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Data	Revolution	in	R-space



Tunneling	Density	of	States,
in	1962



Tunneling	Density	of	States,
in	1962

Giaever	et	al,	Phys.	
Rev.	126,	941	(1962)

Differential	conductance	dI/dV @	V	
proportional	to	N(E=eV)



Imaging N(r,E):
Scanning Tunneling Spectroscopy

Tunneling	Density	of	States,
in	2000’s



Imaging N(r,E):
Scanning Tunneling Spectroscopy

Tunneling	Density	of	States,
in	2000’s



Data	Revolution	in	Q-space
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Sparse	Data	with	Point	Detectors



Comprehensive	Data	with	Modern	Detectors

High	energy	X-ray	Data	at	CHESS
>	Possibly	5	TB	per	day

Neutron	data	from	Spallation	
Neutron	Source
>	Possibly	200	GB	per	hour

https://neutrons.ornl.gov/sequoia



Comprehensive,	too	comprehensive!



Data-driven	Challenges?





to new data-driven research challenges. The challenges 
posed by complex data elements such …unstructured 
and heterogeneous data formats; streaming and dynamic 
data; complex dependence structures; missing, 
uncertain, and noisy information; sparsity; and 
information hidden at the noise level will require research 
that (a) addresses the core algorithmic, mathematical, 
and statistical principles; and (b) leads to new 
approaches, computational tools, and software for data-
driven discovery…

https://www.nsf.gov/pubs/2018/nsf18542/nsf18542.htm





Astronmy,	Particle	Physics,	Genomics,	
demographics,	Medicine,	…

AI that “knows” what a galaxy should look like transforms a fuzzy 
image (left) into a crisp one (right).



1. Experimental	and	Computational								
Data-driven	Challenges	

2. Understanding	=	Knowledge	
Compression:	Regression/Generation

Why	ML	for	Quantum	Matter?
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New	Insight	through	Synergy

GREG DUNN AND BRIAN EDWARDS



Machine	Learning



but now: data is fmri scan, task is to determine probability of Alzheimers
We don't know how to write the program …

data

traditional cs:

write 
program

outputcomputer

traindata

output
computer

program

machine learning:
use training data and output to generate program,
which then generates output for test data.

testdata

computer output
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Learned	Machine

Challenges	of	Complexity:	Altzheimer



How	Neural	Network	Learns

to	make	the	correct	decision



Decision	(regression)	based	on	w(t)	and	b(t)

• Kid’s	decision	upon	dropping	food…
inputs

X1.	Is	mom	watching?

X2.	Has	it	been	5	sec?

X3.	Is	this	green?

X4.	Is	this	dessert?

Hidden	layer

N1.	Reptile	self

Non-linear	
output

N2.	Mature	self

𝑤"# ∗ 𝑥# +𝑏"

𝑤(( ∗ 𝑥( +𝑏(

N3.	…..

Y.	Gulp!

a

σ(a)



Gradient	Descent	with	a	Cost	Function	C(w,b)

inputs

X1.	Is	mom	watching?

X2.	Has	it	been	5	sec?

X3.	Is	this	green?

X4.	Is	this	dessert?

𝑦 𝑥 = 0
q Desired	output	for	a	particular	input	x

q Non-linear	output,	e.g.,	(rectifier)

𝑎(𝑥;𝑤, 𝑏) = max(0, 𝑤𝑥 + 𝑏)

q Cost	Function,	e.g.	cross	entropy

𝐶 𝑤, 𝑏 = −
1
𝑛
8 𝑦ln𝑎 + (1 − 𝑦)ln(1 − 𝑎) 	
�

<



What	can	we	do	with	ANN?



Perceptron

w

xiyi=+1
yj=�1
xj

output

input

h(x)

x1

x2

x3

b

w1

w2
w3

1
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h(x) = w>x+ bh(x) = w>x+ bh(x) = w>x+ b

1957

Slide	from	Kilian	Weinberger,	Cornell	

http://cornell.videonote.com/videos/1000481/play?t=1654.958939



Multi-Layer Perceptron

xiyi=+1
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�(a) = max(a, 0)
Rectified Linear Units 

(a.k.a. Neural Networks)
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Slide	from	Kilian	Weinberger,	Cornell	



Multi-Layer Perceptron
(a.k.a. Neural Networks, Deep Learning)

hiddeninput

output

h(x)

w

h(x) = w>�(W0�(W2�(W3�(W4x))))

hiddenhiddenhidden

[Rosenblatt        ]1961

Slide	from	Kilian	Weinberger,	Cornell	



Use	Neural	Networks	to	

Many-Body	Wave
Represent

Functions
Classify

Data
Numerical	&	Experimental



ML	in	Quantum	Matter	Physics
• Representing Wave function

o Variational Wave Function represented through neural networks
https://arxiv.org/abs/1606.02318, Carleo & Troyer, Science (2017)

o Mapping Tensor Network to Neural network
https://arxiv.org/pdf/1701.04831.pdf Tao Xiang

o Neural Network Representation of Ground State WF of solvable models
Dong-Ling Deng, Xiaopeng Li, Das Sarma
https://arxiv.org/abs/1609.09060
https://arxiv.org/abs/1701.04844, PRX (2017)

• Detecting Phases
o Supervised

§ 2D Ising model & 2D Ising lattice gauge theory arXiv:1605.01735 Carrasquilla and Melko, Nature Physics (2017)
§ Finite-T repulsive U 3D Hubbard arXiv:1609.02552 Melko, Khatami et al
§ Zero-T repulsive U honeycomb Hubbard arXiv:1608.07848 Melko, Trebst et al
§ Fractional Chern Insulator, arXiv:1611.01518, Yi Zhang & E-AK, PRL, Physics Viewpoint (2017)
§ Z2 QSL with mutual statistics, arXiv:1705.01947, Yi Zhang, Melko, E-AK 
§ MBL, arXiv:1704.01578 Neupert et al
§ Hard-core bosons: superfluids, KT, Semi-unsupervised, arXiv:1707.00663, Broecker, Assaad, Trebst

o Unsupervised (PCA and Autoencoders): so far, all classical.
arXiv:1606.00318 Lei Wang: 2D Ising

https://arxiv.org/abs/1703.02435 S. Wetzel: 2D Ising, 3D XY
https://arxiv.org/pdf/1704.00080.pdf Hu, Singh, Scalatter, Various spin models including highly frustrated three component (S in 
{-1,0,1}) spin model).
https://arxiv.org/pdf/1706.07977.pdf Ce Wang &Hui Zhai, Classical frustrated spin model

• Theoretical Physics of Deep Neural Networks: 
o Connection between RG and fully connected deep network, arXiv:1410.3831, Mehta and Schwab



Used	Neural	Networks	to	

Many-Body	Wave
Represent

Functions

:	A	compact representation	of	the	
many-body	state
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Carleo and	Troyer,	Science	355,	602	(Feb,	2017)

W = {a, b,W}The	network	parameters



Used	Neural	Networks	to	
Classify
Numerical	DataCarrasquilla and	Melko,	Nat.	

Phys.	,13,	431	(May,	2017)

• Supervised	Learning	on	the	(thermalized)	raw	
configurations

• Speed-up	from	“seeing	through”	noisy	data.



Bench-Marked	against	known	results	for

• The	1D	Transverse	Field	Ising Model
• The	Antiferromagnetic	Heisenberg	Model	in	1D	and	2D	
(square	lattice)

• The	Ferromagnetic	Ising Model



But	all	Long-Range	Ordered	States	are	Classical!!



1. Discerning	Topological	Phases	in	
Computational	Data.

Beyond	Long	Range	Order…

2. Seeking	Theoretical	Insights	in	
Experimental	Data	from	STM.	



Yi	Zhang	,	R.	Melko &E-AK,	PRB,	
96,	245119	(2017) Mesaros et	al,	&E-AK,	2018

Yi	Zhang	&E-AK,	PRL	118,	216401	(2017),
Physics	Viewpoint	

QPT Mutual	Statistics CDW



Yi	Zhang	

Discerning	Numerical	Data

• Chern Insulators

PHYSICAL REVIEW B 96, 245119 (2017)

Machine learning Z2 quantum spin liquids with quasiparticle statistics

Yi Zhang,1,* Roger G. Melko,2,3 and Eun-Ah Kim1,†
1Department of Physics, Cornell University, Ithaca, New York 14853, USA

2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
3Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1, Canada
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After decades of progress and effort, obtaining a phase diagram for a strongly correlated topological system still
remains a challenge. Although in principle one could turn to Wilson loops and long-range entanglement, evaluating
these nonlocal observables at many points in phase space can be prohibitively costly. With growing excitement
over topological quantum computation comes the need for an efficient approach for obtaining topological phase
diagrams. Here we turn to machine learning using quantum loop topography (QLT), a notion we have recently
introduced. Specifically, we propose a construction of QLT that is sensitive to quasiparticle statistics. We then use
mutual statistics between the spinons and visons to detect a Z2 quantum spin liquid in a multiparameter phase
space. We successfully obtain the quantum phase boundary between the topological and trivial phases using a
simple feed-forward neural network. Furthermore, we demonstrate advantages of our approach for the evaluation
of phase diagrams relating to speed and storage. Such statistics-based machine learning of topological phases
opens new efficient routes to studying topological phase diagrams in strongly correlated systems.

DOI: 10.1103/PhysRevB.96.245119

I. INTRODUCTION

Despite much interest in topological phases of matter, the
search for and detection of the finite regions of phase space that
support topological order has been a longstanding challenge.
This is a nontrivial challenge because microscopic models of
strongly correlated topological order are usually established in
exactly solvable models at first [1– 7]. Nevertheless, universal
properties of topological phases from low-energy effective
theories, i.e., topological quantum field theories, provide a
broader support for the understanding of topological phases.
Naturally, much effort has gone into perturbing exactly solv-
able models both theoretically [8– 13] and numerically [14– 20]
to investigate the stability of the associated topological phases
beyond the fine-tuned solvable points. Moreover, growing
enthusiasm over the idea of using exotic statistics of excitations
for topological quantum computation [1,3,21] and the experi-
mental quests driven by related proposals [22,23] have raised
the need to understand the stability of various topological
phases and establish the corresponding phase diagrams.

It is perhaps the key interesting feature of topological
phases that simultaneously underlies challenges in their
numerical diagnosis: the absence of local order parameter.
Nevertheless, various measures of non-local correlations have
enabled progress in evaluating phase diagrams and detecting
phase transitions. Among the most successful approaches are
expectation value of Wilson loop [24,25] and entanglement
entropy [19,26– 28]. Unfortunately, the nonlocal nature of the
respective estimators can make the algorithms for measuring
these costly in general. In addition, in some cases one can
use a thermodynamic signature such as specific heat to detect
the phase transition [15,16,26,29]. Although a singularity in

*frankzhangyi@gmail.com
†eun-ah.kim@cornell.edu

specific heat is an effective indicator of a phase transition, it has
the drawback that it does not reveal any information regarding
the topological aspects of the associated phases. Hence, in ad-
dition to these standard techniques, developing a cost-effective
approach that can map out a phase diagram with topological
quantum phase transitions using key features of the topological
phase, such as nontrivial statistics, is highly desirable.

A new strategy for a dramatic speed-up in the approximate
evaluation of phase diagrams is to use neural-network-based
machine learning [30]. Efforts in this direction fall into one
of two broad categories: unsupervised learning and supervised
learning. In the unsupervised context, the task of classifying
raw state configurations with phase labels (e.g., “clustering”
to find hidden patterns or grouping in data) is one actively
pursued goal. Several different approaches have been used,
including principal component analysis and neural networks
[31– 33], resulting in a rapidly developing subfield. Within
the supervised learning approach, the algorithmic strategy is
perhaps more well established. There, neural networks can
be trained with data in the form of raw state configurations,
each labeled by its respective phase. Once the neural network
is trained, a new (“test”) data set is given to it, and it is
tasked with labeling each configuration with one of the phases
it has been trained to recognize. This approach has been
successful in obtaining phase diagrams with conventional
ordered phases [34– 36], many-body localizations [37], or
chiral topological phases [38– 40]. Nevertheless, identifying
nonchiral topological order remains surprisingly challenging
for such supervised machine-learning approaches [34].

Here we propose a learning strategy based on the nontrivial
statistics between fundamental excitations—the key defining
property of correlated topological phases. This approach is
inspired by earlier efforts to calculate quasiparticle statistics
that rely on evaluating quantities reflecting long-range entan-
glement of correlated topological phases [41– 48]. Since such
calculations are typically computationally costly, attempting

2469-9950/2017/96(24)/245119(9) 245119-1 ©2017 American Physical Society

• Z2	Quantum	Spin	Liquid

Interpretability:	
What	did	Neural	Network	Learn?
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Chiral	Topological	Phase:
Chern insulator	TQPT



Model	part	I:	Free	Fermion

• Topological	Quantum	Phase	
Transition	at	κ=0.5

2

FIG. 1. Schematic illustration of our machine learning algo-
rithm consisting of TQL topography and a neural network
architecture. The TQL topography for each site j consists
of 4 TQL’s of length d = 1. One TQL of length d = 3 also
shown for illustration. All TQL’s of length  dc form aD(dc)-
dimensional vector for each site j, e.g., D(1) = 4 on a square
lattice.

complex numbers on each lattice site j, where dc is the
cut-o↵ length and D(dc) is the total number of triangles
of length  dc with one vertex at site j (see Fig. 1).
Each entry of this vector is a chained product of two-
point correlators on each side of a triangle that acts on
independent Monte Carlo steps without averaging over
Markov chain. For instance TQL data associated with
site j for the triangle made of sites k and l would be

P̃jkP̃klP̃lj (1)

where P̃jk ⌘
D
c†jck

E

↵
for free fermions evaluated with a

particular Monte Carlo sample ↵. Hence TQL topogra-
phy can be systematically expanded to include more and
more non-local correlations involving site j by increasing
cut-o↵ length scale dc. Conversely, when the outcome
converges for small dc, the TQL topography will be a
three dimensional image that is quasi two-dimensional.
Clearly TQL topography is not restricted to any partic-
ular lattice geometry as di↵erent lattice geomtery will
only enter through di↵erent dimension D(dc) for given
dc. Moreover, the entire procedure takes place in real
space without any need for diagonalization or flux inser-
tion and the procedure does not depend on translational
invariance. Hence TQL topography should be able to
naturally accommodate heterogeneity, disorder and in-
teraction by construction.[36] In the rest of this paper we
use VMC, without loss of generality, to build the TQL
topography by sampling the many-body ground state of
interest at randomly selected Monte Carlo steps (see Ap-
pendix).

Once the TQL topography is obtained for a given
model, we feed the image x into a neural network(Fig. 1).
For this, we designed a feed-forward fully-connected neu-
ral network with only one hidden layer consisting of
n = 10 sigmoid neurons. The network takes the TQL

FIG. 2. Model illustration of Eq. 2. The unit cell consists of
two sublattice sites A and B. Hopping strengths are di↵erent
for horizontal and vertical bonds and staggered. The diagonal
hopping is i (�i) along (against) the arrow. The red arrows
denotes a triangle that defines the operators of our TQL.

topography as an input x and each neurons processes the
input through independent weights and biases w · x+ b.
After the sigmoid function, the outcome is fed forward to
be processed by the output neuron. The final output y
corresponds to the neural network’s judgement whether
the input TQL topography is topological. We use cross
entropy as the cost function with L2 regularization to
avoid over-training and a mini-batch size of 10[21]. For
the rest of this paper, we use randomly-mixed 20000 data
samples within the VMC Metropolis of the topological
and trivial phases as the training group. We reserve a
separate group of 4000 data samples (also half trivial and
half topological) for validation purposes including learn-
ing speed control and termination[21]. Then the resulting
neural network is used to identify di↵erent models also
processed using TQL topography, whose output is sta-
tistically analyzed over the Monte Carlo samples for the
ratio p of a ‘topological’ response.
Topological quantum phase transition in a free fermion

model– We first apply the TQL topography-based ma-
chine learning to the topological quantum phase transi-
tion between a trivial insulator and a Chern insulator.
Consider the following tight-binding model on a square
lattice:

H() =
X

~r

(�1)yc†~r+x̂c~r + [1 + (�1)y(1� )]c†~r+ŷc~r

+ (�1)y
i

2

h
c†~r+x̂+ŷc~r + c†~r+x̂�ŷc~r

i
+ h.c. (2)

where ~r = (x, y) (see Fig. 2) and  is a tuning parameter
with 0    1. The  = 1 limit is the ⇡-flux square
lattice model for a Chern insulator with a Chern number
C = 1 [5], while the  = 0 limit amounts to decoupled
two-leg ladders. H() interpolates between a Chern insu-
lator and a trivial insulator with a topological quantum
phase transition at  = 0.5. To observe the quantum

• κ<0.5		trivial	insulator
• κ>0.5		Chern insulator



Quantum	Loop	Topography

• QLT	data	entry	for	input	x
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two-leg ladders. H() interpolates between a Chern insu-
lator and a trivial insulator with a topological quantum
phase transition at  = 0.5. To observe the quantum
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FIG. 1. Schematic illustration of our machine learning algo-
rithm consisting of TQL topography and a neural network
architecture. The TQL topography for each site j consists
of 4 TQL’s of length d = 1. One TQL of length d = 3 also
shown for illustration. All TQL’s of length  dc form aD(dc)-
dimensional vector for each site j, e.g., D(1) = 4 on a square
lattice.

complex numbers on each lattice site j, where dc is the
cut-o↵ length and D(dc) is the total number of triangles
of length  dc with one vertex at site j (see Fig. 1).
Each entry of this vector is a chained product of two-
point correlators on each side of a triangle that acts on
independent Monte Carlo steps without averaging over
Markov chain. For instance TQL data associated with
site j for the triangle made of sites k and l would be

P̃jkP̃klP̃lj (1)

where P̃jk ⌘
D
c†jck
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↵
for free fermions evaluated with a

particular Monte Carlo sample ↵. Hence TQL topogra-
phy can be systematically expanded to include more and
more non-local correlations involving site j by increasing
cut-o↵ length scale dc. Conversely, when the outcome
converges for small dc, the TQL topography will be a
three dimensional image that is quasi two-dimensional.
Clearly TQL topography is not restricted to any partic-
ular lattice geometry as di↵erent lattice geomtery will
only enter through di↵erent dimension D(dc) for given
dc. Moreover, the entire procedure takes place in real
space without any need for diagonalization or flux inser-
tion and the procedure does not depend on translational
invariance. Hence TQL topography should be able to
naturally accommodate heterogeneity, disorder and in-
teraction by construction.[36] In the rest of this paper we
use VMC, without loss of generality, to build the TQL
topography by sampling the many-body ground state of
interest at randomly selected Monte Carlo steps (see Ap-
pendix).

Once the TQL topography is obtained for a given
model, we feed the image x into a neural network(Fig. 1).
For this, we designed a feed-forward fully-connected neu-
ral network with only one hidden layer consisting of
n = 10 sigmoid neurons. The network takes the TQL

FIG. 2. Model illustration of Eq. 2. The unit cell consists of
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topography as an input x and each neurons processes the
input through independent weights and biases w · x+ b.
After the sigmoid function, the outcome is fed forward to
be processed by the output neuron. The final output y
corresponds to the neural network’s judgement whether
the input TQL topography is topological. We use cross
entropy as the cost function with L2 regularization to
avoid over-training and a mini-batch size of 10[21]. For
the rest of this paper, we use randomly-mixed 20000 data
samples within the VMC Metropolis of the topological
and trivial phases as the training group. We reserve a
separate group of 4000 data samples (also half trivial and
half topological) for validation purposes including learn-
ing speed control and termination[21]. Then the resulting
neural network is used to identify di↵erent models also
processed using TQL topography, whose output is sta-
tistically analyzed over the Monte Carlo samples for the
ratio p of a ‘topological’ response.
Topological quantum phase transition in a free fermion

model– We first apply the TQL topography-based ma-
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teraction by construction.[36] In the rest of this paper we
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topography by sampling the many-body ground state of
interest at randomly selected Monte Carlo steps (see Ap-
pendix).

Once the TQL topography is obtained for a given
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avoid over-training and a mini-batch size of 10[21]. For
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and trivial phases as the training group. We reserve a
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FIG. 3. The ratio p of ‘topological’ response from the neural
network on the model in Eq. 2 over the parameter region
 2 [0.1, 1, 0]. The neural network is trained with  = 0.1
for y = 0 and  = 1 for y = 1. The green square symbols
represent the results using fermion occupation configurations
as an input data. dc = 1, 2, 3 are di↵erent cut-o↵ length
scales of the TQLs included in both the training and testing
inputs. Red dashed line marks the expected topological phase
transition at  = 0.5.

phase transition, one should assume translational invari-
ance and Fourier transform the Hamiltonian Eq. (2) to
detect the change in the integral of the Berry curvature
of the band structure

H () =
X

k

[2 cos ky + 2i sin ky (1� +  sin kx)] c
†
k,Ack,B

+2 cos kx(c
†
k,Ack,A � c†k,Bck,B) + h.c. (3)

where A and B label the two sublattices. For this simple
two-band model with two Dirac points at (⇡/2,⇡/2) and
(�⇡/2,⇡/2) it is su�cient to observe that the mass terms
at the two Dirac points have opposite signs for  > 0.5.

Our complete knowledge of its topological phase dia-
gram makes the model in Eq. 2 an ideal testing ground
for our algorithm. Hence we implement supervised ma-
chine learning on the models using two extreme points of
 = 1.0 (Chern insulator) and  = 0.1 (trivial insulator)
for training.[37] The system size is 12⇥12 lattice spacings
unless noted otherwise. First we establish that indeed a
single point based input of the fermion occupation con-
figurations n(~r) = c†~rc~r fails to transmit the topological
information to the neural network, as we expected. With
n(~r) as an input, the learning is ine�cient and the neu-
ral network has di�culty picking up a clear structure
even after a long period of training. Such struggle is sig-
naled by high yields in the cost function[21]. Moreover,
as shown in Fig. 3, the neural network keeps incorrectly
judging the system to be a trivial insulator for all values
of , except for  = 1.0 where the result returns > 80%

‘nontrivial’. This indicates that the neural network un-
fortunately does not pick up the universal features about
the topological phase, but rather memorizes the more de-
tailed information of the specific model at  = 1.0 itself.
The contrast in the results based on TQL topography

input is striking. Now we use TQL topography from 2000
VMC samples for each  2 [0.1, 1.0] as our input, and
compare the output of each Monte Carlo instance, which
is topological if y > 0.5 and trivial otherwise. In order to
look for the convergence upon change of the TQL cut-o↵
length scale, we test di↵erent cut-o↵s dc = 1, 2, 3. Now
the network returns results with a> 99.9% accuracy deep
in either the topological phase or trivial phase. Moreover,
it estimates the phase diagram and the location of the
phase transitions rather accurately, i.e., right about ex-
pected critical point the proposed probability p ⇡ 0.5 in-
dicating that the neural network is maximally confused.
Note the highly symmetric departure from p ⇡ 0.5 on
both sides of  = 0.5 is reflects the symmetry in gap
closing and reopening in the model of Eq. (2) and not
generic. Unexpected remarkable feature is the rapid con-
vergence over the cut-o↵ scale dc. Fig. 3 shows that the
TQL topography with cut-o↵ dc = 1 is already su�cient
to detect the topological phase with high fidelity.

Generalizations– In addition to the calculational e�-
ciency, a major appeal of our approach is its versatility.
First we consider a fractional Chern insulator (FCI) as an
example of strongly strongly-correlated topological phase
and present preliminary results. Here the ⌫ = 1/3 frac-
tional Chern insulator (FCI) is represented by a VMC
wave function that is the free fermion wave function of
the model in Eq. 2 raised to the third power[18]. Sur-
prisingly the neural network trained on non-interacting
parent Chern insulator already serves as a ‘poor man’s
network’ (see the inset of Fig. 4). This network recog-
nizes that FCI phase is distinct from the parent Chern
insulator and hence it only gives p ⇠ 0.01 ‘nontrivial’
response for the FCI phase. Nevertheless it also notices
that FCI is a topologically distinct state from the trivial
insulator since p ⇠ 0.01 is large enough to exclude statis-
tical error. Once trained with the FCI wave function at
two reference points  = 0.1 for trivial and  = 1.0 for
FCI, the network once again detects FCI phase with high
fidelity. Especially, the network succeeds in recognizing
all degenerate ground states even if the training only con-
tains one of them, see Fig. 4[38]. Although more careful
and thorough machine learning treatment of correlated
topological phase could involve more generic operators
other than the two-fermion operators for the TQLs, cur-
rent results already seem rather satisfactory.

Now we demonstrate that TQL topography contains
the necessary geometrical information of the lattice struc-
ture by considering a variation of model Eq. 2 for the
honeycomb lattice (see Appendix). On one hand, the net-
work trained only with TQL topography from the square
lattice model fails to recognize CI state in the honeycomb

κ=0.1	(trivial),	κ=1 (topo)

• Smallest	triangles	(dc=1)	are	
sufficient	in	the	gapped	phases

• Once	trained,	get	PD	in	10min	on	
a	laptop.

• 99.9%	accuracy	in	the	phase	
verified	with	2k	test	samples.
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FIG. 1. Schematic illustration of our machine learning algo-
rithm consisting of TQL topography and a neural network
architecture. The TQL topography for each site j consists
of 4 TQL’s of length d = 1. One TQL of length d = 3 also
shown for illustration. All TQL’s of length  dc form aD(dc)-
dimensional vector for each site j, e.g., D(1) = 4 on a square
lattice.

complex numbers on each lattice site j, where dc is the
cut-o↵ length and D(dc) is the total number of triangles
of length  dc with one vertex at site j (see Fig. 1).
Each entry of this vector is a chained product of two-
point correlators on each side of a triangle that acts on
independent Monte Carlo steps without averaging over
Markov chain. For instance TQL data associated with
site j for the triangle made of sites k and l would be

P̃jkP̃klP̃lj (1)

where P̃jk ⌘
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c†jck
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for free fermions evaluated with a

particular Monte Carlo sample ↵. Hence TQL topogra-
phy can be systematically expanded to include more and
more non-local correlations involving site j by increasing
cut-o↵ length scale dc. Conversely, when the outcome
converges for small dc, the TQL topography will be a
three dimensional image that is quasi two-dimensional.
Clearly TQL topography is not restricted to any partic-
ular lattice geometry as di↵erent lattice geomtery will
only enter through di↵erent dimension D(dc) for given
dc. Moreover, the entire procedure takes place in real
space without any need for diagonalization or flux inser-
tion and the procedure does not depend on translational
invariance. Hence TQL topography should be able to
naturally accommodate heterogeneity, disorder and in-
teraction by construction.[36] In the rest of this paper we
use VMC, without loss of generality, to build the TQL
topography by sampling the many-body ground state of
interest at randomly selected Monte Carlo steps (see Ap-
pendix).

Once the TQL topography is obtained for a given
model, we feed the image x into a neural network(Fig. 1).
For this, we designed a feed-forward fully-connected neu-
ral network with only one hidden layer consisting of
n = 10 sigmoid neurons. The network takes the TQL

FIG. 2. Model illustration of Eq. 2. The unit cell consists of
two sublattice sites A and B. Hopping strengths are di↵erent
for horizontal and vertical bonds and staggered. The diagonal
hopping is i (�i) along (against) the arrow. The red arrows
denotes a triangle that defines the operators of our TQL.

topography as an input x and each neurons processes the
input through independent weights and biases w · x+ b.
After the sigmoid function, the outcome is fed forward to
be processed by the output neuron. The final output y
corresponds to the neural network’s judgement whether
the input TQL topography is topological. We use cross
entropy as the cost function with L2 regularization to
avoid over-training and a mini-batch size of 10[21]. For
the rest of this paper, we use randomly-mixed 20000 data
samples within the VMC Metropolis of the topological
and trivial phases as the training group. We reserve a
separate group of 4000 data samples (also half trivial and
half topological) for validation purposes including learn-
ing speed control and termination[21]. Then the resulting
neural network is used to identify di↵erent models also
processed using TQL topography, whose output is sta-
tistically analyzed over the Monte Carlo samples for the
ratio p of a ‘topological’ response.
Topological quantum phase transition in a free fermion

model– We first apply the TQL topography-based ma-
chine learning to the topological quantum phase transi-
tion between a trivial insulator and a Chern insulator.
Consider the following tight-binding model on a square
lattice:
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where ~r = (x, y) (see Fig. 2) and  is a tuning parameter
with 0    1. The  = 1 limit is the ⇡-flux square
lattice model for a Chern insulator with a Chern number
C = 1 [5], while the  = 0 limit amounts to decoupled
two-leg ladders. H() interpolates between a Chern insu-
lator and a trivial insulator with a topological quantum
phase transition at  = 0.5. To observe the quantum
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Kitaev Model	under	field

3

Simons theory with K-matrix[39, 40]:

LCS =
KIJ

4⇡
✏µ⌫�aI

µ@⌫a
J
� � aI

µ jµI (1)

where aI
µ are U(1) gauge fields coupled to quasi-particle cur-

rents jµI , I = 1, 2, · · · labels the fundamental types of quasi-
particle excitations. For instance, quantum Hall e↵ect with
filling ⌫ = 1/m is represented by K11 = m, and the low-energy
e↵ective theory of Z2 quantum spin liquid is characterized by

K =
 

0 2
2 0

!
.

One can then define the Wilson loop operators T I
x = ei✓Ix =

exp
 
i
↵

aI
xdx

!
and T J

y = ei✓J
y = exp

 
i
↵

aJ
y dy

!
around dis-

tinct cycles of a non-trivial manifold labeled, which are la-
beled as x̂ and ŷ, respectively. In terms of ✓’s, the action

S =
1

2⇡

↵

KIJ✓
I
x✓̇

J
y dt

suggests
h
✓I

x, ✓
J
y

i
= i2⇡K�1

IJ , or

T I
xT J

y = T J
y T I

xei2⇡K�1
IJ (2)

Likewise, statistical information 2⇡K�1
IJ is also expected to

be present between other loop operators, replacing Eq. 2 with

T I
C1
= exp

 
i
↵

C1

aI
l dl

!
and T J

C2
= exp

 
i
↵

C2

aJ
l dl

!
for intersect-

ing C1 and C2. Such loop operators picture quasi-particle mo-
tions with nontrivial knots between the quasi-particle world-
lines, see Fig. 2b for an example at a minimally non-local
scale. We therefore wish to detect topological phases based
upon such operators within local patches instead of the global
Wilson loops. However, there are two major obstacles: (1)
unlike the global Wilson loops, the statistical information are
less explicit nor strictly formulated in these minimally non-
local string operator, especially due to short-distance details
in the presence of a finite correlation length and lattice dis-
cretization; and (2) T I

C1
and T J

C2
only represents the Chern

Simons action and the corresponding quasi-particle statistics
within the local patch where C1 and C2 reside, while for a
comprehensive analysis of the global phase, we need informa-
tion over the ensemble of T I

C1
and T J

C2
from a large number of

local patches throughout the system. We use supervised ma-
chine learning with an artificial neural network to overcome
these di�culties and analyze the ‘big data’ from QLT, see Fig.
1 for an illustration of the architecture. In the rest of the pa-
per, we present a successful example of such architecture on
the Z2 quantum spin liquid.

Z2 QUANTUM SPIN LIQUID AND QUANTUM LOOP
TOPOGRAPHY

The Z2 quantum spin liquid is the poster-child example of
a state defined on a lattice[1, 41] with a non-chiral topologi-

cal order[1, 41]. It is a strongly-correlated quantum spin liq-
uid with four-fold ground-state degeneracy separated from the
excited states with a full gap when defined on a torus. Its non-
chiral nature and the lack of topological edge states make the
detection of Z2 quantum spin liquid even more elusive. Im-
portantly, its fundamental types of quasi-particle excitations,
the spinon and the vision, both have trivial self statistics yet
semionic mutual statistics, suggesting that the system picks
up an overall phase factor ei✓ with statistical angle ✓ = ⇡ upon
braiding a spinon around a vision, or vice versa.

Microscopically, we consider the following model on a
two-dimensional square lattice[13]:

H2D = �Jx

X

s

As � Jz

X

p

Bp � hx

X

b

�x
b � hz

X

b

�z
b (3)

where the spin-1/2 lives on the square-lattice bonds, As =Q
j2s �

x
j and Bp =

Q
j2p �

z
j are the products of spin operators

around a site s and on the boundaries of a plaquette p, respec-
tivelyFigure illustration of toric code necessary or not?. The
hz and hx terms are external magnetic fields in the x̂ and ẑ di-
rections, respectively. For the rest of the paper, we consider
system size 12 ⇥ 12 unless noted otherwise.

At the special point hx = hz = 0, H2D amounts to Ki-
taev’s toric code[1]. The exact solvability of the toric code
has allowed for much progress in explicit understanding of
Z2 quantum spin liquid. Since all As and Bp commute in the
Hamiltonian, the ground states are simply given by allowing
As = Bp = 1, while the quasi-particle excitations are associ-
ated with violations that cost energy penalties: a spinon at site
s with As = �1 and a vision in plaquette p with Bp = �1. Note
that a string of �z (�x) operators

Q
j2C �

z
j (

Q
j2C �

x
j) moves

one spinon (vision) from one end of C to the other end, see
Fig. 2a. To illustrate the mutual statistics, consider the pro-
cess

Q
j2p �

z
j that circles a spinon around a plaquette p: it

gives rise to a phase factor Bp, which is �1 if there exists a
vision inside the plaquette.

The toric code is, however, non-generic - its correlation
length is zero and quasi-particles are strictly not allowed in
the ground states. Since machine learning prefers a more di-
verse training set, and at the same time as a finite phase space
is needed for benchmark, we consider presence of magnetic
fields. The hz (hx) magnetic field makes it more preferential
to generate spinon (vision) pairs, which condenses and gives
rise to a spin-polarized phase beyond a critical field strength.
The two topologically-trivial phases, usually called magneti-
cally ordered phase and disordered phase at either large hz or
large hx are dual to each other under �x $ �z transformation.
The resulting phase diagram was discussed schematically in
Ref. 11 and then numerically in Ref. 13.

In practice, Eq. 3 can be mapped to a three-dimensional
classical system - the (anisotropic) Z2 gauge Higgs model[11]
via imaginary time evolution and Trotter decomposition[13].
After separating the imaginary time into a large number
of small intervals � = n�⌧ the operator exp (��H) for
the quantum partition function can be approximated by⇥
exp (��⌧Hx) exp (��⌧Hz)

⇤n. Hz and Hx are the �z and �x

• Finite	region	of	Z2	spin	liquid	
with	finite	correlation	length

• Spinons and	Visons	

• Mutual	statistics
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1 for an illustration of the architecture. In the rest of the pa-
per, we present a successful example of such architecture on
the Z2 quantum spin liquid.

Z2 QUANTUM SPIN LIQUID AND QUANTUM LOOP
TOPOGRAPHY

The Z2 quantum spin liquid is the poster-child example of
a state defined on a lattice[1, 41] with a non-chiral topologi-

cal order[1, 41]. It is a strongly-correlated quantum spin liq-
uid with four-fold ground-state degeneracy separated from the
excited states with a full gap when defined on a torus. Its non-
chiral nature and the lack of topological edge states make the
detection of Z2 quantum spin liquid even more elusive. Im-
portantly, its fundamental types of quasi-particle excitations,
the spinon and the vision, both have trivial self statistics yet
semionic mutual statistics, suggesting that the system picks
up an overall phase factor ei✓ with statistical angle ✓ = ⇡ upon
braiding a spinon around a vision, or vice versa.

Microscopically, we consider the following model on a
two-dimensional square lattice[13]:

H2D = �Jx

X

s

As � Jz

X

p

Bp � hx

X

b

�x
b � hz

X

b

�z
b (3)

where the spin-1/2 lives on the square-lattice bonds, As =Q
j2s �

x
j and Bp =

Q
j2p �

z
j are the products of spin operators

around a site s and on the boundaries of a plaquette p, respec-
tivelyFigure illustration of toric code necessary or not?. The
hz and hx terms are external magnetic fields in the x̂ and ẑ di-
rections, respectively. For the rest of the paper, we consider
system size 12 ⇥ 12 unless noted otherwise.

At the special point hx = hz = 0, H2D amounts to Ki-
taev’s toric code[1]. The exact solvability of the toric code
has allowed for much progress in explicit understanding of
Z2 quantum spin liquid. Since all As and Bp commute in the
Hamiltonian, the ground states are simply given by allowing
As = Bp = 1, while the quasi-particle excitations are associ-
ated with violations that cost energy penalties: a spinon at site
s with As = �1 and a vision in plaquette p with Bp = �1. Note
that a string of �z (�x) operators

Q
j2C �

z
j (

Q
j2C �

x
j) moves

one spinon (vision) from one end of C to the other end, see
Fig. 2a. To illustrate the mutual statistics, consider the pro-
cess

Q
j2p �

z
j that circles a spinon around a plaquette p: it

gives rise to a phase factor Bp, which is �1 if there exists a
vision inside the plaquette.

The toric code is, however, non-generic - its correlation
length is zero and quasi-particles are strictly not allowed in
the ground states. Since machine learning prefers a more di-
verse training set, and at the same time as a finite phase space
is needed for benchmark, we consider presence of magnetic
fields. The hz (hx) magnetic field makes it more preferential
to generate spinon (vision) pairs, which condenses and gives
rise to a spin-polarized phase beyond a critical field strength.
The two topologically-trivial phases, usually called magneti-
cally ordered phase and disordered phase at either large hz or
large hx are dual to each other under �x $ �z transformation.
The resulting phase diagram was discussed schematically in
Ref. 11 and then numerically in Ref. 13.

In practice, Eq. 3 can be mapped to a three-dimensional
classical system - the (anisotropic) Z2 gauge Higgs model[11]
via imaginary time evolution and Trotter decomposition[13].
After separating the imaginary time into a large number
of small intervals � = n�⌧ the operator exp (��H) for
the quantum partition function can be approximated by⇥
exp (��⌧Hx) exp (��⌧Hz)

⇤n. Hz and Hx are the �z and �x

• QLT	designed	to	probe	mutual	
statistics
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FIG. 2. (a) Illustration of the lattice spin model in Eq. 3. The spin-
1/2’s reside on the bonds of the two-dimensional square lattice. A
string of �z (�x) operators creates at its two ends a pair of spinons
(visions) denoted as ‘e’ (‘m’), or equivalently, moves one spinon (vi-
sion) from one end to the other. (b) Illustration of a nontrivial knot
between the world-lines of a spinon and a vision. The operator cor-
responding to the process is
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z
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E
= tr
h
⇢�x

r�
z
r�

z
r0�

x
r0
i
, where

�z
r0 and �z

r (�x
r and �x

r0 ) moves a spinon (vision) along the x̂ and ŷ
directions, respectively. The vision and spinon trajectories intersect
twice at r and r0, then the density matrix ⇢ weighs the quasi-particle
correlations between the initial and final positions and e↵ectively
closes the trajectories.

terms, and determines the statistical weight of spin config-
urations on each imaginary time slice and between adjacent
slices of a classical system with Ising spin-1/2 living on the
cubic lattice bonds. After careful treatment of the gauge re-
dundancy, the Jx, hz, hx and Jz terms in Eq. 3 are interpreted as
vertical bond, horizontal bond, vertical plaquette and horizon-
tal plaquette terms in the anisotropic Z2 gauge Higgs model.
For simplicity, we consider the isotropic case where

H3D = ��b

X

b

S b � �p

X

p

Y

j2p

S j (4)

at unit temperature � = 1, with the following relations be-
tween the related parameters:

�b = hz�⌧ = �
1
2

ln tanh Jx�⌧

�p = Jz�⌧ = �
1
2

ln tanh hx�⌧ (5)

in the limit of small �⌧. We note that the method we will
present also o↵ers an alternative and convenient signature of
de-confinement[42] in an equivalent lattice gauge theory, even
though our focus of discussion is mainly on the Z2 quantum
spin liquids. For the rest of the paper, we use �b and �p as
parameters in the phase space for benchmark consistency with
Ref. 13.

The equivalent three-dimensional classical model in Eq. 4
o↵ers a convenient way to measure operators, which are sam-
pled within classical Monte Carlo Metropolis with both on-
site and cluster updates:

D
Ô
E
= tr
h
⇢2DÔ

i
=
X

↵�

⇢�↵↵
D
Ô
E
↵

(6)

where ⇢2D =
P
↵�� ⇢

�
↵� |↵i h�| is the quantum density matrix of

the original two-dimensional system in Eq. 3. ↵ and � are two-

dimensional spin-1/2 configurations. ⇢�↵� = exp
⇣
�E↵��

⌘
/Z is

the thermal statistical weight of the three-dimensional clas-
sical configuration with open boundary conditions ↵ and �
along the imaginary time direction and bulk configuration �,
whose energy E↵�� is given by Eq. 4. Similarly, ⇢�↵↵ is the nor-
malized and positive-definite weight with periodic boundary
condition ↵, serving as the sample probability in our Monte
Carlo metropolis. Then the quantity that contributes to the
operator expectation value is
D
Ô
E
↵
=
X

�

D
↵
���Ô
��� �
E
· ⇢�↵�/⇢

�
↵↵ =

X

�

D
↵
���Ô
��� �
E
· exp

⇣
��E↵!�

⌘

where E↵!� is the energy di↵erence.
Since Z2 topological order has trivial quasi-particle self

statistics, to focus more on the mutual statistics we consider
only operators with nontrivial knots between the spinon and
vision world-lines, see Fig. 2b. These are strings of �z and
�x operators with double intersections. In addition, instead
of their full expectation values, which are relatively expensive
due to the average over the Markov chain, we settle with the
individual Monte Carlo sample ↵ for QLT. To further simply
the QLT, we consider instead the operators

Q
j2Ce �

z
j
Q

k2Cm �
x
k

where the strings Ce and Cm intersect. When valued at a par-
ticular Monte Carlo step, the original operators within QLT
can be straightforwardly derived from the ensemble of such
intersecting

Q
j2Ce �

z
j
Q

k2Cm �
x
k , making the latter an equally

informative candidate for machine learning with QLT. Fi-
nally, string tension and the rapidly decaying spinon-spinon
and vision-vision correlations allow us to focus on strings no
longer than a cut o↵, which is set to dc = 2 unless noted oth-
erwise.

MACHINE LEARNING TOPOLOGICAL PHASE DIAGRAM

Quantum loop topography data is obtained from the phase
space of Eq. (4), and supervised machine learning is per-
formed. As illustrated in Fig. 1, once obtained, each data
set serves as an “image” for a fully-connected feed-forward
neural network with one hidden layer consisting of n = 20
sigmoid neurons. Each neuron processes the input through in-
dependent weights and biases w · x+b. After the hidden layer,
the outcome is fed forward to be processed by the output neu-
ron. The final output 0  y  1 corresponds to the neural
network’s judgement of whether the quantum loop topogra-
phy input state is topological.

The neural network is trained via back-propagation and gra-
dient descent to optimize the weights and biases. We use
the cross entropy as the cost function, with L2 regularization
to avoid over-fitting, and a mini-batch size of 10 [23]. Our
training set consists of the large �p and small �b limit[43]
for the Z2 topological phase (y = 1) and small �p and �b
limit for the trivial phase (y = 0). For each chosen set of
�p and �b, we input 10000 quantum loop topography data
sets sampled through a classical Monte Carlo Metropolis pro-
cedure. We also reserve a separate test set (also half trivial
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FIG. 2. (a) Illustration of the lattice spin model in Eq. 3. The spin-
1/2’s reside on the bonds of the two-dimensional square lattice. A
string of �z (�x) operators creates at its two ends a pair of spinons
(visions) denoted as ‘e’ (‘m’), or equivalently, moves one spinon (vi-
sion) from one end to the other. (b) Illustration of a nontrivial knot
between the world-lines of a spinon and a vision. The operator cor-
responding to the process is
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directions, respectively. The vision and spinon trajectories intersect
twice at r and r0, then the density matrix ⇢ weighs the quasi-particle
correlations between the initial and final positions and e↵ectively
closes the trajectories.

terms, and determines the statistical weight of spin config-
urations on each imaginary time slice and between adjacent
slices of a classical system with Ising spin-1/2 living on the
cubic lattice bonds. After careful treatment of the gauge re-
dundancy, the Jx, hz, hx and Jz terms in Eq. 3 are interpreted as
vertical bond, horizontal bond, vertical plaquette and horizon-
tal plaquette terms in the anisotropic Z2 gauge Higgs model.
For simplicity, we consider the isotropic case where

H3D = ��b

X
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at unit temperature � = 1, with the following relations be-
tween the related parameters:

�b = hz�⌧ = �
1
2

ln tanh Jx�⌧

�p = Jz�⌧ = �
1
2

ln tanh hx�⌧ (5)

in the limit of small �⌧. We note that the method we will
present also o↵ers an alternative and convenient signature of
de-confinement[42] in an equivalent lattice gauge theory, even
though our focus of discussion is mainly on the Z2 quantum
spin liquids. For the rest of the paper, we use �b and �p as
parameters in the phase space for benchmark consistency with
Ref. 13.

The equivalent three-dimensional classical model in Eq. 4
o↵ers a convenient way to measure operators, which are sam-
pled within classical Monte Carlo Metropolis with both on-
site and cluster updates:
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Ô
E
↵

(6)

where ⇢2D =
P
↵�� ⇢

�
↵� |↵i h�| is the quantum density matrix of

the original two-dimensional system in Eq. 3. ↵ and � are two-

dimensional spin-1/2 configurations. ⇢�↵� = exp
⇣
�E↵��

⌘
/Z is

the thermal statistical weight of the three-dimensional clas-
sical configuration with open boundary conditions ↵ and �
along the imaginary time direction and bulk configuration �,
whose energy E↵�� is given by Eq. 4. Similarly, ⇢�↵↵ is the nor-
malized and positive-definite weight with periodic boundary
condition ↵, serving as the sample probability in our Monte
Carlo metropolis. Then the quantity that contributes to the
operator expectation value is
D
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E
↵
=
X

�

D
↵
���Ô
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where E↵!� is the energy di↵erence.
Since Z2 topological order has trivial quasi-particle self

statistics, to focus more on the mutual statistics we consider
only operators with nontrivial knots between the spinon and
vision world-lines, see Fig. 2b. These are strings of �z and
�x operators with double intersections. In addition, instead
of their full expectation values, which are relatively expensive
due to the average over the Markov chain, we settle with the
individual Monte Carlo sample ↵ for QLT. To further simply
the QLT, we consider instead the operators

Q
j2Ce �

z
j
Q

k2Cm �
x
k

where the strings Ce and Cm intersect. When valued at a par-
ticular Monte Carlo step, the original operators within QLT
can be straightforwardly derived from the ensemble of such
intersecting

Q
j2Ce �

z
j
Q

k2Cm �
x
k , making the latter an equally

informative candidate for machine learning with QLT. Fi-
nally, string tension and the rapidly decaying spinon-spinon
and vision-vision correlations allow us to focus on strings no
longer than a cut o↵, which is set to dc = 2 unless noted oth-
erwise.

MACHINE LEARNING TOPOLOGICAL PHASE DIAGRAM

Quantum loop topography data is obtained from the phase
space of Eq. (4), and supervised machine learning is per-
formed. As illustrated in Fig. 1, once obtained, each data
set serves as an “image” for a fully-connected feed-forward
neural network with one hidden layer consisting of n = 20
sigmoid neurons. Each neuron processes the input through in-
dependent weights and biases w · x+b. After the hidden layer,
the outcome is fed forward to be processed by the output neu-
ron. The final output 0  y  1 corresponds to the neural
network’s judgement of whether the quantum loop topogra-
phy input state is topological.

The neural network is trained via back-propagation and gra-
dient descent to optimize the weights and biases. We use
the cross entropy as the cost function, with L2 regularization
to avoid over-fitting, and a mini-batch size of 10 [23]. Our
training set consists of the large �p and small �b limit[43]
for the Z2 topological phase (y = 1) and small �p and �b
limit for the trivial phase (y = 0). For each chosen set of
�p and �b, we input 10000 quantum loop topography data
sets sampled through a classical Monte Carlo Metropolis pro-
cedure. We also reserve a separate test set (also half trivial
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FIG. 4. Phase diagram in both �b and �p obtained with a single neu-
ral network with supervised machine learning and quantum loop to-
pography. The color scale indicates the ratio p of topological re-
sponse: red (blue) color is the trivial (topological) phase. The train-
ing set contains �p = 0.85, 1.0 for the topological phase (y = 1)
and �p = 0.25, 0.65 for the trivial (disordered) phase (y = 0), and
�b = 0.02, 0.1, 0.18. Interestingly, the magnetically ordered phase at
large �b, which is dual to the disordered phase, is also recognized as
a topologically trivial phase, even though it is NOT contained in the
training set.

same under the duality transformation that switch the spinons
and visions. [What does this mean precisely? The NN usu-
ally detects some “local” constraints or features - in this case
is it the state of the QLT string operators? I think we should
be very detailed here - this might be the main point.] Frank:
More detail is discussed at the end of Sec II under more gen-
eral scenarios.

Finally, we use our neural network to precisely estimate the
locations of the topological quantum phase transition. For
illustration, we consider the specific case of �b = 0.2192,
and training set with �p = 0.25, 0.60 for trivial phase and
�p = 0.90, 1.25 for topological phase. The resulting neural
network is then used to test 20000 Monte Carlo samples for
each interpolating �p. The results are summarized in Fig. 5.
On contrary to Ref. 30, where the statistical ratio p shows a
discontinuity at the critical point, we instead observe a non-
analyticity in the derivative. The di↵erence may be due to the
gapless trivial phase, while the phases on both sides of the
topological quantum phase transition in Ref. 30 are gapped.
The transition tends to shift to higher �p, consistent with the
compression of de-confinement, as the system size increases.

At last, we pinpoint the location of the transition using
specific heat collapse of the classical system in Eq. 4 for
various system sizes. At �b = 0.2192 the critical value is
�p = 0.7553(6) in the thermodynamic limit, see Fig. 5[45].
For L = 24, the result from the neural network �p = 0.7517
has over 99.5% consistency, which may further improve as the
finite-size e↵ect gets more and more suppressed. [Why not
obtain 3 values (L=16,20,24 say) and extrapolate in 1/L? This
might give a very accurate correspondence for Tc.] Frank: I

FIG. 5. To locate the critical value of the topological quantum phase
transition, we look for the non-analyticity of ratio p over 20000
Monte Carlo samples for larger system sizes in the critical region.
The locations of the non-analyticity from fitting are noted by the ar-
rows. We set �b = 0.2192 and training set with �p = 0.25, 0.60 for
trivial phase and �p = 0.90, 1.25 for topological phase, respectively.
The red dashed line is �p = 0.7553, critical value of the transition
measured from specific heat collapse. The inset shows the unique-
ness of such singularity over a broader region.

added the L=20 data, and I think a three-point extrapolating
might be controversial. In this case, L=20 and L=24 fitted
singularity almost sit on top of each other. Also due to sample
selection there is about a 0.1 uncertainty of critical �p, there-
fore I feel safer only to claim the right-moving trend..

SUMMARY AND DISCUSSIONS

We have proposed a supervised machine learning solution
to detecting strongly-correlated topological phases with quan-
tum loop topography targeting quasi-particle statistics. In par-
ticular, our simple neural network successfully obtained the
parameter region of a Z2 quantum spin liquid and locations of
the topological quantum phase transition in the phase diagram
of a microscopic interacting Hamiltonian. Our algorithm is
generalizable beyond this specific model, and similar imple-
mentations of mutual statistics between multiple types of ex-
citations may be also applicable to higher dimensions, e.g. the
three-dimensional Z2 topological phases[6] and Fracton topo-
logical order[8, 9].

Fundamentally, diagnosis of topological phases and de-
confined gauge theories[42] have long relied on long-range
entanglement properties. Even though quasi-particle statistics
is commonly recognized as an essential topological property,
diagnosis based upon local measures of quasi-particle statis-
tics is rather counter-intuitive, especially since there seems
inadequate information on whether the quasi-particles local-
ize or condense. Our study suggests otherwise: topologi-
cal phase remains well defined from quasi-particle statistics
alone, which deserves an equal footing to long-range entan-
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and half topological) of 20% of the size of the training set
for validation purposes including learning speed control and
termination[23].

Once the neural network is trained successfully, it can
rapidly process quantum loop topography obtained from dif-
ferent parts of the phase space to yield a phase diagram. In
order to establish level of confidence on the trained network’s
assessment of whether the system is topological or not, we
process 2000 inputs at each point and take the ratio p of ‘topo-
logical’ output, i.e., y > 0.5. Our results are compared with
the phase diagram in Ref. [13] as well as our own bench-
mark on the positions of the topological quantum phase tran-
sitions. Precise benchmarks are independently obtained us-
ing a specific heat collapse method. A conventional Monte
Carlo method is used to obtain specific heat data for a range
of system sizes, and a collapse is performed to the finite-size
scaling function using critical exponents of the expected three-
dimensional Ising universality class. On simulations with up
to 1.6 ⇥ 104 spins, the critical �p for a fixed �b can be de-
termined to four digits of accuracy with about 2 core-years
of CPU time. Of course, this specific heat analysis gives an
accurate evaluation of the location of second order phase tran-
sition, without providing any characterization of the neighbor-
ing phases. Alternative approaches typically involve the eval-
uation of non-local observables such as Wilson loops, or the
topological entanglement entropy, which may su↵er from low
accuracy due to the high computational cost of the relevant
estimator.

RESULTS

We first show that supervised learning with our feed-
forward neural network can distinguish the Z2 QSLs from the
disordered phase in our model Eq. (4). For a series of �b below
the magnetic ordering threshold, we train our neural network
with quantum loop topography inputs from �p = 1.25 for the
topological phase (y = 1) and �p = 0.25 for the disordered
phase (y = 0). The resulting trained neural network then scans
over the phase space interpolating between 0.25  �p  1.25
for the phase diagram in �p at fixed �b. The results are summa-
rized in Fig. 3. With the p ratio of ‘topological’ response close
to 1 for topological phase and 0 for trivial phase, we achieve
good accuracy for a test set deep in either phase. For example,
an accuracy of > 99.9% at relatively large �b � 0.1 indicates
even a single QLT can reliably provide a trustworthy detec-
tion. In the case of small �b  0.05 where accuracy ⇠ 96%,
better accuracy > 99.9% is obtained simply with ȳ > 0.5 for
topological phase and ȳ < 0.5 for trivial phase, with the neural
output averaged over multiple Monte Carlo samples to reduce
fluctuation. Frank: is it worthy of showing data here? I tried
binning either 4 or 10 Monte Carlo samples. The neural net-
work becomes more “confused” in the critical region, so that
an average output value of p = 0.5 provides an estimate for
the transition. Our approach locates the topological quantum
phase transition around �p ⇠ 0.76, moving slightly toward

FIG. 3. The ratio of ‘topological’ response as a function of �p. For
each �b, we train the neural network with �p = 1.25 for the topolog-
ical phase (y = 1) and �p = 0.25 for the trivial (disordered) phase
(y = 0), after which the resulting neural network is applied to the
phase space in between. The inputs are quantum loop topography
with cut o↵ dc = 2. The vertical red dashed line is �p = 0.76. In-
set: enlargements over the critical region show that the topological
quantum phase transition moves slightly towards smaller �p as �b
increases.

smaller �p upon increasing �b (see Fig. 3inset), in full agree-
ment with previous calculations [13].

One of the largest advantages of machine learning is that its
generalizability allows us to quickly search through the phase
space for the targeted phase of matter. One such example us-
ing a single neural network is shown in Fig. 4, where the
likelihood of Z2 topological order is examined for over 1500
di↵erent sets of model parameters. Such calculations cost at
most only a couple of CPU hours. For better performance, we
have provided a more diverse training set with quantum loop
topography from a variety of models: �b = 0.02, 0.1, 0.18, and
�p = 0.85, 1.0 for the topological phase and �p = 0.25, 0.65
for the disordered phase. The resulting phase diagram (Fig.
4) correctly derives the parameter region of the Z2 topolog-
ical phase. We observe p > 0.96 (p < 0.04) in most parts
of the phase space deep in the Z2 topological order (trivial
phases), and the critical region in between is consistent with
the phase boundaries shown in the benchmark[13]. The only
exception is around the tri-critical point around �b ⇠ 0.225
and �p ⇠ 0.75[44].

Importantly, the magnetically ordered phase at large �b au-
tomatically becomes recognizable as a topologically trivial
phase even though no representing model was ever provided
in the supervised training. It rules out the possibilities that the
neural network judges based upon Wilson loops, which also
behave protected in the magnetically ordered phase. Instead,
since the magnetically ordered phase is dual to the disordered
phase under �x $ �z, it implies that with quantum loop to-
pography, the neural network is likely focusing on the mutual
statistics between the visions and spinons, which remains the

Yi	Zhang	,	R.	Melko &E-AK,	PRB,	96,	245119	(2017)
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Shallow	Network,	Deep	Insight?



Hidden	layer	neurons	actively	involved	
in	decision	making	for	topological	phases



What	did	the	AI	learn for	CI?
• Largest	w1 weights	associated	with	the	imaginary
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What	did	the	AI	learn	for	CI?

A topological	invariant,	the	Chern Number:



What	did	the	AI	learn for	Z2	QSL?



What	did	the	AI	learn for	Z2	QSL?
1. Full	Non-linearity	at	play!
2. Non-linear	products	of	QLT?

Non-linearity	=	Large	loops	with	local	info	!!



Local	Probe	Measurements:	
Dilemma	of	Large	Data	set

• Local	ordering	patterns

• How	to	connect	the	
data	to	theory?



Questions

1. Origin: r-space	or	k-space?

2. Nematic?



Strong	Coupling	Mechanism
• Frustration	of	AFM	order	upon	dopingNematic and spin-charge orders driven by hole-doping a charge-transfer insulator 9

(a) PM (b) PI

(c) DM (d) DI

Figure 4. The oxygen occupancy and spin polarization for (a) metallic and (b)
insulating parallel stripes, as well as (c) metallic and (d) insulating diagonal stripes
for ta = 200meV and J2 = 200meV. Note that the length of the (spin) arrow on the
oxygen site is scaled by a factor of 5 as compared to the Cu sites.

configurations (see Fig. 4) clearly show that the holes are attracted to the anti-phase

domain walls in the spin configurations driven by the Cu-O exchange-coupling J2. The

kinetic terms broaden the hole distribution and favor the metallic charge stripe. It is

remarkable that our simple model can readily access the spin and charge striped ground-

state configuration reminiscent of those obtained in density matrix renormalization

group studies of the 1/8-doped t-J model [31]. Moreover, as this model incorporates

the mostly-oxygen character of doped holes, the charge stripes centered at the anti-

phase domain wall of the antiferromagnetic background are naturally coupled to IUC

nematic. The parallel stripe configurations obtained in Fig. 4 clearly demonstrate a

coupling between the (Ising) IUC nematic order and the stripe-ordering wave vector.

In the sense of Ginzburg-Landau theory of order parameters, Fig. 4 demonstrates a

coupling between the Ising nematic order parameter and the di↵erence in amplitude

of the charge-density wave (CDW) order parameters for CDW’s propagating along the

two Cu-O bond directions [61] at a microscopic level. The charge distribution we obtain

for trial spin configurations in Figs. 3 and 4 makes it clear that any spin order with

modulation vector along the Cu-O bond direction will be accompanied by IUC nematic

irrespective of charge stripe order. ‡ The remaining question is which of these candidate

states is lowest in energy and what are the energy di↵erences between competing states.

‡ On symmetry grounds, any unidirectional spin order along Cu-O bond direction breaks the point
group symmetry and hence it can couple to nematic in principle. It is an explicit microscopic realization
of such phenomena that is new here.
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