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Data Revolution in R-space



unneling Density of States,
in 1962

PHYSICAL REVIEW VOLUME 126, NUMBER 3 MAY 1, 1962

Tunneling into Superconductors at Temperatures below 1°K

I. Giaever, H. R. HArT, JR.,, AND K. MEGERLE
General Electric Research Laboratory, Schenectady, New York

(Received November 16, 1961)

The density of states in four superconductors, lead, tin, indium, and aluminum, has been studied using
the tunneling technique. The experimental results agree remarkably well with the Bardeen-Cooper-Schrieffer
theory; however, two exceptions were found. The energy gap is not as sharp in the experiment as in the

theory, but this may merely be due to imperfect samples. The density of states in lead has definite but
small divergences from the theory.




unneling Density of States,
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Pb /Mg0 /Mg

€:1.34x1073 ey
T=.33°

Differential conductance dI/dV @ V Giaever et al, Phys
proportional to N(E=eV) oy s o) Rev. 126, 941’ (1962)




Tunneling Density of States,

2000’s
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Tunneling Density of States,
in 2000’s
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Data Revolution in Q-space



Sparse Data with Point Detectors




Comprehensive Data with Modern Detectors

Phosphor-Coupled

High energy X-ray Data at CHESS
> Possibly 5 TB per day

!
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https://neutrons.ornl.gov/sequoia
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Neutron data from Spallation
Neutron Source
> Possibly 200 GB per hour



Comprehensive, too comprehensive!




Data-driven Challenges?



NSF'S 10 BIG IDEAS

MATHEMATICAL,
STATISTICAL,
COMPUTATIONAL EDUCATION
FOUNDATIONS WORKFORCE

HARNESSING THE
DATA REVOLUTION

DOMAIN RESEARCH
SCIENCE DATA
CHALLENGES CYBERINFRASTRUCTURE




to new data-driven research challenges. The challenges
posed by complex data elements such ...unstructured
and heterogeneous data formats; streaming and dynamic
data; complex dependence structures; missing,
uncertain, and noisy information; sparsity; and
information hidden at the noise level will require research
that (a) addresses the core algorithmic, mathematical,
and statistical principles; and (b) leads to new
approaches, computational tools, and software for data-
driven discovery...

https://www.nsf.gov/pubs/2018/nsf18542/nsf18542.htm



Preschool games ¢
math skills in lndz o

Science

Chemibcal shifts from tiny
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Astronmy, Particle Physics, Genomics,
demographics, Medicine, ...

Al that “knows” what a galaxy should look like transforms a fuzzy
image (left) into a crisp one (right).



Why ML for Quantum Matter?

Experimental and Computational
Data-driven Challenges
Understanding = Knowledge
Compression: Regression/Generation
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New Insight through Synergy

GREG DUNN AND BRIAN EDWARDS




Machine Learning



Challenges of Complexity: Altzheimer

traditional cs:
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How Neural Network Learns

to make the correct decision



Decision (regression) based on w(t) and b(t)

e Kid’s decision upon dropping food...

inputs Hidden layer Non-linear
W11 * X1 +by output
X1. s mom watching? >
N1. Reptile self
X2. Has it been 5 sec? 7 Y. Gulp!

&l
\/
” N2. Mature self o(a)
X3. Is this green? &—> /

7
X4. Is this dessert? & N3. ..... >\
/

W3g * Xy +b3




Gradient Descent with a Cost Function C(w,b)

. J Non-linear output, e.g., (rectifier)
INputs

a(x;w,b) = max(0,wx + b)

X1. Is mom watching?

X2. Has it been 5 sec?

[ Desired output for a particular input x

y(x)=0

X3. Is this green?

X4. Is this dessert? ] Cost FunCtion, e.g. Cross entropy

C(w,b) = —%Z[ylna + (1 —y)In(1 — a)]

X




What can we do with ANN?



[Rosenblatt 1957 ]

Slide from Kilian Weinberger, Cornell h(X) = WTX + b
http://cornell.videonote.com/videos/1000481/play?t=1654.958939




Multi-Layer Perceptron F e

1 K \-;ﬁ‘l' ":

(a.k.a. Neural Networks) [Rosenblatt 1961]

ISET7 7
2 g 504
(<

/>
-\

o(a) = max(a,0)
Rectified Linear Units

h(x)=w'oc(W'x+c)+b

Slide from Kilian Weinberger, Cornell



Multi-Layer Perceptron F e

M Nl
(a.k.a. Neural Networks, Deep Learning) [Rosenblatt 1961]
hidden hidden hidden hidden

h(x) = w! o(Wo(W2a(W3 )

Slide from Kilian Weinberger, Cornell




Use Neural Networks to

Represent Classify
Numerical & Experimental

Data

Many-Body Wave Functions




ML in Quantum Matter Physics

Representing Wave function
o Variational Wave Function represented through neural networks
, Carleo & Troyer, Science (2017)
o Mapping Tensor Network to Neural network
Tao Xiang
o Neural Network Representation of Ground State WF of solvable models
Dong-Ling Deng, Xiaopeng Li, Das Sarma

, PRX (2017)
Detecting Phases
o Supervised
= 2D Ising model & 2D Ising lattice gauge theory Carrasquilla and Melko, Nature Physics (2017)
» Finite-T repulsive U 3D Hubbard Melko, Khatami et al
» Zero-T repulsive U honeycomb Hubbard Melko, Trebst et al
» Fractional Chern Insulator, , Yi Zhang & E-AK, PRL, Physics Viewpoint (2017)
= 72 QSL with mutual statistics, , Yi Zhang, Melko, E-AK
= MBL, Neupert et al
= Hard-core bosons: superfluids, KT, Semi-unsupervised, , Broecker, Assaad, Trebst

o Unsupervised (PCA and Autoencoders): so far, all classical.
Lei Wang: 2D Ising
S. Wetzel: 2D Ising, 3D XY
Hu, Singh, Scalatter, Various spin models including highly frustrated three component (S in
{-1,0,1}) spin model).
Ce Wang &Hui Zhai, Classical frustrated spin model
Theoretical Physics of Deep Neural Networks:

o Connection between RG and fully connected deep network, , Mehta and Schwab



Used Neural Networks to

Represent
Many-Body Wave Functions

Carleo and Troyer, Science 355, 602 (Feb, 2017)

Uy (S: W) = Z exp Zajaf + Zbih@- + Z Wz‘jhz’()';
{h;} | i L i

: A compact representation of the
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Used Neural Networks to

Classify

Carrasquilla and Melko, Nat. Numerical Data

Phys. ,13, 431 (May, 2017)

e Supervised Learning on the (thermalized) raw
configurations

e Speed-up from “seeing through” noisy data.




Bench-Marked against known results for

* The 1D Transverse Field Ising Model

* The Antiferromagnetic Heisenberg Model in 1D and 2D
(square lattice)

* The Ferromagnetic Ising Model



But all Long-Range Ordered States are Classicall!!




Beyond Long Range Order...

1. Discerning Topological Phases in
Computational Data.

2. Seeking Theoretical Insights in
Experimental Data from STM.



QPT Mutual Statistics

N VAN

NN N
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Yi Zhang &E-AK, PRL 118, 216401 (2017), Yi Zhang , R. Melko &E-AK, PRB,
Physics Viewpoint 96, 245119 (2017) Mesaros et al, &E-AK, 2018



Discerning Numerical Data

Yi Zhé’ﬁg
* Chern Insulators * Z2 Quantum Spin Liquid

PHYSICAL REVIEW B 96, 245119 (2017)

Quantum Loop Topography for Machine Learning

Yi Zhang and Eun-Ah Kim Machine learning Z, quantum spin liquids with quasiparticle statistics

Phys. Rev. Lett. 118, 216401 — Published 22 May 2017
Yi Zhang,'" Roger G. Melko,>* and Eun-Ah Kim'-f

PhyéTc‘s See Viewpoint: N

Interpretability:
What did Neural Network Learn?
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Chiral Topological Phase:
Chern insulator TQPT



Model part I: Free Fermion

* Topological Quantum Phase
Transition at k=0.5

e k<0.5 trivial insulator
e k>0.5 Chern insulator



Quantum Loop Topography

* QLT data entry for input x

where f’jk = <c;r-ck>

/X

NN NN

ANNERANN

I A
I A
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QLT as the input vector

X

0.00
0.4

0 045 050 055 0.60

K

* Train with two known points:
k=0.1 (trivial), k=1 (topo)
* Smallest triangles (d_=1) are
sufficient in the gapped phases
* Once trained, get PD in 10min on
a laptop.

* 99.9% accuracy in the phase
verified with 2k test samples.



ow to “image” Quantum Loops

NN NN

ANNERANN

7
'?
0

* Organize loops by lateral

dimension d=1,2,3...

e Associate each site with all the

triangles that involves the site as
a vertex.

* Gap & quantization allow d_<<L

* Quasi-2D “image” input vector x



non-Chiral Topological Phase:
/2 quantum spin liquid

Yi Zhang , R. Melko &E-AK, PRB, 96, 245119 (2017)



Kitaev Model under field

* Finite region of Z2 spin liquid
with finite correlation length

* Spinons and Visons

 Mutual statistics




Quantum Loop Topography for Z2 QSL

* QLT designed to probe mutual
statistics




Kitaev Model under field

e 2+1D Kitaev Model under field
~Classical Z2 gauge Higgs
model in 3D

Disordered Z topological order

2. =0.025
1. =0.05

A =0.10

A =0.15

2 =0.20

A =0.2192

Yi Zhang , R. Melko &E-AK, PRB, 96, 245119 (2017)



Shallow Network, Deep Insight?
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Hidden layer neurons actively involved
in decision making for topological phases

RN
o

I Z2 topological order
I Chern insulator
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What did the Al learn for CI?

* Largest w, weights associated with the imaginary
parts of the d_=1 loops
* All sites contribute evenly.

‘
ﬁ:

ANNERNN

ANANEANEAS

1
+9.03>0 N Z ZﬂiPJkPHPU > 0.392

—4.84Xmax [0.208 z iP; PPy + 3.73,0
dc=1

dc=1




What did the Al learn for CI?

1

= — [ dk, dk, <<akmuj|akyuj> — <3kyuj’akmuj>)




What did the Al learn for Z2 QSL?

I Z2 topological order
I Chern insulator
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What did the Al learn for Z2 QSL?

=

-ull Non-linearity at play!
2. Non-linear products of QLT?

1] 1]
] |
0)

Non-linearity = Large loops with local info !l



Local Probe Measurements:
Dilemma of Large Data set

* Local ordering patterns

e How to connect the
data to theory?




Questions

1. Origin: r-space or k-space?

2. Nematic?



Strong Coupling Mechanism

* Frustration of AFM order upon doping

Zaanen, Gunnarson, PRB (1989)

Low, Emery, Fabricious, Kivelson (1994)
Vojta, Sachdev(1999)

White, Scalapino,PRL(1998)

Capponi, Poilblanc (2002)

Corboz, Rice, Troyer, PRL (2014)
Fischer, EAK et al., NJP (2014)

Commensurate Charge Modulation,
period 4a at p=1/8



Weak Coupling Mechnism

* Nesting driven Fermi surface instability

Bl ARPES - UD15K

Comin et al., Science(2014)

Efitov et al, Nature Physics (2013)
Pepin et al, PRB (2014)

Wang, Chubukov, PRB (2014)
Loder et al, PRL (2011)

Incommensurate,
Q decrease with p



Diversify with

Training Set Generation
fluctuations,
disorder
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Training Set Generation

3-stage protocol
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A
3-stage protocol

Stage 1

Stage 2

Training Set Generation

Diversify with
Simulated Classified _J noise,
Diverse Training Set fluctuations,
disorder

Classes (simulated orders)

Accuracy
\c twork under Training

1 (t AZ (t) . r(t

@ Feedback&Optimization

Noisy, Fluctuating, Disordered ’ .
Dataset {D;} ‘PO 1)
I
Test Classification ‘ —> 1P(1,2)

| with Probability ’ '
lrained \cmork | P(1 N
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lifeboat
amphibian
fireboat

drilling platform

ImageNet Classification with Deep
Convolutional Neural Networks




Full 3D data
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Orientation

Global nematic order coupled to

modulation amplitude!




With Al,
Learning Quantum Emergence

The journey has just begun....
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