†
i b̂j

)
+ Unl(ϕ̃, q̃),

(C59a)

with

Jij =
i

4

√
ωiωj

[
ωiZij(ωj) + ωjZij(ωi)

]
. (C59b)

In the case without direct capacitive or inductive coupling
(OC = 1n,OΩ = 1n) we obtain Eq. (7) of the main text.
Moreover, when the response is purely reciprocal, we recover
the effective coupling given in Eq. (5) of Ref. [1].

4. Fully perturbative impedance coupling formulas

We now consider the cased where there is direct capacitive
coupling between qubit ports, which we treat as a first order

perturbation. Our starting point is the Lagragian of Eq. (C41).
We first perform a triangular point-transformation

P∆ =

(
1n −TJ

0 1m+2l

)
, (C60)

where the new coordinates are Φ∆ = P∆Φ, the kinetic and
inductive matrices are

C∆ =

(
CJ 0
0 1m+2l

)
, (C61a)

M∆ =

(
L̃−1
J L̃−1

J TT
J

TJ L̃
−1
J L−1

Re
+ TJ L̃

−1
J TT

J

)
. (C61b)

Hence, we can immediately obtain the Hamiltonian

H =
1

2

(
q∆ − G

2
Φ∆

)T

C−1
∆

(
q∆ − G

2
Φ∆

)
+

1

2
ΦT

∆ M∆Φ∆.

(C62)
We let the matrices C−1

Jδ
and C−1

Jχ
respectively be the diagonal

and offdiagonal entries of C−1
J . We rescale the junction sector

with

SJ =

(
(G̃J)

1/2 0

0 (G̃J)
−1/2

)
, (C63)

where G̃J = (CJδ
/L̃j)

1/2 such that the Hamiltonian in that
sector is

HJ = ((SJ)
T )−1Hj(SJ)

−1 =

(
Ω̃J 0

0 Ω̃J + ΩCχ

)
, (C64)

with ΩCχ
= G̃

1/2
J C−1

Jχ
G̃
1/2
J and Ω̃J = (CJδ

L̃J)
−1/2. We now

use the symplectic transformations of Eq. (C53) for the inner
modes. Doing so, it is clear that the final effective classical
quadratic form entries are

(H̃ϕϕ
J )ij = δijω̃i

+
i

2

√
ω̃iω̃j

[
ω̃jZ

ac,R

ij (ω̃i) + ω̃iZ
ac,R

ij (ω̃j)

]
,

(C65a)

(H̃ϕq
J )ij =

1

2

√
ω̃iω̃jω̃iZ

NR

ij (ω̃j), (C65b)

(H̃qq
J )ij = δijω̃i

+
i

2

√
ω̃iω̃j

[
ω̃iZ

dc
(ω̃i) + ω̃jZ

dc
(ω̃j)

]
(1− δij),

(C65c)

with ω̃i the frequencies Ω̃J , and Z
ac,R

(s),Z
NR

(s) given as
in Eq. (C58) with OC = 1n,OL = 1n, and Z

dc
(s) =

C
1/2
Jδ

Zdc(s)C
1/2
Jδ

≃ C
1/2

J Zdc(s)C
1/2

J . With this choice, the fi-
nal effective quantum Hamiltonian reads exactly the same as
in Eq. (C59). The above formulas hold up to third order in per-
turbation theory when the direct capacitive coupling between
all external ports is a first order perturbation.
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5. Admittance dissipative rates and Purcell decays

In this section we address dissipation resulting from the
coupling of qubit ports to external drive ports via a nonrecip-
rocal environment characterized by its admittance response,
see Fig. 5. As detailed in Appendix A, the drive ports are
defined as the terminals at the ends of transmission lines that
connect the circuit of interest, including the junctions and in-
ner modes, to external classical voltage sources. Furthermore,
we model these external transmission lines as purely ohmic
lumped elements with a characteristic impedance Z0 [1].

Setting aside the voltage sources for the moment, the multi-
port synthesis of the admittance response illustrated in Fig. 5,
leads to the following dissipative classical equations of mo-
tion,

CJΦ̈J = − ∂U

∂ΦJ
− L−1

J ΦJ + YG
J Φ̇J − TJQ̇

−MΦΦ
D ∗ΦJ −MΦQ

D ∗Q,
(C66a)

Q̈ = −C−1
I Q+ TT

J Φ̇J − ZeQ̇−MQΦ
D ∗ΦJ −MQQ

D ∗Q,
(C66b)

where ΦJ and Q are respectively junction fluxes and inner
modes loop charges. U(ΦJ) corresponds to the junctions’ co-
sine potential. As already mentioned in Appendix C 1, the
loop charge variable is the natural parametrization of the in-
ner modes within the admittance representation. The matrices
LJ , YG

J , TJ , CI and Ze are defined in Appendix C 1 and ∗
stands for time convolution, f ∗ g(t) =

∫ +∞
−∞ dτf(τ)g(τ − t).

Moreover, the (n+m+2l)× (n+m+2l) dissipation matrix

MD(t) =

(
MΦΦ

D MΦQ
D

MQΦ
D MQQ

D

)
is defined by the Fourier transform

MD(ω) =
∫ +∞
−∞ dtMD(t)e−iωt of its submatrices as

MΦΦ
D (ω) = −(L−1

JD − ω2CJD + iωYG
JD)×

(
iω

Z0
1nD

− ω2CD + L−1
D )−1(L−1

JD − ω2CJD − iωYG
JD)T ,

(C67a)

MΦQ
D (ω) = −iω(L−1

JD − ω2CJD + iωYG
JD)×

(
iω

Z0
1nD

− ω2CD + L−1
D )−1TD,

(C67b)

MQΦ
D (ω) = iωTT

D(
iω

Z0
1nD

− ω2CD + L−1
D )−1×

(L−1
JD − ω2CJD − iωYG

JD)T ,

(C67c)

MQQ
D (ω) = −ω2TT

D(
iω

Z0
1nD

− ω2CD + L−1
D )−1TD,

(C67d)

for which we assumed that there is no direct gyration between
drive ports (YG

D = 0). The non-zero block matrices MΦΦ
D ,

MΦQ
D and MQ,Φ

D arise in the presence of direct coupling be-
tween qubit and drive ports characterized by CJD, L−1

JD, YG
JD

̸= 0. This generalizes prior studies such as Refs. [1, 48–50],
where only MQ,Q

D was considered as the non-vanishing entry
of the dissipation matrix.

At this point, it is important to note some general proper-
ties of the dissipation matrix. First, MD(t) is real because
MD(−ω) = MD(ω)⋆. Additionally, the poles of MD(ω) live
in the upper half of the complex plane defined by Im(z) >
0, ensuring the causality of MD(t) (i.e., MD(t) = 0 for
t < 0) [51]. Finally, unlike MQQ

D , MΦΦ
D is not symmetric

(MΦΦT

D ̸= MΦΦ
D ), which reflects the presence of direct nonre-

ciprocal interaction (YG
JD ̸= 0) between qubit and drive ports.

To construct a classical Lagrangian L that captures dissi-
pation and reproduces classical equations of motion, we use
an extended Caldeira-Leggett model [29] by introducing a set
of baths (collection of harmonic oscillators) that are linearly
coupled (minimal coupling) to our system through all quadra-
tures. This Lagrangian reads

L = LS + LB + LSB , (C68)

where LS , LB , LSB are respectively system (junctions+inner
modes), baths and interaction Lagrangians given by:

LS =
1

2
Φ̇T

JCJΦ̇J +
1

2
Q̇T Q̇+

1

2
Q̇TZeQ+

1

2
Φ̇T

JY
G
J ΦJ

− 1

2
ΦT

J L
−1
J ΦJ − U(ΦJ) + Φ̇T

JTJQ,

(C69a)

LB =
∑
i

(
1

2
ẋT
αmαẋα − 1

2
xT
αmαw

2
αxα

)
, (C69b)

LSB = −ΦT
J

∑
α

µαxα − Φ̇T
J

∑
α

ηαẋα −ΦT
J

∑
α

λαẋα

− Q̇T
∑
α

ζαxα,

(C69c)

where xα = (xα1, . . . , xαB), mα = diag(mα1, . . . ,mαB)
and wα = diag(ωα1, . . . , ωαB) are respectively baths flux
coordinates, capacitances and eigenfrequencies with B =
supω rank[Im{MD(ω)}] ≤ nD is the number of baths needed
to model dissipation, where nD is the number of drive
ports [50]. The system-baths coupling matrices in LSB cor-
respond respectively to inductive (µα), capacitive (ηα) and
nonreciprocal (λα) couplings [26]. While these two first
type of couplings are invariant under time reversal symme-
try Φ → −Φ, Q → Q, xα → −xα, the charge-flux cou-
pling arising from the gyrators breaks time reversal symme-
try, leading to nonreciprocal system-baths interaction. Finally,
the geometrical coupling (∝ Q̇ xα) that appears in the last
term of LSB emerges naturally as a consequence of using
a mixed flux-charge description to parameterize the system
(junctions and inner modes). The coupling matrices µ, η, λ
(of size n×B), ζ (of size (m+2l)×B) and their correspond-
ing quadratures are chosen to reproduce dissipative classical
equations of motion. The resulting dissipation matrix is given
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by

MΦΦ
D (ω) =

∑
α

(µα + ηαω
2 + iωλα)

×m−1
α (ω2 − w2

α)
−1(µα + ηαω

2 − iωλα)
T ,

(C70a)

MΦQ
D (ω) = iω

∑
α

(µα + ηαω
2 + iωλα)

×m−1
α (ω2 − w2

α)
−1ζTα ,

(C70b)

MQΦ
D (ω) = −iω

∑
α

ζαm
−1
α (ω2 − w2

α)
−1

× (µα + ηαω
2 − iωλα)

T ,

(C70c)

MQQ
D (ω) = ω2

∑
α

ζαm
−1
α (ω2 − w2

α)
−1ζTα . (C70d)

However, it is important to note that this matrix is not causal,
since its poles are situated along the real line. Typically, to
address this issue, the poles are shifted to the upper half of
the complex plane following Ref. [47]. This involves redefin-
ing MD(ω) ≡ limϵ→0+ MD(ω − iϵ) which now fulfills the
requirement of dissipation matrices discussed above [52]. Fi-
nally, it is worth noticing that in our case, system-bath cou-
pling via a single quadrature, as introduced in the seminal pa-
per of Caldeira and Leggett [29], is insufficient to reproduce
the dissipative Kirchhoff’s equations. It is thus important to
include all the other couplings in LSB to match the classical
dissipation matrix.

To obtain the Hamiltonian, we perform a Legendre trans-
form up to second order in system-bath couplings, which leads
to the usual form

H = HS +HB +HSB , (C71)

where

HS =
1

2
(qJ − 1

2
YG
J ΦJ −TJQ)TC−1

J (qJ − 1

2
YG
J ΦJ −TJQ)

+
1

2
ΦT

J L
−1
J ΦJ + U(ΦJ)

+
1

2
(Π− 1

2
ZeQ)T (Π− 1

2
ZeQ) +

1

2
QTC−1

I Q,

(C72a)

HB =
1

2

∑
α

(pT
αm

−1
α pα + xT

αmαw
2
αxα), (C72b)

HSB = ΦT
J

∑
α

cΦ,x
α xα +ΦT

J

∑
α

cΦ,p
α pα + qT

J

∑
α

cq,pα pα

+QT
∑
α

cQ,x
α xα +QT

∑
α

cQ,p
α pα +ΠT

∑
α

cΠ,x
α xα.

(C72c)

Here, the Hamiltonian coupling matrices {cα} are expressed

in terms of Lagrangian coupling matrices as

cΦ,x
α = µα cΦ,p

α = λαm
−1
α (C73a)

cq,pα = C−1
J ηαm

−1
α cΠ,x

α = ζα (C73b)

cQ,x
α = −Ze

2
ζα cQ,p

α = −TT
JC

−1
J ηαm

−1
α , (C73c)

which leads to the following constraints cQ,x
α = −Ze

2 cΠ,x
α

and cQ,p
α = −TT

J c
q,p
α . Inverting the previous equations, the

dissipation matrix can be expressed in terms of {cα} matrices

MΦΦ
D (ω) =

∑
α

(cΦ,x
α + ω2CJc

q,p
α mα + iωcΦ,p

α mα)

×m−1
α (ω2 − w2

α)
−1

× (cΦ,x
α + ω2CJc

q,p
α mα − iωcΦ,p

α mα)
T ,

(C74a)

MΦQ
D (ω) = iω

∑
α

(cΦ,x
α + ω2CJc

q,p
α mα + iωcΦ,p

α mα)

×m−1
α (ω2 − w2

α)
−1cΠ,xT

α ,

(C74b)

MQΦ
D (ω) = −iω

∑
α

cΠ,x
α m−1

α (ω2 − w2
α)

−1

× (cΦ,x
α + ω2CJc

q,p
α mα − iωcΦ,p

α mα)
T ,

(C74c)

MQQ
D (ω) = ω2

∑
α

cΠ,x
α m−1

α (ω2 − w2
α)

−1cΠ,xT

α . (C74d)

Using the phase-space coordinates XT =
(ΦT

J ,q
T
J ,Q

T
R,Q

T
G,Π

T
R,Π

T
G), the system-baths interac-

tion Hamiltonian can be written compactly as

HSB = XT
∑
α

cα

(
xα

pα

)
. (C75)

The coupling coefficients are regrouped as

cα =


cΦ,x
α cΦ,p

α

0 cq,pα

0 cQR,p
α

cQG,x
α cQG,p

α

cΠr,x
α 0

c
Πg,x
α 0

. (C76)

To analyze how the coupling coefficients transform when di-
agonalizing the junctions and inner modes Hamiltonian HS ,
we employ the symplectic transformations computed in Ap-
pendix C 1. This process involves two sequential steps. First,

we perform the symplectic transformation S =

(
SJ 0
0 SI

)
de-

fined in Eq. (C16), allowing us to obtain normal modes for
both junctions and inner modes sectors separately. Under this
transformation, the coupling coefficients become

cα 7→ c′α ≡ (ST )−1cα. (C77)
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Expanding this transformation explicitly,

c′α =



Ω
− 1

2

J OΩC
− 1

2

J OCc
Φ,x
α Ω

− 1
2

j OΩC
− 1

2

J OCc
Φ,p
α

0 Ω
1
2

JOΩC
1
2

JOCc
q,p
α

0 Ω
− 1

2

R cQR,p
α

Ω
− 1

2

G cQG,x
α − Σx

2 Ω
1
2

Gc
ΠG,x
α Ω

− 1
2

G cQG,p
α

Ω
1
2

Rc
ΠR,x
α 0

ΣxΩ
− 1

2

G cQG,x
α +

Ω
1
2
G

2 cΠG,x
α ΣxΩ

− 1
2

G cQG,p
α


.

(C78)
The next step consists in eliminating the inner modes,
parameterized by the classical phase-space coordinates
(QR,QG,ΠR,ΠG), through Schrieffer-Wolff transforma-
tion (see Eq. (B17) in Appendix B), leading to effective cou-
plings defined by c̃α = (STsw)

−1c′α. They are related to the
original coupling matrices {cα} as follows

c̃Φ,x
α = Ω

− 1
2

J OΩC
− 1

2

J OCc
Φ,x
α + ΛΦ,ΠR

x cΠR,x
α + ΛΦ,QG

x cQG,x
α

+ ΛΦ,ΠG
x cΠG,x

α ,

(C79a)

c̃Φ,p
α = Ω

− 1
2

J OΩC
− 1

2

J OCc
Φ,p
α + ΛΦ,QG

p cQG,p
α , (C79b)

c̃q,xα = Λq,QG
x cQG,x

α + Λq,ΠG
x cΠG,x

α , (C79c)

c̃q,pα = Ω
1
2

JOΩC
1
2

JOCc
q,p
α + Λq,QR

p cQR,p
α + Λq,QG

p cQG,p
α ,

(C79d)

where the Schrieffer-Wolff matrices {Λx,Λp} involved in the
previous equations are defined as

ΛΦ,ΠR
x iγ =

Ω
3
2

Ji

Ω
2

Ji
− Ω2

Rγ

(RJ)iγ , (C80a)

ΛΦ,QG
x i2k = −

Ω
− 1

2

Ji
ΩGk

Ω
2

Ji
− Ω2

Gk

(NJ)i2k−1, (C80b)

ΛΦ,QG
x i2k−1 =

Ω
− 1

2

Ji
ΩGk

Ω
2

Ji
− Ω2

Gk

(NJ)i2k, (C80c)

ΛΦ,ΠG
x i2k =

Ω
− 1

2

Ji

2
(1 +

Ω
2

Ji

Ω
2

Ji
− Ω2

Gk

)(NJ)i2k, (C80d)

ΛΦ,ΠG
x i2k−1 =

Ω
− 1

2

Ji

2
(1 +

Ω
2

Ji

Ω
2

Ji
− Ω2

Gk

)(NJ)i2k−1, (C80e)

ΛΦ,QG
p i2k

= −
Ω

− 1
2

Ji
ΩGk

Ω
2

Ji
− Ω2

Gk

(NJ)i2k−1, (C80f)

ΛΦ,QG
p i2k−1

=
Ω

− 1
2

Ji
ΩGk

Ω
2

Ji
− Ω2

Gk

(NJ)i2k, (C80g)

Λq,QG
x i2k = −

Ω
1
2

Ji

Ω
2

Ji
− Ω2

Gk

(NJ)i2k, (C80h)

Λq,QG
x i2k−1 = −

Ω
1
2

ji

Ω
2

Ji
− Ω2

Gk

(NJ)i2k−1, (C80i)

Λq,ΠG
x i2k = −

Ω
1
2

Ji
ΩGk

2(Ω
2

Ji
− Ω2

Gk
)
(NJ)i2k−1, (C80j)

Λq,ΠG
x i2k−1 =

Ω
1
2

Ji
ΩGk

2(Ω
2

Ji
− Ω2

Gk
)
(NJ)i2k, (C80k)

Λq,QR
p iγ

= −
Ω

1
2

Ji

Ω
2

Ji
− Ω2

Rγ

(RJ)iγ , (C80l)

Λq,QG
p i2k

= −
Ω

1
2

Ji

Ω
2

Ji
− Ω2

Rγ

(NJ)i2k, (C80m)

Λq,QG
p i2k−1

= −
Ω

1
2

Ji

Ω
2

Ji
− Ω2

Rγ

(NJ)i2k−1. (C80n)

In Eq. (C79), the effective junctions-baths coupling ma-
trices c̃α incorporate two contributions. The first one arises
from the dressing with inner modes as a result of SW trans-
formations (terms proportional to Λx,p) while the second con-
tribution comprises direct couplings between qubit and drive
ports (terms proportional to the dressed frequency ΩJ ). The
system-baths interaction Hamiltonian can be expressed in this
final frame as

HSB =ΦT
J

∑
α

c̃Φ,x
α xα +ΦT

J

∑
α

c̃Φ,p
α pα

+ qT
J

∑
α

c̃q,xα xα + qT
J

∑
α

c̃q,pα pα,
(C81)

which captures the most general linear system-bath couplings.
Using standard quantization method [47] and using the results
of Appendix F, the correlated decay rates are given in terms
of this new effective couplings as

γjj′ =
π

2

B∑
b=1

∑
α

(sαjb
+ itαjb

)⋆(sαj′b + itαj′b)δ(Ωj − ωαb),

(C82)

where

sαjb
=

c̃Φ,x
αjb√

mαbωαb
+
√
mαbωαb c̃

q,p
αjb
, (C83)

tαjb
=

√
mαbωαb c̃

Φ,p
αjb

−
c̃q,xαjb√
mαbωαb

, (C84)
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The squared terms in Eq. (C82) can be written as

π

2

B∑
b=1

∑
α

sαjb
sαj′bδ(Ωj − ωαb) + tαjb

tαj′bδ(Ωj − ωαb)

=
π

2

∑
α

[(
c̃Φ,x
α + c̃q,pα mαwα

)
m−1

α w−1
α δ(Ωj − wα)

(c̃Φ,x
α + c̃q,pα mαwα)

T + (c̃q,xα − c̃Φ,p
α mαwα)m

−1
α w−1

α

× δ(Ωj − wα)(c̃
q,x
α + c̃Φ,p

α mαwα)
T
]
jj′
,

(C85)

where δ(Ωj −wα) ≡ diag{δ(Ωj − ωα1), . . . , δ(Ωj − ωαB)}.
Expressing {c̃α} using Eq. (C79), and within the dispersive

regime Ω
1
2

j Λp ≪ 1, Eq. (C85) is equivalent to

π

2

[
ΩJ

− 1
2OΩC

− 1
2

J OC{cΦ,x
α + CJc

q,p
α mαwα

2}+ ΛΦ,ΠR
x cΠR,x

α

+ΛΦ,QG
x cQG,x

α + ΛΦ,ΠG
x cΠG,x

α

]
m−1

α w−1
α δ(ΩJ − wα)

×
[
ΩJ

− 1
2C

− 1
2

J OC{cΦ,x
α + CJc

q,p
α mαwα

2}+ ΛΦ,ΠR
x cΠR,x

α

+ΛΦ,QG
x cQG,x

α + ΛΦ,ΠG
x cΠG,x

α

]T
jj′
.

(C86)

The next step is to identify the terms present in the
last equation that also appear in the dissipation matrix
MD(ω). To achieve this, we use the causality requirement
limϵ→0+ MD(ω−iϵ) together with the Sokhotski–Plemelj for-
mula

lim
ϵ→0+

1

(ω − iϵ)2 − ω2
α

= P
(

1

ω2 − ω2
α

)
+ i

π

2
ω−1
α δ(ω−ωα),

(C87)
where P(.) corresponds to Cauchy principal value, and we
obtain the following identification

1

2

(
Im
[
MΦΦ

D

]
+ Im

[
MΦΦ

D

T
])

=
π

2

∑
α

(cΦ,x
α + CJc

q,p
α

×mαwα
2)×m−1

α w−1
α δ(ω − wα)(c

Φ,x
α + CJc

q,p
α mαwα

2)T

+
π

2
ω2
∑
α

(cΦ,p
α mα)m

−1
α w−1

α δ(ω − wα)(c
Φ,p
α mα)

T ,

(C88a)

1

2

(
Im

[
MΦQ

D

iω

]
+ Im

[
MQΦ

D

T

−iω

])
=
π

2

∑
α

(cΦ,x
α

+ CJc
q,p
α mαwα

2)×m−1
α w−1

α δ(ω − wα)(c
Π,x
α )T ,

(C88b)

1

2

(
Re

[
MQΦ

D

T

−iω

]
− Re

[
MΦQ

D

iω

])
=
π

2
ω
∑
α

(cΦ,p
α mα)

×m−1
α w−1

α δ(ω − wα)(c
Π,x
α )T .

(C88c)

On the other hand, the classical equations of motion
Eqs. (C67a) to (C67d) enable us to evaluate this set of equa-

tions as a function of the circuit’s admittance parameters,

1

2

(
Im
[
MΦΦ

D

]
+ Im

[
MΦΦ

D

T
])

= −(L−1
JD − ω2CJD),

× Im

[
(
iω

Z0
1nD

− ω2CD + L−1
D )−1

]
(L−1

JD − ω2CJD)T

− ω2YG
JD Im

[
(
iω

Z0
1nD

− ω2CD + L−1
D )−1

]
YG
JD,

(C89a)

1

2

(
Im

[
MΦQ

D

iω

]
+ Im

[
MQΦ

D

T

−iω

])
= −(L−1

JD − ω2CJD)

× Im

[
(
iω

Z0
1nD

− ω2CD + L−1
D )−1

]
TD,

(C89b)

1

2

(
Re

[
MQΦ

D

T

−iω

]
− Re

[
MΦQ

D

iω

])
= −ωYG

JD

× Im

[
(
iω

Z0
1nD

− ω2CD + L−1
D )−1

]
TD.

(C89c)

Substituting these terms in Eq. (C85) and using definitions of
SW matrices {Λx,Λp} yields

π

2

B∑
b=1

∑
α

sαjb
sαj′bδ(Ωj − ωαb) + tαjb

tαj′bδ(Ωj − ωαb)

= Ωj

[
Y
R

JD(Ωj)J(Ωj)Y
R

JD(Ωj)
†

+Y
NR

JD (Ωj)J(Ωj)Y
NR

JD (Ωj)
†
]
jj′
.

(C90)

Here, the Kernel J(ω) is given by nD × nD positive semi-
definite matrix,

J(ω) = − Im

[
(
iω

Z0
1nD

− ω2CD + L−1
D )−1

]
, ω ≥ 0

where nD is the number of drive ports. As defined previously
in the non-dissipative case, the dressed admittance Ȳ is related
to the bare Y via the following similitude transformation,

Ȳ(ω) = ÕΩC̃
− 1

2

J ÕCY(ω)Õ
T
C C̃

− 1
2

J ÕT
Ω, (C91)

where

ÕΩ =

(
OΩ 0
0 1nD

)
, (C92)

ÕC =

(
OC 0
0 1nD

)
, (C93)

C̃J =

(
CJ 0
0 1nD

)
, (C94)

with the n × n matrices OC , OΩ, and CJ are defined pre-
viously while obtaining junctions (qubits) normal modes in
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Appendix C 1. As outlined in Appendix A, the reciprocal Y
R

and nonreciprocal Y
NR

parts of the admittance are defined as
the symmetric and antisymmetric responses

ȲR =
1

2
(Ȳ + ȲT ), (C95)

ȲNR =
1

2
(Ȳ − ȲT ). (C96)

On the other hand, the cross terms in Eq. (C82) are computed
similarly

i
π

2

B∑
b=1

∑
α

sαjb
tαj′bδ(Ωj − ωαb)− tαjb

sαj′bδ(Ωj − ωαb)

= Ωj

[
ȲR
JD(Ωj)J(Ωj)Ȳ

NR
JD (Ωj))

†

+ȲNR
JD (Ωj)J(Ωj)Ȳ

R
JD(Ωj)

†]
jj′
.

(C97)

Regrouping the square and cross terms together to finally ob-
tain correlated dissipation rates,

γjj′ = Ωj

[
YJD(Ωj)J(Ωj)YJD(Ωj)

†]
jj′
. (C98)

with Ȳ = ȲR + ȲNR the total dressed admittance. Further-
more, the kernel J(ω) can be written as

J(ω) =
1

ω
Re
{
Ydrive−1

(ω)
}
, (C99)

where

Ydrive(ω) = Z−1
0 1nD

+
L−1
D

iω
+ iωCD

≡ Z−1
0 1nD

+ Ydc
D (ω).

(C100)

We interpret Ydrive as the external admittance seen by the inner
modes, filtered by the shunting capacitances CD and induc-
tances LD located at drive ports. Therefore, the correlated de-
cay rates are fully determined by the admittance that connects
qubits and drive ports Y as well as the value of the characteris-
tic impedance Z0 of the external transmission lines according
to

γjj′ =
[
YJD(Ωj)Re

{
Ydrive−1

(Ωj)
}
YJD(Ωj)

†
]
jj′
.

(C101)
The Purcell decays are given by diagonal elements of the dis-
sipative rates, that is

γjκ =
[
YJD(Ωj)Re

{
Ydrive−1

(Ωj)
}
YJD(Ωj)

†
]
jj
. (C102)

6. Impedance dissipative rates and Purcell decays

In this section, we derive analytical expressions for corre-
lated decay rates and Purcell decays, akin to was done in the
previous section, but here as a function of the impedance re-
sponse. Applying Kirchoff’s equations to Cauer circuit of the

impedance representation (see Apps. A and C 3) we obtain the
dissipative equation of motion

CΦ̈ = −∂U
∂Φ

−M0Φ− GΦ̇−MD ∗Φ, (C103)

where Φ = (ΦT
J ,Φ

T
I )

T regrouped the junctions and inner
modes fluxes, C, M0, G, are defined in Appendix C 3 and
U = U(ΦJ) is the junctions’ cosine potential. Similarly to
the admittance case, the dissipation matrix

MD(t) =

(
MJJ

D MJI
D

MIJ
D MII

D

)
(C104)

is defined by its Fourier transform

MJJ
D (ω) = −ω4CJD(

iω

Z0
1nD

− ω2CD)−1CT
JD, (C105)

MJI
D (ω) = ω4CJD(

iω

Z0
1nD

− ω2CD)−1CDTT
D, (C106)

MIJ
D (ω) = ω4TDCD(

iω

Z0
1nD

− ω2CD)−1CT
JD, (C107)

MII
D (ω) = −ω4TDCD(

iω

Z0
1nD

− ω2CD)−1CDTT
D.

(C108)

Here, J and I stand for junction and inner modes sectors re-
spectively. Unlike the admittance case, the dissipation matrix
is here symmetric, i.e., MT

D = MD. This symmetry is a con-
sequence of two factors: First, the absence of direct gyration
in the impedance response (B∞ = 0) results in the symmetry
of the diagonal blocks. Second, the use of the same descrip-
tion (flux-flux, in this case) to parameterize both the junctions
and inner modes in the impedance representation implies that
the off-diagonal blocks of the dissipation matrix only differ by
transposition.

The equations of motions can be obtained from the
Caldeira-Leggett Lagrangian

L = LS + LB + LSB , (C109)

LS =
1

2
Φ̇TCΦ̇− U(ΦJ)−

1

2
ΦTM0Φ+

1

2
Φ̇TGΦ,

(C110)

LB =
∑
α

(
1

2
ẋT
αmαẋα − 1

2
xT
αmαw

2
αxα

)
, (C111)

LSB = −Φ̇T
∑
α

λαẋα, (C112)

where the minimal coupling LSB describes the direct capac-
itive coupling between qubits and drive ports. The couplings
matrices {λα} are chosen to reproduce the classical dissipa-
tive equation of motion

MD(ω) = lim
ϵ→0+

M(ω − iϵ), (C113)

where

M(ω) = ω4
∑
α

λαm
−1
α (ω2 − w2

α)
−1λTα . (C114)
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Up to correction O(λ2α), the classical Hamiltonian can be
expressed as H = HS +HB +HSB with

HS =
1

2
(q− G

2
Φ)TC−1(q− G

2
Φ) + U(ΦJ)

+
1

2
ΦTM0Φ,

(C115)

HB =
∑
α

(
1

2
pT
αm

−1
α pα +

1

2
xT
αmαw

2
αxα

)
, (C116)

HSB = qT
∑
α

cq,pα pα +ΦT
∑
α

cΦ,p
α pα, (C117)

where the Hamiltonian coupling matrices are now given by

cq,pα ≡

 cqJ ,p
α

cQR,p
α

cQG,p
α

 = C−1λαm
−1
α , (C118)

cΦ,p
α =

G

2
cq,pα . (C119)

Moreover, the dissipation matrix can be written in terms of
{cq,pα } as

M(ω) = ω4C

(∑
α

cq,pα (ω2 − w2)−1mαc
q,p
α

T

)
CT .

(C120)

In contrast to Refs [48, 49], the system-bath HSB in
Eq. (C115) contains a charge-flux couplings arising from the
presence of gyrators in the inner modes description (G ̸= 0).

Similar to the non-dissipative case, we apply successively
the transformations

Pcu =

(
C
1/2

J OC 0
0 1m+2l

)
, (C121a)

P∆ =

(
1n −TT

cu

0 1m+2l

)
, (C121b)

Po =

(
OΩ 0
0 1n

)
, (C121c)

to obtain the normal modes of the junctions sectors. Hence,
the couplings

cα =


cΦJ ,p
α

cqJ ,p
α

cΦR,p
α

cΦG,p
α

cQR,p
α

cQG,p
α

 (C122)

transform to

0

OΩC
1/2

J OCc
qJ ,p
α −OΩC

1/2

J OCR
T
J c

QR,p
α −OΩC

1/2

J OCN
T
J c

QG,p
α

0
cQR,p
α

cΦG,p
α

cQG,p
α


(C123)

and the system-bath coupling is written compactly as HSB =
XT

∑
α cαpα with X = (ΦT

J ,q
T
J ,Φ

T
R,Φ

T
G,Q

T
R,Q

T
G)

T the
corresponding phase-space coordinate. The second step con-
sists in diagonalizing the gyrator-inner modes (and thus elim-
inating the zero modes as well) via the symplectic transfor-
mations given by Eq. (C53). Consequently, the new effective
couplings denoted c′α are given by



0

OΩC
1/2

J OCc
qJ ,p
α −OΩC

1/2

J OCR
T
J c

QR,p
α −OΩC

1/2

J OCN
T
J c

QG,p
α

0

Ω
− 1

2

G cΦG,p
α + Σx

2 Ω
1
2

Gc
QG,p
α

Ω
1
2

Rc
QR,p
α

−ΣxΩ
− 1

2

G cΦG,p
α +

Ω
1
2
G

2 cQG,p
α


.

(C124)
Finally, we eliminate dispersively the inner modes via the

symplectic Schrieffer–Wolff transfromation Ssw = exp(AJ),
see Appendix B. Using Eq. (B13a) and Eq. (C55), the non-
vanishing matrix elements of the generator A are given by

(Axp)αβ = −
Ω

5
2

Jα
Ω

− 1
2

Rβ

Ω
2

Jα
− Ω2

Rβ

(R
T

J )αβ , (C125a)

(Apx)αβ =
Ω

3
2

Jα
Ω

1
2

Rβ

Ω
2

Jα
− Ω2

Rβ

(R
T

J )αβ , (C125b)

(Axx)α2k−1 = −
Ω

5
2

Jα
Ω

− 1
2

Gk

Ω
2

Jα
− Ω2

Gk

(N
T

J )α2k, (C125c)

(Axx)α2k = −Ω
1
2

Jα
Ω

− 1
2

Gk
(N

T

J )α2k−1, (C125d)

(Axp)α2k−1 = −
Ω

5
2

Jα
Ω

− 1
2

Gk

Ω
2

Jα
− Ω2

Gk

(N
T

J )α2k−1, (C125e)

(Axp)α2k = −Ω
1
2

Jα
Ω

− 1
2

Gk
(N

T

J )α2k, (C125f)

(Apx)α2k−1 =
Ω

3
2

Jα
Ω

1
2

Gk

Ω
2

Jα
− Ω2

Gk

(N
T

J )α2k−1, (C125g)

(App)α2k−1 = −
Ω

3
2

Jα
Ω

1
2

Gk

Ω
2

Jα
− Ω2

Gk

(N
T

J )α2k. (C125h)

To first order, this leads to the following couplings,

cα 7→ c̃α = (1+ JA+O(A2))c′α. (C126)

Projecting on the junctions’ subspace, one obtain the final
couplings as a function of the original ones

c̃ΦJ ,p
α = ΛΦ,ΦG

p cΦG,p
α + ΛΦ,QG

p cQG,p
α , (C127)

c̃qJ ,p
α = Ω

1
2

JOΩC
1
2

JOCc
qJ ,p
α + Λq,ΦG

p cΦG,p
α

+ Λq,QR
p cQR,p

α + Λq,QG
p cQG,p

α ,
(C128)
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where the Schrieffer–Wolff (SW) matrices are defined as

(ΛΦ,ΦG
p )α2k−1 =

Ω
3
2

Jα

Ω
2

Jα
− Ω2

Gk

(N
T

J )α2k−1, (C129a)

(ΛΦ,ΦG
p )α2k =

Ω
3
2

Jα

Ω
2

Jα
− Ω2

Gk

(N
T

J )α2k, (C129b)

(ΛΦ,QG
p )α2k−1 = −

Ω
3
2

Jα
ΩGk

2(Ω
2

Jα
− Ω2

Gk
)
(N

T

J )α2k, (C129c)

(ΛΦ,QG
p )α2k =

Ω
3
2

Jα
ΩGk

2(Ω
2

Jα
− Ω2

Gk
)
(N

T

J )α2k−1, (C129d)

(Λq,ΦG
p )α2k−1 =

Ω
1
2

Jα
ΩGk

Ω
2

Jα
− Ω2

Gk

(N
T

J )α2k, (C129e)

(Λq,ΦG
p )α2k = −

Ω
1
2

Jα
ΩGk

Ω
2

Jα
− Ω2

Gk

(N
T

J )α2k−1, (C129f)

(Λq,QR
p )αβ =

Ω
1
2

Jα
Ω2

Rβ

Ω
2

Jα
− Ω2

Gk

(R
T

J )αβ , (C129g)

(Λq,QG
p )α2k−1 =

Ω
1
2

Jα
Ω2

Gk

2(Ω
2

Jα
− Ω2

Gk
)
(N

T

J )α2k−1, (C129h)

(Λq,QG
p )α2k =

Ω
1
2

Jα
Ω2

Gk

2(Ω
2

Jα
− Ω2

Gk
)
(N

T

J )α2k. (C129i)

Similar to the admittance analysis of Eq. (C127), the effective
junctions-baths coupling matrices c̃α contains two contribu-
tions, one coming from the dressing with inner modes result-
ing from SW transformations (terms proportional to Λp) and
direct couplings between qubit and drive ports (terms propor-
tional to the dressed frequency ΩJ ). Besides, this coupling
matrices allow us to compute the quantum dissipative rates
(see Appendix F for the derivation of the master equation)

γjj′ =
π

2

∑
α

[(
c̃qJ ,p
α + ic̃ΦJ ,p

α

)⋆
mαwαδ(Ωj − wα)

×
(
c̃qJ ,p
α + ic̃ΦJ ,p

α

)T ]
jj′
.

(C130)

Using the definitions of c̃α, the squared terms in the last equa-

tion can be written in terms of the dissipation matrix as

π

2

∑
α

[
c̃qJ ,p
α mαwαδ(Ωj − wα)c̃

qJ ,p
T

α

]
jj′

+
π

2

∑
α

[
c̃ΦJ ,p
α mαwαδ(Ωj − wα)c̃

ΦJ ,p
T

α

]
jj′

=

[
(ζJ1 , ζ

R
1 , ζ

G
1 )C−1 Im

[
MD(Ωj)

Ω
2

j

]
C−T (ζJ1 , ζ

R
1 , ζ

G
1 )T

]
jj′

+

[
(0, 0, ζG2 )C−1 Im

[
MD(Ωj)

Ω
2

j

]
C−T (0, 0, ζG2 )T

]
jj′

,

(C131)

where

ζJ1 = Ω
1
2

JOΩC
1
2

JOC ,

ζR1 = Λq,QR
p ,

ζG1 = Λq,ΦG
p

Y

2
+ Λq,QG

p ,

ζG2 = ΛΦ,ΦG
p

Y

2
+ ΛΦ,QG

p ,

(C132)

with

Y =

iσyωg1

. . .
0

0 iσyωgk

, (C133a)

C−1 =

(
C−1
J TT

J
TJ 1m+2l

)
. (C133b)

Using the definitions of SW matrices {Λp} to evaluate the last
set of equation which leads to

π

2

∑
α

[
c̃qJ ,p
α mαwαδ(Ωj − wα)c̃

qJ ,p
T

α

]
jj′

+
π

2

∑
α

[
c̃ΦJ ,p
α mαwαδ(Ωj − wα)c̃

ΦJ ,p
T

α

]
jj′

= Ω
2

j

[
Z
R
(Ωj)Re

{
Zdrive−1

(Ωj)
}
Z
R†

(Ωj)

]
jj′

+Ω
2

j

[
Z
NR

(Ωj)Re
{
Zdrive−1

(Ωj)
}
Z
NR†

(Ωj)

]
jj′
.

(C134)

The cross terms are obtained similarly

i
π

2

∑
α

[
c̃qJ ,p
α mαwαδ(Ωj − wα)c̃

ΦJ ,p
T

α

]
jj′

− i
π

2

∑
α

[
c̃ΦJ ,p
α mαwαδ(Ωj − wα)c̃

qJ ,p
T

α

]
jj′

= Ω
2

j

[
Z
R
(Ωj)Re

{
Zdrive−1

(Ωj)
}
Z
NR†

(Ωj)

]
jj′

+Ω
2

j

[
Z
NR

(Ωj)Re
{
Zdrive−1

(Ωj)
}
Z
R†

(Ωj)

]
jj′
.

(C135)
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Regrouping the squared and cross terms together, we finally
obtain the correlated decay rates

γjj′ = Ω
2

j

[
ZJD(Ωj)Re

{
Zdrive−1

(Ωj)
}
Z
†
JD(Ωj)

]
jj′
,

(C136)
and the Purcell decays are given by the diagonal elements,

γjκ = Ω
2

j

[
ZJD(Ωj)Re

{
Zdrive−1

(Ωj)
}
Z
†
JD(Ωj)

]
jj
,

(C137)
with Zdrive given by

Zdrive(ω) = Z01nD
+

C−1
D

iω

≡ Z01nD
+ Zdc

D (ω),

(C138)

Similarly to Eq. (C100), we interpret Zdrive as the external
impedance seen by the inner modes, filtered by the capaci-
tances CD connected in series with drive ports.

7. Admittance formulas for driving amplitudes

We now compute the qubit-drives Hamiltonian Ĥv that re-
sult from (time-dependent) classical voltage sources V(t) =
(V1(t), . . . , VnD

(t))T present in the nD drives ports, see
Fig. 5. The classical equations of motion are given by

CJΦ̈J = − ∂U

∂ΦJ
− L−1

J ΦJ + YG
J Φ̇J − TJQ̇

−MΦΦ
D ∗ΦJ −MΦQ

D ∗Q−MΦ
V ∗V(t),

(C139a)

Q̈ =− C−1
I Q+ TT

J Φ̇J − ZeQ̇−MQΦ
D ∗ΦJ

−MQQ
D ∗Q−MQ

V ∗V(t),
(C139b)

which differs from the equation of motion Eq. (C66) by sim-
ply adding a voltage source term MV ∗ V(t). Here, the
(n +m + 2l) × nD voltage-source matrix MV (t) is defined
by its Fourier transform

MΦ
V (ω) = −(L−1

JD − ω2CJD + iωYG
JD)

×
(
iω

Z0
1nD

− ω2CD + L−1
D

)−1

Z−1
0 ,

(C140a)

MQ
V (ω) = iωTT

D

(
iω

Z0
1nD

− ω2CD + L−1
D

)−1

Z−1
0 .

(C140b)

The existence of non-zero MΦ
V arises from the direct coupling

between the qubit and drive ports (CJD, L−1
JD, YG

JD ̸= 0). The
Lagrangian is given by L = LV=0 + LV where LV=0 =
LS + LB + LSB is the time independent Lagrangian (i.e.,
without drives) given in Eq. (C69). The drives-Lagrangian is
given by

LV(t) = −ΦT
J (M

Φ
V ∗V(t))−QT (MQ

V ∗V(t)), (C141)

where LV depends only on the generalized coordinates
{ΦJ ,Q}. We note that one could choose to drive the system

via {Φ̇J , Q̇}, both frames being related via a canonical trans-
formation [45]. However, in the former gauge, the Hamilto-
nian takes a simpler formH = HV=0+HV whereHV=0 was
computed previously in Eq. (C8) and HV(t) takes the form

HV(t) = ΦT
J (M

Φ
V ∗V(t)) +QT (MQ

V ∗V(t))

= XT (MV ∗V(t)),
(C142)

with XT = (ΦT
J ,q

T
J ,Q

T
R,Q

T
G,Π

T
R,Π

T
G) the phase space co-

ordinate and MV given by the 2(n+m+ 2l)× nD matrix

MV =


MΦ

V
0

MQR

V

MQG

V
0
0

. (C143)

Here, we remind the reader that n, m, l are the number
of junction ports, LC-oscillators (reciprocal poles of the re-
sponse) and gyrators (nonreciprocal poles of the response) re-
spectively.

The voltage-source matrix transforms under a symplectic
transformation S as

MV (t) 7→ M̃V (t) ≡ (S−1)TMV (t).

By linearity of the Fourier transform, it translates in frequency
domain as

MV (ω) 7→ M̃V (ω) ≡ (S−1)TMV (ω).

Applying successively (
SJ 0
0 SI

)
(C144)

given by Eq. (C52) and Eq. (C53) to diagonalize both junc-
tions and inner modes sectors separately, and the symplec-
tic SW Ssw = exp(AJ) to eliminate dispersively the inner
modes (reciprocal and nonreciprocal poles) as detailed in Ap-
pendix B, the transformed voltage-source matrix M̃V (ω) pro-
jected on the junctions subspace is given by

M̃V

ΦJ

= Ω
− 1

2

J OΩC
− 1

2

J OCM
Φ
V + Apx

(
Ω

− 1
2

R MQR

V

Ω
− 1

2

G MQG

V

)

+ App

(
0

ΣxΩ
− 1

2

G MQG

V

)
,

(C145a)

M̃V

qJ

= −Axx

(
Ω

− 1
2

R MQR

V

Ω
− 1

2

G MQG

V

)
− Axp

(
0

ΣxΩ
− 1

2

G MQG

V

)
,

(C145b)

where the generators {Axx,Axp,Apx,App} are computed as
in Eq. (B13a) in Appendix B. This leads to

M̃V

ΦJ

(ω) = Ω
− 1

2

J

(
Y
NR

(ΩJ) + Y
dc
(ω)
)
Ydrive−1(ω)/Z0,

M̃V

qJ

(ω) = −Ω
− 1

2

J Im[Y
ac,R

(ΩJ)]Y
drive−1

(ω)/Z0,
(C146)
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where Ydrive is given by:

Ydrive(ω) = Z−1
0 1nD

+
L−1
D

iω
+ iωCD. (C147)

Similarly, the off-diagonal dc part of the admittance Ydc
JD is

Ydc
JD(ω) =

1

iω
L−1
JD + iωCJD. (C148)

Therefore, the quantum Hamiltonian due to the external drives
takes the form

Ĥv =

n∑
j=1

nD∑
d=1

(
εjd(t)b̂j + ε⋆jd(t)b̂

†
j

)
, (C149)

where the driving amplitude contribution of junction port j
from drive port d is

εjd(t) =
1√
2

(
M̃V

ΦJ − iM̃V

qJ
)
jd

∗ Vd(t)

=
Ω

− 1
2

j

2π
√
2

∫ +∞

−∞
dωeiωt

×
((

Y
ac

JD(ΩJ) + Y
dc

JD(ω)
)
Ydrive−1

(ω)/Z0

)
jd
Vd(ω),

(C150)

with the ac part of the admittance given by Yac = Yac,R +
YNR.

For a single tone drive Vd(t) = vd sin(ωdt), we obtain ex-
plicitly

εjd(t) = −i
Ω

− 1
2

j vd

2
√
2Z0

(
αjd[ωd]e

iωdt − αjd[−ωd]e
−iωdt

)
,

(C151)
with

αjd[ωd] =
((

Y
ac

JD(Ωj) + Y
dc

JD(ωd)
)
Ydrive−1

(ωd)
)
jd

=

nD∑
d′=1

(
Y
ac

jd′(Ωj) + Y
dc

jd′(ωd)
)
Ydrive−1

d′d (ωd).

(C152)
For realistic pulse drives with finite rise and fall times, one

can either use the integral formula Eq. (C150) or decompose
the pulse into its Fourier series Vd(t) =

∑
ωd
vd sin(ωdt) to

account for the effect of other harmonics {ωd}, and the to-
tal drive amplitudes is simply the sum of single-tone drives
amplitudes, i.e.,

εtot
jd(t) =

∑
ωd

εjd(t), (C153)

with εjd(t) being the single-tone drives amplitude associated
to frequency ωd given by Eq. (C151).

The analytical formula obtained in Eq. (C150) allows us to
characterize the classical crosstalk Xij experienced by qubit i
while driving from the port d(j) associated to the control line

of qubit j, taking into account not only the possible coupling
between junction port i and drive port d(j) but also the possi-
ble stray coupling between drives’ ports d(i) and d(j) which
occurs whenever Ydrive is not diagonal. Thus, we extend the
definition of classical crosstalks Xij , as given in Ref. [1], to
account for both direct and nonreciprocal couplings:

Xij = 20 log10

∣∣∣∣αid(j)

αjd(j)

∣∣∣∣ (dB). (C154)

The matrix element αjd is obtained from an n×nD matrix α,

defined as α = {Yac

JD(ΩJ) + Y
dc

JD(ωd)}Ydrive−1

(ωd), where
ωd is the drive frequency and using the notation [Y(ΩJ)]jd =

Yjd(Ωj). In summary, the matrix α enables the computa-
tion of drive amplitudes εjd(t) (see Eq. (C151)) and classical
crosstalks between qubit ports during drive operations from
different control lines (see Eq. (C154)).

8. Impedance formulas for driving amplitudes

We now obtain analytical expressions for the qubit-
drives Hamiltonian in terms of the impedance response.
Taking into account classical voltage sources V(t) =
(V1(t), . . . , VnD

(t))T , the Kirchhoff’s equations are given by

CΦ̈ = −∂U
∂Φ

−M0Φ−GΦ̇−MD ∗Φ−MV ∗V(t), (C155)

where Φ = (ΦT
J ,Φ

T
R,Φ

T
G)

T . The (n+m+2l)×nD voltage-
matrix

MV (t) =

MJ
V (t)

MR
V (t)

MG
V (t)

 (C156)

is defined by its Fourier transform

MJ
V (ω) = −ω2CJD

(
iω

Z0
1nD

− ω2CD

)−1

Z−1
0 , (C157a)

MR
V (ω) = +ω2RDCD

(
iω

Z0
1nD

− ω2CD

)−1

Z−1
0 ,

(C157b)

MG
V (ω) = +ω2NDCD

(
iω

Z0
1nD

− ω2CD

)−1

Z−1
0 .

(C157c)

As in the admittance case, the Lagrangian can be divided in
two parts, namely a time-independent Lagrangian LV=0 given
by Eq. (C109) and a time-dependent part LV

L = LV=0 + LV(t), (C158)

where

LV(t) = −ΦT
J

(
MJ

V ∗V(t)
)
−ΦT

R

(
MR

V ∗V(t)
)

−ΦT
G

(
MG

V ∗V(t)
)
.

(C159)
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Also as in the admittance case, we make a gauge choice in
which we drive the system via the generalized coordinates
(ΦJ ,ΦR,ΦG). This choice is to be contrasted to Ref. [1]
where the choice of driven quadratures is instead (Φ̇J , Φ̇R).
By definition, both pictures reproduce classical equations of
motion and the corresponding lagrangians are related by a to-
tal derivative.

In this frame, the Legendre transform is simple to perform
and we obtain a compact expression for the total Hamiltonian

H = HV=0 +HV(t), (C160)

where HV=0 is given in Eq. (C51). The drive Hamiltonian
HV(t) is:

HV(t) = ΦT
J

(
MJ

V ∗V(t)
)
+ΦT

R

(
MR

V ∗V(t)
)

+ΦT
G

(
MG

V ∗V(t)
)

= XT (MV ∗V(t)) ,

(C161)

with

XT = (ΦT
J ,q

T
J ,Φ

T
R,Φ

T
G,Q

T
R,Q

T
G), (C162)

MV =


MJ

V
0

MR
V

MG
V
0
0

. (C163)

After diagonalizing the junctions modes, the voltage-matrix is
transformed as

MV 7→


OΩC

− 1
2

J OCM
J
V

0
MR

V + RJM
J
V

MG
V + NJM

J
V

0
0

. (C164)

Repeating the same steps of diagonalizing the inner modes
and rescaling by dressed frequencies leads to

M′
V =



Ω
− 1

2

J OΩC
− 1

2

J OCM
J
V

0

Ω
− 1

2

R MR
V +Ω

− 1
2

R RJM
J
V

Ω
− 1

2

G MG
V +Ω

− 1
2

G NJM
J
V

0

−ΣxΩ
− 1

2

G MG
V − ΣxΩ

− 1
2

G NJM
J
V


. (C165)

Finally, eliminating dispersively the inner modes via a SW
transformation yields the following voltage-matrices cou-

plings

M̃V

ΦJ

= Ω
− 1

2

J OΩC
− 1

2

J OCM
J
V

+ Apx

(
Ω

− 1
2

R MR
V +Ω

− 1
2

R RJM
J
V

Ω
− 1

2

G MG
V +Ω

− 1
2

G NJM
J
V

)

+ App

(
0

−ΣxΩ
− 1

2

G MG
V − ΣxΩ

− 1
2

G NJM
J
V

)
,

(C166a)

M̃V

qJ

= −Axx

(
Ω

− 1
2

R MR
V +Ω

− 1
2

R RJM
J
V

Ω
− 1

2

G MG
V +Ω

− 1
2

G NJM
J
V

)

− Axp

(
0

ΣxΩ
− 1

2

G MG
V − ΣxΩ

− 1
2

G NJM
J
V

)
,

(C166b)

where A is the generator of the SW transformation given by
Eq. (C125). Consequently, the previous equations can be writ-
ten in terms of the impedance response

(M̃V

ΦJ

)jd =

[(
Ω

− 1
2

j ω Im
[
Z
dc

JD(ω)
]

+Ω
1
2

j Im
[
Z
ac,R

JD (Ωj)
])

Zdrive−1

(ω)

]
jd

,

(C167a)

(M̃V

qJ

)jd =
[
Ω

1
2

j Z
NR

JD (Ωj)Z
drive−1

(ω)
]
jd
. (C167b)

After quantizing the junction modes [53], the quantum
Hamiltonian accounting for the the external drives takes the
form

Ĥv =

n∑
j=1

nD∑
d=1

(
εjd(t)b̂j + ε⋆jd(t)b̂

†
j

)
, (C168)

where the drive amplitudes between junction port j and drive
port d are

εjd(t) =
1√
2

(
M̃V

ΦJ − iM̃V

qJ
)
jd

∗ Vd(t)

= −
iΩ

1
2

j

2π
√
2

∫ +∞

−∞
dωeiωt

×
((

Z
ac

JD(ΩJ) + ωΩ
−1

J Z
dc

JD(ω)
)
Zdrive−1

(ω)
)
jd
Vd(ω),

(C169)

where the ac part of the impedance is given by Zac = Zac,R+
ZNR. For a single tone drive Vd(t) = vd sin(ωdt), we obtain
explicitly

εjd(t) = −
Ω

1
2

j vd

2
√
2

(
αjd[ωd]e

iωdt − αjd[−ωd]e
−iωdt

)
,

(C170)
with

αjd[ωd] =
[(

Z
ac

JD(Ωj) + ωdΩ
−1

J Z
dc

JD(ωd)
)
Zdrive−1

(ωd)
]
jd

=

nD∑
d′=1

(
Z
ac

jd′(Ωj) + ωdΩ
−1

j Z
dc

jd′(ωd)
)
Zdrive−1

d′d (ωd).

(C171)
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Analogously to the admittance analysis, we can compute the
classical crosstalk Xij experienced by a qubit i while driving
from the control line d(j) associated to the qubit j to find

Xij = 20 log10

∣∣∣∣αid(j)

αjd(j)

∣∣∣∣ (dB), (C172)

with αjd is the matrix element of n × nD matrix α =(
Z
ac

JD(ΩJ) + ωΩ
−1

J Z
dc

JD(ωd)
)
Zdrive−1

(ωd). Here, ωd is the

drive frequency, and we use the notation [Z(ΩJ)]jd =

Zjd(Ωj).

Appendix D: Exact elimination of nondynamical modes

Because in the perturbative regime the approximate and
exact elimination yield the same effective models, in Ap-
pendix C we have approximately eliminated the nondynam-
ical modes. Here, we perform an exact elimination of these
nondynamical modes, extending the validity beyond the dis-
persive regime, partially in line with the approach outlined in
Ref. [27]. We emphasize that despite its ad-hoc nature this ap-
proach is equivalent to the novel method for zero-mode elim-
ination proposed in [54].

For the admittance, our starting point is Eq. (C7). From
there, we perform the symplectic triangular transformation

S∆y
:

{
ΦJ → ΦJ , qJ → qJ − TJQ

Q → Q Π → Π− TT
JΦJ .

(D1)

Following, to eliminate the nondynamical modes we apply
the symplectic transformation done in the main derivation
Eq. (C11). After these transformations, the quadratic form of
the Hamiltonian (exluding the linear terms from the junction
potentials) is

H =

(
HJ K
KT HI

)
, (D2)

with

HJ =

(
TJT

T
J YG

J C
−1
J /2

(YG
J C

−1
J )T /2 C−1

J

)
,

HI =

Ωr

Ωr
0

0
Ωg

Ωg

, (D3)

and

K =

(
0 −RJΩ

1/2
r NR

J Ω
1/2
g −NL

JΩ
1/2
g

0 0 0 0

)
(D4)

N
L(R)
J =

(
n
L(R)
1 , . . .n

L(R)
l

)
. (D5)

As we have not linearized the junction potential in this elimi-
nation, the full Hamiltonian is H = XTHX/2 +U(ϕJ) with
the junctions potential U(ϕJ) = −

∑
nEJn

cos(ϕJn
/ϕ0),

and X = (ΦJ ,qJ ,QR,Πr,Q
D
G ,Π

D
g ). The superscript D

stands for dynamical, as all the modes in the gyrator sector
now correspond to dynamical modes, and its dimension has
been reduced by half, from 2l → l.

For the impedance, we start directly from the Lagrangian
Eq. (C38). Instead of doing a triangular transformation, we
directly obtain the inverse of C using known formulas for the
inversion of 2× 2 block matrices [55]

C−1 =

(
C−1
J + TT

JTJ TT
J

TJ 1m+2l

)
. (D6)

Then, the Hamiltonian is simply

H =
1

2
(q− G

2
Φ)TC−1(q− G

2
Φ)

+
1

2
ΦT

r L
−1
r Φr + U(ϕJ).

(D7)

We eliminate the nondynamical modes applying the same
symplectic transformations as in the main derivation
Eq. (C53). The quadratic form of the Hamiltonian (once again
exluding the linear terms from the junction potentials) finally
read as Eq. (D2) now with

HJ =

(
0 0
0 C−1

J + TT
JTJ

)
,

HI =

Ωr

Ωr
0

0
Ωg

Ωg

, (D8)

and

K =

(
0 0 0 0

0 RT
JΩ

1/2
r (NR

J )
TΩ

1/2
g (NL

J )
TΩ

1/2
g

)
. (D9)

The full Hamiltonian is H = XTHX/2 + U(ϕJ) with X =(
ΦJ , qJ , Πr, QR, ΠD

g , QD
G

)
, and U(ϕJ) the junctions

potential.
We stress that for a proper quantization of the whole re-

sponse beyond the perturbative regime, Hamiltonians where
the nondynamical modes have been exactly eliminated must
be used [27].

Appendix E: Josephson junctions’ nonlinearities

We now derive the first order corrections from the weakly-
anharmonic nonlinear potential of the Josephson junctions.
We obtain qubit anharmonicities, dispersive shifts and linear
corrections from normal ordering of a Taylor expansion of the
junction potential. We do so with a general derivation of the
corrections from the dressing of the junctions mode, which is
valid for both admittance and impedance approaches. Con-
sider the general case in which the initial Josephson flux vari-
ables Φ̃J are related to the final frame variables X = (Φ,q),
expressed in dimensions of (energy × time)1/2 via a dimen-
sionless transformation matrix α of shape (n× t)

Φ̃J = Z
1/2
J αX = Z

1/2
J (αϕΦ+ αqq), (E1)
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with Z
1/2
J the necessary diagonal rescaling to obtain dimen-

sions of flux, n the number of junctions and t = (n+m+ l)
the total number of dynamical modes. We have separated the
flux from charge sectors in the final frame to simplify the fol-
lowing calculations.

The nonlinear terms in the original frame are

H̃nl = −
∑
i

1

24L̃Jiϕ
2
0

ϕ̃4Ji
(E2)

such that in the final frame we have

Hnl = −
n∑

i=1

1

24L̃Jiϕ
2
0

z2Ji
(

t∑
k=1

αϕ
ikϕk + αq

ikqk)
4. (E3)

Introducing

ϕ̂k =

√
ℏ
2
(b̂†k + b̂k),

q̂k = i

√
ℏ
2
(b̂†k − b̂k),

(E4)

substituting and rearranging we get

Hnl = −
∑
i

E
(i)
C

12

z2Ji

z̃2Ji

(
∑
k

α̃ik b̂k + α̃∗
ik b̂

†
k)

4, (E5)

with ECi
= e2/2CJi

, z̃Ji
=

√
L̃Ji

/CJi
, α̃ = αϕ − iαq .

Here, CJi
is simply (CJ)ii obtained from either D∞ or A0.

We expand the series using the general formula(∑
k

αk b̂k + α∗
k b̂

†
k

)N
=
∑
j,s

{
CN

j,s

(∑
k

α∗
k b̂

†
k

)s
×
(∑

k

αk b̂k
)t(∑

k

|αk|2
)j}

,

(E6)

where t, j, s are nonnegative integers, CN
j,s = (N !/j!s!t!2j),

0 ≤ j ≤ N , 0 ≤ s ≤ N − 2j, and t = N − 2j − s.
We obtained the above expression with a rearrangement of the
formulas presented in Ref. [56]. Hence, expanding Eq. (E5)
we have Hnl = Hν +Hβ +O(φ6

J) with

Hν = −
t∑
rs

(
νrsb̂r b̂s + 2νrsb̂

†
r b̂s + νrsb̂

†
r b̂

†
s

)
Hβ = −

t∑
pqrs

(
6βpqrsb̂

†
pb̂

†
q b̂r b̂s

+ (4βpqrsb̂
†
pb̂

†
q b̂

†
r b̂s + h.c.)

+ (βpqrsb̂pb̂q b̂r b̂s + h.c.)
)
,

(E7)

where the coefficients are

βpqrs =

n∑
i

E
(i)
C

12

z2Ji

z̃2Ji

α̃ipα̃iqα̃irα̃is,

νrs = 6
∑
p

βpprs.

(E8)

The bar over the subindexes refer to conjugation, for example

βpqrs =

n∑
i

E
(i)
C

12

z2Ji

z̃2Ji

α̃∗
ipα̃

∗
iqα̃irα̃is. (E9)

The inclusion of these conjugate coefficients is crucial be-
cause, in contrast to the expansion for the nonlinearities given
in Ref. [14] and used in Ref. [1], we are allowing α to mix
flux and charge variables.

Now, assuming that all the nondiagonal terms of α̃ are
α̃ik ∼ O(k/∆) and that α̃ii = 1 + O(k2/δ2), then in simi-
lar fashion as to what was done in Ref. [1], to first order we
obtain for the linear coefficients between qubit modes

γij ≃
E

(i)
c

2

(
zJi

z̃Ji

)2

α̃iiα̃ij +
E

(j)
c

2

(
zJj

z̃Jj

)2

α̃jjα̃
∗
ji, (E10)

between qubit and inner modes

νik ≃ E
(i)
c

2

(
zJi

z̃Ji

)2

α̃iiα̃ik, (E11)

and all other νrs ≃ 0 + O(k2/δ2). This implies that we can
write the coefficients in matrix form

ν̃ = α̃†Z
1/2
J ΛZ

1/2
J α̃, (E12)

with

Λ =



E(1)
c

2z̃J1

√
ζ1

. . .
E(n)

c

2z̃Jn

√
ζn

0

0 0(m+l)×(m+l)

, (E13)

where ζi ≡ (L̃Ji
/LJi

), such that νrs ≃ (ν̃)rs. Therefore, we
obtain to first order

Hγ = −2

ℏ
(αϕΦ+ αqq)TZ

1/2
J ΛZ

1/2
J (αϕΦ+ αqq)

= −1

2
ΦT

J (L
nl
J )−1ΦJ ,

(E14)

where

LnlJ = L̃J


ℏω1

2E
(1)
c

. . .
ℏωn

2E
(n)
c

, (E15)

similar to Eq. (138) of Ref. [1]. We note that ωi = 1
√
LJiCJi

here corresponds to the frequencies in the bare basis after in-
cluding a possible frequency shift due to L−1

J , with LJi the di-
agonal entries of (LJ)ii defined in Eq. (C29) (Eq. (C64) for the
impedance), and not to the final frame frequencies. Then, if
at the beginning of our treatment to Hamiltonian H0 Eq. (C7)
(Eq. (C62) for the impedance) we add and substract Hγ

H = H0 +Hν −Hν = H ′
0 −Hν , (E16)



33

we can account for the linear corrections coming from the
nonlinearities to first order if we satisfy the condition

ω2
i = ω̃2

Ji

(
1 + ζi −

2E
(i)
c

ℏωi

)
, (E17)

with ω̃Ji = 1/

√
CJiL̃Ji and ζi =

√
L̃Ji/LJi . Solving this

expression for small anharmonicities E(i)
c /ℏωJi

≪ 1 we ob-
tain

ωi = ω̃Ji

√
1 + ζi

(
1− E

(i)
c /ℏω̃Ji

(1 + ζi)3/2 − E
(i)
c /ℏω̃Ji

)
, (E18)

which for ζi → 0 (the case with no inductive poles) reduces
to

ωi = ω̃Ji −
E

(i)
c /ℏ

1− E
(i)
c /ℏω̃Ji

, (E19)

recovering as a special case Eq. (144) of Ref. [1]. These for-
mulas are valid for both the admittance and impedance meth-
ods.

As for the self kerrs and dispersive shifts to first order in the
expansion of Eq. (E7) they are

δi = −12βiiii,

χik = −24βiikk.
(E20)

To explicitly obtain their values, we have to obtain the entries
of α. For convenience of notation we divide α in submatrices

α =
(
αϕ
J αq

J αΠ
R αQ

R αΠ
NR αQ

NR

)
. (E21)

From the derivation done in Appendix C, for the admittance
we have

α = (S̃ϕJ)
−1Pϕ

JS
−1
sw , (E22)

where Pϕ
J is the projector onto the junctions flux subspace,

(S̃ϕJ)
−1 = Z

−1/2

J OCC
−1/2

J OΩΩ
−1/2

J , and ZJ = (LJ/CJ)
1/2.

In the full perturbative approach and taking S−1
sw to first order

we obtain

(αϕ
J)

ϕJ

ij = δij ,

(αq
J)ij = 0,

(αΠ
R)iγ = −Θ−1

i,γ

√
ωiωrγ (rγ)i,

(αQ
R)iγ = 0,

(αΠ
NR)iµ = −Θ−1

i,µ

√
ωiωgµ(n

L
µ)i,

(αQ
NR)iµ = Θ−1

i,µ

√
ωiωgµ(n

R
µ )i.

(E23)

with Θi,γ = ω2
i − ω2

rγ . Whereas for the impedance

α =
(
S̃ϕJ 0 S̃ϕI S̃qI

)
S−1
sw , (E24)

with

S̃ϕJ = Z
−1/2

J OT
CC

−1/2

J OT
ΩΩ

−1/2

J ,

S̃ϕI =
(
Z
−1/2

J RT
JΩ

−1/2
R Z

−1/2

J NT
JΩ

−1/2
g

)
,

S̃qI =
(
0 −Z

−1/2

J NT
JΣxΩ

−1/2
g

)
.

(E25)

By simply substituting and rearranging we explicitly obtain

(αϕ
J)ij = δij −

Im[Zac,R
ij (ωj)]√
zJi

zJj

,

(αq
J)ij = −

2ω2
j√

zizj

∑
µ

Θ−1
jµ

ωgµ

Im{Res(ZNR(ωgµ))ij},

(αΠ
R)ij =

1√
zJi

(rγ)i√
ωrγ

(
ω2
rγ

ω2
rγ − ω2

i

)
,

(αQ
R)ij = 0,

(αΠ
NR)ij =

1√
zJi

(nL
µ)i√
ωgµ

(
ω2
gµ

ω2
gµ − ω2

i

)
,

(αQ
NR)ij = − 1√

zJi

(nR
µ )i√
ωgµ

(
ω2
gµ

ω2
gµ − ω2

i

)
,

(E26)

with the residue given by Res(ZNR(ωgµ)) = lims→iωgµ
(s−

iωgµ)Z
NR(s) = −iBµ/2ωgµ , the nonreciprocal part of the

impedance residue at frequency ωgµ . Thus, we recover as a
subset Eqs. (120-122) of Ref. [1] with the difference steaming
from the different final frame we are taking.

It follows that the self-kerrs anharmonicities for both the
admittance and the impedance approaches are

δi = −E(i)
C (ωJi

/ωi)
2. (E27)

After rearranging, the dispersive shifts in the admittance ap-
proach are

χiγ = 2δi

(
ωrγg

qQ
iγ

ω2
rγ − ω2

i

)2

,

χiµ = 2δi

(
ωgµ

ω2
gµ − ω2

i

)2

((gqQiµ )2 + (gqΠiµ )2),

(E28a)

with

gqQiγ =
√
ωi/ωrγ (rγ)i/

√
Ci,

gqQiµ =
√
ωi/ωgµ(n

L
µ)i/

√
Ci,

gqΠiµ =
√
ωi/ωgµ(n

R
µ )i/

√
Ci,

(E28b)

where the last three correspond to the bare couplings between
qubit and inner modes given in Eq. (C17c) with OC = OL =
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OΩ = 1n. Whereas for the impedance, the dispersive shifts
are

χiγ = 2δi

(
ωrγg

ϕΠ
iγ

ω2
rγ − ω2

i

)2

,

χiµ = 2δi

(
ωgµ

ω2
gµ − ω2

i

)2

((gϕΠiµ )2 + (gϕQiµ )2),

(E29a)

with

gϕΠiγ =
√
ωiωrγ (rγ)i

√
Ci,

gϕΠiµ =
√
ωiωgµ(n

L
µ)i
√
Ci,

gϕQiµ =
√
ωiωgµ(n

R
µ )i
√
Ci,

(E29b)

where the last three correspond to the bare couplings given
in Eq. (C55b) with OC = OΩ = 1n. For the reciprocal
resonators, we recover the dispersive shift given in Eq. (63)
of Ref. [1]. The transformer ratios rγ , nL,R

µ can be ob-
tained directly from the residues of the response as explained
in Appendix A. Moreover, if higher order nonlinear correc-
tions are desired these can be straightforwardly obtained us-
ing Eq. (E6). For example, if the sixth order terms of the
expansion are included the dispersive shifts are corrected to
second order in perturbation theory by the factor χiµ →
(1− 2E

(i)
C /ℏωi)χiµ.

Additionally, we note that the dispersive shifts for the
impedance and admittance approaches are different. This is
to be expected due to the different frames used for quanti-
zation in one approach or another, however and as we have
highlighted several times throughout this work, this difference
is negligible in the dispersive regime. Going further, analyt-
ical formulas for qubits cross-kerrs can in principle be ob-
tained considering higher order terms of S−1

sw , as was done in
[41]. Moreover, it is useful to note that a numerical treatment
beyond the perturbative regime can be done using the exact
Hamiltonians after elimination of the nondynamical modes
given in Appendix D.

Appendix F: Derivation of master equation

In this appendix, we derive a completely positive trace pre-
serving (CPTP) master equation for the qubits, taking into ac-
count any possible quasi-degeneracies. In the standard ap-
proach to open quantum systems, the master equation is de-
rived from a microscopic model (system, bath, and interaction
Hamiltonians) using the Born-Markov and secular approxi-
mations [57–60]. However, the secular approximation turns
out to be restrictive and fails whenever the spectral gap ∆ω

of the qubits Hamiltonian Ĥq is of the order of the natural
linewidth Γ dictated by dissipation, i.e., ∆ω ≲ Γ. In this
case, the rotating-wave approximation typically used to trans-
form the Bloch-Redfield equation into a master equation in
Lindblad form (CPTP) breaks down [61, 62]. Recent works
have introduced the partial secular approximation to extend
Lindblad’s equation to systems whose energy levels are not

necessarily strongly separated (i.e., ∆ω ≲ Γ) while preserv-
ing complete positivity [61–64].

The starting point of our derivation is the Caldeira-Leggett
Hamiltonian Ĥ = Ĥq + ĤB + ĤqB with interaction term of
the form of Eq. (C81)

Ĥq =
∑
j

Ωj

2

(
q̂2j + ϕ̂2j

)
, (F1)

ĤB =
∑
αb

(
p̂2αb
2mαb

+
1

2
mαbω

2
αbx̂

2
αb

)
, (F2)

ĤqB =
∑
j

(
ϕ̂j
∑
αb

c̃Φ,x
α x̂αb + ϕ̂j

∑
αb

c̃Φ,p
α p̂αb

+q̂j
∑
αb

c̃q,xα x̂αb + q̂j
∑
αb

c̃q,pα p̂αb

)
.

(F3)

Here, we consider the system-bath Hamiltonian ĤqB ∼ O(Γ)

as a perturbation i.e., ||ĤqB || ≪ ||Ĥq||, ||ĤqB || ≪ ||ĤB ||
(Born approximation), which is valid when the qubits are cou-
pled dispersively to the inner modes and when direct capaci-
tive, inductive and nonreciprocal couplings between qubit and
drive ports are weak, which is the regime of interest here [65].

The main idea of the partial secular approximation con-
sists on separating the set of qubits (energy transitions) based
on their frequency difference. With that objective, we define
an equivalence relation F between qubit ports j, j′ such that
(j, j′) ∈ F if and only if their energy difference is smaller or
of the order of the natural linewidth, that is

∣∣Ωj − Ωj′
∣∣ ≲ Γ.

This separation of energy-scales allow us to perform the ro-
tating wave-approximation whenever (j, j′) /∈ F . However,
if (j, j′) ∈ F , the qubits are considered to be degenerate in
first order of perturbation theory in the system-bath coupling
[64]. Therefore, tracing out the baths yields the master equa-
tion [66]

dρ̂

dt
= −i[Ĥq, ρ̂] +

∑
(j,j′)∈F

ϵ,ϵ′={ϕ,q}

γϵϵ
′

jj′(Â
ϵ′

j′ ρ̂Â
ϵ†

j − 1

2
{Âϵ†

j Â
ϵ′

j′ , ρ̂}),

(F4)

where we have omitted the Lamb-shift Hamiltonian which in-
troduces, in the dispersive and weak direct coupling regime,
just a small renormalization on the system Hamiltonian Ĥq .
Notably, as shown in Ref. [30], in the adiabatic limit when
Z0 ≪ Ydc

D

−1, the Lamb-shift Hamiltonian is exactly can-
celled by the second order terms in the system bath couplings
that we have neglected in our Hamiltonian (Eq. (C71)). In typ-
ical circuit parameters, this limit is satisfied. In the previous
equation, the collapse operators are defined as [59]

Âϕ
j =

∑
E′−E=Ωj

Π̂(E)ϕ̂jΠ̂(E ′), (F5)

Âq
j =

∑
E′−E=Ωj

Π̂(E)q̂jΠ̂(E ′), (F6)
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where Π̂(E) is the projector over the eigenspace of Ĥq with
energy E . The spectral densities γϵϵ

′

jj′ are defined as the Fourier
transform of the bath’s correlations functions

γϵϵ
′

jj′ =

∫ +∞

−∞
dτeiΩjτ

〈
B̂ϵ†

j (τ)B̂ϵ′

j′(0)
〉
. (F7)

Using Eq. (C81), the bath’s eigen-operators are defined as

B̂ϕ
j =

∑
α

(c̃Φ,x
α x̂α + c̃Φ,p

α p̂α), (F8)

B̂q
j =

∑
α

(c̃q,xα x̂α + c̃q,pα p̂α). (F9)

Writing the normalized flux and charge operators in terms of
the bosonic modes ϕ̂j = 1√

2
(b̂†j + b̂j), q̂j = i√

2
(b̂†j − b̂j), the

master equation can be expressed in a compact way

dρ̂

dt
= −i[Ĥq, ρ̂] +

∑
(j,j′)∈F

γjj′(b̂j′ ρ̂b̂
†
j −

1

2
{b̂†j b̂j′ , ρ̂}),

(F10)

with

γjj′ =
1

2

(
γϕϕjj′ + γqqjj′ − iγϕqjj′ + iγqϕjj′

)
. (F11)

At cryogenic temperatures β−1 = kBT ≪ Ωj such that the
number of thermal photons is negligible n = 1/eβℏΩj−1 ≪ 1
and the bath can be approximated to be in its ground state. In
this case, one can easily compute the bath correlation func-
tions and γϵ,ϵ

′

jj′ , which leads to

γjj′ =
π

2

B∑
b=1

∑
α

(sαjb
+ itαjb

)⋆(sαj′b + itαj′b)δ(Ωj − ωαb),

(F12)

where

sαjb
=

c̃Φ,x
αjb√

mαbωαb
+
√
mαbωαb c̃

q,p
αjb
, (F13)

tαjb
=

√
mαbωαb c̃

Φ,p
αjb

−
c̃q,xαjb√
mαbωαb

. (F14)

By symmetrizing the delta function, i.e., δ(Ωj − ωαb) =

δ((Ωj + Ωi)/2 − ωαb) + O(Γ), one can readily verify that
the matrix γjj′ is positive semi-definite within the Born ap-
proximation. This ensures that the master equation represents
a completely positive trace-preserving (CPTP) map.

Appendix G: Circuit examples

In this appendix, we provide further examples of circuits
demonstrating the application of our results. This appendix is
divided in four parts. First, we start with a comparison of the
admittance and impedance approaches, revealing their equiv-
alence in the dispersive regime. We then focus on a specific

singular circuit relying solely on the admittance response in a
situation where the impedance approach cannot be applied. In
the third part of this appendix, we show how to use our results
to estimate Purcell decay rates, and we compare these rates to
master equation simulations and previous one-port analyses.
Finally, we give a detailed analysis of the nonreciprocal circuit
presented in the main text. We provide here both admittance
and impedance responses of this three-port device, and give
a simple explanation for the conditions which achieve chiral
dynamics with complete population transfer.

1. Effective coupling rates: admittance vs impedance

FIG. 7. (a) Two (linearized) Josephson junctions coupled by a trans-
mission line resonator and (b) an effective circuit with only one
inner-mode of the latter. Canonical circuits representions of the (c)
impedance (Z) and (d) admittance (Y) response matrices from the
Josephson ports.
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The circuit we consider is the two-port circuit of Fig. 7, al-
ready studied in Ref. [41]. It consist of two linearized qubits
(J) interacting via an inner mode (r) which we take to be a
simple LC circuit. Our objective here is to compare the ad-
mittance and the impedance methods. The impedance can be
obtained with an ABCD analysis to find

Z(s) =
A0

s
+

A1s

ω2
rz + s2

,

A0 =

(
1/C̃J 0

0 1/C̃J

)
,

A1 = r2z

(
1 1
1 1

)
,

(G1)

with C̃J = (Cc + CJ), ωrz = ωr(rcj + 1)1/2/(2rcr +

rcj + 1)1/2, ωr = 1/
√
LrCr, rz ≃ rcj/

√
Cr, where rcr =

(Cc/Cr) and rcj = (Cc/CJ). On the other hand, the admit-
tance response is

Y(s) = sD∞ +
D1s

ω2
ry + s2

,

D∞ =

(
CJ C
C CJ

)
,

D1 = r2y

(
1 1
1 1

)
,

(G2)

with CJ ≃ C̃J(1 − rcjrcr), C ≃ Ccrcr, ωry ≃ ωrz (1 −
rcjrcr), and ry ≃ rcr/

√
Lr. These approximate values are

accurate in the dispersive regime where rcj , rcr ≪ 1.
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FIG. 8. (a) Difference between effective and exact normal modes of
the circuit in Fig. 7 (b) as a function of Cc/CJ with Ck = 0. Dark
(light) blue lines are the normalized differences from the admittance
(impedance) methods. (b) Difference between effective and exact
normal modes of the circuit in Fig. 7 (b) as a function of Ck with
Cc = 0.1CJ . We plot the differences obtained from the numeri-
cal diagonalization of the direct coupling (full perturbative) method
shown with dashed (solid) lines. Circuit parameters CJ = 51.0 fF,
ωJ/2π = 5.57 GHz, ωr/2π = 7.07 GHz, zr = 50 Ω.

To compare the two approaches, we show in Fig. 8(a)
the normalized difference between the normal mode frequen-
cies obtained from the effective classical Hamiltonian de-
rived in Appendix C and the exact normal modes of the cir-
cuit obtained from the standard Hamiltonian circuit analy-
sis (dark-blue: admittance, light-blue: impedance). This is

plotted as a function of Cc/CJ with the qubit-resonator cou-
pling in the dipersive limit, see parameters in the figure cap-
tion. We find an excellent agreement in the dispersive, where
Cc/CJ ≪ 1. As Cc/CJ increases, the accuracy dimin-
ishes because the coupling between qubit and resonator modes
g =

√
ωJωrCc/

√
CJCr increases and we get out of the per-

turbative regime. It is worth noting that the larger error of the
admittance approach can be attributed to the direct capacitive
coupling in its dc response between the external ports (see C
in Eq. (G2)), in contrast to the impedance’s dc response which
is directly diagonal such that the exact dressing of the capac-
itances is in this case automatic. As already mentioned in the
main text, we stress that this difference between the two ap-
proaches arises from our perturbative derivation, which leads
to different final effective frames. Of course, when an exact
Hamiltonian from the impedance and the admittance response
can be constructed, the normal modes of both are exactly the
same [27, 67–69].

In Fig. 8 (b) we compare the fully perturbative (solid) and
previous diagonalization of the direct coupling approaches
(dashed) developed in Appendix C. There, we plot the normal-
ized normal mode frequency difference for both approaches
when varying Ck/CJ ratios. Clearly, even in the strong cou-
pling regime Ck ≫ CJ , the previous diagonalization ap-
proach maintains its accuracy.

2. Direct inductive coupling and JJs’ nonlinearities

FIG. 9. 2-port example circuit with direct inductive coupling be-
tween qubit ports. For circuits with direct inductive coupling be-
tween inductive qubit ports (i.e. described in configuration space
by their flux) A∞ = 0, A0 will be singular and unconstrained
Hamiltonian dynamics cannot be systematically obtained from the
impedance response.

We now turn to the circuit of Fig. 9 where we replace the
direct capacitive coupling of Fig. 7 between the linearized
qubit modes with a direct inductive coupling. This is the
simplest circuit that allows us to verify our extension of
Ref. [1] to include direct inductive coupling between qubit
ports. As discussed in Appendix A, for circuits with di-
rect inductive coupling between the qubit ports we have that
A0 = lims→0 sZ(s) in the impedance characterization. Due
to this, the Lagrangian obtained from the Cauer representa-
tion is singular, preventing to obtain directly the Hamilto-
nian. In contrast, the Lagrangian for the Cauer representa-
tion of the admittance response is not singular at any pole
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FIG. 10. (a) Difference between normal modes of the linear effective
and exact Hamiltonians of the circuit in Fig. 9. (b) ZZ-interaction
obtained from the diagonalization of the effective and exact quantum
Hamiltonians as functions of LJ/Lc. Circuit parameters CJ = 100
fF, Cc = 0.1CJ , EJ1/2π = 20.4 GHz, EJ2/2π = 12.6 GHz and
ωr/2π = 7.8 GHz.

and the circuit Hamiltonian can thus can be systematically ob-
tained. Hence, here we study only the admittance response.
To do so, we note that Y(s) is the same as the one given in
Eq. (G2) with the addition of the inductive poles D0/s, where
D0 = (1/Lc)(1 − σx). Figure 10 (a) compares the normal-
ized difference between the normal modes in the effective and
exact linear sectors, similar to the above example. It is ev-
ident that our approach achieves a remarkably high level of
precision.

To benchmark the effective nonlinearities presented in the
main text and derived in Appendix E, we compare the effec-
tive ZZ-interaction obtained from numerical diagonalization
of the effective Hamiltonian, with the one obtained from nu-
merical diagonalization of the Hamiltonian after full exact
circuit quantization. In the qubit subspace, the diagonalized
Hamiltonian takes the form

Ĥ =
ω1

2
σ1
z +

ω2

2
σ2
z + ωZZσ

1
zσ

2
z . (G3)

The effective and exact ZZ-interactions (ωZZ) are shown in
Fig. 10 (b). The figure shows how a zero ZZ-interaction
can be obtained by tuning the ratio between the junction and
coupling inductances LJ/Lc. Importantly, the effective ZZ
interaction is accurate when deep in the dispersive regime,
but this accuracy decreases quickly with increasing coupling
strength. This discrepancy arises from the ommision of both
higher order terms in the expansion of Ssw and the non-
rotating terms in the nonlinear expansion Eq. (E7). For re-
ciprocal impedances these higher-order corrections are given
in Ref. [41]. For the most general nonreciprocal case, ana-

lytical inclusion of these higher-order corrections remains an
open-task that can be completed following the guidelines pro-
vided in Appendix B. We also note that if the residues of the
admittance response can be obtained, then a complete numer-
ical treatment beyond the dispersive regime using the exact
classical Hamiltonians we give in Appendix D is feasible.

3. Readout and drive induced Purcell decays

We use the circuit in Fig. 11 to present a comparison
between the analytical formulas derived for dissipation in
Eqs. (17) and (18) and resulting from the coupling between
the qubit and drive ports, incorporating both impedance and
admittance responses. We assess the accuracy of these for-
mulas by comparing them to master equation simulation and
previous one port results presented in Ref. [70], see Fig. 12.
For the circuit of Fig. 11, the number of qubit and drive ports
are n = 1 and nD = 2 respectively. Once the 3 × 3 admit-
tance response matrix is determined, which we do not present
here due to its large size, we can apply our results Eqs. (17)
and (18) to estimate the qubit-relaxation rate 1/T1. To do so,

FIG. 11. Example of a 3-port circuit for a typical qubit control and
dispersive readout routine. It consists of a capacitively coupled qubit
to its control line with characteristic impedance Z0 = 50 Ω con-
nected to a voltage source Vd(t). The qubit is also coupled to its
Z0 = 50 Ω readout line via two LC oscillators, corresponding to a
standard scheme involving a capacitively coupled readout resonator
and Purcell filter. The readout line is typically driven by a classical
voltage source VRO(t).

we first extract the DC part of the immittance response given
by Ydc = D∞s, Zdc = A0/s with D∞ = lim|s|→∞ Y(s)/s

and A0 = lims→0 sZ(s). This allows us to compute Ydrive,
Zdrive given by

Ydrive = Z−1
0 12 +

(
Ydc
22 Ydc

23

Ydc
32 Ydc

33

)
, (G4)

and similarly

Zdrive = Z012 +

(
Zdc
22 Zdc

23

Zdc
32 Zdc

33

)
, (G5)

where Z0 is the characteristic impedance of the external trans-
mission lines. Here, index 1 represents the qubit port, whereas
the drive and readout ports are 2 and 3 respectively, see
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FIG. 12. Analyzing circuit Fig. 11: (a) Purcell decay T RO
1 from

the readout line, (b) drive-induced relaxation TD
1 , as a function of

the coupling capacitances Cjr = Cc, Cjd = 0.1Cc. We compare
our results obtained with both impedance and admittance formulas
Eqs. (17) and (18) (light and dark blue) with the ones obtained from
integrating the master equation of the three modes system (brown).
We used realistic circuit parametersLJ = 10 nH,CJ = 77 fF giving
a plasmon frequency ω̃J/2π = 5.73 GHz. The frequency of readout
resonator and Purcell filter are ωr/2π = 7.50 GHz, ωf/2π = 7.51
GHz respectively, and their impedances are zr = zf = Z0 = 50 Ω.
The external coupling and shunting capacitance to the ground are
Ck = 20 fF, Cd = 100 fF respectively.

Fig. 11. Equipped with these matrices, we can now express
the Purcell decay rates as

1

T1,Y
=

1

C

2∑
d,d′=1

Re
{
Ydrive−1

dd′ (ω)
}
Y1d+1(ω)Y

⋆
1d′+1(ω),

(G6)

1

T1,Z
=

1

LJ

2∑
d,d′=1

Re
{
Zdrive−1

dd′ (ω)
}
Z1d+1(ω)Z

⋆
1d′+1(ω),

(G7)
where C is the first entry of D∞ and C−1 that of A0, i.e.,
C = (D∞)11 such that for weak values of the coupling ca-
pacitances, it is approximately given by Cj +Cjd +Cjr. The
qubit frequency is expressed as ω = ω̃J(1−Ec/ωJ(1− Ec

ωJ
))

where ω̃J = 1/
√
LJC, Ec = e2/2C and LJ = 1/(Cω2).

In the case of the circuit of Fig. 11, the drive ports are decou-
pled, as evidenced by the diagonal nature of Ydrive, Zdrive, i.e.,
Ydc
23 = Ydc

32 = 0 and Zdc
23 = Zdc

32 = 0. Consequently, the total
relaxation rate can be decomposed into the sum of a Purcell
decay rate resulting from the readout line and a drive-induced
decay rate originating from the direct coupling with the drive

line
1

T1
=

1

TRO
1

+
1

TD
1

, (G8)

where
1

TRO
1,Y

=
1

C
Re
{
Ydrive−1

11 (ω)
}
|Y12(ω)|2, (G9)

1

TD
1,Y

=
1

C
Re
{
Ydrive−1

22 (ω)
}
|Y13(ω)|2, (G10)

and similar expressions are obtained for the impedance. In the
limit of weak couplings Cjd, Cjr, Crp, Ck ≪ Cj , Cr, Cp, we
obtain

1

TRO
1

=
Z0C

2
rpC

2
jrC

2
k

(1 + ω2(Cd + Ck)2Z2
0 )CjC2

pC
2
r

× ω10

(ω2
r − ω2)2(ω2

f − ω2)2
,

(G11)

1

TD
1

=
Z0ω

2C2
jd

C(1 + Z2
0ω

2(Cd + Cjd)2)
. (G12)

To facilitate comparison with prior studies, we rephrase the
Purcell decay rate in terms of the qubit-readout resonator cou-
pling strength g, the readout resonator-Purcell filter coupling
J , and κf , the bare decay rate of the Purcell mode. Using our
formulas Eqs. (5) and (17) in the weak coupling regime, we
obtain g ≃ Cjr(ωωr/4CjCr)

1
2 , J ≃ Crp(ωrωf/4CrCp)

1
2 ,

and κf ≃ (ω2
fC

2
kZ0)/Cp(1 + ω2

fZ
2
0 (Cd + Ck)

2) ≡ κ(ωf ).
Using these expressions, Eq. (G11) can be concisely written
as

1

TRO
1

= κq

(
gJ

∆rq∆fq

)2

(1− ζr)
2(1− ζf )

2

× (
1− ζr
1 + ζr

)2(
1− ζf
1 + ζf

),

(G13)

where κq = (ω2C2
kZ0)/Cp(1 + ω2Z2

0 (Cd + Ck)
2) = κ(ω),

∆rq = ωr − ω, ∆fq = ωf − ω and ζµ = ∆µq/Σµq

with Σµq = ωµ + ω and µ = r, f . From this equation,
we obtain corrections to the usual Purcell protection formula

∼
(

gJ
∆rq∆fq

)2
κf of Refs. [71, 72] coming from two distinct

contributions. First, the qubit probes the bath at its own fre-
quency, rather than at the filter frequency which is reflected
in κq = κ(ω), in accordance with Ref. [73]. This correction
is significant when the bath is not flat, something which can-
not be captured by the standard master equation as discussed,
e.g., in Sec. IV of Ref. [10], see also Fig. 12. Second, there
is a correction of order ζµ originating from the counter terms
in the interaction between the qubit and the resonator-filter
modes. Notably, this correction become particularly relevant
in the deep dispersive regime (i.e, when ∆µq ∼ Σµq), as high-
lighted in Ref. [74].

In Fig. 12, we present a quantitative comparison between
our immittance results (light and dark blue) and the integra-
tion of the master equation (brown) obtained after the ex-
act quantization of the three-mode system (qubit, readout-
resonator, Purcell filter). In this simulation, the values of κf
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and TD
1 are taken from previous one-port results, in particu-

lar, here from Eqs. (2.18) and (3.1) of Ref. [70] yielding to
κf = Re

{
iωCk(Z

−1
0 + iωCd)/Cp(Z

−1
0 + iω(Cd + Ck))

}
and similar expression for 1/TD

1 by substituting Cp by CJ

and Ck by Cjd.

4. 3-port circulator circuit from main text

We provide the calculations required to obtain the results
for the example of Fig. 2 of the main text. We obtain the ad-
mittance of the circuit in Fig. 2(a) with the π-capacitive filter
of panel (b) using the admittance representation of the ideal
circulator described by a scattering matrix S(ϕ), and the com-
bination of additional parallel and series capacitors

Y(s)(ϕ) = D∞s+ E∞(ϕ) +
D1(ϕ)s+ E1(ϕ)

ωy(ϕ)2 + s2
,

D∞ = CJ13,

E∞(ϕ) = −G(ϕ)(S(2π/3)− S(−2π/3)),

D1(ϕ) = α(ϕ)(2− S(−2π/3)− S(2π/3)),

E1(ϕ) =
√
3ωy(ϕ)α(ϕ)(S(2π/3)− S(−2π/3)).

(G14)

In the dispersive regime, and up to second order in
rcg, rcj ≪ 1 with rcg = Cc/Cg and rcj = Cc/CJ ,
we have CJ ≃ (CJ(1 + rcj) − Cgr

2
cg), G(ϕ) ≃

tan(ϕ/2)r2cg/
√
3R, ωy(ϕ) = tan(ϕ/2)/(Cc + Cg)R, and

α(ϕ) ≃ tan(ϕ/2)
2
r2cg/3R

2Cg . The matrix S(ϕ) corresponds
to the scattering matrix defined in Eq. (20) of the main text.
The inverse of the admittance gives the impedance response

Z(s) =
A0

s
+

A1s+ B1

ω2
z + s2

A0 = C̃J13 − C̃k(S(2π/3) + S(−2π/3))

A1 = β(213 − S(2π/3)− S(−2π/3))

B1 =
√
3ωz(ϕ)β(S(2π/3)− S(−2π/3)),

(G15)

with C̃J ≃ CJ + 2C̃k, C̃k ≃ Ccrcg/3, ωz(ϕ) ≃ ωy(ϕ)(1 −
rcgrcj), and β ≃ r2cj/3Cg . As clear from above, the fre-
quencies of the poles are slightly different in both immittance

presentations. This clearly leads to Hamiltonians with dif-
ferent frequencies for the inner modes after the exact circuit
quantization. This difference however, is insubstantial, as the
quantization is done with different frames for each response.
When accounting for the exact frames within which each re-
sponse is defined, all observables are predicted to be identical
regardless of the chosen approach.

Furthermore, the one third ratio needed to achieve full
chiral population transfer dynamics can be readily under-
stood by examining the exact Hamiltonian of the circuit.
By introducing the quasi-momenta mode operators B̂k =∑

j e
i2πkj/3b̂†j/

√
3 for the qubit modes, the linearized Hamil-

tonian in terms of ϕ reads as follows

Ĥ(ϕ) =
∑
i

ωB̂†
i B̂i + ωy(ϕ)â

†â

− J(ϕ)(B̂†
−1a+ B̂†

1â
† + h.c.),

(G16)

where J(ϕ) =
√
ωJωy(ϕ)

√
rcjrcg/6 . By considering sepa-

rately the beam-splitter (two-mode squeezing) like interaction
between the k = −1 (k = 1) mode, the elementary shifts λ±1

in the frequencies of the modes B̂±1 are λ−1 ≃ −2J(ϕ)2/∆
and λ+1 ≃ −2J(ϕ)2/(2ωy(ϕ) −∆). Complete chiral popu-
lation transfer is obtained when the quasi-momentum modes
energies are equally spaced [19]. This equal spacing is ap-
proximately obtained for a detuning ∆ ≃ 2ωy(ϕ)/3, which
leads to ω = ωy(ϕ)/3. For this condition to be accurate, the
perturbative criteria k(ϕ)/∆(ϕ) ≪ 1 must be satisfied, where
k(ϕ) ∼ [(|α(ϕ)|/CJ)(ω/ωy(ϕ))]

1/2 is the coupling between
the qubits and the inner mode, and ∆(ϕ) = |ω − ωy(ϕ)|.
In particular, when ω = ωy(ϕ)/3, the perturbative criteria
reads k(ϕ)/∆(ϕ) ≃ (3Cg/4CJ)

1/2rcg/(1 − rcg) ≪ 1. If
Cg ∼ CJ and rcg ≪ 1, it will remain accurate for all val-
ues of ϕ. Finally, it is noteworthy that the couplings within
the Hamiltonian provide a clear explanation for the feasibil-
ity of achieving chiral dynamics for any value of ϕ, contin-
gent upon a straightforward frequency condition. Explicitly,
as ϕ changes, the Hamiltonian in Eq. (G16) remains invariant,
with only the strength of the coupling J(ϕ) and the frequency
ωy(ϕ) changing, hence by setting ωi = ωy(ϕ)/3 only the time
scale of the resulting dynamic changes.
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