Learning Quantum Emergence with Al

Eun-Ah Kim (Cornell)

CIFAR summer school 2018

Challenges of Complexity

Data Revolution in R-space

Tunneling Density of States, in 1962

PHYSICAL REVIEW

VOLUME 126, NUMBER 3

MAY 1, 1962

Tunneling into Superconductors at Temperatures below 1°K

I. GIAEVER, H. R. HART, JR., AND K. MEGERLE General Electric Research Laboratory, Schenectady, New York (Received November 16, 1961)

The density of states in four superconductors, lead, tin, indium, and aluminum, has been studied using the tunneling technique. The experimental results agree remarkably well with the Bardeen-Cooper-Schrieffer theory; however, two exceptions were found. The energy gap is not as sharp in the experiment as in the theory, but this may merely be due to imperfect samples. The density of states in lead has definite but small divergences from the theory.

Tunneling Density of States, in 1962

Tunneling Density of States, in 2000's

Imaging N(r,E): Scanning Tunneling Spectroscopy

Tunneling Density of States, in 2000's

Imaging N(r,E): Scanning Tunneling Spectroscopy

Data Revolution in Q-space

Sparse Data with Point Detectors

Comprehensive Data with Modern Detectors

High energy X-ray Data at CHESS > Possibly 5 TB per day

https://neutrons.ornl.gov/sequoia

Neutron data from Spallation Neutron Source > Possibly 200 GB per hour

Comprehensive, too comprehensive!

Data-driven Challenges?

NSF'S 10 BIG IDEAS

to new data-driven research challenges. The challenges posed by complex data elements such ... unstructured and heterogeneous data formats; streaming and dynamic data; complex dependence structures; missing, uncertain, and noisy information; sparsity; and information hidden at the noise level will require research that (a) addresses the core algorithmic, mathematical, and statistical principles; and (b) leads to new approaches, computational tools, and software for datadriven discovery...

https://www.nsf.gov/pubs/2018/nsf18542/nsf18542.htm

Astronmy, Particle Physics, Genomics, demographics, Medicine, ...

AI that "knows" what a galaxy should look like transforms a fuzzy image (left) into a crisp one (right).

Why ML for Quantum Matter?

- 1. Experimental and Computational Data-driven Challenges
- 2. Understanding = Knowledge Compression: Regression/Generation

Challenges of Complexity

New Insight through Synergy

GREG DUNN AND BRIAN EDWARDS

Machine Learning

Challenges of Complexity: Altzheimer

How Neural Network Learns to make the correct decision

Decision (regression) based on w(t) and b(t)

• Kid's decision upon dropping food...

□ Non-linear output, e.g., (rectifier)

 $a(x;w,b) = \max(0,wx+b)$

X1. Is mom watching?

inputs

X2. Has it been 5 sec?

Desired output for a particular input x

X3. Is this green?

X4. Is this dessert?

□ Cost Function, e.g. cross entropy

$$C(w,b) = -\frac{1}{n} \sum_{x} [y \ln a + (1-y) \ln(1-a)]$$

What can we do with ANN?

Slide from Kilian Weinberger, Cornell

Use Neural Networks to

Represent Many-Body Wave Functions Classify Numerical & Experimental Data

ML in Quantum Matter Physics

- Representing Wave function
 - Variational Wave Function represented through neural networks <u>https://arxiv.org/abs/1606.02318</u>, Carleo & Troyer, Science (2017)
 - Mapping Tensor Network to Neural network <u>https://arxiv.org/pdf/1701.04831.pdf</u> Tao Xiang
 - Neural Network Representation of Ground State WF of solvable models

Dong-Ling Deng, Xiaopeng Li, Das Sarma https://arxiv.org/abs/1609.09060 https://arxiv.org/abs/1701.04844, PRX (2017)

- Detecting Phases
 - \circ Supervised
 - 2D Ising model & 2D Ising lattice gauge theory <u>arXiv:1605.01735</u> Carrasquilla and Melko, Nature Physics (2017)
 - Finite-T repulsive U 3D Hubbard <u>arXiv:1609.02552</u> Melko, Khatami et al
 - Zero-T repulsive U honeycomb Hubbard <u>arXiv:1608.07848</u> Melko, Trebst et al
 - Fractional Chern Insulator, <u>arXiv:1611.01518</u>, Yi Zhang & E-AK, PRL, Physics Viewpoint (2017)
 - Z2 QSL with mutual statistics, <u>arXiv:1705.01947</u>, Yi Zhang, Melko, E-AK
 - MBL, <u>arXiv:1704.01578</u> Neupert et al
 - Hard-core bosons: superfluids, KT, Semi-unsupervised, <u>arXiv:1707.00663</u>, Broecker, Assaad, Trebst
 - Unsupervised (PCA and Autoencoders): so far, all classical.

arXiv:1606.00318 Lei Wang: 2D Ising

https://arxiv.org/abs/1703.02435 S. Wetzel: 2D Ising, 3D XY

https://arxiv.org/pdf/1704.00080.pdf Hu, Singh, Scalatter, Various spin models including highly frustrated three component (S in

{-1,0,1}) spin model).

https://arxiv.org/pdf/1706.07977.pdf Ce Wang &Hui Zhai, Classical frustrated spin model

- Theoretical Physics of Deep Neural Networks:
 - Connection between RG and fully connected deep network, arXiv:1410.3831, Mehta and Schwab

Used Neural Networks to

Represent

Many-Body Wave Functions

Carleo and Troyer, Science 355, 602 (Feb, 2017)

$$\Psi_{\mathcal{M}}(\mathcal{S};\mathcal{W}) = \sum_{\{h_i\}} \exp\left[\sum_j a_j \sigma_j^z + \sum_i b_i h_i + \sum_{ij} W_{ij} h_i \sigma_j^z\right]$$

The network parameters $\mathcal{W} = \{a, b, W\}$: A compact representation of the many-body state

Used Neural Networks to

Carrasquilla and Melko, Nat. Phys. ,13, 431 (May, 2017) Classify Numerical Data

- Supervised Learning on the (thermalized) raw configurations
- Speed-up from "seeing through" noisy data.

Bench-Marked against known results for

- The 1D Transverse Field Ising Model
- The Antiferromagnetic Heisenberg Model in 1D and 2D (square lattice)
- The Ferromagnetic Ising Model

But all Long-Range Ordered States are Classical!!

Beyond Long Range Order...

- 1. Discerning Topological Phases in Computational Data.
- 2. Seeking Theoretical Insights in Experimental Data from STM.

QPT

Mutual Statistics

CDW

Yi Zhang &E-AK, PRL **118**, 216401 (2017), Physics Viewpoint Yi Zhang , R. Melko &E-AK, PRB, 96, 245119 (2017)

Mesaros et al, &E-AK, 2018

Discerning Numerical Data

Chern Insulators

• Z2 Quantum Spin Liquid

Featured in Physics Editors' Suggestion

Quantum Loop Topography for Machine Learning

Yi Zhang and Eun-Ah Kim Phys. Rev. Lett. **118**, 216401 – Published 22 May 2017

PhySICS See Viewpoint: Neural Networks Identify Topological Phases

PHYSICAL REVIEW B 96, 245119 (2017)

Machine learning \mathbb{Z}_2 quantum spin liquids with quasiparticle statistics

Yi Zhang,^{1,*} Roger G. Melko,^{2,3} and Eun-Ah Kim^{1,†}

Interpretability: What did Neural Network Learn?

Discerning Numerical Data

Chern Insulators

• Z2 Quantum Spin Liquid

Featured in Physics Editors' Suggestion

Quantum Loop Topography for Machine Learning

Yi Zhang and Eun-Ah Kim Phys. Rev. Lett. **118**, 216401 – Published 22 May 2017

PhySICS See Viewpoint: Neural Networks Identify Topological Phases

PHYSICAL REVIEW B 96, 245119 (2017)

Machine learning \mathbb{Z}_2 quantum spin liquids with quasiparticle statistics

Yi Zhang,^{1,*} Roger G. Melko,^{2,3} and Eun-Ah Kim^{1,†}

Interpretability: What did Neural Network Learn? Chiral Topological Phase: Chern insulator TQPT

Model part I: Free Fermion

$$H(\kappa) = \sum_{\vec{r}} (-1)^{y} c^{\dagger}_{\vec{r}+\hat{x}} c_{\vec{r}} + [1 + (-1)^{y} (1 - \kappa)] c^{\dagger}_{\vec{r}+\hat{y}} c_{\vec{r}} + (-1)^{y} \frac{i\kappa}{2} \left[c^{\dagger}_{\vec{r}+\hat{x}+\hat{y}} c_{\vec{r}} + c^{\dagger}_{\vec{r}+\hat{x}-\hat{y}} c_{\vec{r}} \right] + \text{h.c.}$$
(2)

- Topological Quantum Phase Transition at κ=0.5
- κ<0.5 trivial insulator
- κ>0.5 Chern insulator

Quantum Loop Topography

QLT as the input vector

• Train with two known points:

к=0.1 (trivial), к=1 (topo)

- Smallest triangles (d_c=1) are sufficient in the gapped phases
- Once trained, get PD in 10min on a laptop.
- 99.9% accuracy in the phase verified with 2k test samples.

How to "image" Quantum Loops

- Organize loops dimension d=1
- Associate each triangles that in a vertex.
- Gap & quantiza
- Quasi-2D "ima

non-Chiral Topological Phase: Z2 quantum spin liquid

Yi Zhang, R. Melko & E-AK, PRB, 96, 245119 (2017)

Kitaev Model under field

$$H_{2D} = -J_x \sum_{s} A_s - J_z \sum_{p} B_p - h_x \sum_{b} \sigma_b^x - h_z \sum_{b} \sigma_b^z$$

- Finite region of Z2 spin liquid with finite correlation length
- Spinons and Visons
- Mutual statistics

$$H_{2D} = -J_x \sum_{s} A_s - J_z \sum_{p} B_p - h_x \sum_{b} \sigma_b^x - h_z \sum_{b} \sigma_b^z$$

• QLT designed to probe mutual statistics

$$\left\langle \sigma_r^x \sigma_{r'}^z \sigma_{r'}^x \sigma_r^z \right\rangle = \operatorname{tr} \left[\rho \sigma_r^x \sigma_r^z \sigma_{r'}^z \sigma_{r'}^x \right]$$

Kitaev Model under field

$$H_{3D} = -\lambda_b \sum_b S_b - \lambda_p \sum_p \prod_{j \in p} S_j$$

 2+1D Kitaev Model under field ~Classical Z2 gauge Higgs model in 3D

Yi Zhang, R. Melko & E-AK, PRB, 96, 245119 (2017)

Shallow Network, Deep Insight?

Hidden layer neurons actively involved in decision making for topological phases

What did the AI learn for CI?

- Largest w_1 weights associated with the *imaginary* parts of the $d_c=1$ loops
- All sites contribute evenly.

$$-4.84 \times max \left[0.208 \sum_{dc=1} i \mathsf{P}_{jk} \mathsf{P}_{kl} \mathsf{P}_{lj} + 3.73, 0 \right] + 9.03 > 0 \qquad \Longleftrightarrow \qquad \frac{1}{N} \sum_{dc=1} 2\pi i \mathsf{P}_{jk} \mathsf{P}_{kl} \mathsf{P}_{lj} > 0.392$$

What did the AI learn for CI?

A topological invariant, the Chern Number:

$$n_j = \frac{i}{2\pi} \int dk_x \, dk_y \, \left(\langle \partial_{k_x} u_j | \partial_{k_y} u_j \rangle - \langle \partial_{k_y} u_j | \partial_{k_x} u_j \rangle \right)$$

What did the Al learn for Z2 QSL?

What did the Al learn for Z2 QSL?

Full Non-linearity at play!
 Non-linear products of QLT?

Non-linearity = Large loops with local info !!

Local Probe Measurements: Dilemma of Large Data set

Local ordering patterns

• How to connect the data to theory?

Questions

1. Origin: r-space or k-space?

2. Nematic?

Strong Coupling Mechanism

• Frustration of AFM order upon doping

Zaanen, Gunnarson, PRB (1989) Low, Emery, Fabricious, Kivelson (1994) Vojta, Sachdev(1999) White, Scalapino,PRL(1998) Capponi, Poilblanc (2002) Corboz, Rice, Troyer, PRL (2014) Fischer, EAK *et al.*, NJP (2014)

Commensurate Charge Modulation, period 4a at p=1/8

Weak Coupling Mechnism

• Nesting driven Fermi surface instability

Comin et al., Science(2014)

Efitov et al, Nature Physics (2013) Pepin et al, PRB (2014) Wang, Chubukov, PRB (2014) Loder et al, PRL (2011)

Incommensurate, Q decrease with p

Different Hypothesis

ImageNet Classification with Deep Convolutional Neural Networks

Full 3D data

modulation amplitude!

With AI, Learning Quantum Emergence

The journey has just begun....

Acknowledgements

Yi Zhang A (Cornell) (

Andrej Mesaros (CNRS)

R. Melko (Waterloo)

E. Khatami

(SJSU

J.C. Davis (Cornell/BNL)

P. Ginsparg (Cornell)

K. Winberger (Cornell)

