A Novel Strongly Spin-Orbit Coupled Quantum Dimer Magnet: Yb2Si2O7

G. Hester¹, H.S. Nair¹, T. Reeder¹, L. Berges², D. Ziat², J.A. Quilliam², J.R. Neilson¹, G. Sala³, and K.A. Ross^{1,4}

¹Colorado State University, Fort Collins, CO, USA.

²Université de Sherbrooke, Sherbrooke, Québec, Canada.

³Oak Ridge National Laboratory, Oak Ridge, TN, USA.

⁴Quantum Materials Program, Canadian Institute for Advanced Research (CIFAR), Ontario, Canada

Through the study of theoretical proposals for quantum spin liquids and high-temperature superconductivity several novel phases of matter have been discovered. One such state is the quantum dimer magnet, which exhibits a field-induced Bose-Einstein condensate (BEC) phase that occupies a symmetric dome in the field vs. temperature phase diagram. Many compounds based on 3d magnetic cations have been found that exhibit a quantum dimer state with a BEC phase. We have found a new realization in the distorted honeycomb-lattice material Yb₂Si₂O₇. The distorted honeycomb lattice gives rise to shorter Yb-Yb bonds, naturally allowing dimerization of the shorter bonds. Yb³⁺'s high spin-orbit coupling combined with crystal field effects results in pseudo-spin ¹/₂ angular momentum that leads to anisotropic exchange interactions between quantum spins. Single crystals of Yb₂Si₂O₇ were grown via the optical floating zone technique at Colorado State University. Our single crystal inelastic neutron scattering, specific heat, and ultrasound velocity measurements show the expected field-induced transition to a BEC-like phase, which occur at significantly lower critical fields than previously studied compounds due to the 4f magnetism. However, the high-field part of the BEC dome is interrupted by an unusual regime that is characterized by a broad feature in the specific heat (compared to the BEC magnetic ordering transition). Evidence of a pseudo-Goldstone mode from the inelastic neutron scattering spectrum persists throughout the BEC dome. This is consistent with the spontaneous breaking of the continuous U(1) symmetry that is expected for a BEC. Our results on Yb₂Si₂O₇ raise the question of how anisotropic exchange in strongly spinorbit coupled materials modifies the field induced phases of quantum dimer magnets.