A Field Guide to Magnetic Frustration

Alannah Hallas Rice University/ UBC*

*Coming Soon

Outline

- 1. Introduction to magnetic frustration and its ...
 - 💹 Origin
 - Effect
 - Detection
- 2. Frustration in the classical limit (dipolar spin ice)
- 3. Frustration in the quantum limit (quantum spin liquids)
- 4. Case Studies:
 - Proximate Kitaev spin liquid in α -RuCl₃
 - Phase competition in quantum XY pyrochlores

<u>Magnetic Frustration</u>: the inability of a magnet to satisfy all of its pairwise interactions simultaneously, resulting in the suppression of conventional magnetic order.

Paramagnet

Neel Order

<u>Magnetic Frustration</u>: the inability of a magnet to satisfy all of its pairwise interactions simultaneously, resulting in the suppression of conventional magnetic order.

Frustrated Antiferromagnet

Big Picture: Why do we care about magnetic frustration?

Exotic magnetic ground states

Connection between theory and experiment

1. Lattice geometry

2. Competing interactions

Lattice geometry Competing interactions

Important caveat: A frustration-prone lattice does <u>not</u> guarantee frustration in a real material. Depends on both the spin anisotropy and the exchange interactions (AFM or FM).

e.g. ferromagnetically coupled Ising spins on the Kagome lattice

e.g. antiferromagnetically coupled lsing spins on the pyrochlore lattice

1. Lattice geometry

2. Competing interactions

M. Skoulatos *et al.*, EPL **88** 57005 (2009)

1. Lattice geometry

2. Competing interactions

132 C

Things can get very messy.

For example, in the spin liquid candidate $Ca_{10}Cr_7O_{28}$, which has a bilayer Kagome lattice, there are at least 5 relevant exchange couplings, some FM and some AFM.

c	À		À
		A	
C C	h		

Exchange	Coupling (meV)	Туре
JO	-0.08(4)	FM
<i>J</i> 11	0	
J12	0	
J21	-0.76(5)	FM
J22	-0.27(3)	FM
J31	0.09(2)	AFM
J32	0.11(3)	AFM
ΣJ	-0.91(17)	

Balz et al., Nature Physics 12, 942–949 (2016)

Wish list for an ideal magnetically frustrated material

- Frustrated lattice occupied by a magnetic cation
- Only one magnetic site in the crystal structure
- Minimal chemical disorder
- Can be grown as large single crystals (enables anisotropic property measurements and scattering experiments)
- Small spin (S = ½) to maximize quantum fluctuations (some exceptions)
- **Large spin-orbit coupling**, $\lambda \sim Z^4$ (generates anisotropy)
- Kramers' ion (symmetry protected dipole moment)
- Insulating (don't want to worry about charge degrees of freedom)

We can use the frustration index, f, to assess if a material is frustrated. A system is empirically frustrated when f > 5.

For $\theta_{CW} < T < T_N$, the system is a cooperative paramagnet

How to study your new frustrated material

Does your material magnetically order? → pick your favourite probe!

- Peak in heat capacity
- Anomaly in susceptibility
- Bragg peaks in neutron diffraction
- Line splitting in NMR
- Oscillations in muon spin resonance

Investigate the spin excitations!

- Inelastic neutron scattering
- Resonant inelastic x-ray scattering
- Thermal conductivity
- Electron spin resonance
- Terahertz spectroscopy

Are the spins static or dynamic?

- Longitudinal field response in muon spin resonance
- Frequency dependent ac susceptibility

Connect with theory!

- Are there existing models that might be applicable to this material?
- What would a minimal Hamiltonian for this system look like?
- How should this ground state respond to magnetic field, pressure, chemical doping, disorder ...

Outline

- 1. Introduction to magnetic frustration and its ...
 - 💟 Origin

Detection

2. Frustration in the classical limit (dipolar spin ice)

3. Frustration in the quantum limit (quantum spin liquids)

4. Case Studies:

- Proximate Kitaev spin liquid in α -RuCl₃
- Phase competition in quantum XY pyrochlores

The pyrochlore Dy₂Ti₂O₇ has a dipolar spin ice ground state

pyrochlore lattice + lsing anisotropy + net ferromagnetic interactions = spin ice

n.b. Spin ice is a rare example of ferromagnetic frustration!

Frustration in spin ice originates from a macroscopic degeneracy

For N spins and N/2 tetrahedra:

$$W = 2^N \cdot \left(\frac{6}{16}\right)^{\frac{N}{2}} = \left(\frac{3}{2}\right)^{\frac{N}{2}}$$
$$S = k_B \ln(W) = \frac{k_B N}{2} \ln\left(\frac{3}{2}\right)$$

There are 2⁴ = 16 possible spin configurations for a single tetrahedron. Of these, 6 satisfy the two-in/two-out "ice rules".

Why is the spin ice state "classical"?

Quantum fluctuations are negligible^{*} \rightarrow spin freezing transition when thermal fluctuations become small

*Rau and Gingras "Magnitude of quantum effects in classical spin ices" PRB 92, 144417 (2015)

In thermal equilibrium, the spin ice degeneracy is lifted

In equilibrium, $Dy_2Ti_2O_7$ would long range order at $T_C = 0.18$ K according to Monte Carlo simulations (Melko, PRL 87, 067203 (2001))

Pomaranski et al., Nature Physics 9, 353-356 (2013)

The spin excitations in spin ice behave like magnetic monopoles!

A spin flip excitation in spin ice is analogous to creating a pair of monopoles, which can freely propagate away from one another.

The emergent magnetic monopoles in spin ice are connected via a Dirac string of flipped dipoles and interact via a magnetic Coulomb interaction

Outline

- 1. Introduction to magnetic frustration and its ...
 - 💟 Origin
 - Effect
 - Detection
- 2. Frustration in the classical limit (dipolar spin ice)
- 3. Frustration in the quantum limit (quantum spin liquids)
- 4. Case Studies:
 - Proximate Kitaev spin liquid in α -RuCl₃
 - Phase competition in quantum XY pyrochlores

Spin liquids do not magnetically order or freeze down to 0 K

Analogy with He³: fermion with large zeropoint fluctuations, no solid phase at 1 atm.

Temperature

Quantum spin liquids are a highly entangled state of matter

Savary and Balents, *Quantum spin liquids: a review* <u>Reports on Progress in Physics</u> **80**.1 016502 (2016)

There is (currently) no experimental proof of a QSL state

Normal Ordered Magnet: Symmetry Breaking Transition

- ✓ Peak in heat capacity
- ✓ Cusp in susceptibility
- ✓ Magnetic Bragg peaks
- ✓ Oscillations in µSR

Quantum Spin Liquid: No Symmetry Breaking

- × No definitive experimental signature
- $\boldsymbol{\times}$ Absence of order and freezing
- × Entanglement entropy?

No experimental smoking gun for a QSL state but fractionalized excitations a good starting point (for now).

Herbertsmithite is a strong quantum spin liquid candidate

b

(-K, K, 0)

Herbertsmithite has a "perfect" Kagome lattice of Cu^{2+} ($S = \frac{1}{2}$).

There is a strong theoretical case that the ground state of an AFM $S = \frac{1}{2}$ Heisenberg Kagome is a QSL.

Continuum of scattering indicates fractionalized excitations – gapped or gapless, role of disorder?

Han et al., Nature 492, 406–410 (2012). 5 10 15 20 $\Delta E = 6 \text{ meV}$ $\Delta E = 2 \text{ meV}$ -2 0

Theory for S = ½ Heisenberg Kagome AFM: Yan, Huse, and White. Science, 333 1173-1176 (2011). Jiang, Wang, and Balents. Nat. Physics 8, 902–905 (2012)

(H, H, 0)

Outline

- 1. Introduction to magnetic frustration and its ...
 - 🚺 Origin

- Detection
- 2. Frustration in the classical limit (dipolar spin ice)
- 3. Frustration in the quantum limit (quantum spin liquids)

4. Case Studies:

- Proximate Kitaev spin liquid in α -RuCl₃
- Phase competition in quantum XY pyrochlores

The Kitaev model is exactly solvable and gives both gapped and gapless spin liquid ground states!

Kitaev. Annals of Physics **321**, 2-111 (2006) Trebst. arXiv:1701.07056 (2017) Banerjee *et al.*, Science **356** 1055-1059 (2017) Kitaev-like exchange can actually be realized in some ions with large spin-orbit-coupling, such as Ir⁴⁺ and Ru³⁺

e.g. 1

Rau, Lee, and Kee. Ann. Rev. Cond. Matt Physics 7 195-221 (2016)

e.g. 1

In materials with edge sharing octahedral lattices, Heisenberg exchange is suppressed and Kitaev interactions can dominate!

Examples: Na₂IrO₃, α -Li₂IrO₃, and α -RuCl₃

Jackeli and Khaliullin Phys. Rev. Lett. **102**, 017205 (2009) Rau, Lee, and Kee. Ann. Rev. Cond. Matt Physics **7** 195-221 (2016)

e.g. 1 Although α -RuCl₃ is not a spin liquid (T_N = 7 K), inelastic neutron scattering has revealed proximate Kitaev behavior

Cao *et al.*, Phys. Rev. B **93**, 134423 (2016) Banerjee *et al.*, Science **356** 1055-1059 (2017)

Banerjee et al. npj Quantum Materials 3, 8 (2018).

The XY pyrochlores inhabit a rich phase space. Strong phase competition occurs at the boundaries.

$$H = \sum S_i^a J_{ij} S_j^b$$

 $\mathbf{J_{ij}} = \begin{bmatrix} \mathbf{J_{ZZ}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{J_{XX}} & \mathbf{J_{XY}} \\ \mathbf{0} & \mathbf{J_{XV}} & \mathbf{J_{XX}} \end{bmatrix}$

Yan et al., PRB 95, 094422 (2017).

In the $Er_2B_2O_7$ XY pyrochlores, replacement of Ti by Pt increases the frustration index by 4x.

Hallas, Gaudet, and Gaulin. Ann. Rev. Cond. Matt. Physics 9 105-124 (2018)

Inelastic neutron scattering measurements reveal a dispersive spin wave branch is missing in Er₂Pt₂O₇

Experiment

Calculation

0

Hallas et al. Phys. Rev. Lett. 119, 187201 (2017).

Er₂Pt₂O₇ is in close proximity to a phase competition induced spin liquid state

Hallas et al. Phys. Rev. Lett. 119, 187201 (2017).

The Quantum Materials Design Lab at the University of British Columbia

Graduate student and postdoctoral positions available for September 2019

Contact: alannah.hallas@gmail.com