Superoxygenation Study of Cuprate and Iridate Thin Films

H. Zhang¹, C. Zhang¹, N. Gauquelin², G. A. Botton², C. McMahon³, D. G. Hawthorn^{3,5}, P. Clancy¹, S. H. Chun¹, A. Seo⁴, Y. J. Kim¹, and J. Y. T. Wei^{1,5}

¹Department of Physics, University of Toronto ²Canadian Centre for Electron Microscopy and Brockhouse Institute for Materials Research, McMaster University ³Department of Physics and Astronomy, University of Waterloo ⁴Department of Physics and Astronomy, University of Kentucky ⁵Canadian Institute for Advanced Research

The technique of superoxygenation has been used to hole-dope cuprate superconductors and to synthesize higher-oxidation phases of Y-Ba-Cu-O in powder form. We extend this technique to thin-film samples, which have wider thermodynamic range due to their large surface-to-volume ratio, and to the layered iridate Sr_2IrO_4 , which is difficult to hole-dope by cation substitution. First, $YBa_2Cu_3O_{7-\delta}$ thin films grown by pulsed laser deposition are annealed in up to 700 atm O_2 at 900°C, and then characterized by transmission electron microscopy, x-ray diffraction and x-ray absorption spectroscopy [1]. The high-pressure annealed films show phase conversion to $Y_2Ba_4Cu_7O_{15-\delta}$ and $\rm Y_2Ba_4Cu_8O_{16},$ which contain double CuO chains, as well as regions of $\rm YBa_2Cu_5O_{9-\delta}$ and $YBa_2Cu_6O_{10-\hat{I}t\delta}$, which contain triple and quadruple CuO chains respectively. Second, epitaxial thin films of Sr_2IrO_4 are subjected to extended high-pressure annealing at lower temperatures, and then similarly characterized. Whereas the as-grown films are insulating, the post-annealed films show evolution towards semi-metallic behavior with up to 3 order-of-magnitude drop in room temperature resistivity. Furthermore, as film thickness is reduced, the high-pressure annealed films show structural transformation towards a quasi-cubic SrIrO₃ phase. Our results demonstrate the potential of using superoxygenation to stabilize exotic phases of transition metal oxides not achievable in bulk form.

[1] H. Zhang et. al., Phys. Rev. Materials 2, 033803 (2018), and references therein.